1
|
Longtin A, Watowich MM, Sadoughi B, Petersen RM, Brosnan SF, Buetow K, Cai Q, Cayo Biobank Research Unit, Gurven MD, Higham JP, Highland HM, Huang YT, Kaplan H, Kraft TS, Lim YAL, Long J, Melin AD, Montague MJ, Roberson J, Ng KS, Platt ML, Schneider-Crease IA, Stieglitz J, Trumble BC, Venkataraman VV, Wallace IJ, Wu J, Snyder-Mackler N, Jones A, Bick AG, Lea AJ. Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing. PLoS Genet 2025; 21:e1011667. [PMID: 40402999 DOI: 10.1371/journal.pgen.1011667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/27/2025] [Indexed: 05/24/2025] Open
Abstract
Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, development, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies is currently lacking. To address this gap, we optimized the Targeted Methylation Sequencing protocol (TMS)-which profiles ~4 million CpG sites-for miniaturization, flexibility, and multispecies use at a cost of ~USD 80. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n = 55 paired samples) and whole genome bisulfite sequencing (n = 6 paired samples). In both cases, we found strong agreement between technologies (R2 = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean = 77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R2 = 0.98). Finally, we confirmed that estimates of 1) epigenetic age and 2) tissue-specific DNA methylation patterns are strongly recapitulated using data generated from TMS versus other technologies. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.
Collapse
Affiliation(s)
- Amy Longtin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Baptiste Sadoughi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Rachel M Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sarah F Brosnan
- Departments of Psychology & Philosophy, Neuroscience Institute, Center for Behavioral Neuroscience, and the Language Research Center, Georgia State University, Atlanta, GeorgiaUnited States of America
| | - Kenneth Buetow
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Michael D Gurven
- Department of Anthropology, University of California, Santa Barbara, California, United States of America
| | - James P Higham
- Department of Anthropology, New York University, New York, New York, United States of America
- New York Consortium in Evolutionary Primatology, New York, New York, United States of America
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yi-Ting Huang
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Hillard Kaplan
- Institute for Economics and Society, Chapman University, Orange, California, United States of America
| | - Thomas S Kraft
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Malaysian Indigenous Studies (CMIS), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Amanda D Melin
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jamie Roberson
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kee-Seong Ng
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - India A Schneider-Crease
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Jonathan Stieglitz
- Department of Social and Behavioral Sciences, Toulouse School of Economics, Institute for Advanced Study in Toulouse, Université Toulouse Capitole, Toulouse, France
| | - Benjamin C Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
- Institute of Human Origins, Arizona State University, Tempe, Arizona, United States of America
| | - Vivek V Venkataraman
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Ian J Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Angela Jones
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Alexander G Bick
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
2
|
Zipple MN, Zhao I, Kuo DC, Lee SM, Sheehan MJ, Zhou W. Ecological Realism Accelerates Epigenetic Aging in Mice. Aging Cell 2025:e70098. [PMID: 40396452 DOI: 10.1111/acel.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/22/2025] Open
Abstract
The aging of mammalian epigenomes fundamentally alters cellular functions, and such changes are the focus of many healthspan and lifespan studies. However, studies of this process typically use mouse models living under standardized laboratory conditions and neglect the impact of variation in social, physical, microbial, and other aspects of the living environment on age-related changes. We examined differences in age-associated methylation changes between traditionally laboratory-reared mice from Jackson Laboratory and "rewilded" C57BL/6J mice, which lived in an outdoor field environment at Cornell University with enhanced ecological realism. Systematic analysis of age-associated methylation dynamics in the liver indicates a genomic region-conditioned, faster epigenetic aging rate in mice living in the field than those living in the lab, implicating perturbed 3D genome conformation and liver function. Altered epigenetic aging rates were more pronounced in sites that gain methylation with age, including sites enriched for transcription factor binding related to DNA repair. These observations underscore the overlooked role of the social and physical environment in epigenetic aging with implications for both basic and applied aging research.
Collapse
Affiliation(s)
- Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Ivan Zhao
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel Chang Kuo
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Teschendorff AE, Horvath S. Epigenetic ageing clocks: statistical methods and emerging computational challenges. Nat Rev Genet 2025; 26:350-368. [PMID: 39806006 DOI: 10.1038/s41576-024-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Over the past decade, epigenetic clocks have emerged as powerful machine learning tools, not only to estimate chronological and biological age but also to assess the efficacy of anti-ageing, cellular rejuvenation and disease-preventive interventions. However, many computational and statistical challenges remain that limit our understanding, interpretation and application of epigenetic clocks. Here, we review these computational challenges, focusing on interpretation, cell-type heterogeneity and emerging single-cell methods, aiming to provide guidelines for the rigorous construction of interpretable epigenetic clocks at cell-type and single-cell resolution.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | |
Collapse
|
4
|
Xiao Y, Jin W, Ju L, Fu J, Wang G, Yu M, Chen F, Qian K, Wang X, Zhang Y. Tracking single-cell evolution using clock-like chromatin accessibility loci. Nat Biotechnol 2025; 43:784-798. [PMID: 38724668 DOI: 10.1038/s41587-024-02241-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 04/10/2024] [Indexed: 05/18/2025]
Abstract
Single-cell chromatin accessibility sequencing (scATAC-seq) reconstructs developmental trajectory by phenotypic similarity. However, inferring the exact developmental trajectory is challenging. Previous studies showed age-associated DNA methylation (DNAm) changes in specific genomic regions, termed clock-like differential methylation loci (ClockDML). Age-associated DNAm could either result from or result in chromatin accessibility changes at ClockDML. As cells undergo mitosis, the heterogeneity of chromatin accessibility on clock-like loci is reduced, providing a measure of mitotic age. In this study, we developed a method, called EpiTrace, that counts the fraction of opened clock-like loci from scATAC-seq data to determine cell age and perform lineage tracing in various cell lineages and animal species. It shows concordance with known developmental hierarchies, correlates well with DNAm-based clocks and is complementary with mutation-based lineage tracing, RNA velocity and stemness predictions. Applying EpiTrace to scATAC-seq data reveals biological insights with clinically relevant implications, ranging from hematopoiesis, organ development, tumor biology and immunity to cortical gyrification.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Jin
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Fu
- Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fangjin Chen
- High Performance Computing Center, Peking-Tsinghua College of Life Sciences, Peking University, Beijing, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China.
| |
Collapse
|
5
|
Rhon-Calderon EA, Hemphill CN, Savage AJ, Riesche L, Schultz RM, Bartolomei MS. In vitro fertilization induces reproductive changes in male mouse offspring and has multigenerational effects. JCI Insight 2025; 10:e188931. [PMID: 40036079 PMCID: PMC12016927 DOI: 10.1172/jci.insight.188931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
In vitro fertilization (IVF) is a noncoital method of conception used to treat human infertility. Although IVF is viewed as largely safe, it is associated with adverse outcomes in the fetus, placenta, and adult offspring. Because studies focusing on the effect of IVF on the male reproductive system are limited, we used a mouse model to assess the morphological and molecular effects of IVF on male offspring. We evaluated 3 developmental stages: 18.5-day fetuses and 12- and 39-week-old adults. Regardless of age, we observed changes in testicular-to-body weight ratios, serum testosterone levels, testicular morphology, gene expression, and DNA methylation. Also, sperm showed changes in morphology and DNA methylation. To assess multigenerational phenotypes, we mated IVF-conceived and naturally conceived males with wild-type females. Offspring from IVF males exhibited decreased fetal-to-placental weight ratios and changes in placenta gene expression and morphology regardless of sex. At 12 weeks of age, offspring showed higher body weights and differences in glucose, triglyceride, insulin, total cholesterol, HDL-C, and LDL/VLDL-C levels. Both sexes showed changes in gene expression in liver, testes, and ovaries and decreased global DNA methylation. Collectively, our findings demonstrate that male IVF offspring exhibit abnormal testicular and sperm morphology and molecular alterations with a multigenerational impact.
Collapse
Affiliation(s)
- Eric A. Rhon-Calderon
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cassidy N. Hemphill
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Savage
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laren Riesche
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard M. Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Marisa S. Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Women’s Health and Reproductive Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Ruiz A, Noreen F, Meier H, Buczak K, Zorzato F, Treves S. 5-aza-2-deoxycytidine improves skeletal muscle function in a mouse model for recessive RYR1-related congenital myopathy. Hum Mol Genet 2025; 34:790-805. [PMID: 39946277 DOI: 10.1093/hmg/ddaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 04/22/2025] Open
Abstract
RYR1-related congenital myopathies are rare disorders that severely impair muscle function and the quality of life of patients and their families. To date no pharmacological therapies are available to treat the severe muscle weakness of affected patients. The most severe forms of RYR1-related congenital myopathies are caused by compound heterozygous mutations (nonsense/frameshift in one allele and a missense mutation in the other), leading to reduced RyR1 protein levels and altered biochemical composition of muscles. In this pre-clinical study, we treated a mouse model carrying the RyR1 p.Q1970fsX16 + p.A4329D compound heterozygous pathogenic variants (dHT mice) for 15 weeks with 0.05 mg/kg 5-aza-2'-deoxycytidine, an FDA-approved drug targeting DNA methyltransferases. We evaluated muscle strength, calcium homeostasis and muscle proteome and report that drug treatment improves all investigated parameters in dHT mice. Importantly, the beneficial effects were particularly significant in fast twitch muscles which are the first muscles to be impaired in patients. In conclusion, this study provides proof of concept for the pharmacological treatment of patients with recessive RYR1-related congenital myopathies with the FDA approved 5-aza-2'-deoxycytidine, supporting its use in a phase 1/2 clinical trial.
Collapse
Affiliation(s)
- Alexis Ruiz
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Faiza Noreen
- Genome plasticity group, Department of Biomedicine, University of Basel, Mattenstrasse 28 4058, Basel, Switzerland
| | - Hervé Meier
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41 4056 Basel, Switzerland
| | - Francesco Zorzato
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
| | - Susan Treves
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Mostaghimi D, Mehta S, Yoon J, Kosana P, Marra CM, Corley MJ, Farhadian SF. Epigenetic Changes in Cerebrospinal Fluid and Blood of People With Neurosyphilis. J Infect Dis 2025; 231:883-893. [PMID: 39356164 PMCID: PMC11998562 DOI: 10.1093/infdis/jiae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Epigenetic changes within immune cells may contribute to neuroinflammation during bacterial infection, but their role in neurosyphilis (NS) pathogenesis and response has not yet been established. We longitudinally analyzed DNA methylation and RNA expression in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs) from 11 participants with laboratory-confirmed NS (CSF Venereal Disease Research Laboratory test positive) and 11 matched controls with syphilis without NS (non-NS). DNA methylation profiles from CSF and PBMCs of participants with NS significantly differed from those of participants with non-NS. Some genes associated with these differentially methylated sites had corresponding RNA expression changes in the CSF (111/1097 [10.1%]), and included genes involved in B cell activation and insulin-response pathways. Despite antibiotic treatment, approximately 80% of CSF methylation changes associated with NS persisted, suggesting that epigenetic scars accompanying NS may persistently affect immunity following infection. Future studies must examine whether these sequelae are clinically meaningful.
Collapse
Affiliation(s)
- Darius Mostaghimi
- Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Sameet Mehta
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Jennifer Yoon
- Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Priya Kosana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Christina M Marra
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, District of Columbia
| | - Michael J Corley
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York
| | - Shelli F Farhadian
- Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
- Center for Brain and Mind Health, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Ashwani, Sharma A, Choudhary MK, Gugulothu D, Pandita D, Verma S, Vora LK, Khatri DK, Garabadu D. Epigenetic and Mitochondrial Metabolic Dysfunction in Multiple Sclerosis: A Review of Herbal Drug Approaches and Current Clinical Trials. Mol Neurobiol 2025:10.1007/s12035-025-04868-8. [PMID: 40180689 DOI: 10.1007/s12035-025-04868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease characterised by inflammation, demyelination, and neurodegeneration within the central nervous system (CNS). While the exact causes remain unclear, recent research highlights the significant role of epigenetic modifications and mitochondrial dysfunction in the disease's onset and progression. Epigenetic alterations, such as DNA methylation, histone modification, and microRNA regulation, influence gene expression without altering the DNA sequence, leading to immune dysregulation and inflammation. Similarly, mitochondrial dysfunction, marked by impaired oxidative phosphorylation, reduced adenosine triphosphate (ATP) production, and increased reactive oxygen species (ROS), contributes to neurodegeneration and impaired remyelination in MS. The growing interest in targeting these two interconnected mechanisms has opened new avenues for MS treatment. Herbal drugs, known for their multi-targeted effects, have shown potential in modulating epigenetic markers and enhancing mitochondrial function. Compounds such as resveratrol, curcumin, epigallocatechin-3-gallate (EGCG), quercetin, and omega-3 fatty acids demonstrate potential in regulating DNA methylation, histone deacetylation, and mitochondrial biogenesis. These natural agents offer dual-action therapies by reducing oxidative stress and inflammation while promoting neuronal survival and remyelination. This review explores the therapeutic potential of herbal drugs targeting epigenetic and mitochondrial pathways in MS, evaluating their mechanisms of action and highlighting their promise as novel therapeutic agents. While initial findings are encouraging, further research and clinical trials are required to validate the efficacy of these herbal treatments and fully understand their potential in slowing disease progression and improving patient outcomes in MS. Such exploration could pave the way for safer, multi-targeted therapies, offering new hope in the management of MS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashwani
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | | | - Mayank Kumar Choudhary
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Dalapathi Gugulothu
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India.
| | - Deepti Pandita
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Surajpal Verma
- Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen'S University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India.
| | - Debapriya Garabadu
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
9
|
Barrett JE, Herzog CM, Aminzadeh-Gohari S, Redl E, Ishaq Parveen I, Rothärmel J, Tevini J, Weber DD, Catalano L, Stefan VE, Felder TK, Obrist P, Alkasalias T, Gemzell-Danielsson K, Lang R, Kofler B, Widschwendter M. Epigenetic signatures in surrogate tissues are able to assess cancer risk and indicate the efficacy of preventive measures. COMMUNICATIONS MEDICINE 2025; 5:97. [PMID: 40175633 PMCID: PMC11965489 DOI: 10.1038/s43856-025-00779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/21/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND In order to advance personalized primary cancer prevention, surrogate endpoint biomarkers in distant, easy to access tissues (i.e., field defect indicators) reflecting field cancerization in the organ at risk are essential. METHODS Here we utilized medroxyprogesterone acetate and 7,12-dimethylbenzanthracene to induce mammary gland cancers in mice. We assessed epigenetic signatures reflective of carcinogen exposure, cell-type composition, mitotic age, and methylation at progesterone receptor binding sites in both, the tissue at risk (normal mammary gland; field cancerization) and distant non-at-risk organs (cervix, oviduct, and blood; field defect indicators), in mice that did and did not develop mammary gland cancers. RESULTS We demonstrate that the anti-progestine mifepristone reduces the cancer risk by more than 50%. Importantly, the reduction in cancer risk is accompanied by a decline in both field cancerization and field defect indicators; specifically, epigenetic signatures in the cervix are predictive of mammary cancer formation but show tissue-specific directionality. CONCLUSIONS These data encourage further exploration of epigenetic biomarkers in certain field defect-indicating tissues with a view to monitor the efficacy of cancer prevention strategies in humans.
Collapse
Affiliation(s)
- James E Barrett
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Chiara Maria Herzog
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Sepideh Aminzadeh-Gohari
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Elisa Redl
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Isma Ishaq Parveen
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Julia Rothärmel
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Bioscienes and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Thomas K Felder
- Department of Laboratory Medicine, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | | | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, 44001, Iraq
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria.
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria.
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
- Department of Women's Cancer, University College London, London, UK.
| |
Collapse
|
10
|
Sun W, Hewitt SM, Wright H, Keller C, Barr FG. DNA methylation patterns are influenced by Pax3::Foxo1 expression and developmental lineage in rhabdomyosarcoma tumours forming in genetically engineered mouse models. J Pathol 2025; 265:316-329. [PMID: 39812007 PMCID: PMC11794984 DOI: 10.1002/path.6386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/21/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages. Our unsupervised analyses of DNA methylation patterns in these GEMM tumours yielded two major clusters, corresponding to high and no/low expression of Pax3::Foxo1, which mirrored the results for human FP and FN RMS tumours. Two distinct methylation-defined subsets were found for GEMM RMS tumours with no/low Pax3::Foxo1 expression: one subset enriched in Pax7 lineage tumours and a second subset enriched in myogenic factor 5 (Myf5) lineage tumours. Integrative analysis of DNA methylation and transcriptomic data in mouse and human RMS revealed a common group of differentially methylated and differentially expressed genes, highlighting a conserved set of genes functioning in both human RMS models and GEMMs of RMS. In conclusion, these studies provide insight into the roles of oncogenic fusion proteins and developmental lineages in establishing DNA methylation patterns in FP and FN RMS respectively. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Wenyue Sun
- Laboratory of Pathology, Center for Cancer ResearchNCIBethesdaMDUSA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer ResearchNCIBethesdaMDUSA
| | - Hollis Wright
- Children's Cancer Therapy Development InstituteHillsboroORUSA
| | - Charles Keller
- Children's Cancer Therapy Development InstituteHillsboroORUSA
| | - Frederic G Barr
- Laboratory of Pathology, Center for Cancer ResearchNCIBethesdaMDUSA
| |
Collapse
|
11
|
Goldberg DC, Cloud C, Lee SM, Barnes B, Gruber S, Kim E, Pottekat A, Westphal MS, McAuliffe L, Majounie E, KalayilManian M, Zhu Q, Tran C, Hansen M, Stojakovic J, Parker JB, Kohli RM, Porecha R, Renke N, Zhou W. Scalable Screening of Ternary-Code DNA Methylation Dynamics Associated with Human Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594606. [PMID: 38826316 PMCID: PMC11142114 DOI: 10.1101/2024.05.17.594606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Epigenome-wide association studies (EWAS) are transforming our understanding of the interplay between epigenetics and complex human traits and phenotypes. We introduce the Methylation Screening Array (MSA), a new iteration of the Infinium technology for scalable and quantitative screening of trait associations of nuanced ternary-code cytosine modifications in larger, more inclusive, and stratified human populations. MSA integrates EWAS, single-cell, and cell-type-resolved methylome profiles, covering diverse human traits and diseases. Our first MSA applications yield multiple biological insights: we revealed a previously unappreciated role of 5-hydroxymethylcytosine (5hmC) in trait associations and epigenetic clocks. We demonstrated that 5hmCs complement 5-methylcytosines (5mCs) in defining tissues and cells' epigenetic identities. In-depth analyses highlighted the cell type context of EWAS and GWAS hits. Using this platform, we conducted a comprehensive human 5hmC aging EWAS, discovering tissue-invariant and tissue-specific aging dynamics, including distinct tissue-specific rates of mitotic hyper- and hypomethylation rates. These findings chart a landscape of the complex interplay of the two forms of cytosine modifications in diverse human tissues and their roles in health and disease.
Collapse
Affiliation(s)
- David C Goldberg
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Cameron Cloud
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | | | | | - Elliot Kim
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | | | | | | | | - Jared B Parker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Choza JI, Virani M, Kuhn NC, Adams M, Kochmanski J, Bernstein AI. Parkinson's disease-associated alterations in DNA methylation and hydroxymethylation in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.21.595193. [PMID: 39975085 PMCID: PMC11838189 DOI: 10.1101/2024.05.21.595193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Epigenetic mechanisms are mediators of interactions between aging, genetics, and environmental factors in sporadic Parkinson's disease (PD). Multiple studies have explored the DNA modifications in PD, but few focus on 5-hydroxymethylcytosine (5-hmC), which is important in the central nervous system and sensitive to environmental exposures. To date, studies have not differentiated between 5-methylcytosine (5-mC) and 5-hmC or have analyzed them separately. In this study, we modeled paired 5-mC and 5-hmC data simultaneously. We identified 108 cytosines with significant PD-associated shifts between these marks in an enriched neuronal population from PD postmortem parietal cortex, within 83 genes and 34 enhancers associated with 67 genes. These data potentially link epigenetic regulation of genes related to LRRK2 and endolysosomal sort (RAB32 and AGAP1), and genes involved in neuroinflammation, the inflammasome, and neurodevelopment with early changes in PD and suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes not captured by standard methods.
Collapse
Affiliation(s)
- Juliana I Choza
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Alison I Bernstein
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
13
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Yang CH, Bergsma A, Drougard A, Dror E, Chandler DP, Schramek D, Triche TJ, Pospisilik JA. TRIM28-dependent developmental heterogeneity determines cancer susceptibility through distinct epigenetic states. NATURE CANCER 2025; 6:385-403. [PMID: 39856421 PMCID: PMC11864977 DOI: 10.1038/s43018-024-00900-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
Mutations in cancer risk genes increase susceptibility, but not all carriers develop cancer. Indeed, while DNA mutations are necessary drivers of cancer, only a small subset of mutated cells go on to cause the disease. To date, the mechanisms underlying individual cancer susceptibility remain unclear. Here, we took advantage of a unique mouse model of intrinsic developmental heterogeneity (Trim28+/D9) to investigate whether early-life epigenetic variation influences cancer susceptibility later in life. We found that heterozygosity of Trim28 is sufficient to generate two distinct early-life epigenetic states associated with differing cancer susceptibility. These developmentally primed states exhibit differential methylation patterns at typically silenced heterochromatin, detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential, frequently mutated in human cancers and correlated with poor prognosis. This study provides genetic evidence that intrinsic developmental heterogeneity can prime individual, lifelong cancer susceptibility.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Chih-Hsiang Yang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy J Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Pediatrics, MSU College of Human Medicine, East Lansing, MI, USA
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
14
|
Zhou W, Reizel Y. On correlative and causal links of replicative epimutations. Trends Genet 2025; 41:60-75. [PMID: 39289103 PMCID: PMC12048181 DOI: 10.1016/j.tig.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yitzhak Reizel
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
15
|
Foong YH, Caldwell B, Thorvaldsen JL, Krapp C, Mesaros CA, Zhou W, Kohli RM, Bartolomei MS. TET1 displays catalytic and non-catalytic functions in the adult mouse cortex. Epigenetics 2024; 19:2374979. [PMID: 38970823 PMCID: PMC11229741 DOI: 10.1080/15592294.2024.2374979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.
Collapse
Affiliation(s)
- Yee Hoon Foong
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Blake Caldwell
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Joanne L. Thorvaldsen
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Christopher Krapp
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Clementina A. Mesaros
- Translational Biomarkers Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| | - Rahul M. Kohli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| |
Collapse
|
16
|
Onuzulu CD, Lee S, Basu S, Comte J, Hai Y, Hizon N, Chadha S, Fauni MS, Halayko AJ, Pascoe CD, Jones MJ. Novel DNA methylation changes in mouse lungs associated with chronic smoking. Epigenetics 2024; 19:2322386. [PMID: 38436597 PMCID: PMC10913724 DOI: 10.1080/15592294.2024.2322386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Smoking is a potent cause of asthma exacerbations, chronic obstructive pulmonary disease (COPD) and many other health defects, and changes in DNA methylation (DNAm) have been identified as a potential link between smoking and these health outcomes. However, most studies of smoking and DNAm have been done using blood and other easily accessible tissues in humans, while evidence from more directly affected tissues such as the lungs is lacking. Here, we identified DNAm patterns in the lungs that are altered by smoking. We used an established mouse model to measure the effects of chronic smoke exposure first on lung phenotype immediately after smoking and then after a period of smoking cessation. Next, we determined whether our mouse model recapitulates previous DNAm patterns observed in smoking humans, specifically measuring DNAm at a candidate gene responsive to cigarette smoke, Cyp1a1. Finally, we carried out epigenome-wide DNAm analyses using the newly released Illumina mouse methylation microarrays. Our results recapitulate some of the phenotypes and DNAm patterns observed in human studies but reveal 32 differentially methylated genes specific to the lungs which have not been previously associated with smoking. The affected genes are associated with nicotine dependency, tumorigenesis and metastasis, immune cell dysfunction, lung function decline, and COPD. This research emphasizes the need to study CS-mediated DNAm signatures in directly affected tissues like the lungs, to fully understand mechanisms underlying CS-mediated health outcomes.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeannette Comte
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shivam Chadha
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Shenna Fauni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J. Halayko
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D. Pascoe
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meaghan J. Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Cox OH, Seifuddin F, Guo J, Pirooznia M, Boersma GJ, Wang J, Tamashiro KL, Lee RS. Implementation of the Methyl-Seq platform to identify tissue- and sex-specific DNA methylation differences in the rat epigenome. Epigenetics 2024; 19:2393945. [PMID: 39306700 PMCID: PMC11418217 DOI: 10.1080/15592294.2024.2393945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Epigenomic annotations for the rat lag far behind those of human and mouse, despite the rat's immense utility in pharmacological and behavioral studies and the need to understand their epigenetic mechanisms. We have designed a targeted-enrichment method followed by next-generation sequencing (Methyl-Seq) to identify DNA methylation (DNAm) signatures across the rat genome. The design reflected an attempt to create a more comprehensive investigation of the rat epigenome, as it included promoters, CpG islands, and island shores of all RefSeq genes. In this study, we implemented the rat Methyl-Seq platform and tested its ability to distinguish differentially methylated regions (DMRs) among three different tissue types, three distinct brain regions, and, in the hippocampus, between males and females. These comparisons yielded DNAm differences of differing magnitudes, many of which were independently validated by bisulfite pyrosequencing, including autosomal regions that were predicted to show the least degree of difference in DNAm between males and females. Quantitative reverse transcription PCR revealed that most genes associated with the DMRs showed tissue-, brain region-, and sex-specific differences in expression. In particular, we found evidence for sex-specific DNAm and expression differences at Tubb6, Lrrn2, Tex26, and Sox5l1, all of which play important roles in neurodevelopment and have been implicated in studies examining sex differences. Our results demonstrate the utility of the rat Methyl-Seq platform and suggest the presence of DNAm differences between the male and female hippocampus. The rat Methyl-Seq has the potential to provide epigenomic insights into pharmacological and behavioral studies performed in the rat.
Collapse
Affiliation(s)
- Olivia H. Cox
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Fayaz Seifuddin
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeffrey Guo
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mehdi Pirooznia
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gretha J. Boersma
- GGZ Drenthe Mental Health Institute, Department of Forensic Psychiatry, Assen, The Netherlands
| | - Josh Wang
- Agilent Technologies, Inc., Santa Clara, USA
| | - Kellie L.K. Tamashiro
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Richard S. Lee
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
18
|
Sapozhnikov DM, Szyf M. Genetic confounds of transgenerational epigenetic inheritance in mice. Epigenetics 2024; 19:2318519. [PMID: 38369744 PMCID: PMC10878023 DOI: 10.1080/15592294.2024.2318519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
Transgenerational epigenetic inheritance in mammals remains a controversial phenomenon. A recent study by Takahashi et al. provides evidence for this mode of inheritance in mice by using a CRISPR/Cas9-based epigenetic editing technique to modify DNA methylation levels at specific promoters and then demonstrating the inheritance of the gain in methylation in offspring. In this technical commentary, we argue that the method used in the original study inherently amplifies the likelihood of genetic changes that thereafter lead to the heritability of epigenetic changes. We provide evidence that genetic changes from multiple sources do indeed occur in these experiments and explore several avenues by which these changes could be causal to the apparent inheritance of epigenetic changes. We conclude a genetic basis of inheritance cannot be ruled out and thus transgenerational epigenetic inheritance has not been adequately established by the original study.
Collapse
Affiliation(s)
- Daniel M. Sapozhnikov
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Klerk DH, Moore H, Scheese DJ, Tragesser C, Raouf Z, Duess JW, Tsuboi K, Sampah ME, Lopez CM, Williams-McLeod S, El Baassiri MG, Jang HS, Prindle T, Wang S, Wang M, Fulton WB, Sodhi CP, Hackam DJ. Multi-strain probiotic administration decreases necrotizing enterocolitis severity and alters the epigenetic profile in mice. Pediatr Res 2024:10.1038/s41390-024-03716-0. [PMID: 39562735 DOI: 10.1038/s41390-024-03716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Probiotic administration may decrease the incidence of necrotizing enterocolitis (NEC) through mechanisms that are largely unknown. We investigated the effects of probiotics on intestinal epigenetics and assessed their effects on intestinal inflammation and motility using both ileum-predominant and combined ileo-colitis mouse NEC models. METHODS C57BL/6 J mice were gavage-fed a multi-strain probiotic from postnatal days 3-11, consisting of B. infantis, B. lactis, and S. thermophilus. From p8, mice were exposed to ileo-colitis NEC involving formula containing NEC bacteria and 0.5% DSS. DNA methylation was measured using the Infinium Methylation Assay. Gastrointestinal motility was assessed by 70 Kd FITC-dextran transit time. Probiotic colonization was measured in probiotic-fed mice by qPCR. RESULTS Probiotic administration caused significant changes in the small intestine's epigenetic signature, a reduction in NEC severity, and improved intestinal motility. The effects of probiotics were more pronounced in the ileo-colitis NEC model. CONCLUSIONS These findings shed light on the role of probiotics in two clinically relevant models of NEC, add additional insights into their underlying mechanism of action, and reveal unanticipated epigenetic modifications to the intestinal mucosa after their use. IMPACT These findings shed light on the role of multi-strain probiotics in two clinically relevant animal models of NEC, and add additional insights into their underlying mechanism of action This study provides a new, clinically relevant model for the study of NEC including administration of 0.5% DSS, to include ileal dominant and ileo-colonic dominant phenotypes of the disease. These results reveal that clinically relevant strains of probiotic bacteria can exert epigenetic effects on the small intestine in mice, and can attenuate the epigenetic changes induced by NEC.
Collapse
Affiliation(s)
- Daphne H Klerk
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hannah Moore
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J Scheese
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cody Tragesser
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachariah Raouf
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johannes W Duess
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koichi Tsuboi
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maame E Sampah
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carla M Lopez
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sierra Williams-McLeod
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mahmoud G El Baassiri
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hee-Seong Jang
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Prindle
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanxia Wang
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Menghan Wang
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Fulton
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Gustafson KL, Busi SB, McAdams ZL, McCorkle RE, Khodakivskyi P, Bivens NJ, Davis DJ, Raju M, Coghill LM, Goun EA, Amos-Landgraf J, Franklin CL, Wilmes P, Cortese R, Ericsson AC. Fetal programming by the parental microbiome of offspring behavior, and DNA methylation and gene expression within the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589237. [PMID: 39484583 PMCID: PMC11526851 DOI: 10.1101/2024.04.12.589237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The microorganisms colonizing the gastrointestinal tract of animals, collectively referred to as the gut microbiome, affect numerous host behaviors dependent on the central nervous system (CNS). Studies comparing germ-free mice to normally colonized mice have demonstrated influences of the microbiome on anxiety-related behaviors, voluntary activity, and gene expression in the CNS. Additionally, there is epidemiologic evidence supporting an intergenerational influence of the maternal microbiome on neurodevelopment of offspring and behavior later in life. There is limited experimental evidence however directly linking the maternal microbiome to long-term neurodevelopmental outcomes, or knowledge regarding mechanisms responsible for such effects. Results Here we show that that the maternal microbiome has a dominant influence on several offspring phenotypes including anxiety-related behavior, voluntary activity, and body weight. Adverse outcomes in offspring were associated with features of the maternal microbiome including bile salt hydrolase activity gene expression (bsh), abundance of certain bile acids, and hepatic expression of Slc10a1. In cross-foster experiments, offspring resembled their birth dam phenotypically, despite faithful colonization in the postnatal period with the surrogate dam microbiome. Genome-wide methylation analysis of hippocampal DNA identified microbiome-associated differences in methylation of 196 loci in total, 176 of which show conserved profiles between mother and offspring. Further, single-cell transcriptional analysis revealed accompanying differences in expression of several differentially methylated genes within certain hippocampal cell clusters, and vascular expression of genes associated with bile acid transport. Inferred cell-to-cell communication in the hippocampus based on coordinated ligand-receptor expression revealed differences in expression of neuropeptides associated with satiety. Conclusions Collectively, these data provide proof-of-principle that the maternal gut microbiome has a dominant influence on the neurodevelopment underlying certain offspring behaviors and activities, and selectively affects genome methylation and gene expression in the offspring CNS in conjunction with that neurodevelopment.
Collapse
Affiliation(s)
- Kevin L Gustafson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Susheel Bhanu Busi
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Zachary L McAdams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Rachael E McCorkle
- College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Pavlo Khodakivskyi
- Department of Chemistry, College of Arts and Science, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- University of Missouri Genomics Technology Core, University of Missouri, Columbia, MO, 65211, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Murugesan Raju
- University of Missouri Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, 65211, USA
| | - Lyndon M Coghill
- University of Missouri Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, 65211, USA
| | - Elena A Goun
- Department of Chemistry, College of Arts and Science, University of Missouri, Columbia, MO, 65211, USA
| | - James Amos-Landgraf
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Craig L Franklin
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Rene Cortese
- Department of Child Health & Obstetrics, Gynecology, and Women's Health, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| |
Collapse
|
21
|
Lehle JD, Lin YH, Gomez A, Chavez L, McCarrey JR. An in vitro approach reveals molecular mechanisms underlying endocrine disruptor-induced epimutagenesis. eLife 2024; 13:RP93975. [PMID: 39361026 PMCID: PMC11449486 DOI: 10.7554/elife.93975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling due to steric similarities to endogenous hormones. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) and differentially expressed genes (DEGs) that predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many EDCs persists over multiple generations. Many studies have described direct and prolonged effects of EDC exposure in animal models, but many questions remain about molecular mechanisms by which EDC-induced epimutations are introduced or subsequently propagated, whether there are cell type-specific susceptibilities to the same EDC, and whether this correlates with differential expression of relevant hormone receptors. We exposed cultured pluripotent (iPS), somatic (Sertoli and granulosa), and primordial germ cell-like (PGCLC) cells to BPS and found that differential incidences of BPS-induced epimutations and DEGs correlated with differential expression of relevant hormone receptors inducing epimutations near relevant hormone response elements in somatic and pluripotent, but not germ cell types. Most interestingly, we found that when iPS cells were exposed to BPS and then induced to differentiate into PGCLCs, the prevalence of epimutations and DEGs was largely retained, however, >90% of the specific epimutations and DEGs were replaced by novel epimutations and DEGs. These results suggest a unique mechanism by which an EDC-induced epimutated state may be propagated transgenerationally.
Collapse
Affiliation(s)
- Jake D Lehle
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - Yu-Huey Lin
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - Amanda Gomez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - Laura Chavez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| |
Collapse
|
22
|
Malla S, Kumari K, García-Prieto CA, Caroli J, Nordin A, Phan TTT, Bhattarai DP, Martinez-Gamero C, Dorafshan E, Stransky S, Álvarez-Errico D, Saiki PA, Lai W, Lyu C, Lizana L, Gilthorpe JD, Wang H, Sidoli S, Mateus A, Lee DF, Cantù C, Esteller M, Mattevi A, Roman AC, Aguilo F. The scaffolding function of LSD1 controls DNA methylation in mouse ESCs. Nat Commun 2024; 15:7758. [PMID: 39237615 PMCID: PMC11377572 DOI: 10.1038/s41467-024-51966-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1MUT) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation. Indeed, increased H3K4me1 in Lsd1 knockout (KO) mouse ESCs does not lead to major changes in global gene expression programs related to stemness. However, ablation of LSD1 but not LSD1MUT results in decreased DNMT1 and UHRF1 proteins coupled to global hypomethylation. We show that both LSD1 and LSD1MUT control protein stability of UHRF1 and DNMT1 through interaction with HDAC1 and the ubiquitin-specific peptidase 7 (USP7), consequently, facilitating the deacetylation and deubiquitination of DNMT1 and UHRF1. Our studies elucidate a mechanism by which LSD1 controls DNA methylation in mouse ESCs, independently of its lysine demethylase activity.
Collapse
Affiliation(s)
- Sandhya Malla
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kanchan Kumari
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Carlos A García-Prieto
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jonatan Caroli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Trinh T T Phan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Devi Prasad Bhattarai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Carlos Martinez-Gamero
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Paulina Avovome Saiki
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Cong Lyu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ludvig Lizana
- Department of Physics, Integrated Science Lab, Umeå University, Umeå, Sweden
| | | | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andre Mateus
- Department of Chemistry, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Angel-Carlos Roman
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
23
|
Barrero M, Lazarenkov A, Blanco E, Palma LG, López-Rubio AV, Bauer M, Bigas A, Di Croce L, Sardina JL, Payer B. The interferon γ pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming. SCIENCE ADVANCES 2024; 10:eadj8862. [PMID: 39110794 PMCID: PMC11305397 DOI: 10.1126/sciadv.adj8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.
Collapse
Affiliation(s)
- Mercedes Barrero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis G. Palma
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | | | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Bigas
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José Luis Sardina
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
24
|
Moqri M, Cipriano A, Simpson DJ, Rasouli S, Murty T, de Jong TA, Nachun D, de Sena Brandine G, Ying K, Tarkhov A, Aberg KA, van den Oord E, Zhou W, Smith A, Mackall C, Gladyshev VN, Horvath S, Snyder MP, Sebastiano V. PRC2-AgeIndex as a universal biomarker of aging and rejuvenation. Nat Commun 2024; 15:5956. [PMID: 39009581 PMCID: PMC11250797 DOI: 10.1038/s41467-024-50098-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
DNA methylation (DNAm) is one of the most reliable biomarkers of aging across mammalian tissues. While the age-dependent global loss of DNAm has been well characterized, DNAm gain is less characterized. Studies have demonstrated that CpGs which gain methylation with age are enriched in Polycomb Repressive Complex 2 (PRC2) targets. However, whole-genome examination of all PRC2 targets as well as determination of the pan-tissue or tissue-specific nature of these associations is lacking. Here, we show that low-methylated regions (LMRs) which are highly bound by PRC2 in embryonic stem cells (PRC2 LMRs) gain methylation with age in all examined somatic mitotic cells. We estimated that this epigenetic change represents around 90% of the age-dependent DNAm gain genome-wide. Therefore, we propose the "PRC2-AgeIndex," defined as the average DNAm in PRC2 LMRs, as a universal biomarker of cellular aging in somatic cells which can distinguish the effect of different anti-aging interventions.
Collapse
Affiliation(s)
- Mahdi Moqri
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Andrea Cipriano
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel J Simpson
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Tineke Anna de Jong
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel Nachun
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Kejun Ying
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrei Tarkhov
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edwin van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew Smith
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Crystal Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Division of Hematology and Oncology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Stem Cell Transplantation and Cell Therapy, School of Medicine, Stanford University, Stanford, CA, USA
| | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
- Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, School of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Maternal & Child Health Research Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
Choza JI, Virani M, Kuhn NC, Adams M, Kochmanski J, Bernstein AI. Parkinson's disease-associated shifts between DNA methylation and DNA hydroxymethylation in human brain in PD-related genes, including PARK19 (DNAJC6) and PTPRN2 (IA-2β). RESEARCH SQUARE 2024:rs.3.rs-4572401. [PMID: 39070644 PMCID: PMC11275970 DOI: 10.21203/rs.3.rs-4572401/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The majority of Parkinson's disease (PD) cases are due to a complex interaction between aging, genetics, and environmental factors; epigenetic mechanisms are thought to act as important mediators of these risk factors. While multiple studies to date have explored the role of DNA modifications in PD, few focus on 5-hydroxymethylcytosine (5hmC). Because 5hmC occurs at its highest levels in the brain and is thought to be particularly important in the central nervous system, particularly in the response to neurotoxicants, it is important to explore the potential role of 5hmC in PD. This study expands on our previously published epigenome-wide association study (EWAS) performed on DNA isolated from neuron-enriched nuclei from human postmortem parietal cortex from the Banner Sun Health Research Institute Brain Bank. The study aimed to identify paired changes in 5hmC and 5mC in PD in enriched neuronal nuclei isolated from PD post-mortem parietal cortex and age- and sex-matched controls. We performed oxidative bisulfite (oxBS) conversion and paired it with our previously published bisulfite (BS)-based EWAS on the same samples to identify cytosines with significant shifts between these two related epigenetic marks. Interaction differentially modified cytosines (iDMCs) were identified using our recently published mixed-effects model for co-analyzing βmC and βhmC data. Results We identified 1,030 iDMCs with paired changes in 5mC and 5hmC (FDR < 0.05) that map to 695 genes, including PARK19 (DNAJC6), a familial PD gene, and PTPRN2 (IA-2), which has been previously implicated in PD in both epigenetic and mechanistic studies. The majority of iDMC-containing genes have not previously been implicated in PD and were not identified in our previous BS-based EWAS. Conclusions These data potentially link epigenetic regulation of the PARK19 and PTPRN2 loci in the pathogenesis of idiopathic PD. In addition, iDMC-containing genes have known functions in synaptic formation and function, cell cycle and senescence, neuroinflammation, and epigenetic regulation. These data suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes relevant to PD pathogenesis that are not captured by analyzing BS-based data alone or by analyzing each mark as a distinct dataset.
Collapse
|
26
|
Blanchett R, Lau KH, Pfeifer GP. Homeobox and Polycomb target gene methylation in human solid tumors. Sci Rep 2024; 14:13912. [PMID: 38886487 PMCID: PMC11183203 DOI: 10.1038/s41598-024-64569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in defining cancer phenotypes, with global hypomethylation and focal hypermethylation at CpG islands observed in tumors. These methylation marks can also be used to define tumor types and provide an avenue for biomarker identification. The homeobox gene class is one that has potential for this use, as well as other genes that are Polycomb Repressive Complex 2 targets. To begin to unravel this relationship, we performed a pan-cancer DNA methylation analysis using sixteen Illumina HM450k array datasets from TCGA, delving into cancer-specific qualities and commonalities between tumor types with a focus on homeobox genes. Our comparisons of tumor to normal samples suggest that homeobox genes commonly harbor significant hypermethylated differentially methylated regions. We identified two homeobox genes, HOXA3 and HOXD10, that are hypermethylated in all 16 cancer types. Furthermore, we identified several potential homeobox gene biomarkers from our analysis that are uniquely methylated in only one tumor type and that could be used as screening tools in the future. Overall, our study demonstrates unique patterns of DNA methylation in multiple tumor types and expands on the interplay between the homeobox gene class and oncogenesis.
Collapse
Affiliation(s)
- Reid Blanchett
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
27
|
Lehle JD, Lin YH, Gomez A, Chavez L, McCarrey JR. Endocrine disruptor-induced epimutagenesis in vitro : Insight into molecular mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574355. [PMID: 38746310 PMCID: PMC11092511 DOI: 10.1101/2024.01.05.574355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling following exposure due to steric similarities to endogenous hormones within the body. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) that accompany dysregulation of normal gene expression patterns that appear to predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many different EDCs often persists over multiple subsequent generations, even with no further exposure to the causative EDC. Many previous studies have described both the direct and prolonged effects of EDC exposure in animal models, but many questions remain about molecular mechanisms by which EDCs initially induce epimutations or contribute to the propagation of EDC-induced epimutations either within the exposed generation or to subsequent generations. Additional questions remain regarding the extent to which there may be differences in cell-type specific susceptibilities to various EDCs, and whether this susceptibility is correlative with expression of relevant hormone receptors and/or the location of relevant hormone response elements (HREs) in the genome. To address these questions, we exposed cultured mouse pluripotent (induced pluripotent stem [iPS]), somatic (Sertoli and granulosa), and germ (primordial germ cell like [PGCLC]) cells to BPS and measured changes in DNA methylation levels at the epigenomic level and gene expression at the transcriptomic level. We found that there was indeed a difference in cell-type specific susceptibility to EDC-induced epimutagenesis and that this susceptibility correlated with differential expression of relevant hormone receptors and, in many cases, tended to generate epimutations near relevant HREs within the genome. Additionally, however, we also found that BPS can induce epimutations in a cell type that does not express relevant receptors and in genomic regions that do not contain relevant HREs, suggesting that both canonical and non-canonical signaling mechanisms can be disrupted by BPS exposure. Most interestingly, we found that when iPS cells were exposed to BPS and then induced to differentiate into PGCLCs, the prevalence of epimutations and differentially expressed genes (DEGs) initially induced in the iPSCs was largely retained in the resulting PGCLCs, however, >90% of the specific epimutations and DEGs were not conserved but were rather replaced by novel epimutations and DEGs following the iPSC to PGCLC transition. These results are consistent with a unique concept that many EDC-induced epimutations may normally be corrected by germline and/or embryonic epigenetic reprogramming but that due to disruption of the underlying chromatin architecture induced by the EDC exposure, many novel epimutations may emerge during the reprogramming process as well. Thus, it appears that following exposure to a disruptive agent such as an EDC, a prevalence of epimutations may transcend epigenetic reprogramming even though most individual epimutations are not conserved during this process.
Collapse
|
28
|
Meyer OL, Andersen JD, Børsting C, Morling N, Andersen MM, Wulf HC, Philipsen PA, Lerche CM. Changes in mouse epidermal DNA methylation during development of squamous cell carcinoma in response to UVR. Exp Dermatol 2024; 33:e15123. [PMID: 39345218 DOI: 10.1111/exd.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 10/01/2024]
Abstract
Squamous cell carcinoma (SCC) is a common skin cancer, often caused by exposure to ultraviolet radiation (UVR). Recent studies have shown that changes in DNA methylation play a crucial role in the development of cancers. However, methylation patterns of SCC are not well characterised. Identifying biomarkers for the risk of developing SCC could be helpful for early detection and diagnosis and can potentially improve treatment and prevention strategies. This study aimed to investigate methylation changes in the epidermis of mice exposed to UVR for 24 weeks. We examined the DNA methylation levels of 260 199 CpGs using the Illumina Infinium Mouse Methylation BeadChip and studied the epidermis of UVR-exposed and unexposed mice every 4 weeks for 24 weeks (n = 39). We identified CpGs with large differences in methylation levels (β-values) between UVR-exposed and unexposed mice. We also observed differences in the epigenetic age of these mice. We identified CpGs in Rev, Ipmk, Rad51b, Fgfr2, Fgfr3 and Ctnnb1 that may serve as potential biomarkers for SCC risk and could be helpful for the early detection and prevention of SCC. Further investigations are necessary to determine the biological functions and clinical significance of these CpGs.
Collapse
Affiliation(s)
- Olivia Luxford Meyer
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Meyer Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Hans Christian Wulf
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Peter Alshede Philipsen
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Fóthi Á, Liu H, Susztak K, Aranyi T. Improve-RRBS: a novel tool to correct the 3' trimming of reduced representation sequencing reads. BIOINFORMATICS ADVANCES 2024; 4:vbae076. [PMID: 38846137 PMCID: PMC11154647 DOI: 10.1093/bioadv/vbae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
Motivation Reduced Representation Bisulfite Sequencing (RRBS) is a popular approach to determine DNA methylation of the CpG-rich regions of the genome. However, we observed that false positive differentially methylated sites (DMS) are also identified using the standard computational analysis. Results During RRBS library preparation the MspI digested DNA undergo end-repair by a cytosine at the 3' end of the fragments. After sequencing, Trim Galore cuts these end-repaired nucleotides. However, Trim Galore fails to detect end-repair when it overlaps with the 3' end of the sequencing reads. We found that these non-trimmed cytosines bias methylation calling, thus, can identify DMS erroneously. To circumvent this problem, we developed improve-RRBS, which efficiently identifies and hides these cytosines from methylation calling with a false positive rate of maximum 0.5%. To test improve-RRBS, we investigated four datasets from four laboratories and two different species. We found non-trimmed 3' cytosines in all datasets analyzed and as much as >50% of false positive DMS under certain conditions. By applying improve-RRBS, these DMS completely disappeared from all comparisons. Availability and implementation Improve-RRBS is a freely available python package https://pypi.org/project/iRRBS/ or https://github.com/fothia/improve-RRBS to be implemented in RRBS pipelines.
Collapse
Affiliation(s)
- Ábel Fóthi
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, HUN-REN, Budapest 1117, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest 1094, Hungary
| | - Hongbo Liu
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tamas Aranyi
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, HUN-REN, Budapest 1117, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
30
|
Ravaioli F, Stagni F, Guidi S, Pirazzini C, Garagnani P, Silvani A, Zoccoli G, Bartesaghi R, Bacalini MG. Increased hippocampal epigenetic age in the Ts65Dn mouse model of Down Syndrome. Front Aging Neurosci 2024; 16:1401109. [PMID: 38836050 PMCID: PMC11148439 DOI: 10.3389/fnagi.2024.1401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Down syndrome (DS) is a segmental progeroid genetic disorder associated with multi-systemic precocious aging phenotypes, which are particularly evident in the immune and nervous systems. Accordingly, people with DS show an increased biological age as measured by epigenetic clocks. The Ts65Dn trisomic mouse, which harbors extra-numerary copies of chromosome 21 (Hsa21)-syntenic regions, was shown to recapitulate several progeroid features of DS, but no biomarkers of age have been applied to it so far. In this pilot study, we used a mouse-specific epigenetic clock to measure the epigenetic age of hippocampi from Ts65Dn and euploid mice at 20 weeks. Ts65Dn mice showed an increased epigenetic age in comparison with controls, and the observed changes in DNA methylation partially recapitulated those observed in hippocampi from people with DS. Collectively, our results support the use of the Ts65Dn model to decipher the molecular mechanisms underlying the progeroid DS phenotypes.
Collapse
Affiliation(s)
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
31
|
Lee SM, Loo CE, Prasasya RD, Bartolomei MS, Kohli RM, Zhou W. Low-input and single-cell methods for Infinium DNA methylation BeadChips. Nucleic Acids Res 2024; 52:e38. [PMID: 38407446 PMCID: PMC11040145 DOI: 10.1093/nar/gkae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The Infinium BeadChip is the most widely used DNA methylome assay technology for population-scale epigenome profiling. However, the standard workflow requires over 200 ng of input DNA, hindering its application to small cell-number samples, such as primordial germ cells. We developed experimental and analysis workflows to extend this technology to suboptimal input DNA conditions, including ultra-low input down to single cells. DNA preamplification significantly enhanced detection rates to over 50% in five-cell samples and ∼25% in single cells. Enzymatic conversion also substantially improved data quality. Computationally, we developed a method to model the background signal's influence on the DNA methylation level readings. The modified detection P-value calculation achieved higher sensitivities for low-input datasets and was validated in over 100 000 public diverse methylome profiles. We employed the optimized workflow to query the demethylation dynamics in mouse primordial germ cells available at low cell numbers. Our data revealed nuanced chromatin states, sex disparities, and the role of DNA methylation in transposable element regulation during germ cell development. Collectively, we present comprehensive experimental and computational solutions to extend this widely used methylation assay technology to applications with limited DNA.
Collapse
Affiliation(s)
- Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA 19104, USA
| | - Christian E Loo
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rexxi D Prasasya
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Griffin PT, Kane AE, Trapp A, Li J, Arnold M, Poganik JR, Conway RJ, McNamara MS, Meer MV, Hoffman N, Amorim JA, Tian X, MacArthur MR, Mitchell SJ, Mueller AL, Carmody C, Vera DL, Kerepesi C, Ying K, Noren Hooten N, Mitchell JR, Evans MK, Gladyshev VN, Sinclair DA. TIME-seq reduces time and cost of DNA methylation measurement for epigenetic clock construction. NATURE AGING 2024; 4:261-274. [PMID: 38200273 PMCID: PMC11332592 DOI: 10.1038/s43587-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Epigenetic 'clocks' based on DNA methylation have emerged as the most robust and widely used aging biomarkers, but conventional methods for applying them are expensive and laborious. Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 demographically representative individuals. These methods will enable more efficient epigenetic clock measurement in larger-scale human and animal studies.
Collapse
Affiliation(s)
- Patrick T Griffin
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Alice E Kane
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
- Institute for Systems Biology, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexandre Trapp
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jien Li
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Matthew Arnold
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Jesse R Poganik
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ryan J Conway
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Maeve S McNamara
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Margarita V Meer
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Noah Hoffman
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - João A Amorim
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Xiao Tian
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael R MacArthur
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Amber L Mueller
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
- Cell Metabolism, Cell Press, Cambridge, MA, USA
| | - Colleen Carmody
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Daniel L Vera
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control, Eötvös Loránd Research Network, Budapest, Hungary
| | - Kejun Ying
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - James R Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Division of Genetics, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Rhon-Calderon EA, Hemphill CN, Vrooman LA, Rosier CL, Lan Y, Ord T, Coutifaris C, Mainigi M, Schultz RM, Bartolomei MS. Trophectoderm biopsy of blastocysts following IVF and embryo culture increases epigenetic dysregulation in a mouse model. Hum Reprod 2024; 39:154-176. [PMID: 37994669 PMCID: PMC11032714 DOI: 10.1093/humrep/dead238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
STUDY QUESTION Does trophectoderm biopsy (TEBx) of blastocysts for preimplantation genetic testing in the clinic affect normal placental and embryo development and offspring metabolic outcomes in a mouse model? SUMMARY ANSWER TEBx impacts placental and embryonic health during early development, with some alterations resolving and others worsening later in development and triggering metabolic changes in adult offspring. WHAT IS KNOWN ALREADY Previous studies have not assessed the epigenetic and morphological impacts of TEBx either in human populations or in animal models. STUDY DESIGN, SIZE, DURATION We employed a mouse model to identify the effects of TEBx during IVF. Three groups were assessed: naturally conceived (Naturals), IVF, and IVF + TEBx, at two developmental timepoints: embryonic day (E)12.5 (n = 40/Naturals, n = 36/IVF, and n = 36/IVF + TEBx) and E18.5 (n = 42/Naturals, n = 30/IVF, and n = 35/IVF + TEBx). Additionally, to mimic clinical practice, we assessed a fourth group: IVF + TEBx + Vitrification (Vit) at E12.5 (n = 29) that combines TEBx and vitrification. To assess the effect of TEBx in offspring health, we characterized a 12-week-old cohort (n = 24/Naturals, n = 25/IVF and n = 25/IVF + TEBx). PARTICIPANTS/MATERIALS, SETTING, METHODS Our mouse model used CF-1 females as egg donors and SJL/B6 males as sperm donors. IVF, TEBx, and vitrification were performed using standardized methods. Placenta morphology was evaluated by hematoxylin-eosin staining, in situ hybridization using Tpbpa as a junctional zone marker and immunohistochemistry using CD34 fetal endothelial cell markers. For molecular analysis of placentas and embryos, DNA methylation was analyzed using pyrosequencing, luminometric methylation assay, and chip array technology. Expression patterns were ascertained by RNA sequencing. Triglycerides, total cholesterol, high-, low-, and very low-density lipoprotein, insulin, and glucose were determined in the 12-week-old cohort using commercially available kits. MAIN RESULTS AND THE ROLE OF CHANCE We observed that at E12.5, IVF + TEBx had a worse outcome in terms of changes in DNA methylation and differential gene expression in placentas and whole embryos compared with IVF alone and compared with Naturals. These changes were reflected in alterations in placental morphology and blood vessel density. At E18.5, early molecular changes in fetuses were maintained or exacerbated. With respect to placentas, the molecular and morphological changes, although different compared to Naturals, were equivalent to the IVF group, except for changes in blood vessel density, which persisted. Of note is that most differences were sex specific. We conclude that TEBx has more detrimental effects in mid-gestation placental and embryonic tissues, with alterations in embryonic tissues persisting or worsening in later developmental stages compared to IVF alone, and the addition of vitrification after TEBx results in more pronounced and potentially detrimental epigenetic effects: these changes are significantly different compared to Naturals. Finally, we observed that 12-week IVF + TEBx offspring, regardless of sex, showed higher glucose, insulin, triglycerides, lower total cholesterol, and lower high-density lipoprotein compared to IVF and Naturals, with only males having higher body weight compared to IVF and Naturals. Our findings in a mouse model additionally support the need for more studies to assess the impact of new procedures in ART to ensure healthy pregnancies and offspring outcomes. LARGE SCALE DATA Data reported in this work have been deposited in the NCBI Gene Expression Omnibus under accession number GSE225318. LIMITATIONS, REASONS FOR CAUTION This study was performed using a mouse model that mimics many clinical IVF procedures and outcomes observed in humans, where studies on early embryos are not possible. WIDER IMPLICATIONS OF THE FINDINGS This study highlights the importance of assaying new procedures used in ART to assess their impact on placenta and embryo development, and offspring metabolic outcomes. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by a National Centers for Translational Research in Reproduction and Infertility grant P50 HD068157-06A1 (M.S.B., C.C., M.M.), Ruth L. Kirschstein National Service Award Individual Postdoctoral Fellowship F32 HD107914 (E.A.R.-C.) and F32 HD089623 (L.A.V.), and National Institutes of Health Training program in Cell and Molecular Biology T32 GM007229 (C.N.H.). No conflict of interest.
Collapse
Affiliation(s)
- Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cassidy N Hemphill
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa A Vrooman
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey L Rosier
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Teri Ord
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Coutifaris
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA, USA
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Monica Mainigi
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA, USA
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Richard M Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Abudahab S, Slattum PW, Price ET, McClay JL. Epigenetic regulation of drug metabolism in aging: utilizing epigenetics to optimize geriatric pharmacotherapy. Pharmacogenomics 2024; 25:41-54. [PMID: 38126340 PMCID: PMC10794944 DOI: 10.2217/pgs-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
We explore the relationship between epigenetic aging and drug metabolism. We review current evidence for changes in drug metabolism in normal aging, followed by a description of how epigenetic modifications associated with age can regulate the expression and functionality of genes. In particular, we focus on the role of epigenome-wide studies of human and mouse liver in understanding these age-related processes with respect to xenobiotic processing. We highlight genes encoding drug metabolizing enzymes and transporters revealed to be affected by epigenetic aging in these studies. We conclude that substantial evidence exists for epigenetic aging impacting drug metabolism and transport genes, but more work is needed. We further highlight the promise of pharmacoepigenetics applied to enhancing drug safety in older adults.
Collapse
Affiliation(s)
- Sara Abudahab
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Patricia W Slattum
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Virginia Center on Aging, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elvin T Price
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
35
|
Flint J, Heffel MG, Chen Z, Mefford J, Marcus E, Chen PB, Ernst J, Luo C. Single-cell methylation analysis of brain tissue prioritizes mutations that alter transcription. CELL GENOMICS 2023; 3:100454. [PMID: 38116123 PMCID: PMC10726494 DOI: 10.1016/j.xgen.2023.100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Relating genetic variants to behavior remains a fundamental challenge. To assess the utility of DNA methylation marks in discovering causative variants, we examined their relationship to genetic variation by generating single-nucleus methylomes from the hippocampus of eight inbred mouse strains. At CpG sequence densities under 40 CpG/Kb, cells compensate for loss of methylated sites by methylating additional sites to maintain methylation levels. At higher CpG sequence densities, the exact location of a methylated site becomes more important, suggesting that variants affecting methylation will have a greater effect when occurring in higher CpG densities than in lower. We found this to be true for a variant's effect on transcript abundance, indicating that candidate variants can be prioritized based on CpG sequence density. Our findings imply that DNA methylation influences the likelihood that mutations occur at specific sites in the genome, supporting the view that the distribution of mutations is not random.
Collapse
Affiliation(s)
- Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Matthew G Heffel
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Zeyuan Chen
- Department of Computer Science, Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Joel Mefford
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emilie Marcus
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick B Chen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Ernst
- Department of Computer Science, Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chongyuan Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
36
|
Meyer OS, Andersen MM, Børsting C, Morling N, Wulf HC, Philipsen PA, Lerche CM, Dyrberg Andersen J. Comparison of global DNA methylation analysis by whole genome bisulfite sequencing and the Infinium Mouse Methylation BeadChip using fresh and fresh-frozen mouse epidermis. Epigenetics 2023; 18:2144574. [PMID: 36373380 PMCID: PMC9980693 DOI: 10.1080/15592294.2022.2144574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Until recently, studying the murine methylome was restricted to sequencing-based methods. In this study we compared the global DNA methylation levels of hairless mouse epidermis using the recently released Infinium Mouse Methylation BeadChip from Illumina and whole genome bisulphite sequencing (WGBS). We also studied the effect of sample storage conditions by using fresh and fresh-frozen epidermis. The DNA methylation levels of 123,851 CpG sites covered by both the BeadChip and WGBS were compared. DNA methylation levels obtained with WGBS and the BeadChip were strongly correlated (Pearson correlation r = 0.984). We applied a threshold of 15 reads for the WGBS methylation analysis. Even at a threshold of 10 reads, we observed no substantial difference in DNA methylation levels compared with that obtained with the BeadChip. The DNA methylation levels from the fresh and the fresh-frozen samples were strongly correlated when analysed with both the BeadChip (r = 0.999) and WGBS (r = 0.994). We conclude that the two methods of analysis generally work equally well for studies of DNA methylation of mouse epidermis and find that fresh and fresh-frozen epidermis can generally be used equally well. The choice of method will depend on the specific study's aims and the available resources in the laboratory.
Collapse
Affiliation(s)
- Olivia Strunge Meyer
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100Copenhagen, Denmark,CONTACT Olivia Strunge Meyer Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Heafth and Medical Sciences, University of Copenhagen. Frederik V's vej 11, 2100 Copenhagen, Denmark
| | - Mikkel Meyer Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100Copenhagen, Denmark,Department of Mathematical Sciences, Aalborg University, 9220Aalborg, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100Copenhagen, Denmark,Department of Mathematical Sciences, Aalborg University, 9220Aalborg, Denmark
| | - Hans Christian Wulf
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400Copenhagen, Denmark
| | - Peter Alshede Philipsen
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400Copenhagen, Denmark
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400Copenhagen, Denmark,Department of Pharmacy, University of Copenhagen, 2100Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100Copenhagen, Denmark
| |
Collapse
|
37
|
Kaur D, Lee SM, Goldberg D, Spix NJ, Hinoue T, Li HT, Dwaraka VB, Smith R, Shen H, Liang G, Renke N, Laird PW, Zhou W. Comprehensive Evaluation of The Infinium Human MethylationEPIC v2 BeadChip. EPIGENETICS COMMUNICATIONS 2023; 3:6. [PMID: 38455390 PMCID: PMC10919401 DOI: 10.1186/s43682-023-00021-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/18/2023] [Indexed: 03/09/2024]
Abstract
Infinium Methylation BeadChips are widely used to profile DNA cytosine modifications in large cohort studies for reasons of cost-effectiveness, accurate quantification, and user-friendly data analysis in characterizing these canonical epigenetic marks. In this work, we conducted a comprehensive evaluation of the updated Infinium MethylationEPIC v2 BeadChip (EPICv2). Our evaluation revealed that EPICv2 offers significant improvements over its predecessors, including expanded enhancer coverage, applicability to diverse ancestry groups, support for low-input DNA down to one nanogram, coverage of existing epigenetic clocks, cell type deconvolution panels, and human trait associations, while maintaining accuracy and reproducibility. Using EPICv2, we were able to identify epigenome and sequence signatures in cell line models of DNMT and SETD2 loss and/or hypomorphism. Furthermore, we provided probe-wise evaluation and annotation to facilitate the use of new features on this array for studying the interplay between somatic mutations and epigenetic landscape in cancer genomics. In conclusion, EPICv2 provides researchers with a valuable tool for studying epigenetic modifications and their role in development and disease.
Collapse
Affiliation(s)
- Diljeet Kaur
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
- These authors contribute equally
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
- These authors contribute equally
| | - David Goldberg
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Nathan J Spix
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Toshinori Hinoue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hong-Tao Li
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | - Ryan Smith
- TruDiagnostic Inc, Lexington, KY 40503, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nicole Renke
- Illumina, Inc., Product Management Department, San Diego, CA 92122, USA
| | - Peter W Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
38
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Chih-Hsiang Y, Bergsma A, Drougard A, Dror E, PERMUTE, Chandler D, Schramek D, Triche TJ, Pospisilik JA. Developmental priming of cancer susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557446. [PMID: 37745326 PMCID: PMC10515831 DOI: 10.1101/2023.09.12.557446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DNA mutations are necessary drivers of cancer, yet only a small subset of mutated cells go on to cause the disease. To date, the mechanisms that determine which rare subset of cells transform and initiate tumorigenesis remain unclear. Here, we take advantage of a unique model of intrinsic developmental heterogeneity (Trim28+/D9) and demonstrate that stochastic early life epigenetic variation can trigger distinct cancer-susceptibility 'states' in adulthood. We show that these developmentally primed states are characterized by differential methylation patterns at typically silenced heterochromatin, and that these epigenetic signatures are detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential. These same genes are frequently mutated in human cancers, and their dysregulation correlates with poor prognosis. These results provide proof-of-concept that intrinsic developmental heterogeneity can prime individual, life-long cancer risk.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yang Chih-Hsiang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - J. Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
39
|
Simpson DJ, Zhao Q, Olova NN, Dabrowski J, Xie X, Latorre‐Crespo E, Chandra T. Region-based epigenetic clock design improves RRBS-based age prediction. Aging Cell 2023; 22:e13866. [PMID: 37170475 PMCID: PMC10410054 DOI: 10.1111/acel.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Recent studies suggest that epigenetic rejuvenation can be achieved using drugs that mimic calorie restriction and techniques such as reprogramming-induced rejuvenation. To effectively test rejuvenation in vivo, mouse models are the safest alternative. However, we have found that the recent epigenetic clocks developed for mouse reduced-representation bisulphite sequencing (RRBS) data have significantly poor performance when applied to external datasets. We show that the sites captured and the coverage of key CpGs required for age prediction vary greatly between datasets, which likely contributes to the lack of transferability in RRBS clocks. To mitigate these coverage issues in RRBS-based age prediction, we present two novel design strategies that use average methylation over large regions rather than individual CpGs, whereby regions are defined by sliding windows (e.g. 5 kb), or density-based clustering of CpGs. We observe improved correlation and error in our regional blood clocks (RegBCs) compared to published individual-CpG-based techniques when applied to external datasets. The RegBCs are also more robust when applied to low coverage data and detect a negative age acceleration in mice undergoing calorie restriction. Our RegBCs offer a proof of principle that age prediction of RRBS datasets can be improved by accounting for multiple CpGs over a region, which negates the lack of read depth currently hindering individual-CpG-based approaches.
Collapse
Affiliation(s)
- Daniel J. Simpson
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Qian Zhao
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Nelly N. Olova
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Jan Dabrowski
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Xiaoxiao Xie
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Eric Latorre‐Crespo
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
40
|
Wang M, Brandt LTL, Wang X, Russell H, Mitchell E, Kamimae-Lanning AN, Brown JM, Dingler FA, Garaycoechea JI, Isobe T, Kinston SJ, Gu M, Vassiliou GS, Wilson NK, Göttgens B, Patel KJ. Genotoxic aldehyde stress prematurely ages hematopoietic stem cells in a p53-driven manner. Mol Cell 2023; 83:2417-2433.e7. [PMID: 37348497 PMCID: PMC7614878 DOI: 10.1016/j.molcel.2023.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Aged hematopoietic stem cells (HSCs) display diminished self-renewal and a myeloid differentiation bias. However, the drivers and mechanisms that underpin this fundamental switch are not understood. HSCs produce genotoxic formaldehyde that requires protection by the detoxification enzymes ALDH2 and ADH5 and the Fanconi anemia (FA) DNA repair pathway. We find that the HSCs in young Aldh2-/-Fancd2-/- mice harbor a transcriptomic signature equivalent to aged wild-type HSCs, along with increased epigenetic age, telomere attrition, and myeloid-biased differentiation quantified by single HSC transplantation. In addition, the p53 response is vigorously activated in Aldh2-/-Fancd2-/- HSCs, while p53 deletion rescued this aged HSC phenotype. To further define the origins of the myeloid differentiation bias, we use a GFP genetic reporter to find a striking enrichment of Vwf+ myeloid and megakaryocyte-lineage-biased HSCs. These results indicate that metabolism-derived formaldehyde-DNA damage stimulates the p53 response in HSCs to drive accelerated aging.
Collapse
Affiliation(s)
- Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| | - Laura T L Brandt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Xiaonan Wang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Holly Russell
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Emily Mitchell
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Ashley N Kamimae-Lanning
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jill M Brown
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Felix A Dingler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Juan I Garaycoechea
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands
| | - Tomoya Isobe
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Muxin Gu
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
41
|
Tyler AL, Spruce C, Kursawe R, Haber A, Ball RL, Pitman WA, Fine AD, Raghupathy N, Walker M, Philip VM, Baker CL, Mahoney JM, Churchill GA, Trowbridge JJ, Stitzel ML, Paigen K, Petkov PM, Carter GW. Variation in histone configurations correlates with gene expression across nine inbred strains of mice. Genome Res 2023; 33:857-871. [PMID: 37217254 PMCID: PMC10519406 DOI: 10.1101/gr.277467.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.
Collapse
Affiliation(s)
- Anna L Tyler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Catrina Spruce
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Annat Haber
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Robyn L Ball
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Wendy A Pitman
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Alexander D Fine
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - Michael Walker
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - J Matthew Mahoney
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Gary A Churchill
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | | | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Kenneth Paigen
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| | - Petko M Petkov
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA;
| | - Gregory W Carter
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA
| |
Collapse
|
42
|
Marx V. Tuning in to epigenetic cross-talk. Nat Methods 2023; 20:634-638. [PMID: 37138033 DOI: 10.1038/s41592-023-01870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
43
|
Dror E, Fagnocchi L, Wegert V, Apostle S, Grimaldi B, Gruber T, Panzeri I, Heyne S, Höffler KD, Kreiner V, Ching R, Tsai-Hsiu Lu T, Semwal A, Johnson B, Senapati P, Lempradl A, Schones D, Imhof A, Shen H, Pospisilik JA. Epigenetic dosage identifies two major and functionally distinct β cell subtypes. Cell Metab 2023; 35:821-836.e7. [PMID: 36948185 PMCID: PMC10160009 DOI: 10.1016/j.cmet.2023.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
The mechanisms that specify and stabilize cell subtypes remain poorly understood. Here, we identify two major subtypes of pancreatic β cells based on histone mark heterogeneity (βHI and βLO). βHI cells exhibit ∼4-fold higher levels of H3K27me3, distinct chromatin organization and compaction, and a specific transcriptional pattern. βHI and βLO cells also differ in size, morphology, cytosolic and nuclear ultrastructure, epigenomes, cell surface marker expression, and function, and can be FACS separated into CD24+ and CD24- fractions. Functionally, βHI cells have increased mitochondrial mass, activity, and insulin secretion in vivo and ex vivo. Partial loss of function indicates that H3K27me3 dosage regulates βHI/βLO ratio in vivo, suggesting that control of β cell subtype identity and ratio is at least partially uncoupled. Both subtypes are conserved in humans, with βHI cells enriched in humans with type 2 diabetes. Thus, epigenetic dosage is a novel regulator of cell subtype specification and identifies two functionally distinct β cell subtypes.
Collapse
Affiliation(s)
- Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Vanessa Wegert
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Brooke Grimaldi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tim Gruber
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ilaria Panzeri
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Steffen Heyne
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Kira Daniela Höffler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Victor Kreiner
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Reagan Ching
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tess Tsai-Hsiu Lu
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ayush Semwal
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ben Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Parijat Senapati
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Adelheid Lempradl
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dustin Schones
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Axel Imhof
- Biomedical Center Munich, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
44
|
Razzoli M, Nyuyki-Dufe K, Chen BH, Bartolomucci A. Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proc Natl Acad Sci U S A 2023; 120:e2211755120. [PMID: 37043532 PMCID: PMC10120026 DOI: 10.1073/pnas.2211755120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Sustained life stress and low socioeconomic status are among the major causes of aging-related diseases and decreased life expectancy. Experimental rodent models can help to identify the underlying mechanisms, yet very few studies address the long-term consequences of social stress on aging. We conducted a randomized study involving more than 300 male mice of commonly used laboratory strains (C57BL/6J, CD1, and Sv129Ev) chosen for the spontaneous aggression gradient and stress-vulnerability. Mice were exposed to a lifelong chronic psychosocial stress protocol to model social gradients in aging and disease vulnerability. Low social rank, inferred based on a discretized aggression index, was found to negatively impact lifespan in our study population. However, social rank interacted with genetic background in that low-ranking C57BL/6J, high-ranking Sv129Ev, and middle-ranking CD1 mice had lower survival, respectively, implying a cost of maintaining a given social rank that varies across strains. Machine learning linear discriminant analysis identified baseline fat-free mass as the most important predictor of mouse genetic background and social rank in the present dataset. Finally, strain and social rank differences were significantly associated with epigenetic changes, most significantly in Sv129Ev mice and in high-ranking compared to lower ranking subjects. Overall, we identified genetic background and social rank as critical contextual modifiers of aging and lifespan in an ethologically relevant rodent model of social stress, thereby providing a preclinical experimental paradigm to study the impact of social determinants of health disparities and accelerated aging.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Kewir Nyuyki-Dufe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Brian H. Chen
- FOXO Technologies Inc., Minneapolis, MN55401
- Division of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
45
|
Falahat R, Berglund A, Perez-Villarroel P, Putney RM, Hamaidi I, Kim S, Pilon-Thomas S, Barber GN, Mulé JJ. Epigenetic state determines the in vivo efficacy of STING agonist therapy. Nat Commun 2023; 14:1573. [PMID: 36949064 PMCID: PMC10033671 DOI: 10.1038/s41467-023-37217-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
While STING-activating agents have shown limited efficacy in early-phase clinical trials, multiple lines of evidence suggest the importance of tumor cell-intrinsic STING function in mediating antitumor immune responses. Although STING signaling is impaired in human melanoma, its restoration through epigenetic reprogramming can augment its antigenicity and T cell recognition. In this study, we show that reversal of methylation silencing of STING in murine melanoma cell lines using a clinically available DNA methylation inhibitor can improve agonist-induced STING activation and type-I IFN induction, which, in tumor-bearing mice, can induce tumor regression through a CD8+ T cell-dependent immune response. These findings not only provide mechanistic insight into how STING signaling dysfunction in tumor cells can contribute to impaired responses to STING agonist therapy, but also suggest that pharmacological restoration of STING signaling through epigenetic reprogramming might improve the therapeutic efficacy of STING agonists.
Collapse
Affiliation(s)
- Rana Falahat
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Ryan M Putney
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Imene Hamaidi
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Sungjune Kim
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Radiation Oncology Program, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Shari Pilon-Thomas
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - James J Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
- Radiation Oncology Program, Moffitt Cancer Center, Tampa, FL, 33612, USA.
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, FL, 33612, USA.
| |
Collapse
|
46
|
Mainwaring OJ, Weishaupt H, Zhao M, Rosén G, Borgenvik A, Breinschmid L, Verbaan AD, Richardson S, Thompson D, Clifford SC, Hill RM, Annusver K, Sundström A, Holmberg KO, Kasper M, Hutter S, Swartling FJ. ARF suppression by MYC but not MYCN confers increased malignancy of aggressive pediatric brain tumors. Nat Commun 2023; 14:1221. [PMID: 36869047 PMCID: PMC9984535 DOI: 10.1038/s41467-023-36847-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Medulloblastoma, the most common malignant pediatric brain tumor, often harbors MYC amplifications. Compared to high-grade gliomas, MYC-amplified medulloblastomas often show increased photoreceptor activity and arise in the presence of a functional ARF/p53 suppressor pathway. Here, we generate an immunocompetent transgenic mouse model with regulatable MYC that develop clonal tumors that molecularly resemble photoreceptor-positive Group 3 medulloblastoma. Compared to MYCN-expressing brain tumors driven from the same promoter, pronounced ARF silencing is present in our MYC-expressing model and in human medulloblastoma. While partial Arf suppression causes increased malignancy in MYCN-expressing tumors, complete Arf depletion promotes photoreceptor-negative high-grade glioma formation. Computational models and clinical data further identify drugs targeting MYC-driven tumors with a suppressed but functional ARF pathway. We show that the HSP90 inhibitor, Onalespib, significantly targets MYC-driven but not MYCN-driven tumors in an ARF-dependent manner. The treatment increases cell death in synergy with cisplatin and demonstrates potential for targeting MYC-driven medulloblastoma.
Collapse
Affiliation(s)
- Oliver J Mainwaring
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Borgenvik
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laura Breinschmid
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Annemieke D Verbaan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stacey Richardson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Dean Thompson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
47
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. TET1 Catalytic Activity is Required for Reprogramming of Imprinting Control Regions and Patterning of Sperm-Specific Hypomethylated Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529426. [PMID: 36865267 PMCID: PMC9980038 DOI: 10.1101/2023.02.21.529426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
DNA methylation erasure is required for mammalian primordial germ cell reprogramming. TET enzymes iteratively oxidize 5-methylcytosine to generate 5-hyroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxycytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during germline reprogramming remains unresolved due to the lack of genetic models that decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 ( Tet1-HxD ) and TET1 that stalls oxidation at 5hmC ( Tet1-V ). Tet1 -/- , Tet1 V/V , and Tet1 HxD/HxD sperm methylomes show that TET1 V and TET1 HxD rescue most Tet1 -/- hypermethylated regions, demonstrating the importance of TET1’s extra-catalytic functions. Imprinted regions, in contrast, require iterative oxidation. We further reveal a broader class of hypermethylated regions in sperm of Tet1 mutant mice that are excluded from de novo methylation during male germline development and depend on TET oxidation for reprogramming. Our study underscores the link between TET1-mediated demethylation during reprogramming and sperm methylome patterning.
Collapse
|
48
|
Martin EM, Grimm SA, Xu Z, Taylor JA, Wade PA. Beadchip technology to detect DNA methylation in mouse faithfully recapitulates whole-genome bisulfite sequencing. Epigenomics 2023; 15:115-129. [PMID: 37020391 PMCID: PMC10131490 DOI: 10.2217/epi-2023-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Aim: To facilitate wide-scale implementation of Illumina Mouse Methylation BeadChip (MMB) technology, array-based measurement of cytosine methylation was compared with the gold-standard assessment of DNA methylation by whole-genome bisulfite sequencing (WGBS). Methods: DNA methylation across two mouse strains (C57B6 and C3H) and both sexes was assessed using the MMB and compared with previously existing deep-coverage WGBS of mice of the same strain and sex. Results & conclusion: The findings demonstrated that 93.3-99.2% of sites had similar measurements of methylation across technologies and that differentially methylated cytosines and regions identified by each technology overlap and enrich for similar biological functions, suggesting that the MMB faithfully recapitulates the findings of WGBS.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Sara A Grimm
- Integrative Bioinformatics, Biostatistics & Computational Biology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Jack A Taylor
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
- Epidemiology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Paul A Wade
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| |
Collapse
|
49
|
Ding W, Kaur D, Horvath S, Zhou W. Comparative epigenome analysis using Infinium DNA methylation BeadChips. Brief Bioinform 2023; 24:6974838. [PMID: 36617464 PMCID: PMC10147478 DOI: 10.1093/bib/bbac617] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
The arrival of the Infinium DNA methylation BeadChips for mice and other nonhuman mammalian species has outpaced the development of the informatics that supports their use for epigenetics study in model organisms. Here, we present informatics infrastructure and methods to allow easy DNA methylation analysis on multiple species, including domesticated animals and inbred laboratory mice (in SeSAMe version 1.16.0+). First, we developed a data-driven analysis pipeline covering species inference, genome-specific data preprocessing and regression modeling. We targeted genomes of 310 species and 37 inbred mouse strains and showed that genome-specific preprocessing prevents artifacts and yields more accurate measurements than generic pipelines. Second, we uncovered the dynamics of the epigenome evolution in different genomic territories and tissue types through comparative analysis. We identified a catalog of inbred mouse strain-specific methylation differences, some of which are linked to the strains' immune, metabolic and neurological phenotypes. By streamlining DNA methylation array analysis for undesigned genomes, our methods extend epigenome research to broad species contexts.
Collapse
Affiliation(s)
- Wubin Ding
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Diljeet Kaur
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Steve Horvath
- Dept. of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Altos Labs, San Diego, CA, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
50
|
Schönung M, Hartmann M, Krämer S, Stäble S, Hakobyan M, Kleinert E, Aurich T, Cobanoglu D, Heidel FH, Fröhling S, Milsom MD, Schlesner M, Lutsik P, Lipka DB. Dynamic DNA methylation reveals novel cis-regulatory elements in mouse hematopoiesis. Exp Hematol 2023; 117:24-42.e7. [PMID: 36368558 DOI: 10.1016/j.exphem.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Differentiation of hematopoietic stem and progenitor cells to terminally differentiated immune cells is accompanied by large-scale remodeling of the DNA methylation landscape. Although significant insights into the molecular mechanisms of hematopoietic tissue regeneration were derived from mouse models, profiling of DNA methylation has been hampered by high cost or low resolution using available methods. The recent development of the Infinium Mouse Methylation BeadChip (MMBC) array facilitates methylation profiling of the mouse genome at a single CpG resolution at affordable cost. We extended the RnBeads package to provide a computational framework for the analysis of MMBC data. This framework was applied to a newly generated reference map of mouse hematopoiesis encompassing nine different cell types. Analysis of dynamically regulated CpG sites showed progressive and unidirectional DNA methylation changes from hematopoietic stem and progenitor cells to differentiated hematopoietic cells and allowed the identification of lineage- and cell type-specific DNA methylation programs. Comparison with previously published catalogs of cis-regulatory elements (CREs) revealed 12,856 novel putative CREs that were dynamically regulated by DNA methylation (mdCREs). These mdCREs were predominantly associated with patterns of cell type-specific DNA hypomethylation and could be identified as epigenetic control regions regulating the expression of key hematopoietic genes during differentiation. In summary, we established an analysis pipeline for MMBC data sets and provide a DNA methylation atlas of mouse hematopoiesis. This resource allowed us to identify novel putative CREs involved in hematopoiesis and will serve as a platform to study epigenetic regulation of normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Maximilian Schönung
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mark Hartmann
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephen Krämer
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Sina Stäble
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Mariam Hakobyan
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Emely Kleinert
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Theo Aurich
- Division of Experimental Hematology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Defne Cobanoglu
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Florian H Heidel
- Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany; Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany.
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|