1
|
Considine P, Punnabhum P, Davidson CG, Armstrong GB, Kreiner M, Bax HJ, Chauhan J, Spicer J, Josephs DH, Karagiannis SN, Halbert G, Rattray Z. Assessment of biophysical properties of the first-in-class anti-cancer IgE antibody drug MOv18 IgE demonstrates monomeric purity and stability. MAbs 2025; 17:2512211. [PMID: 40432600 PMCID: PMC12123954 DOI: 10.1080/19420862.2025.2512211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025] Open
Abstract
Therapeutic monoclonal antibodies, which are almost exclusively IgG isotypes, show significant promise but are prone to poor solution stability, including aggregation and elevated solution viscosity at dose-relevant concentrations. Recombinant IgE antibodies are emerging cancer immunotherapies. The first-in-class MOv18 IgE, recognizing the cancer-associated antigen folate receptor-alpha (FRα), completed a Phase 1 clinical trial in patients with solid tumors, showing early signs of efficacy at a low dose. The inaugural process development and scaled manufacture of MOv18 IgE for clinical testing were undertaken with little baseline knowledge about the solution phase behavior of recombinant IgE at dose-relevant concentrations. We evaluated MOv18 IgE physical stability in response to environmental and formulation stresses encountered throughout shelf life. We analyzed changes in physical stability using multiple orthogonal analytical techniques, including particle tracking analysis, size exclusion chromatography, and multidetector flow field flow fractionation hyphenated with UV. We used dynamic and multiangle light scattering to profile aggregation status. Formulation at pH 6.5, selected for use in the Phase 1 trial, resulted in high monomeric purity and no submicron proteinaceous particulates. Formulation at pH 5.5 and 7.5 induced significant submicron and sub-visible particle formation. IgE formulation was resistant to aggregation in response to freeze-thaw stress, retaining high monomeric purity. Exposure to thermal stress at elevated temperatures resulted in loss of monomeric purity and aggregation. Agitation stress-induced submicron and subvisible aggregation, but monomeric purity was not significantly affected. MOv18 IgE retains monomeric purity in response to formulation and stress conditions, confirming stability. Our results offer crucial guidance for future IgE-based drug development.
Collapse
Affiliation(s)
- Paul Considine
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Panida Punnabhum
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Callum G. Davidson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Georgina B. Armstrong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Drug Substance Development, GlaxoSmithKline, Stevenage, UK
| | - Michaela Kreiner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, Guy’s Hospital, King’s College London, London, UK
| | - Jitesh Chauhan
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, Guy’s Hospital, King’s College London, London, UK
| | - James Spicer
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
- Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Debra H. Josephs
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, Guy’s Hospital, King’s College London, London, UK
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
- Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, Guy’s Hospital, King’s College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Cancer Centre, London, UK
| | - Gavin Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Li Y, Villafuerte-Vega R, Shenoy VM, Jackson HM, Wang Y, Parrish KE, Jenkins GJ, Sarvaiya H. A novel in vitro serum stability assay for antibody therapeutics incorporating internal standards. MAbs 2025; 17:2479529. [PMID: 40097239 PMCID: PMC11917174 DOI: 10.1080/19420862.2025.2479529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Antibody-based therapeutics have demonstrated remarkable therapeutic benefit, but their susceptibility to biotransformation and degradation in the body can affect their safety, efficacy, and pharmacokinetic/pharmacodynamic (PK/PD) profiles. In vitro stability assessments play a pivotal role in proactively identifying potential liabilities of antibody therapeutics prior to animal studies. Liquid chromatography-mass spectrometry (LC-MS)-based in vitro stability assays has been developed and adopted in the biopharmaceutical industry for the characterization of antibody-based therapeutics. However, these methodologies often overlook operational error and random variation during sample preparation and analysis, leading to inaccurate stability estimation. To address this limitation, we have developed an LC-MS-based in vitro serum stability assessment that incorporates two internal standards (ISs), National Institute of Standards and Technology monoclonal antibody (NISTmAb) and its crystallizable fragment (Fc), to improve assay performance. Our method involves three steps: incubation of antibody therapeutics along with an IS in biological matrices, affinity purification, and LC-MS analysis. The stability of 21 monoclonal or bispecific antibodies was assessed in serums of preclinical species using this method. Our results showed improved accuracy and precision of recovery calculations with the incorporation of ISs, enabling a more confident stability assessment even in the absence of biotransformation or aggregation. In vitro stability correlated with in vivo exposure, suggesting that this in vitro assay could serve as a routine screening tool to select and advance stable antibody therapeutic candidates for subsequent in vivo studies.
Collapse
Affiliation(s)
- Yihan Li
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, CA, USA
| | | | - Vikram M. Shenoy
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, CA, USA
| | - Heidi M. Jackson
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, MA, USA
| | - Yuting Wang
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, MA, USA
| | - Karen E. Parrish
- Department of Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA
| | - Gary J. Jenkins
- Department of Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA
| | - Hetal Sarvaiya
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, CA, USA
| |
Collapse
|
3
|
Zarei M, Jonveaux J, Jahn M. Alcohol-based solvents as mobile phases for LC-MS characterization of therapeutic proteins. J Pharm Biomed Anal 2025; 262:116879. [PMID: 40220636 DOI: 10.1016/j.jpba.2025.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Acetonitrile (ACN) is currently the preferred solvent in reversed phase (RP) chromatography for protein characterization through peptide mapping. Despite its effective performance, ACN poses toxicity risks to humans and has adverse effects on environmental sustainability. In the current work, we developed a novel alcohol-based solvent system for peptide mapping by systematic evaluation of parameters such as organic eluent composition, solvent gradient, flow rate, and column temperature. We compared the chromatographic performance and MS response of peptides between the standard (ACN based) and the new developed solvent systems (EtOH/IPA based). The results of our study show that the EtOH/IPA based solvent system improves selectivity factor (α) and resolution (R), while the standard ACN based solvent system provides a lower peak width and hence a higher peak height. The majority of the analysed peptides exhibited shorter retention times, whereas hydrophobic peptides eluted later when using the EtOH/IPA solvent system. Several critical quality attributes (CQA) of a monoclonal antibody (mAb) were successfully characterized by this method without compromising the chromatographic separations and MS response of the peptides. Furthermore, the suitability of the new approach for LC-UV assessment of a mAb as part of an identity test of therapeutic proteins was demonstrated. Our proposed approach, which prioritizes safety, non-toxicity, and compatibility with all LC-MS instruments, offers significant support to a broad community of academic and biopharmaceutical scientists in their pursuit of a bottom-up green strategy.
Collapse
Affiliation(s)
- Mostafa Zarei
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, Basel CH-4057, Switzerland.
| | - Jérôme Jonveaux
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, Basel CH-4057, Switzerland
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, Basel CH-4057, Switzerland
| |
Collapse
|
4
|
Fischer P, Merkel OM, Siedler M, Meyer T, Nouchikian L, Huelsmeyer M. Antibody oxidation and impact of formulation: A high-throughput screening approach. Eur J Pharm Sci 2025; 209:107113. [PMID: 40306556 DOI: 10.1016/j.ejps.2025.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Oxidation is a complex degradation pathway in biopharmaceutical products that necessitates comprehensive assessment to ensure product stability and safety. This study focuses on implementing an oxidative profiling workflow within a high-throughput (HT) formulation screening process to identify and mitigate potential oxidation liabilities. To assess the feasibility of integrating oxidative stress testing into HT formulation development, we analyzed the oxidation susceptibility of three monoclonal antibodies by varying several formulation parameters including protein concentration, buffer system and pH, surfactant type and concentration as well as presence of antioxidative excipients. Oxidative stress was induced using visible light, hydrogen peroxide, and metal-catalyzed oxidation. HT analytical methods such as Size Exclusion Chromatography and Reversed-Phase Chromatography subunit analysis were employed to assess aggregation and modification of Fc and Fab subunits. An oxidation scoring tool was developed to simplify the evaluation of large datasets. The results demonstrated that formulation composition can significantly influence oxidation susceptibility. However, the outcomes varied greatly among the different antibodies, highlighting the need for a comprehensive profiling approach. The study confirms that the oxidation profiling workflow is an effective method for routine HT formulation screenings, providing a thorough evaluation of the oxidative stability of biopharmaceutical formulations.
Collapse
Affiliation(s)
- Paulina Fischer
- AbbVie Deutschland GmbH & Co. KG, Drug Product Development, Knollstraße, Ludwigshafen am Rhein, Germany.
| | - Olivia M Merkel
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Michael Siedler
- AbbVie Deutschland GmbH & Co. KG, Drug Product Development, Knollstraße, Ludwigshafen am Rhein, Germany
| | - Tanja Meyer
- AbbVie Deutschland GmbH & Co. KG, Drug Product Development, Knollstraße, Ludwigshafen am Rhein, Germany
| | - Lucienne Nouchikian
- AbbVie Deutschland GmbH & Co. KG, Analytical Research & Development, Knollstraße, Ludwigshafen am Rhein, Germany
| | - Martin Huelsmeyer
- AbbVie Deutschland GmbH & Co. KG, Drug Product Development, Knollstraße, Ludwigshafen am Rhein, Germany
| |
Collapse
|
5
|
Sadighi R, de Kleijne VH, Vido M, Zioga E, Wouters S, Lubbers K, Haselberg R, Gargano AFG, Somsen GW. Online multimethod platform for comprehensive characterization of monoclonal antibodies in cell culture fluid from injection of crude sample - Incorporation of middle-up and bottom-up workflows. Anal Chim Acta 2025; 1353:343943. [PMID: 40221213 DOI: 10.1016/j.aca.2025.343943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Determination of critical quality attributes (CQAs) of pharmaceutical monoclonal antibodies (mAbs) is an essential part of quality control. Commonly, for each CQA, a separate analytical method and setup is required, making assessment of multiple CQAs time-consuming and labour-intensive. This typically involves offline purification and diverse protein digestion steps, in combination with multiple liquid-chromatographic modes. We developed an integrated, fully online multidimensional platform for direct analysis of mAbs in cell culture fluid (CCF) at an intact, subunit and peptide level from a single injection. RESULTS This paper focuses on the online middle-up and bottom-up workflows. The platform combines Protein A affinity chromatography (ProtA), immobilized enzyme reactors (IMERs), reversed-phase liquid chromatography (RPLC) and high-resolution mass spectrometry (MS) for characterization of mAbs. Online ProtA was used to isolate mAbs directly from CCF. Subsequent online digestion of isolated mAb was accomplished by IMERs featuring either the proteases IdeS or trypsin. Between ProtA and IMERs, buffer exchange and pH adjustment were achieved using a strong cation-exchange (SCX) trap column. RPLC-MS analysis of F(ab)'2 and Fc/2 fragments obtained after IdeS digestion provided information on mAb glycoform compositions and the potential presence of PTMs and subunit variants. RPLC-MS/MS analysis of trypsin-digested peptides provided over 95 % coverage of the mAb's amino acid sequence, but also identification and localization of modifications related to e.g. oxidation and deamidation. Comparisons with established offline methods were made. The overall capacity of the system to perform intact, middle-, and bottom-up analyses in parallel from a single injection is demonstrated for an industrially-relevant mAb in CCF. SIGNIFICANCE The developed multidimensional platform enables the simultaneous characterization of multiple fractions from a single ProtA-isolated mAb band at intact, middle-up, or bottom-up level using various LC modes at a substantially reduced analysis time.
Collapse
Affiliation(s)
- Raya Sadighi
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands.
| | - Vera H de Kleijne
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Marek Vido
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Eirini Zioga
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Sam Wouters
- Agilent Technologies, R&D and Marketing GmbH, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Karin Lubbers
- Polpharma Biologics Utrecht B.V., Yalelaan 46, 3584, CM Utrecht, the Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Andrea F G Gargano
- Centre for Analytical Sciences Amsterdam (CASA), the Netherlands; Analytical Chemistry Group, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090, GE Amsterdam, the Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| |
Collapse
|
6
|
Majumder P, Eslami SM, Dill AL. Comparative evaluation of chelators in the context of analysis of antibody oxidative stability. J Pharm Sci 2025; 114:103820. [PMID: 40345531 DOI: 10.1016/j.xphs.2025.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
Oxidation is a critical post-translational modification for antibodies that naturally possess many solvent-exposed amino acid residues. Presence of oxidized methionine and tryptophan residues may potentially impact safety, efficacy, clearance, and immunogenicity of antibodies, emphasizing the importance of including oxidation assays as a part of the antibody control strategy. Sub-unit Reversed Phase HPLC is a commonly employed method to measure oxidation, wherein enzymatic digestion of antibodies followed by disulfide reduction is essential for sample preparation. Peaks resulting from intact sub-units i.e. light chain (LC), single-chain crystallizable fragment (Fc), and N-terminal half of heavy chain (Fd) and additional peaks arising due to subunit oxidation can be easily resolved to quantify oxidative degradation. Our data suggest that the performance of the method can be compromised due to sample oxidation during the analysis window imposing restrictions on sample throughput and increasing method variability. Drug substance batches of six monoclonal antibodies with variable subclasses and isoelectric points showed an increase of 5-50% in subunit oxidation levels when tested over 48 hours. With an aim to minimize oxidation during analysis we modified the sample preparation technique using a variety of metal chelators including Ethylenediaminetetraacetic acid (EDTA), Ethylene Glycol-bis (β-aminoethyl ether)-N,N,N',N'-Tetraacetic Acid (EGTA), Diethylene Triamine Pentaacetic Acid (DTPA), Nitrilotriacetic acid (NTA) and Hydroxyethyl Ethylenediamine Triacetic Acid (HEDTA). EGTA showed the most prevalent stabilizing influence on subunit oxidation for all drug substance batches screened. Overall, our results demonstrate that careful optimization of sample preparation during oxidation analysis can increase sample throughput significantly and highlight the feasibility of using EGTA as a more suitable alternative to EDTA, the most employed trace-metal chelator in the biopharmaceutical space.
Collapse
Affiliation(s)
- Poulami Majumder
- Bioproducts Research and Development, Lilly Technology Center North, Eli Lilly & Company, Indianapolis, IN 46221, United States.
| | - Sara M Eslami
- Bioproducts Research and Development, Lilly Technology Center North, Eli Lilly & Company, Indianapolis, IN 46221, United States
| | - Allison L Dill
- Bioproducts Research and Development, Lilly Technology Center North, Eli Lilly & Company, Indianapolis, IN 46221, United States
| |
Collapse
|
7
|
Song X, Tian H, Jing R, Liu K, Xu K, Guo L, Zhang G. Navigating the Frontier: Advances in monoclonal antibody purity control. Protein Expr Purif 2025; 232:106725. [PMID: 40345637 DOI: 10.1016/j.pep.2025.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
This review explores the evolving landscape of monoclonal antibody (mAb) purity assessment, highlighting the advancements in separation techniques aimed at improving resolution, speed, and precision of impurity detection, identification, and quantification.Traditional methods such as SDS-PAGE, isoelectric focusing electrophoresis and size-exclusion chromatography serve as a foundational tool, while advanced chromatographic techniques, including diverse modes of high-performance liquid chromatography (HPLC), and capillary electrophoresis (CE), offer improved capabilities for analyzing mAb structural integrity and impurities. These techniques separate different constituents in the samples based on their physicochemical properties such as size, charge, isoelectric point, hydrophobicity, and structure. The review discusses the principles and progressions of both traditional and advanced separation techniques and demonstrates their applications in large-scale mAb production and antibody-drug conjugate (ADC) analysis. Innovations in chromatography, such as superficially porous particles and novel stationary phases, address challenges like band broadening and protein adsorption.
Collapse
Affiliation(s)
- Xiaoyue Song
- Suzhou Institute for Drug Control, Suzhou, 215000, China
| | - Huairu Tian
- Suzhou Institute for Drug Control, Suzhou, 215000, China
| | - Rongxian Jing
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215000, China
| | - Kunmei Liu
- Ningxia Medical University, Yinchuan, 750021, China
| | - Kailin Xu
- Suzhou Institute for Drug Control, Suzhou, 215000, China
| | - Le Guo
- Ningxia Medical University, Yinchuan, 750021, China
| | - Guolin Zhang
- Suzhou Institute for Drug Control, Suzhou, 215000, China.
| |
Collapse
|
8
|
Lehtimaki M, Ortega-Rodriguez U, Centola G, Rao VA. Reduced IgG1 Antibody Left-Twisted Antiparallel β-Sheet Structure Stability Occurs under Metal-Catalyzed Oxidation Conditions in the Presence of Polysorbates. Mol Pharm 2025; 22:2623-2638. [PMID: 40202920 DOI: 10.1021/acs.molpharmaceut.5c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Polysorbates are common surfactants in monoclonal antibody (mAb) drug products. While polysorbates assist in stabilizing and refolding proteins, oxidative stress conditions can reduce protein stability wherein polysorbate binds to the oxidized and unfolded protein. We investigated the effects of polysorbates on the higher-order structural stability of mAbs under oxidative conditions that may occur during manufacturing, storage, and use. Secondary and tertiary structures of trastuzumab and rituximab products were investigated under two oxidative conditions: metal-catalyzed oxidation (MCO; CuSO4 and ascorbic acid) and 2,2'-azobis (2-aminidinopropane) dihydrochloride (AAPH) using either polysorbate-containing formulations or after polysorbate depletion. Higher-order structures were predicted from the collected circular dichroism spectra with an algorithm optimized for β-sheet structural predictions. Secondary structure analyses using circular dichroism at increasing temperatures demonstrated that MCO and AAPH triggered differing β-sheet structure degradation patterns. Rituximab products were more sensitive to MCO compared with trastuzumab products as shown by left-twisted antiparallel β-sheet structure loss and increase in unstructured elements at lower temperatures. AAPH-exposed drugs tended to have distinct unfolding states compared with the MCO-treated drugs as shown by the increase in parallel β-sheet structures for AAPH and decreased parallel β-sheet structures with MCO. Polysorbate depletion transiently improved the stability of MCO-treated material as shown by delayed circular dichroism (CD) signal degradation at 202 nm and improved peak area of the antibody monomer by nonreducing capillary electrophoresis sodium dodecyl sulfate (nrCE-SDS) and peak intensity of intact antibody in matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis. The improved stability of detergent-depleted material is traced to improved stability in the predicted left-twisted β-sheet structural elements. Our data further highlights the need for formulation studies that consider the impact of polysorbate binding and/or degradation for specific drug products under stress conditions such as metal-catalyzed oxidation.
Collapse
Affiliation(s)
- Mari Lehtimaki
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, Maryland 20993, United States
| | - Uriel Ortega-Rodriguez
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, Maryland 20993, United States
| | - Garrick Centola
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, Maryland 20993, United States
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, Maryland 20993, United States
| |
Collapse
|
9
|
Sarvepalli S, Pasika SR, Verma V, Thumma A, Bolla S, Nukala PK, Butreddy A, Bolla PK. A Review on the Stability Challenges of Advanced Biologic Therapeutics. Pharmaceutics 2025; 17:550. [PMID: 40430843 PMCID: PMC12114724 DOI: 10.3390/pharmaceutics17050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Advanced biotherapeutic systems such as gene therapy, mRNA lipid nanoparticles, antibody-drug conjugates, fusion proteins, and cell therapy have proven to be promising platforms for delivering targeted biologic therapeutics. Preserving the intrinsic stability of these advanced therapeutics is essential to maintain their innate structure, functionality, and shelf life. Nevertheless, various challenges and obstacles arise during formulation development and throughout the storage period due to their complex nature and sensitivity to various stress factors. Key stability concerns include physical degradation and chemical instability due to various factors such as fluctuations in pH and temperature, which results in conformational and colloidal instabilities of the biologics, adversely affecting their quality and therapeutic efficacy. This review emphasizes key stability issues associated with these advanced biotherapeutic systems and approaches to identify and overcome them. In gene therapy, the brittleness of viral vectors and gene encapsulation limits their stability, requiring the use of stabilizers, excipients, and lyophilization. Keeping cells viable throughout the whole cell therapy process, from culture to final formulation, is still a major difficulty. In mRNA therapeutics, stabilization strategies such as the optimization of mRNA nucleotides and lipid compositions are used to address the instability of both the mRNA and lipid nanoparticles. Monoclonal antibodies are colloidally and conformationally unstable. Hence, buffers and stabilizers are useful to maintain stability. Although fusion proteins and monoclonal antibodies share structural similarities, they show a similar pattern of instability. Antibody-drug conjugates possess issues with conjugation and linker stability. This review outlines the stability issues associated with advanced biotherapeutics and provides insights into the approaches to address these challenges.
Collapse
Affiliation(s)
- Sruthi Sarvepalli
- College of Pharmacy and Health Sciences, St John’s University, Queens, New York, NY 11439, USA; (S.S.); (P.K.N.)
| | - Shashank Reddy Pasika
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research—Raebareli (NIPER-R), Raebareli 226002, India;
| | - Vartika Verma
- Laboratory of Translational Research in Nanomedicines, Lifecare Innovations Private Limited, Lucknow 226021, India;
| | - Anusha Thumma
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sandeep Bolla
- Department of Statistical Programming, Fortrea, Durham, NC 27709, USA;
| | - Pavan Kumar Nukala
- College of Pharmacy and Health Sciences, St John’s University, Queens, New York, NY 11439, USA; (S.S.); (P.K.N.)
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
10
|
McConnell SA, Casadevall A. New insights into antibody structure with implications for specificity, variable region restriction and isotype choice. Nat Rev Immunol 2025:10.1038/s41577-025-01150-9. [PMID: 40113994 DOI: 10.1038/s41577-025-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
The mystery surrounding the mechanisms by which antibody diversity is generated was largely settled in the 1970s by the discoveries of variable gene rearrangements and somatic hypermutation. This led to the paradigm that immunoglobulins are composed of two independent domains - variable and constant - that confer specificity and effector functions, respectively. However, since these early discoveries, there have been a series of observations of communication between the variable and constant domains that affects the overall antibody structure, which suggests that immunoglobulins have a more complex, interconnected functionality than previously thought. Another unresolved issue has been the genesis of 'restricted' antibody responses, characterized by the use of only a few variable region gene segments, despite the enormous potential combinatorial diversity. In this Perspective, we place recent findings related to immunoglobulin structure and function in the context of these immunologically important, historically unsolved problems to propose a new model for how antibody specificity is achieved without autoreactivity.
Collapse
Affiliation(s)
- Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
11
|
Comtois-Marotte S, Bonneil É, Li C, Smith MJ, Thibault P. Epitope and Paratope Mapping of a SUMO-Remnant Antibody Using Cross-Linking Mass Spectrometry and Molecular Docking. J Proteome Res 2025; 24:1092-1101. [PMID: 39965925 PMCID: PMC11895775 DOI: 10.1021/acs.jproteome.4c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
The small ubiquitin-like modifier (SUMO) is an important post-translational modification that regulates the function of various proteins essential for DNA damage repair, genome integrity, and cell homeostasis. To identify protein SUMOylation effectively, an enrichment step is necessary, often requiring exogenous gene expression in cells and immunoaffinity purification of SUMO-remnant peptides following tryptic digestion. Previously, an antibody was developed to enrich tryptic peptides containing the remnant NQTGG on the receptor lysine, although the specifics of the structural interaction motif remained unclear. This study integrates de novo sequencing, intact mass spectrometry, cross-linking mass spectrometry, and molecular docking to elucidate the structural interaction motifs of a SUMO-remnant antibody. Additional cross-linking experiments were performed using SUMOylated peptides and high-field asymmetric waveform ion mobility spectrometry (FAIMS) to enhance the sensitivity and confirm interactions at the paratope interface. This study establishes a robust framework for characterizing antibody-antigen interactions, offering valuable insights into the structural basis of SUMO-remnant peptide recognition.
Collapse
Affiliation(s)
- Simon Comtois-Marotte
- Institute
for Research in Immunology and Cancer (IRIC) Université de
Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Éric Bonneil
- Institute
for Research in Immunology and Cancer (IRIC) Université de
Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Chongyang Li
- Institute
for Research in Immunology and Cancer (IRIC) Université de
Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Matthew J. Smith
- Institute
for Research in Immunology and Cancer (IRIC) Université de
Montréal, Montreal, Quebec H3T 1J4, Canada
- Department
of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Pierre Thibault
- Institute
for Research in Immunology and Cancer (IRIC) Université de
Montréal, Montreal, Quebec H3T 1J4, Canada
- Department
of Chemistry, Université de Montréal, MIL campus, Montreal, Quebec H2 V
0B3, Canada
| |
Collapse
|
12
|
Sutherland E, Veth TS, Riley NM. Revisiting the Effect of Trypsin Digestion Buffers on Artificial Deamidation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:457-462. [PMID: 39887243 PMCID: PMC12124135 DOI: 10.1021/jasms.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Deamidation of asparagine and glutamine residues occurs spontaneously, is influenced by pH, temperature, and incubation time, and can be accelerated by adjacent amino acid residues. Incubation conditions used for proteolytic digestion in bottom-up proteomic studies can induce significant deamidation that affects results, either knowingly or unknowingly. This has prompted studies into modifications to common trypsin digestion protocols to minimize chemical deamidation, including shorter incubation times and specific lysis buffers. Prior work suggested ammonium acetate at pH 6 to minimize chemical deamidation, but this buffer has compatibility issues with trypsin digestion and common assays (e.g., bicinchoninic acid assays). Here, we re-evaluated former comparisons of Tris-HCl, ammonium bicarbonate, and triethylammonium bicarbonate buffers for the amount of artificial, chemically induced deamidation generated in a standard bottom-up proteomics workflow, and we added an evaluation of three commonly used and biologically compatible buffers, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), EPPS (3-[4-(2-Hydroxyethyl)piperazin-1-yl]propane-1-sulfonic acid), and PBS (phosphate buffered saline). Our findings show that HEPES exhibited the least amount of artificial deamidation and is a reasonable choice for general proteomic experiments, especially for studies considering N-glycosylation.
Collapse
Affiliation(s)
- Emmajay Sutherland
- Department of Chemistry, University of Washington, Seattle,
WA, USA, 98195
| | - Tim S. Veth
- Department of Chemistry, University of Washington, Seattle,
WA, USA, 98195
| | - Nicholas M. Riley
- Department of Chemistry, University of Washington, Seattle,
WA, USA, 98195
| |
Collapse
|
13
|
Liu Y, Xie J, Li Z, Mei X, Cao D, Li S, Engle L, Liu S, Ebbers HC, Liu C. Comparative Structure Activity Relationship Characterization of the Biosimilar BAT1806/BIIB800 to Reference Tocilizumab. BioDrugs 2025; 39:307-320. [PMID: 40048090 PMCID: PMC11906491 DOI: 10.1007/s40259-024-00698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND BAT1806/BIIB800 (Tofidence™/tocilizumab-bavi), a biosimilar of tocilizumab, demonstrated a high degree of analytical and functional similarity to reference tocilizumab (TCZ) in a comprehensive comparative analytical assessment. Minor differences with respect to TCZ were observed for some attributes and this study assessed the potential impact of these differences through structure activity relationship characterization. METHODS Structure activity relationship studies were conducted to assess glycation, glycosylation, charge variants, hydrophobicity, oxidation, and deamidation differences, using a range of investigative techniques. Structure activity relationship studies were performed on one lot each of BAT1806/BIIB800 and TCZ (European Union sourced only) except for glycation, where additional lots sourced from China and the USA were used. RESULTS Average total glycated protein content of BAT1806/BIIB800 was higher than TCZ (10.08% vs 1.19%); however, biological activity, including target binding and functional potency, was unaffected. Stress-induced glycation of BAT1806/BIIB800 and TCZ also did not affect the biological activity of the products despite up to 60% total glycation content. Minor differences were observed between BAT1806/BIIB800 and TCZ in glycosylation, charge variants, hydrophobicity, oxidation, and deamidation without a relevant impact on interleukin-6 receptor binding, Fc-receptor binding, and effector functions. In forced degradation studies, oxidation and deamidation trends were comparable between the two products. CONCLUSIONS Comparative structure activity relationship characterization of BAT1806/BIIB800 and TCZ indicated that there are no relevant differences in quality attributes between BAT1806/BIIB800 and reference TCZ. Observed differences between BAT1806/BIIB800 and TCZ had no functional impact on BAT1806/BIIB800. The results support the conclusion that BAT1806/BIIB800 is similar to TCZ.
Collapse
Affiliation(s)
- Yujie Liu
- Bio-Thera Solutions, Ltd, Guangzhou, China
| | | | | | - Xiong Mei
- Bio-Thera Solutions, Ltd, Guangzhou, China
| | - Di Cao
- Bio-Thera Solutions, Ltd, Guangzhou, China
| | | | | | | | | | - Cuihua Liu
- Bio-Thera Solutions, Ltd, Guangzhou, China.
| |
Collapse
|
14
|
Ahmad A, Refaat H, Bhattacharya S, Gurvich VJ, Rathore AS, Nejadnik R, Suryanarayanan R. Effect of formulation composition on trastuzumab stability. Int J Pharm 2025; 671:125275. [PMID: 39870255 DOI: 10.1016/j.ijpharm.2025.125275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
For monoclonal antibody drug products as for other biologics, while the innovator drug products first becomes commercially available, they are often followed by one or more biosimilar products. These biosimilars often differ from the innovator product, as well as from each other, in their formulation composition. However, the impact of the formulation composition on the stability of the active pharmaceutical ingredient subjected to different 'stresses' is still not understood. We have evaluated the effect of different formulations on structural stability and aggregation behavior of a monoclonal antibody, trastuzumab (both the drug substance and the final drug product), against three most common stresses encountered during production, storage, and formulation into a lyophilized product - freeze-thaw, freeze-drying, and agitation. Irrespective of the stabilizer used, the formulations exhibited good conformational stability against all three stresses. However, the freeze-drying process caused a significant increase in the number of soluble aggregates, but only in sucrose containing formulations. On the other hand, agitation in sorbitol containing formulation led to a significant increase in insoluble aggregates. This effect could also be attributed to the absence of surfactant in this formulation composition. The stabilizing effect of trehalose appeared to be independent of its concentration. Therefore, the effect of formulation composition is more pronounced for aggregation of trastuzumab than for its conformational stability. Our findings suggest that formulation design warrants consideration of both conformational stability and aggregation behavior of the active ingredient.
Collapse
Affiliation(s)
- Aziz Ahmad
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hesham Refaat
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Sanghati Bhattacharya
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Vadim J Gurvich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Reza Nejadnik
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States.
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
15
|
Sheehan K, Jeon H, Corr SC, Hayes JM, Mok KH. Antibody Aggregation: A Problem Within the Biopharmaceutical Industry and Its Role in AL Amyloidosis Disease. Protein J 2025; 44:1-20. [PMID: 39527351 DOI: 10.1007/s10930-024-10237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Due to the large size and rapid growth of the global therapeutic antibody market, there is major interest in understanding the aggregation of protein products as it can compromise efficacy, concentration, and safety. Various production and storage conditions have been identified as capable of inducing aggregation of polyclonal and monoclonal antibody (mAb) therapies such as low pH, freezing, light exposure, lyophilisation and increased ionic strength. The addition of stabilising excipients to these therapeutics helps to combat the formation of aggregates with future aggregation inhibition mechanisms involving the introduction of point mutations and glycoengineering within aggregation prone regions (APRs). Antibody aggregation also plays an integral role in the pathogenesis of a condition known as amyloid light chain (AL) amyloidosis which is characterised by the production of improperly folded and amyloidogenic immunoglobulin light chains (LCs). Current diagnostic tools rely heavily on histological staining with their future moving towards amyloid component identification and proteomic analysis. For many years, treatment options designed for multiple myeloma (MM) have been applied to AL amyloidosis patients by depleting plasma cell numbers. More recently, treatment strategies more specific to this condition have been developed with many designed to recognize amyloid fibrils and trigger their degradation without causing systemic plasma cell cytotoxicity. Amyloid fibrils in AL disease and aggregates in antibody therapeutics are both formed through the oligomerisation of misfolded / modified proteins attempting to reach a thermodynamically stable, free energy minimum that is lower than the respective monomers themselves. Although the final morphologies are different, by understanding the principles underlying such aggregation, we expect to find common insights that may contribute to the development of new and effective methods of antibody aggregation and/or amyloidosis management. We envision that this area of research will continue to be very relevant in both industry and clinical settings.
Collapse
Affiliation(s)
- Kate Sheehan
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Hyesoo Jeon
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- Lonza Biologics Tuas Pte. Ltd., 35 Tuas South Ave 6, Singapore, 637377, Republic of Singapore
| | - Sinéad C Corr
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jerrard M Hayes
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - K H Mok
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
16
|
Basu P, Verma N, Indra Kumar S, Nanath M, Kaligatla SG, Sivalanka G, Veeraraghavan VM, Aggarwal L, A Nankar S, Marikanti RK, Jayaraman M. Mechanism of low molecular weight impurity formation in an IgG1 monoclonal antibody formulation. J Pharm Sci 2025; 114:1464-1471. [PMID: 39826838 DOI: 10.1016/j.xphs.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Formulation robustness study was performed for a biosimilar monoclonal antibody (IgG1) manufactured at Dr. Reddy's Laboratory, where the pH and concentration level of excipients in the drug product formulation were systematically varied from the target formulation. It was observed that the IgG1 formulation having relatively low pH and high citrate (buffer salt) concentration were predisposed to the formation of low molecular weight impurities. Mass spectrometry analysis of the mAb1 fragments detected the pyroglutamate species from LC-LC dimer and fragmentation in the -DKTH- amino acid sequence of the heavy chain. Blind docking indicated binding of citrate with Lysine 222 residue in the proximity of Cys224 could have potentially fragmented IgG1.
Collapse
Affiliation(s)
- Pinaki Basu
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Nidhi Verma
- Data Analytics, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Sigireddi Indra Kumar
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Maya Nanath
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | | | - Giridhar Sivalanka
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | | | - Lovisha Aggarwal
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Sunil A Nankar
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Ravi Kumar Marikanti
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India
| | - Murali Jayaraman
- Formulation and Drug Product Development, Biologics, Dr. Reddy's Laboratories, Hyderabad, India.
| |
Collapse
|
17
|
Zhao ZY, Luo PL, Guo X, Huang ZW. Protein nanoparticles as potent delivery vehicles for polycytosine RNA-binding protein one. World J Diabetes 2025; 16:100675. [PMID: 39817210 PMCID: PMC11718452 DOI: 10.4239/wjd.v16.i1.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions, reflecting diabetes pathology. This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1 (PCBP1). Additionally, Ma et al used a lentivirus infection system to express PCBP1. As the authors' method of administration can be improved in terms of stability and cost, we propose delivering PCBP1 to treat type 2 diabetic osteoporosis by encapsulating it in protein nanoparticles. First, PCBP1 is small and druggable. Second, intravenous injection can help deliver PCBP1 across the mucosa while avoiding acid and enzyme-catalyzed degradation. Furthermore, incorporating PCBP1 into nanoparticles prevents its interaction with water or oxygen and protects PCBP1's structure and activity. Notably, the safety of the protein materials and the industrialization techniques for large-scale production of protein nanoparticles must be comprehensively investigated before clinical application.
Collapse
Affiliation(s)
- Zi-Yu Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, Guangdong Province, China
| | - Pei-Li Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, Guangdong Province, China
| | - Xia Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, Guangdong Province, China
| | - Zheng-Wei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, Guangdong Province, China
| |
Collapse
|
18
|
Dykstra AB, Lubinsky TG, Vitrac H, Campuzano IDG, Bondarenko PV, Simone AR. Utilization of Liquid Chromatography-Mass Spectrometry and High-Resolution Ion Mobility-Mass Spectrometry to Characterize Therapeutically Relevant Peptides with Asparagine Deamidation and Isoaspartate. Anal Chem 2025; 97:749-757. [PMID: 39714115 DOI: 10.1021/acs.analchem.4c05246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Rapid identification of asparagine (Asn) deamidation and isoaspartate (isoAsp) in proteins remains a challenging analytical task during the development of biological therapeutics. For this study, 46 therapeutically relevant peptides corresponding to 13 peptide families (13 unmodified peptides and 33 modified peptides) were obtained; modified peptides included Asn deamidation and isoAsp. The peptide families were characterized by three methods: reversed-phase ultrahigh performance liquid chromatography-mass spectrometry (RP-UHPLC-MS); flow injection analysis high-resolution ion mobility-mass spectrometry (FIA-HRIM-MS); and shortened gradient RP-UHPLC-HRIM-MS. UHPLC-MS data acquisition was 2 h per injection, in contrast to high-throughput 1 min data acquisition of the FIA-HRIM-MS technique. A rapid 2D peptide map has been demonstrated by combining shortened gradient RP-UHPLC with HRIM, to optimize the resolution of the Asn-, Asp-, and isoAsp-containing peptides, increasing the likelihood of detecting peptides containing these quality attributes with expedited data acquisition. Additionally, this paper provides an ion mobility calibration data set for therapeutically relevant peptides (unmodified and modified) over an ion-neutral collisional cross-section range of 300-800 Å2.
Collapse
Affiliation(s)
- Andrew B Dykstra
- Pre-Pivotal Attribute Sciences, Amgen, Inc, Thousand Oaks, California 91320, United States
| | | | - Heidi Vitrac
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Iain D G Campuzano
- Molecular Analytics, Amgen, Inc, Thousand Oaks, California 91320, United States
| | - Pavel V Bondarenko
- Pre-Pivotal Attribute Sciences, Amgen, Inc, Thousand Oaks, California 91320, United States
| | - Ashli R Simone
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
19
|
Döring S, Weller MG, Reinders Y, Konthur Z, Jaeger C. Challenges and Insights in Absolute Quantification of Recombinant Therapeutic Antibodies by Mass Spectrometry: An Introductory Review. Antibodies (Basel) 2025; 14:3. [PMID: 39846611 PMCID: PMC11755444 DOI: 10.3390/antib14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today's chimeric and fully human mAbs. With increasing commercial relevance, the absolute quantification of mAbs, traceable to an international standard system of units (SI units), has attracted attention from science, industry, and national metrology institutes (NMIs). Quantification of proteotypic peptides after enzymatic digestion using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has emerged as the most viable strategy, though methods targeting intact mAbs are still being explored. We review peptide-based quantification, focusing on critical experimental steps like denaturation, reduction, alkylation, choice of digestion enzyme, and selection of signature peptides. Challenges in amino acid analysis (AAA) for quantifying pure mAbs and peptide calibrators, along with software tools for targeted MS data analysis, are also discussed. Short explanations within each chapter provide newcomers with an overview of the field's challenges. We conclude that, despite recent progress, further efforts are needed to overcome the many technical hurdles along the quantification workflow and discuss the prospects of developing standardized protocols and certified reference materials (CRMs) for this goal. We also suggest future applications of newer technologies for absolute mAb quantification.
Collapse
Affiliation(s)
- Sarah Döring
- Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany; (S.D.); (M.G.W.); (Z.K.)
| | - Michael G. Weller
- Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany; (S.D.); (M.G.W.); (Z.K.)
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany;
| | - Zoltán Konthur
- Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany; (S.D.); (M.G.W.); (Z.K.)
| | - Carsten Jaeger
- Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany; (S.D.); (M.G.W.); (Z.K.)
| |
Collapse
|
20
|
Zhang H, Xiong Y, Shi X, Zhu L, Wu Q, Wu T, Du Y. Deamidation analysis of therapeutic drugs using matrix-assisted laser desorption ionization mass spectrometry and a novel algorithm QuanDA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 17:37-44. [PMID: 39560336 DOI: 10.1039/d4ay01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
A robust deamidation quantification method, called QuanDA, was developed to quantify the spontaneous nonenzymatic deamidation of peptides based on the isotopic distribution change of peptides in matrix-assisted laser desorption ionization (MALDI) mass spectra and non-negative least squares calculation. The predictive model of QuanDA using theoretical spectra of pure un-deamidated and deamidated peptides for a series of simulated partial deamidated peptides is satisfying, with a coefficient of determination (R2) and root mean squared error (RMSE) of 0.9914 and 0.03356, respectively. It was applicable in cases where there is a lack of reference standards of un-deamidated and deamidated peptides. The only requirements were the chemical formulae of un-deamidated and deamidated peptides for isotopic pattern calculation. QuanDA provided a rapid, low-cost and easily accessible method for deamidation analysis in therapeutic drugs.
Collapse
Affiliation(s)
- Han Zhang
- School of Chemistry and Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yinran Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Bio-logical Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Municipal Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing, 400060, China
| | - Xiaonan Shi
- School of Chemistry and Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Lijia Zhu
- School of Chemistry and Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Qiong Wu
- School of Chemistry and Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Ting Wu
- School of Chemistry and Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yiping Du
- School of Chemistry and Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
21
|
Xing T, Li S, Tang S, Huang Y, Liu G, Yan Y, Liu D, Wang S, Zhi L, Shameem M, Li N. Distinct chemical degradation pathways of AAV1 and AAV8 under thermal stress conditions revealed by analytical anion exchange chromatography and LC-MS-based peptide mapping. J Pharm Biomed Anal 2024; 251:116452. [PMID: 39217700 DOI: 10.1016/j.jpba.2024.116452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Adeno-associated virus (AAV)-based gene therapy is experiencing a rapid growth in the field of medicine and holds great promise in combating a wide range of human diseases. For successful development of AAV-based products, comprehensive thermal stability studies are often required to establish storage conditions and shelf life. However, as a relatively new modality, limited studies have been reported to elucidate the chemical degradation pathways of AAV products under thermal stress conditions. In this study, we first presented an intriguing difference in charge profile shift between thermally stressed AAV8 and AAV1 capsids when analyzed by anion exchange chromatography. Subsequently, a novel and robust peptide mapping protocol was developed and applied to elucidate the underlying chemical degradation pathways of thermally stressed AAV8 and AAV1. Compared to the conventional therapeutic proteins, the unique structure of AAV capsids also led to some key differences in how modifications at specific sites may impact the overall charge properties. Finally, despite the high sequency identity, the analysis revealed that the opposite charge profile shifts between thermally stressed AAV8 and AAV1 could be mainly attributed to a single modification unique to each serotype.
Collapse
Affiliation(s)
- Tao Xing
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States
| | - Shuai Li
- Formulation Development Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States
| | - Shuli Tang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States
| | - Yu Huang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States
| | - Gaoyuan Liu
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States
| | - Yuetian Yan
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States
| | - Dingjiang Liu
- Formulation Development Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States.
| | - Li Zhi
- Formulation Development Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States.
| | - Mohammed Shameem
- Formulation Development Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591-6707, United States
| |
Collapse
|
22
|
Neale Q, Neustaeter H, Spicer V, Krokhin OV. Chromatographic properties of deamidated peptides with Asn-Gly sequences in proteomic bottom-up experiments. J Chromatogr A 2024; 1738:465513. [PMID: 39549499 DOI: 10.1016/j.chroma.2024.465513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Studies surrounding deamidation have relied on the chromatographic and mass spectrometric differentiation of Asn containing peptides and their isomeric Asp and isoAsp products. The development of mass spectrometry analytical techniques and characterization of isomer specific fragmentation patterns has permitted the investigation of some deamidation species but has struggled to remain effective when applied and on complex samples or in high throughput scenarios. On the other hand, chromatographic separations can provide additional information to facilitate detection of deamidation. In this work the retention characteristics of deamidation products have been reported in reversed-phase separations using formic acid as an ion-pairing modifier. We found three major elution patterns depending on primary and secondary structure of Asn-Gly containing tryptic peptides. Random coil, helical conformations, and N-terminal positioning of Asn usually result in Asn < isoAsp < Asp, isoAsp < Asn < Asp, and Asn < Asp < isoAsp elution order, respectively. These trends, found from the analyses of proteomic samples, were subsequently confirmed via analytical scale UV-HPLC. Additionally, we determined the retention shifts following deamidation for twenty various separation settings used as a first-dimension fractionation for high-throughput proteomic 2D LC-MS/MS analyses.
Collapse
Affiliation(s)
- Quinn Neale
- Department of Chemistry, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg R3T 2N2, Canada; Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada
| | - Haley Neustaeter
- Department of Chemistry, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg R3T 2N2, Canada
| | - Vic Spicer
- Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada; Department of Internal Medicine, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Canada.
| |
Collapse
|
23
|
Carter PJ, Quarmby V. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics. Nat Rev Drug Discov 2024; 23:898-913. [PMID: 39424922 DOI: 10.1038/s41573-024-01051-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Remarkable progress has been made in recent decades in engineering antibodies and other protein therapeutics, including enhancements to existing functions as well as the advent of novel molecules that confer biological activities previously unknown in nature. These protein therapeutics have brought major benefits to patients across multiple areas of medicine. One major ongoing challenge is that protein therapeutics can elicit unwanted immune responses (immunogenicity) in treated patients, including the generation of anti-drug antibodies. In rare and unpredictable cases, anti-drug antibodies can seriously compromise therapeutic safety and/or efficacy. Systematic deconvolution of this immunogenicity problem is confounded by the complexity of its many contributing factors and the inherent limitations of available experimental and computational methods. Nevertheless, continued progress with the assessment and mitigation of immunogenicity risk at the preclinical stage has the potential to reduce the incidence and severity of clinical immunogenicity events. This Review focuses on identifying key unsolved anti-drug antibody-related challenges and offers some pragmatic approaches towards addressing them. Examples are drawn mainly from antibodies, given that the majority of available clinical data are from this class of protein therapeutics. Plausible and seemingly tractable solutions are in sight for some immunogenicity problems, whereas other challenges will likely require completely new approaches.
Collapse
Affiliation(s)
- Paul J Carter
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA.
| | - Valerie Quarmby
- Department of BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
24
|
Lo Presti K, Jégo M, Frieß W. "The More, the Better?": The Impact of Sugar-to-Protein Molar Ratio in Freeze-Dried Monoclonal Antibody Formulations on Protein Stability. Mol Pharm 2024. [PMID: 39564766 DOI: 10.1021/acs.molpharmaceut.4c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Lyophilization is widely used to ensure the stability of protein drugs by minimizing chemical and physical degradation in the dry solid state. To this end, proteins are typically formulated with sugars that form an amorphous immobilizing matrix and stabilize hydrogen bonds replacing water molecules. The optimal amount of sugar required and protein stability at low excipient-to-protein molar ratios are not well understood. We investigated this by focusing on the physical stability of formulations, reflecting highly concentrated monoclonal antibody (mAb) lyophilizates at low sucrose to mAb ratios between 25:1 and 360:1. Additionally, the impact of different excipient types, buffer concentrations, and polysorbates was studied. The mAb stability was evaluated over up to three months at 25 and 40 °C. We investigated the "the more, the better" approach regarding excipient usage in protein formulation and the existence of a potential stabilizing threshold. Our findings show efficient monomeric content preservation even at low molar ratios, which could be explained based on the water replacement theory. We identified an exponential correlation between the sucrose to protein molar ratio and aggregate formation and found that there is no molar ratio threshold to achieve minimum stabilization. Sucrose demonstrated the best stabilization effect. Both mannitol, used as a cryoprotectant at low concentrations, and arginine reduced aggregation compared to the pure mAb formulation. The higher ionic strength of 5 mM histidine buffer enhanced protein stability compared to that of 0.1 mM histidine buffer, which was more pronounced at lower molar ratios. The addition of polysorbate 20 contributed an additional interfacial stabilizing effect, complementing the cryoprotective and lyoprotective properties of sucrose. Overall, a model could be developed to optimize the quantity of sugar required for protein stabilization and facilitate a more rational design of protein lyophilizates. The molar ratio of sugar to protein for high-concentration mAb products is limited by the acceptable tonicity, but we showed that sufficient stabilization can be achieved even at low molar ratios.
Collapse
Affiliation(s)
- Ken Lo Presti
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Mathilde Jégo
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich 81377, Germany
- Université Claude Bernard, 43 Bd du 11 Novembre 1918, Villeurbanne 69100, France
| | - Wolfgang Frieß
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
25
|
Bailey AO, Durbin KR, Robey MT, Palmer LK, Russell WK. Filling the gaps in peptide maps with a platform assay for top-down characterization of purified protein samples. Proteomics 2024; 24:e2400036. [PMID: 39004851 DOI: 10.1002/pmic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.
Collapse
Affiliation(s)
- Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Lee K Palmer
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
26
|
Sarin D, Kumar S, Rathore AS. Offline Coupling of Hydrophobic Interaction Chromatography-Capillary Zone Electrophoresis for Monitoring Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies. Electrophoresis 2024; 45:1927-1938. [PMID: 39402848 DOI: 10.1002/elps.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 12/22/2024]
Abstract
A holistic understanding of the charge heterogeneity in monoclonal antibodies (mAbs) is paramount for ensuring acceptable product quality. Hence, biotherapeutic manufacturers are expected to thoroughly characterize their products via advanced analytical techniques. Recently, two-dimensional liquid chromatography (2DLC) methods have gained popularity for resolving complex charged species. Capillary electrophoresis (CE) is regarded as a sensitive and faster tool for charged species estimation in biotherapeutics. In this study, we aim to combine the separation power of chromatographic and electrophoretic tools (liquid chromatography [LC]-CE) so as to achieve maximum resolution of mAb charge variants. Hydrophobic interaction chromatography (HIC) has been used as the preferred LC mode with CE for achieving successful separation of both charge and hydrophobic variants for two of the mAbs (trastuzumab and rituximab). The standalone HIC and capillary zone electrophoresis (CZE) methods separated 4 hydrophobic variants and 7 charge variants for each mAb, whereas the 2DLC method separated 10 and 11 variants for mAbs A and B. On the other hand, the HIC-CZE-UV method resolved 29 variants in mAb A and 23 variants in mAb B. The reproducibility of the HIC-CZE-UV method was demonstrated by % change in values of retention time (RT) and peak area as <5% (mAb A), <3% (mAb B), and <12% (for both mAbs), respectively. Thus, the utility of the proposed LC-CE method for characterization of mAb charge variants has been displayed.
Collapse
Affiliation(s)
- Deepika Sarin
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
27
|
Clemen R, Dethloff W, Berner J, Schulan P, Martinet A, Weltmann KD, von Woedtke T, Grune T, Wende K, Bekeschus S. Insulin oxidation and oxidative modifications alter glucose uptake, cell metabolism, and inflammatory secretion profiles. Redox Biol 2024; 77:103372. [PMID: 39378614 PMCID: PMC11492613 DOI: 10.1016/j.redox.2024.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Insulin participates in glucose homeostasis in the body and regulates glucose, protein, and lipid metabolism. Chronic hyperglycemia triggers oxidative stress and the generation of reactive oxygen species (ROS), leading to oxidized insulin variants. Oxidative protein modifications can cause functional changes or altered immunogenicity as known from the context of autoimmune disorders. However, studies on the biological function of native and oxidized insulin on glucose homeostasis and cellular function are lacking. Native insulin showed heterogenous effects on metabolic activity, proliferation, glucose carrier transporter (GLUT) 4, and insulin receptor (INSR) expression, as well as glucose uptake in cell lines of five different human tissues. Diverse ROS compositions produced by different gas plasma approaches enabled the investigations of variously modified insulin (oxIns) with individual oxidative post-translational modification (oxPTM) patterns as identified using high-resolution mass spectrometric analysis. Specific oxIns variants promoted cellular metabolism and proliferation in several cell lines investigated, and nitrogen plasma emission lines could be linked to insulin nitration and elevated glucose uptake. In addition, insulin oxidation modified blood glucose levels in the chicken embryos (in ovo), underlining the importance of assessing protein oxidation and function in health and disease.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Wiebke Dethloff
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Julia Berner
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Paul Schulan
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Alice Martinet
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Klaus Dieter Weltmann
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Tilman Grune
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785, Berlin, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Kristian Wende
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, 18057, Rostock, Germany.
| |
Collapse
|
28
|
Vogg B, Poetzl J, Schwebig A, Sekhar S, Kivitz A, Krivtsova N, Renner O, Body JJ, Eastell R. The Totality of Evidence for SDZ-deno: A Biosimilar to Reference Denosumab. Clin Ther 2024; 46:916-926. [PMID: 39294041 DOI: 10.1016/j.clinthera.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
PURPOSE Sandoz biosimilar denosumab (GP2411 [SDZ-deno]; Jubbonti/Wyost) is approved by the US FDA, EMA and Health Canada for all indications of reference denosumab (REF-deno; Prolia/Xgeva), a fully human IgG2κ monoclonal antibody that binds with high affinity and specificity to receptor activator of nuclear factor kappa-B ligand (RANKL). Denosumab blocks RANKL, preventing bone resorption and loss of bone density/architecture in conditions characterized by excessive bone loss such as osteoporosis in postmenopausal women and metastatic bone disease, among others. METHODS This narrative review summarizes the totality of evidence (ToE) for SDZ-deno that supported its approval as Jubbonti/Wyost in the EU and US. FINDINGS Analytical evaluation indicated that SDZ-deno has high purity and structural homology with REF-deno. SDZ-deno also demonstrated similar binding affinities, size and charge variants, and disulfide isoforms to REF-deno, and did not trigger clinically meaningful antibody-dependent cellular cytotoxicity. In clinical evaluation, SDZ-deno was similar to REF-deno in pharmacokinetics (PK) and pharmacodynamics (PD) in a 39-week Phase I study in 502 healthy male participants, and to REF-deno in a 72-week Phase III study in 527 postmenopausal women with osteoporosis. In both studies, the 90% and 95% confidence intervals (for PK and PD endpoints, respectively) of the geometric mean ratios for AUCinf, Cmax (and AUClast in the Phase I study; PK endpoints), and area under the effect versus time curve of percent change from baseline in serum carboxy-terminal crosslinked telopeptide of type I collagen (PD endpoint), were fully contained within the prespecified equivalence margins (0.80, 1.25). The Phase III study also demonstrated SDZ-deno is similar in efficacy to REF-deno in postmenopausal women with osteoporosis, as the difference in percent change from baseline in lumbar spine bone mineral density at week 52 between REF-deno and SDZ-deno was fully contained within the prespecified equivalence margins (-1.45, 1.45). SDZ-deno was well tolerated in both studies. As the ToE has established biosimilarity of SDZ-deno and REF-deno, extrapolation to all indications is justified based on the common mechanism of action and the comparable PK, safety, and immunogenicity across all indications. IMPLICATIONS The ToE for SDZ-deno suggests it will be an effective biosimilar to REF-deno, and its lower unit price is anticipated to increase the number of appropriate patients who will benefit.
Collapse
Affiliation(s)
- Barbara Vogg
- Hexal AG (a Sandoz company), Holzkirchen, Germany.
| | | | | | | | - Alan Kivitz
- Altoona Center for Clinical Research, Duncansville, Pennsylvania
| | | | | | - Jean-Jacques Body
- Department of Medicine, University Hospital Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Richard Eastell
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
29
|
Buckley C, Millán-Martín S, Carillo S, Füssl F, MacHale C, Bones J. Implementation of a LC-MS based multi-attribute method (MAM) and intact multi-attribute method (iMAM) workflow for the characterisation of a GLP-Fc fusion protein. Anal Biochem 2024; 693:115585. [PMID: 38851475 DOI: 10.1016/j.ab.2024.115585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography-mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples. New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.
Collapse
Affiliation(s)
- Ciarán Buckley
- Eli Lilly Kinsale Limited, Dunderrow, Kinsale, Co. Cork, P17 NY71, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, 4, D04 V1W8, Ireland
| | - Silvia Millán-Martín
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099, Co. Dublin, Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099, Co. Dublin, Ireland
| | - Florian Füssl
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099, Co. Dublin, Ireland
| | - Ciara MacHale
- Eli Lilly Kinsale Limited, Dunderrow, Kinsale, Co. Cork, P17 NY71, Ireland
| | - Jonathan Bones
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, 4, D04 V1W8, Ireland; National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099, Co. Dublin, Ireland.
| |
Collapse
|
30
|
Rezvani K, Aspelund MT. Impact of photo-oxidation on long term storage of affinity chromatography media used in multi-specific antibody manufacturing processes. J Chromatogr A 2024; 1732:465247. [PMID: 39128240 DOI: 10.1016/j.chroma.2024.465247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Large scale manufacture of complex biotherapeutic formats such as multi-specific antibodies can require development of custom biomanufacturing platforms, particularly for purification processes. Substantial advances in affinity chromatography media have allowed monoclonal antibody-like processes for these formats, and simplified process development to enable fast speed to the clinic. Thorough assessment of chromatography media performance and stability is critical to ensure robust operation and consistent product quality over repeated cycles throughout its lifetime. However, evaluation of repeated cycling and extended storage for chromatography media is resource consuming, which typically delays rigorous study to later development stages and often is acquired through increased operational experience. These areas can present quality risks if not properly understood. In this work, a class of affinity chromatography media employing camelid antibody-fragment ligands were evaluated for extended storage in benzyl alcohol solution as an alternative to ethanol storage. Initial laboratory studies revealed resin discoloration after 12 months of exposure to ambient light at room temperature. Resin photo-stress studies confirmed light exposure as the root cause, with benzyl alcohol storage conditions producing a substantially greater degree of discoloration compared to ethanol. Extreme photo-stress over the course of 7 days was also found to negatively impact resin dynamic binding capacities, with more severe declines observed with benzyl alcohol storage conditions. Binding capacity loss of 54 % was observed for photo-stressed CaptureSelect Kappa XP compared to control conditions. Addition of antioxidants reduced or eliminated resin discoloration during photo-stress, indicating that benzyl alcohol storage accelerates photo-oxidation of the affinity chromatography ligands. The addition of l-methionine to benzyl alcohol solution prevented resin discoloration and maintained a dynamic binding capacity of 41 g/L for CaptureSelect Kappa XP even after extreme photo-stress. Of practical importance, a study of LambdaFabSelect resin used and stored in benzyl alcohol solution, under recommended conditions (2-8 °C storage, protected from light) in an internal GMP facility over a period of three years, showed no impact to resin color, performance, or product quality.
Collapse
Affiliation(s)
- Kamiyar Rezvani
- Process and Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, 1 MedImmune Way, Gaithersburg, MD 20878, USA.
| | - Matthew T Aspelund
- Process and Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| |
Collapse
|
31
|
Niu B, Lee B, Wang L, Chen W, Johnson J. The Accurate Prediction of Antibody Deamidations by Combining High-Throughput Automated Peptide Mapping and Protein Language Model-Based Deep Learning. Antibodies (Basel) 2024; 13:74. [PMID: 39311379 PMCID: PMC11417914 DOI: 10.3390/antib13030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Therapeutic antibodies such as monoclonal antibodies (mAbs), bispecific and multispecific antibodies are pivotal in therapeutic protein development and have transformed disease treatments across various therapeutic areas. The integrity of therapeutic antibodies, however, is compromised by sequence liabilities, notably deamidation, where asparagine (N) and glutamine (Q) residues undergo chemical degradations. Deamidation negatively impacts the efficacy, stability, and safety of diverse classes of antibodies, thus necessitating the critical need for the early and accurate identification of vulnerable sites. In this article, a comprehensive antibody deamidation-specific dataset (n = 2285) of varied modalities was created by using high-throughput automated peptide mapping followed by supervised machine learning to predict the deamidation propensities, as well as the extents, throughout the entire antibody sequences. We propose a novel chimeric deep learning model, integrating protein language model (pLM)-derived embeddings with local sequence information for enhanced deamidation predictions. Remarkably, this model requires only sequence inputs, eliminating the need for laborious feature engineering. Our approach demonstrates state-of-the-art performance, offering a streamlined workflow for high-throughput automated peptide mapping and deamidation prediction, with the potential of broader applicability to other antibody sequence liabilities.
Collapse
Affiliation(s)
- Ben Niu
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA 92121, USA
| | - Benjamin Lee
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA 92121, USA
| | - Lili Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Wen Chen
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA 92121, USA
| | - Jeffrey Johnson
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA 92121, USA
| |
Collapse
|
32
|
Yang Y, Chu Y, Li C, Fan L, Lu H, Zhan C, Zhang Z. Brain-targeted drug delivery by in vivo functionalized liposome with stable D-peptide ligand. J Control Release 2024; 373:240-251. [PMID: 38977135 DOI: 10.1016/j.jconrel.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Brain-targeted drug delivery poses a great challenge due to the blood-brain barrier (BBB). In a previous study, we have developed a peptide-modified stealth liposome (SP-sLip) to enhance BBB penetration via the adsorption of apolipoproteins in plasma. SP is an 11-amino acid peptide derived from 25 to 35 of the Amyloid β peptide (Aβ1-42), which is a nature ligand of apolipoproteins. Although freshly prepared SP-sLip exhibited efficient brain targeting performance, it occured self-aggregation and instability in storage. In this study, we developed a D-peptide ligand according to the reverse sequence of SP with D-amino acids, known as DSP, to improve the stability in storage. Notably, DSP exhibited a reduced tendency for self-aggregation and improved stability in comparison to the SP peptide. Furthermore, compared to SP-sLip, DSP-modified sLip (DSP-sLip) demonstrated enhanced stability (>2 weeks), prolonged blood circulation (AUC increased 44.4%), reduced liver and spleen accumulation (reduced by 2.23 times and 1.86 times) with comparable brain-targeting efficiency. Similar to SP-sLip, DSP-sLip selectively adsorbed apolipoprotein A1, E, and J in the blood to form functionalized protein corona, thus crossing BBB via apolipoprotein receptor-mediated transcytosis. These findings underscored the importance of ligand stability in the in vitro and in vivo performance of brain-targeted liposomes, therefore paving the way for the design and optimization of efficient and stable nanocarriers.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201399, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yuxiu Chu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Cheng Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Lianfeng Fan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201399, China.
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201399, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
33
|
Ji X, Shi A, Wang J, Zhang B, Hu Y, Lv H, Wu J, Sun Y, Liu JM, Zhang Y, Wang S. EnvZ/OmpR Controls Protein Expression and Modifications in Cronobacter sakazakii for Virulence and Environmental Resilience. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18697-18707. [PMID: 39165163 DOI: 10.1021/acs.jafc.4c04627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Cronobacter sakazakii is a notorious foodborne opportunistic pathogen, particularly affecting vulnerable populations such as premature infants, and poses significant public health challenges. This study aimed to elucidate the role of the envZ/ompR genes in environmental tolerance, pathogenicity, and protein regulation of C. sakazakii. An envZ/ompR knockout mutant was constructed and assessed for its impact on bacterial growth, virulence, environmental tolerance, and protein regulation. Results demonstrate that deletion of envZ/ompR genes leads to reduced growth rate and attenuated virulence in animal models. Additionally, the knockout strain exhibited compromised environmental tolerance, particularly in desiccation and oxidative stress conditions, along with impaired adhesion and invasion abilities in epithelial cells. Proteomic analysis revealed significant alterations in protein expression and phosphorylation patterns, highlighting potential compensatory mechanisms triggered by gene deletion. Furthermore, investigation into protein deamidation and glucose metabolism uncovered a link between envZ/ompR deletion and energy metabolism dysregulation. Interestingly, the downregulation of MalK and GrxC proteins was identified as contributing factors to altered desiccation tolerance and disrupted redox homeostasis, respectively, providing mechanistic insights into the phenotypic changes observed. Overall, this study enhances understanding of the multifaceted roles of envZ/ompR in C. sakazakii physiology and pathogenesis, shedding light on potential targets for therapeutic intervention and food safety strategies.
Collapse
Affiliation(s)
- Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Aiying Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Sun
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Tang L, Geng H, Zhang L, Wang X, Fei M, Yang B, Sun H, Zhang Z. In-Depth Characterization for Methionine Oxidization in Complementary Domain Region by Hydrophobic Interaction Chromatography. ACS Pharmacol Transl Sci 2024; 7:2476-2483. [PMID: 39144558 PMCID: PMC11320724 DOI: 10.1021/acsptsci.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
The oxidation of the complementarity-determining region (CDR) in monoclonal antibodies (mAbs) is a critical quality attribute that can affect the clinical efficacy and safety of recombinant mAb therapeutics. In this study, a robust hydrophobic interaction chromatography (HIC) method was developed to quantify and characterize CDR oxidation variants in mAb-A by using a Proteomix Butyl-NP5 column. The HIC analysis revealed oxidation variants that eluted earlier than the main species with weaker hydrophobicity. It was found that Met105 in the CDR was more susceptible to oxidation. Additionally, it was noted that the oxidation of Met105 on a single heavy chain resulted in elution at a distinct position compared to the oxidation on two heavy chains. This observation led to the fractionation and enrichment of the oxidized variants for further evaluation of their biofunction. The study also demonstrated that the oxidation of Met105 did not impact the antigen-binding capacity but significantly reduced the PD-1/PD-L1 blockade activity of mAb-A. The HIC method, which was employed to quantify CDR oxidation, underwent validation and was subsequently utilized for stability studies as well as for assessing the similarity between mAb-A and its reference product.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Xinyi Wang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Mengdan Fei
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Boyuan Yang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Haijie Sun
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| | - Zhongli Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, Shanghai 201616, China
| |
Collapse
|
35
|
Mesonzhnik N, Belushenko A, Novikova P, Kukharenko A, Afonin M. Enhanced N-Glycan Profiling of Therapeutic Monoclonal Antibodies through the Application of Upper-Hinge Middle-Up Level LC-HRMS Analysis. Antibodies (Basel) 2024; 13:66. [PMID: 39189237 PMCID: PMC11348383 DOI: 10.3390/antib13030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are crucial in modern medicine due to their effectiveness in treating various diseases. However, the structural complexity of mAbs, particularly their glycosylation patterns, presents challenges for quality control and biosimilarity assessment. This study explores the use of upper-hinge middle-up (UHMU)-level ultra-high-performance liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis to improve N-glycan profiling of mAbs. Two specific enzymes, known as IgG degradation enzymes (IGDEs), were used to selectively cleave therapeutic mAbs above the hinge region to separate antibody subunits for further Fc glycan analysis by means of the UHMU/LC-HRMS workflow. The complexity of the mass spectra of IGDEs-digested mAbs was significantly reduced compared to the intact MS level, enabling reliable assignment and relative quantitation of paired Fc glycoforms. The results of the UHMU/LC-HRMS analysis of nine approved therapeutics highlight the significance of this approach for in-depth glycoform profiling.
Collapse
Affiliation(s)
- Natalia Mesonzhnik
- Resource Centre of Analytical Methods, Laboratory Complex, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (P.N.); (M.A.)
| | - Anton Belushenko
- Federal Hygienic and Epidemiological Center of Rospotrebnadzor, Varshavskoe Highway 19a, 117105 Moscow, Russia;
| | - Polina Novikova
- Resource Centre of Analytical Methods, Laboratory Complex, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (P.N.); (M.A.)
| | - Alexey Kukharenko
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, 8/2 Trubetskaya, 119991 Moscow, Russia
| | - Mikhail Afonin
- Resource Centre of Analytical Methods, Laboratory Complex, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (P.N.); (M.A.)
| |
Collapse
|
36
|
Brack L, Merkel O, Schroeder R. A rapid method to monitor structural perturbations of high-concentrated therapeutic antibody solutions using Intrinsic Tryptophan Fluorescence Emission spectroscopy. Eur J Pharm Biopharm 2024; 201:114377. [PMID: 38955284 DOI: 10.1016/j.ejpb.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Drug product development of therapeutic antibody formulations is still dictated by the risk of protein particle formation during processing or storage, which can lead to loss of potency and potential immunogenic reactions. Since structural perturbations are the main driver for irreversible protein aggregation, the conformational integrity of antibodies should be closely monitored. The present study evaluated the applicability of a plate reader-based high throughput method for Intrinsic Tryptophan Fluorescence Emission (ITFE) spectroscopy to detect protein aggregation due to protein unfolding in high-concentrated therapeutic antibody samples. The impact of fluorophore concentration on the ITFE signal in microplate readers was investigated by analysis of dilution series of two therapeutic antibodies and pure tryptophan. At low antibody concentrations (< 5 mg/mL, equivalent to 0.8 mM tryptophan), the low inner filter effect suggests a quasi-linear relationship between antibody concentration and ITFE intensity. In contrast, the constant ITFE intensity at high protein concentrations (> 40 mg/mL, equivalent to 6.1 mM tryptophan) indicate that ITFE spectroscopy measurements of IgG1 antibodies are feasible in therapeutically relevant concentrations (up to 223 mg/mL). Furthermore, the capability of the method to detect low levels of unfolding (around 1 %) was confirmed by limit of detection (LOD) determination with temperature-stressed antibody samples as degradation standards. Change of fluorescence intensity at the maximum (ΔIaM) was identified as sensitive descriptor for protein degradation, providing the lowest LOD values. The results demonstrate that ITFE spectroscopy performed in a microplate reader is a valuable tool for high-throughput monitoring of protein degradation in therapeutic antibody formulations.
Collapse
Affiliation(s)
- Lennart Brack
- AbbVie Deutschland GmbH & Co KG, Product Development Science & Technology, Ludwigshafen am Rhein, Germany.
| | - Olivia Merkel
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Rudolf Schroeder
- AbbVie Deutschland GmbH & Co KG, Product Development Science & Technology, Ludwigshafen am Rhein, Germany
| |
Collapse
|
37
|
Rizzotto E, Inciardi I, Fongaro B, Trolese P, Miolo G, Polverino de Laureto P. Light exacerbates local and global effects induced by pH unfolding of Ipilimumab. Eur J Pharm Biopharm 2024; 201:114387. [PMID: 38944210 DOI: 10.1016/j.ejpb.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Monoclonal antibodies (mAbs) are an essential class of therapeutic proteins for the treatment of cancer, autoimmune and rare diseases. During their production, storage, and administration processes, these proteins encounter various stressors such as temperature fluctuations, vibrations, and light exposure, able to induce chemico-physical modifications to their structure. Viral inactivation is a key step in downstream processes, and it is achieved by titration of the mAb at low pH, followed by neutralization. The changes of the pH pose a significant risk of unfolding and subsequent aggregation to proteins, thereby affecting their manufacturing. This study aims to investigate whether a combined exposure to light during the viral inactivation process can further affect the structural integrity of Ipilimumab, a mAb primarily used in the treatment of metastatic melanoma. The biophysical and biochemical characterization of Ipilimumab revealed that pH variation is a considerable risk for its stability with irreversible unfolding at pH 2. The threshold for Ipilimumab denaturation lies between pH 2 and 3 and is correlated with the loss of the protein structural cooperativity, which is the most critical factor determining the protein refolding. Light has demonstrated to exacerbate some local and global effects making pH-induced exposed regions more vulnerable to structural and chemical changes. Therefore, specific precautions to real-life exposure to ambient light during the sterilization process of mAbs should be considered to avoid loss of the therapeutic activity and to increase the yield of production. Our findings underscore the critical role of pH optimization in preserving the structural integrity and therapeutic efficacy of mAbs. Moreover, a detailed conformational study on the structural modifications of Ipilimumab may improve the chemico-physical knowledge of this effective drug and suggest new production strategies for more stable products under some kind of stress conditions.
Collapse
Affiliation(s)
- Elena Rizzotto
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Ilenia Inciardi
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Philipp Trolese
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | | |
Collapse
|
38
|
Wu Z, Wang H, Zhao X, Gong C, Sidnam S, Cantero-Tubilla B, Nedjic-Dugic B, Li M, Wu J, Su Y, Huang Y, Qiu H, Li N. Characterization of Therapeutic Antibody Charge Heterogeneity Under Stress Conditions by Microfluidic Capillary Electrophoresis Coupled with Mass Spectrometry. J Pharm Sci 2024; 113:2170-2177. [PMID: 38796156 DOI: 10.1016/j.xphs.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Therapeutic antibodies are a major class of biopharmaceutics that are applied in disease treatment because of their many advantages, including high specificity and high affinity to molecular targets. Between their production and administration, therapeutic antibodies are exposed to multiple stress conditions. Forced degradation and stress stability studies are conducted to simulate the risk of degradation and the effects of these stresses, thereby enhancing understanding of the drug product to support strategies to mitigate the impact from stressed conditions. These types of studies are also routinely conducted to evaluate product comparability when major process changes are implemented during the production. Charge variant analysis helps understand the changes in the electrostatic environment of biotherapeutics and can uncover underlying molecular level alterations associated with charge variants. Herein, we used ZipChip native capillary electrophoresis-mass spectrometry (nCE-MS) to elucidate the changes in charge variant profiles at the molecular level. In two case studies under thermal stress conditions, we observed that charge variants arose from both post-translational modifications (including deamidation, oxidation, and pyroglutamate formation) and sequence truncations at the hinge regions. Under oxidative stress conditions, oxidation was found to be the major contributor to the changes in the charge variant profiles. Under pH stress conditions, the changes in the charge variant profile were due to increased levels of deamidation, oxidation, and pyroglutamate formation. ZipChip nCE-MS analysis enables identification of charge variant species under various stress conditions, thus supporting process and formulation development of biotherapeutics.
Collapse
Affiliation(s)
- Zhijie Wu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Hongxia Wang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Xueqing Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Chao Gong
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Sarah Sidnam
- CMC Regulatory Sciences, Regeneron Pharmaceuticals Inc., Rensselaer, NY, USA
| | | | | | - Meinuo Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Jikang Wu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Yue Su
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Yu Huang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
39
|
Sankaran PK, Poskute R, Dewis L, Watanabe Y, Wong V, Fernandez LP, Shannon R, Wong L, Shrubsall R, Carman L, Holt A, Lepore G, Mishra R, Sewell L, Gothard M, Cheeks M, Lindo V. Comprehensive Stress Stability Studies Reveal the Prominent Stability of the Liquid-Formulated Biotherapeutic Asymmetric Monovalent Bispecific IgG1 Monoclonal Antibody Format. J Pharm Sci 2024; 113:2101-2113. [PMID: 38705464 DOI: 10.1016/j.xphs.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The developed asymmetric monovalent bispecific IgG1 or Duet monoclonal antibody (Duet mAb) has two distinct fragment antigen-binding region (Fab) subunits that target two different epitope specificities sequentially or simultaneously. The design features include unique engineered disulfide bridges, knob-into-hole mutations, and kappa and lambda chains to produce Duet mAbs. These make it structurally and functionally complex, so one expects challenging developability linked to instability, degradation of products and pathways, and limited reports available. Here, we have treated the product with different sources of extreme stress over a lengthy period, including varying heat, pH, photo stress, chemical oxidative stress, accelerated stress in physiological conditions, and forced glycation conditions. The effects of different stress conditions on the product were assessed using various analytical characterization tools to measure product-related substances, post-translational modifications (PTMs), structural integrity, higher-order disulfide linkages, and biological activity. The results revealed degradation products and pathways of Duet mAb. A moderate increase in size, charge, and hydrophobic variants, PTMs, including deamidation, oxidation, isomerization, and glycation were observed, with most conditions exhibiting biological activity. In addition, the characterization of fractionated charge variants, including deamidated species, showed satisfactory biological activity. This study demonstrated the prominent stability of the Duet mAb format comparable to most marketed mAbs.
Collapse
Affiliation(s)
| | - Ryte Poskute
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lydia Dewis
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Yasunori Watanabe
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Vanessa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | | | - Richard Shannon
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lisa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rebecca Shrubsall
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lee Carman
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Alexander Holt
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Giordana Lepore
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rahul Mishra
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Laura Sewell
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matt Gothard
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matthew Cheeks
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Viv Lindo
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
40
|
Gupta S, Dubey A, Rathore AS. Role of Charge Heterogeneity on Physical Stability of Monoclonal Antibody Biotherapeutic Products. Pharm Res 2024; 41:1443-1454. [PMID: 38951451 DOI: 10.1007/s11095-024-03730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE Chemical modifications in monoclonal antibodies can change hydrophobicity, charge heterogeneity as well as conformation, which eventually can impact their physical stability. In this study, the effect of the individual charge variants on physical stability and aggregation propensity in two different buffer conditions used during downstream purification was investigated. METHODS The charge variants were separated using semi-preparative cation exchange chromatography and buffer exchanged in the two buffers with pH 6.0 and 3.8. Subsequently each variant was analysed for size heterogeneity using size exclusion chromatography and dynamic light scattering, conformational stability, colloidal stability, and aggregation behaviour under accelerated stability conditions. RESULTS Size variants in each charge variant were similar in both pH conditions when analyzed without extended storage. However, conformational stability was lower at pH 3.8 than pH 6.0. All charge variants showed similar apparent melting temperature at pH 6.0. In contrast, at pH 3.8 variants A3, A5, B2, B3 and B4 display lower Tm, suggesting reduced conformational stability. Further, A2, A3 and A5 exhibit reduced colloidal stability at pH 3.8. In general, acidic variants are more prone to aggregation than basic variants. CONCLUSION Typical industry practice today is to examine in-process intermediate stability with acidic species and basic species taken as a single category each. We suggest that perhaps stability evaluation needs to be performed at specie level as different acidic or basic species have different stability and this knowledge can be used for clever designing of the downstream process to achieve a stable product.
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ankita Dubey
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
41
|
Hsieh MC, Zhang J, Tang L, Huang CY, Shen Y, Matathia A, Qian J, Parekh BS. Characterization of the Charge Heterogeneity of a Monoclonal Antibody That Binds to Both Cation Exchange and Anion Exchange Columns under the Same Binding Conditions. Antibodies (Basel) 2024; 13:52. [PMID: 39051328 PMCID: PMC11270306 DOI: 10.3390/antib13030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Therapeutic antibodies play an important role in the public healthcare system to treat patients with a variety of diseases. Protein characterization using an array of analytical tools provides in-depth information for drug quality, safety, efficacy, and the further understanding of the molecule. A therapeutic antibody candidate MAB1 exhibits unique binding properties to both cation and anion exchange columns at neutral pH. This uniqueness disrupts standard purification processes and necessitates adjustments in manufacturing. This study identifies that the charge heterogeneity of MAB1 is primarily due to the N-terminal cyclization of glutamine to pyroglutamine and, to a lesser extent, succinimide intermediate, deamidation, and C-terminal lysine. Using three approaches, i.e., deferential chemical labeling, H/D exchange, and molecular modeling, the binding to anion exchange resins is attributed to negatively charged patches on the antibody's surface, involving specific carboxylic acid residues. The methodologies shown here can be extended to study protein binding orientation in column chromatography.
Collapse
Affiliation(s)
- Ming-Ching Hsieh
- Analytical Sciences, Eli Lilly and the Company, Branchburg, NJ 08876, USA
| | - Jingming Zhang
- Analytical Sciences, Eli Lilly and the Company, Branchburg, NJ 08876, USA
| | - Liangjie Tang
- Analytical Development, Eli Lilly and the Company, Indianapolis, IN 46221, USA
| | - Cheng-Yen Huang
- Analytical Sciences, Eli Lilly and the Company, Branchburg, NJ 08876, USA
| | - Yang Shen
- Antibody Technology, Eli Lilly and the Company, New York, NY 10016, USA
| | - Alice Matathia
- TS/MS Laboratories, Eli Lilly and the Company, Branchburg, NJ 08876, USA
| | - Jun Qian
- Analytical Development, Eli Lilly and the Company, Indianapolis, IN 46221, USA
| | | |
Collapse
|
42
|
Gupta S, Schöneich C, Rathore AS. Assessment of change in the basic variants composition of trastuzumab during dilution in saline for administration. Eur J Pharm Biopharm 2024; 199:114295. [PMID: 38636881 DOI: 10.1016/j.ejpb.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Postproduction handling of drug products during preparation or clinical use may affect the structure and efficacy of the drug and perhaps remain unnoticed. Since chemical modifications can impact the product's structure, stability, and biological activity, this study investigates the impact of elevated temperature and subtle shift in pH on the drug product post-dilution in saline. The mAb sample diluted in saline for administration was stressed at elevated temperature and slightly acidic pH condition. Extended stability studies were performed and monitored for size and charge heterogeneity. Size heterogeneity shows no significant changes, whereas charge heterogeneity shows an increase in basic variants and a reduction in main species. Further, basic variants were isolated and characterized to identify the type and site of chemical modification. Intact mass analysis and peptide mapping identify that the basic variants were attributed mainly to the isomerization of HC Asp102 into iso-Asp or its succinimide intermediate. Four basic variants were found to exhibit similar structural properties as the main and control samples. However, basic variants showed reduced binding affinity to HER2 receptor, while there was no significant difference in FcRn binding. The results indicate that modification in the HC Asp102, which is present in the CDR, affects antigen binding and thus can influence the potency of the drug product. Hence, with the conventional stability studies required to license the drug product, including in-use or extended stability studies to mimic the postproduction handling would be desirable.
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi,New Delhi 110016, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi,New Delhi 110016, India.
| |
Collapse
|
43
|
Estes B, Jain M, Jia L, Whoriskey J, Bennett B, Hsu H. Sequence-Based Viscosity Prediction for Rapid Antibody Engineering. Biomolecules 2024; 14:617. [PMID: 38927021 PMCID: PMC11202045 DOI: 10.3390/biom14060617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Through machine learning, identifying correlations between amino acid sequences of antibodies and their observed characteristics, we developed an internal viscosity prediction model to empower the rapid engineering of therapeutic antibody candidates. For a highly viscous anti-IL-13 monoclonal antibody, we used a structure-based rational design strategy to generate a list of variants that were hypothesized to mitigate viscosity. Our viscosity prediction tool was then used as a screen to cull virtually engineered variants with a probability of high viscosity while advancing those with a probability of low viscosity to production and testing. By combining the rational design engineering strategy with the in silico viscosity prediction screening step, we were able to efficiently improve the highly viscous anti-IL-13 candidate, successfully decreasing the viscosity at 150 mg/mL from 34 cP to 13 cP in a panel of 16 variants.
Collapse
Affiliation(s)
- Bram Estes
- Amgen Research, Protein Therapeutics, Thousand Oaks, CA 91320, USA; (M.J.); (L.J.)
| | - Mani Jain
- Amgen Research, Protein Therapeutics, Thousand Oaks, CA 91320, USA; (M.J.); (L.J.)
| | - Lei Jia
- Amgen Research, Protein Therapeutics, Thousand Oaks, CA 91320, USA; (M.J.); (L.J.)
| | - John Whoriskey
- Amgen Research, Inflammation, Thousand Oaks, CA 91320, USA; (J.W.); (B.B.); (H.H.)
| | - Brian Bennett
- Amgen Research, Inflammation, Thousand Oaks, CA 91320, USA; (J.W.); (B.B.); (H.H.)
| | - Hailing Hsu
- Amgen Research, Inflammation, Thousand Oaks, CA 91320, USA; (J.W.); (B.B.); (H.H.)
| |
Collapse
|
44
|
Wuensche TE, Lyashchenko S, van Dongen GAMS, Vugts D. Good practices for 89Zr radiopharmaceutical production and quality control. EJNMMI Radiopharm Chem 2024; 9:40. [PMID: 38733556 PMCID: PMC11088613 DOI: 10.1186/s41181-024-00258-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND During the previous two decades, PET imaging of biopharmaceuticals radiolabeled with zirconium-89 has become a consistent tool in preclinical and clinical drug development and patient selection, primarily due to its advantageous physical properties that allow straightforward radiolabeling of antibodies (89Zr-immuno-PET). The extended half-life of 78.4 h permits flexibility with respect to the logistics of tracer production, transportation, and imaging and allows imaging at later points in time. Additionally, its relatively low positron energy contributes to high-sensitivity, high-resolution PET imaging. Considering the growing interest in radiolabeling antibodies, antibody derivatives, and other compound classes with 89Zr in both clinical and pre-clinical settings, there is an urgent need to acquire valuable recommendations and guidelines towards standardization of labeling procedures. MAIN BODY This review provides an overview of the key aspects of 89Zr-radiochemistry and radiopharmaceuticals. Production of 89Zr, conjugation with the mostly used chelators and radiolabeling strategies, and quality control of the radiolabeled products are described in detail, together with discussions about alternative options and critical steps, as well as recommendations for troubleshooting. Moreover, some historical background on 89Zr-immuno-PET, coordination chemistry of 89Zr, and future perspectives are provided. This review aims to serve as a quick-start guide for scientists new to the field of 89Zr-immuno-PET and to suggest approaches for harmonization and standardization of current procedures. CONCLUSION The favorable PET imaging characteristics of 89Zr, its excellent availability due to relatively simple production and purification processes, and the development of suitable bifunctional chelators have led to the widespread use of 89Zr. The combination of antibodies and 89Zr, known as 89Zr-immuno-PET, has become a cornerstone in drug development and patient selection in recent years. Despite the advanced state of 89Zr-immuno-PET, new developments in chelator conjugation and radiolabeling procedures, application in novel compound classes, and improved PET scanner technology and quantification methods continue to reshape its landscape towards improving clinical outcomes.
Collapse
Affiliation(s)
- Thomas Erik Wuensche
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Serge Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Guus A M S van Dongen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Danielle Vugts
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Yu B, Williams S, Yang Z, Young G. Identification of sorbitol esterification of glutamic acid by LC-MS/MS in a monoclonal antibody stability assessment. PLoS One 2024; 19:e0295735. [PMID: 38696486 PMCID: PMC11065200 DOI: 10.1371/journal.pone.0295735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 05/04/2024] Open
Abstract
The stability of monoclonal antibodies (mAbs) is vital for their therapeutic success. Sorbitol, a common mAb stabilizer used to prevent aggregation, was evaluated for any potential adverse effects on the chemical stability of mAb X. An LC-MS/MS based analysis focusing on the post-translational modifications (PTMs) of mAb X was conducted on samples that had undergone accelerated aging at 40°C. Along with PTMs that are known to affect mAbs' structure function and stability (such as deamidation and oxidation), a novel mAb PTM was discovered, the esterification of glutamic acid by sorbitol. Incubation of mAb X with a 1:1 ratio of unlabeled sorbitol and isotopically labeled sorbitol (13C6) further corroborated that the modification was the consequence of the esterification of glutamic acid by sorbitol. Levels of esterification varied across glutamic acid residues and correlated with incubation time and sorbitol concentration. After 4 weeks of accelerated stability with isotopically labeled sorbitol, it was found that 16% of the total mAb possesses an esterified glutamic acid. No esterification was observed at aspartic acid sites despite the free carboxylic acid side chain. This study unveils a unique modification of mAbs, emphasizing its potential significance for formulation and drug development.
Collapse
Affiliation(s)
- Bin Yu
- Analytical Development Department, Coherus BioSciences, Camarillo, California, United States of America
| | - Shannon Williams
- Analytical Development Department, Coherus BioSciences, Camarillo, California, United States of America
| | - Zhengdong Yang
- Analytical Development Department, Coherus BioSciences, Camarillo, California, United States of America
| | - Glen Young
- Analytical Development Department, Coherus BioSciences, Camarillo, California, United States of America
| |
Collapse
|
46
|
Makey DM, Ruotolo BT. Liquid-phase separations coupled with ion mobility-mass spectrometry for next-generation biopharmaceutical analysis. Expert Rev Proteomics 2024; 21:259-270. [PMID: 38934922 PMCID: PMC11299228 DOI: 10.1080/14789450.2024.2373707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION The pharmaceutical industry continues to expand its search for innovative biotherapeutics. The comprehensive characterization of such therapeutics requires many analytical techniques to fully evaluate critical quality attributes, making analysis a bottleneck in discovery and development timelines. While thorough characterization is crucial for ensuring the safety and efficacy of biotherapeutics, there is a need to further streamline analytical characterization and expedite the overall timeline from discovery to market. AREAS COVERED This review focuses on recent developments in liquid-phase separations coupled with ion mobility-mass spectrometry (IM-MS) for the development and characterization of biotherapeutics. We cover uses of IM-MS to improve the characterization of monoclonal antibodies, antibody-drug conjugates, host cell proteins, glycans, and nucleic acids. This discussion is based on an extensive literature search using Web of Science, Google Scholar, and SciFinder. EXPERT OPINION IM-MS has the potential to enhance the depth and efficiency of biotherapeutic characterization by providing additional insights into conformational changes, post-translational modifications, and impurity profiles. The rapid timescale of IM-MS positions it well to enhance the information content of existing assays through its facile integration with standard liquid-phase separation techniques that are commonly used for biopharmaceutical analysis.
Collapse
Affiliation(s)
- Devin M Makey
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
47
|
Sharma R, Gupta S, Rathore AS. Novel purification platform based on multimodal preparative scale separation of mAb fragments and aggregates. J Chromatogr A 2024; 1721:464806. [PMID: 38518514 DOI: 10.1016/j.chroma.2024.464806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Monoclonal antibodies (mAbs) continue to dominate the biopharmaceutical industry. Certain mAbs are prone to fragmentation and clipping and in these cases, adequate removal of these species is critical during manufacturing. Fragments can be generated during fermentation, purification, storage, formulation, and administration. Their addition to the acidic charge-variant of the purified mAb has been reported to decrease stability and potency of the final product. However, contrary to mAb aggregation, manufacturers have not given much attention to removal of fragments and clipped species and as a result most conventional mAb platforms offer at best limited capabilities for their removal. In this study, we propose a novel purification platform that uses multimodal chromatography and achieves complete removal of a range of mAb fragments and clipped products (25-120 kDa). The utility of the platform has been successfully demonstrated for 2 IgG1s and 2 IgG4s. Further, adequate removal of the various host cell impurities such as host cell proteins (<10 ppm) and host cell DNA (<5 ppb) has been achieved. Finally, the platform was able to deliver adequate removal of high molecular weight impurities (<1 %) and a 30 % clearance of the acidic charge variant. The proposed single step has been shown to deliver what the polishing chromatography and intermediate purification chromatography steps deliver in a traditional mAb platform.
Collapse
Affiliation(s)
- Rashmi Sharma
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, India
| | - Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Anurag S Rathore
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, India; Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
48
|
Sarin D, Krishna K, Nejadnik MR, Suryanarayanan R, Rathore AS. Impact of Excipient Extraction and Buffer Exchange on Recombinant Monoclonal Antibody Stability. Mol Pharm 2024; 21:1872-1883. [PMID: 38422397 PMCID: PMC10988557 DOI: 10.1021/acs.molpharmaceut.3c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The foundation of a biosimilar manufacturer's regulatory filing is the demonstration of analytical and functional similarity between the biosimilar product and the pertinent originator product. The excipients in the formulation may interfere with characterization using typical analytical and functional techniques during this biosimilarity exercise. Consequently, the producers of biosimilar products resort to buffer exchange to isolate the biotherapeutic protein from the drug product formulation. However, the impact that this isolation has on the product stability is not completely known. This study aims to elucidate the extent to which mAb isolation via ultrafiltration-diafiltration-based buffer exchange impacts mAb stability. It has been demonstrated that repeated extraction cycles do result in significant changes in higher-order structure (red-shift of 5.0 nm in fluorescence maxima of buffer exchanged samples) of the mAb and also an increase in formation of basic variants from 19.1 to 26.7% and from 32.3 to 36.9% in extracted innovator and biosimilar Tmab samples, respectively. It was also observed that under certain conditions of tertiary structure disruptions, Tmab could be restabilized depending on formulation composition. Thus, mAb isolation through extraction with buffer exchange impacts the product stability. Based on the observations reported in this paper, we recommend that biosimilar manufacturers take into consideration these effects of excipients on protein stability when performing biosimilarity assessments.
Collapse
Affiliation(s)
- Deepika Sarin
- Department
of Chemical Engineering, Indian Institute
of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Kunal Krishna
- School
of Interdisciplinary Research, Indian Institute
of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - M. Reza Nejadnik
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Raj Suryanarayanan
- Department
of Pharmaceutics, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anurag S. Rathore
- Department
of Chemical Engineering, Indian Institute
of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
49
|
Liang G, Madhavarao CN, Morris C, O'Connor T, Ashraf M, Yoon S. Effects of process intensification on homogeneity of an IgG1:κ monoclonal antibody during perfusion culture. Appl Microbiol Biotechnol 2024; 108:274. [PMID: 38530495 PMCID: PMC10965650 DOI: 10.1007/s00253-024-13110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The pharmaceutical industry employs various strategies to improve cell productivity. These strategies include process intensification, culture media improvement, clonal selection, media supplementation and genetic engineering of cells. However, improved cell productivity has inherent risk of impacting product quality attributes (PQA). PQAs may affect the products' efficacy via stability, bioavailability, or in vivo bioactivity. Variations in manufacturing process may introduce heterogeneity in the products by altering the type and extent of N-glycosylation, which is a PQA of therapeutic proteins. We investigated the effect of different cell densities representing increasing process intensification in a perfusion cell culture on the production of an IgG1-κ monoclonal antibody from a CHO-K1 cell line. This antibody is glycosylated both on light chain and heavy chain. Our results showed that the contents of glycosylation of IgG1-κ mAb increased in G0F and fucosylated type glycans as a group, whereas sialylated type glycans decreased, for the mAb whole protein. Overall, significant differences were observed in amounts of G0F, G1F, G0, G2FS1, and G2FS2 type glycans across all process intensification levels. G2FS2 and G2 type N-glycans were predominantly quantifiable from light chain rather than heavy chain. It may be concluded that there is a potential impact to product quality attributes of therapeutic proteins during process intensification via perfusion cell culture that needs to be assessed. Since during perfusion cell culture the product is collected throughout the duration of the process, lot allocation needs careful attention to process parameters, as PQAs are affected by the critical process parameters (CPPs). KEY POINTS: • Molecular integrity may suffer with increasing process intensity. • Galactosylated and sialylated N-glycans may decrease. • Perfusion culture appears to maintain protein charge structure.
Collapse
Affiliation(s)
- George Liang
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Caitlin Morris
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Thomas O'Connor
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
| | - Muhammad Ashraf
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
50
|
Floyd JA, Gillespie AJ, Nightlinger NS, Siska C, Kerwin BA. The Development of a Novel Aflibercept Formulation for Ocular Delivery. J Pharm Sci 2024; 113:366-376. [PMID: 38042344 DOI: 10.1016/j.xphs.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Aflibercept is a recombinant fusion protein that is commercially available for several ocular diseases impacting millions of people worldwide. Here, we use a case study approach to examine alternative liquid formulations for aflibercept for ocular delivery, utilizing different stabilizers, buffering agents, and surfactants with the goal of improving the thermostability to allow for limited storage outside the cold chain. The formulations were developed by studying the effects of pH changes, substituting amino acids for sucrose and salt, and using polysorbate 80 or poloxamer 188 instead of polysorbate 20. A formulation containing acetate, proline, and poloxamer 188 had lower rates of aggregate formation at 4, 30, and 40°C when compared to the marketed commercial formulation containing phosphate, sucrose, sodium chloride, and polysorbate 20. Further studies examining subvisible particles after exposure to a transport stress and long-term stability at 4°C, post-translational modifications by multi-attribute method, purity by reduced and non-reduced capillary electrophoresis, and potency by cell proliferation also demonstrated a comparable or improved stability for the enhanced formulation of acetate, proline, and poloxamer 188. This enhanced stability could enable limited storage outside of the cold chain, allowing for easier distribution in low to middle income countries.
Collapse
Affiliation(s)
- J Alaina Floyd
- Just- Evotec Biologics, 401 Terry Ave N., Seattle, WA 98109, USA.
| | | | | | - Christine Siska
- Just- Evotec Biologics, 401 Terry Ave N., Seattle, WA 98109, USA
| | - Bruce A Kerwin
- Just- Evotec Biologics, 401 Terry Ave N., Seattle, WA 98109, USA.
| |
Collapse
|