1
|
Vitek M, Zvonar Pobirk A, Roškar R, Matjaž MG. Exploiting the potential of in situ forming liquid crystals: development and in vitro performance of long-acting depots for peptide drug thymosin alpha 1 subcutaneous administration. Drug Deliv 2025; 32:2460708. [PMID: 40066714 PMCID: PMC11899226 DOI: 10.1080/10717544.2025.2460708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/06/2024] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
The fast-growing filed of long-acting depots for subcutaneous (SC) administration holds significant potential to enhance patient adherence to treatment regimens, particularly in the context of chronic diseases. Among them, injectable in situ forming lyotropic liquid crystals (LCCs) consisting of hexagonal mesophases represent an attractive platform due to their remarkable highly ordered microstructure enabling the sustained drug release. These systems are especially relevant for peptide drugs, as their use is limited by their short plasma half-life and inherent poor stability. In this study, we thus aimed to exploit the potential of a liquid crystalline platform for the sustained release of peptide drug thymosin alpha 1 (Tα1), characterized by a short plasma half-life and with that associated twice-weekly SC administration regimen. We initially selected specified ingredients, with ethanol serving to reduce viscosity and stabilize the peptide drug Tα1, lecithin contributing to LCCs formation and stabilization, and glycerol monooleate or glycerol monolinoleate representing the hexagonal LCCs forming matrix material. The selected studied nonaqueous precursor formulations were characterized by suitable rheological properties for SC injection. A convenient and rapid in situ phase transition of precursor formulations to hexagonal LCCs, triggered by water absorption, was successfully accomplished in vitro. Notably, in situ formed LCCs demonstrated sustained release kinetics of the peptide drug Tα1 for up to 2 weeks of in vitro release testing, offering minimized dosing frequency and thus promoting patient adherence. In summary, the newly developed in situ forming liquid crystalline systems represent prospective injectable long-acting depots for SC administration of the peptide drug Tα1.
Collapse
Affiliation(s)
- Mercedes Vitek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Alenka Zvonar Pobirk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Roškar
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Shadbar S, Liu L, Tang Y, Kabir F, Vartak S, Gui Z, Huck M, Weinstein E, Khwaja M, Dehadrai A, Carter T, Ivey J, Sudrik C, Brown P, Charles L, Dadon D. S.C. delivery of ultra-high concentration (up to 500 mg/mL) protein microparticle suspensions: pharmacokinetics, efficacy, biodistribution, and immunogenicity. Drug Deliv Transl Res 2025:10.1007/s13346-025-01856-2. [PMID: 40314718 DOI: 10.1007/s13346-025-01856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2025] [Indexed: 05/03/2025]
Abstract
A shift towards the subcutaneous (S.C.) delivery of protein therapeutics is enabling patient-centric at-home self-administration. To circumvent the volume constraints of the S.C. route of delivery, protein therapeutics are required to achieve ever higher concentrations to administer doses beyond 1 g. Aqueous technologies rarely concentrate above 175 mg/mL and endure syringability and stability complications. Elektrofi's novel non-aqueous microparticle suspensions enable such ultra-high concentration delivery of protein therapeutics subcutaneously. In this work, we demonstrate the bioequivalence of high-concentration suspensions compared to their aqueous counterparts in a rodent model. The 500 mg/mL concentration iteration of the injection was injectable in 20 s with forces below 20 N. We also demonstrate comparable subcutaneous clearance of the suspension test articles to the aqueous comparator. To the best of our knowledge, this work is the first to report comparable efficacy and immunogenicity of microparticle suspensions to the aqueous comparator formulation. The model commercially available reagents serve as a glimpse into the performance of the Elektrofi technology which is in the process of advancing into the clinic with a multitude of biopharma partnerships.
Collapse
Affiliation(s)
- Sadiqua Shadbar
- Elektrofi Inc, Boston, MA, 02210, USA
- Northeastern University, Boston, MA, 02115, USA
| | - Lisa Liu
- Elektrofi Inc, Boston, MA, 02210, USA
| | - Yi Tang
- Sanofi, Cambridge, MA, 02141, USA
| | - Farah Kabir
- Harvard University, Cambridge, MA, 02138, USA
| | | | - Zishu Gui
- Elektrofi Inc, Boston, MA, 02210, USA
| | | | | | - Moin Khwaja
- Tokyo Institute of Technology, Meguro City, Tokyo, 152-8550, Japan
| | | | | | - James Ivey
- Vaxess Technologies, Cambridge, MA, 02139, USA
| | | | | | | | | |
Collapse
|
3
|
Bayne ACV, Pessi J, Bird JK, Stemmler RT, Frerichs M, Besheer A. Vitamins as excipients in pharmaceutical products. Eur J Pharm Sci 2025; 206:107020. [PMID: 39826621 DOI: 10.1016/j.ejps.2025.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Excipients are ingredients in pharmaceutical products other than the active ingredient, added to facilitate manufacturing, enhance stability or modulate release and bioavailability. Vitamins are diverse molecules essential for human nutrition that also can fulfil excipient functions. This review focuses on vitamins used as excipients and provides an overview of the functions of vitamins in various pharmaceutical formulations. A thorough search was conducted to understand the current use of vitamins in marketed drug products, concluding that many vitamins are already used as functional excipients. Vitamins are used widely in different dosage forms, including oral, parenteral, and topical formulations, and alongside a broad range of active pharmaceutical ingredients, biologics, and small molecules from different biopharmaceutical classification system classes. Many examples of the use of vitamins to improve the performance of the pharmaceutical formulation in which they are included are presented and the mode of action of vitamins as excipients in the product is reviewed. Furthermore, the potential for future uses of vitamins in pharmaceutical products is highlighted. Lastly, considerations for the use of vitamins as excipients in drug products as well as the regulatory framework are discussed.
Collapse
Affiliation(s)
| | - Jenni Pessi
- dsm-firmenich, P.O. Box 2676, 4002, Basel, Switzerland.
| | - Julia K Bird
- Bird Scientific Writing, Wassenaar, 2242, the Netherlands.
| | | | | | - Ahmed Besheer
- dsm-firmenich, P.O. Box 2676, 4002, Basel, Switzerland.
| |
Collapse
|
4
|
Wang R, Li H, He S, Feng Y, Liu C, Hao K, Zhou D, Chen X, Tian H. Spatiotemporal Nano-Regulator Unleashes Anti-Tumor Immunity by Overcoming Dendritic Cell Tolerance and T Cell Exhaustion in Tumor-Draining Lymph Nodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412141. [PMID: 39663685 DOI: 10.1002/adma.202412141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/22/2024] [Indexed: 12/13/2024]
Abstract
Lymph nodes are crucial immune foci as the primary target for cancer immunotherapy. However, the anti-tumor functions of tumor-draining lymph nodes (TDLNs) are critically suppressed by tumors. Here, a novel spatiotemporal nano-regulator is presented, designed to modulate the dendritic cells (DCs) in TDLNs, establishing a supportive niche for immune surveillance. The DC-mediated nano-regulator (DNR) is established by the self-assembly of an imidazoquinoline (IMDQ) prodrug, inhibitory immune checkpoint (ICP) siRNA, and mannan (a TLR4 agonist). This unique design leverages the spatiotemporal activation of TLR4 and TLR7/8, thereby optimizing DC maturation and cytokine production. This further promotes efficient T cell priming. Simultaneously, the ICP-targeting siRNA mitigates the tolerogenic effects induced by tumor-derived factors and TLR activation, preventing T cell exhaustion. In essence, DNR facilitates potent remodeling of TDLNs and the tumor microenvironment, activating the anti-tumor immunity cascade. When combined with vaccines, DNR greatly promotes tumor regression and the establishment of long-term immunological memory.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huixin Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shasha He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Cong Liu
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Kai Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Danhua Zhou
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
5
|
Castañeda Cataña MA, Rivas Marquina AP, Dodes Traian MM, Carlucci MJ, Damonte EB, Pérez OE, Arrua EC, Sepúlveda CS. Bovine Serum Albumin Nanoparticle-Mediated Delivery of Ribavirin and Mycophenolic Acid for Enhanced Antiviral Therapeutics. Viruses 2025; 17:138. [PMID: 40006893 PMCID: PMC11860702 DOI: 10.3390/v17020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
The global spread of viral diseases is a public health issue. Ribavirin (RBV) and mycophenolic acid (MPA) are well-known wide-spectrum antiviral agents. The present study evaluated the potential of bovine serum albumin (BSA) nanoparticles (NPs) as a vehicle to improve the efficacy of molecules with antiviral activity. The results demonstrated that NPs offer a promising strategy for the delivery of antiviral drugs, improving their stability and reducing toxicity compared to free agents. BSA-based NPs effectively encapsulated hydrophilic molecules such as MPA and water-soluble compounds such as RBV, achieving encapsulation efficiencies of 10% and 20%, respectively. The purified NPs exhibited a particle size between 60 and 100 nm and did not show toxicity at the evaluated concentrations. In cellular viral infection models against Zika virus (ZIKV), Junín virus (JUNV), vesicular stomatitis virus (VSV) and herpes simplex virus (HSV-1), the BSA-based NPs loaded with MPA or RBV demonstrated antiviral properties superior to those of non-encapsulated agents, as well as 100- and 200-fold effective dose reductions, respectively. These findings clearly indicate the potential of BSA NPs as a novel platform for the development of safer and more efficient antiviral therapies.
Collapse
Affiliation(s)
- Mayra A. Castañeda Cataña
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
| | - Andrea P. Rivas Marquina
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, Buenos Aires 4612, Argentina; (A.P.R.M.)
| | - Martín M. Dodes Traian
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
| | - M. Josefina Carlucci
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
| | - Elsa B. Damonte
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| | - Oscar E. Pérez
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
| | - Eva C. Arrua
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, Buenos Aires 4612, Argentina; (A.P.R.M.)
| | - Claudia S. Sepúlveda
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| |
Collapse
|
6
|
Nguyen HD, Ngo HV, Lee B. Novel pH-Responsive Structural Rearrangement of Myristic Acid-Conjugated Quetiapine Nanosuspension for Enhanced Long-Acting Delivery Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405200. [PMID: 39225461 PMCID: PMC11516153 DOI: 10.1002/advs.202405200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Quetiapine myristate (QM), an ester-bonded lipophilic prodrug of quetiapine (QTP), is synthesized and converted into an amphiphilic structure in acidic pH to trigger a novel self-assembled QM nanosuspension (QMN). Following injection, this QMN rearranges within physiological pH to form nanoaggregates in structure, resulting in enhanced physicochemical properties and in vivo therapeutic performance without an initial burst release. The 200-nm-sized QMN exhibits less invasive injection, higher drug content, and better storage stability profile than conventional poly(lactide-co-glycolide) (PLGA) nanosuspensions containing QTP or QM. Following a single intramuscular injection to beagle dogs (35 mg kg-1 QTP), QMN undergoes pH-responsive nanoaggregation to form the lipophilic prodrug, providing esterase-oriented sustained release for five weeks compared with the two-week period of PLGA nanosuspensions. Notably, QMN exhibits improved in vivo pharmacokinetic performance with long-acting delivery while minimizing issues associated with polymeric PLGA formulations, including the initial massive burst release, cellular toxicity, and adverse side effects. These results support the further development of QMN as a novel long-acting injectable to improve patient compliance and dosing frequency.
Collapse
Affiliation(s)
- Hy Dinh Nguyen
- Department of Pharmacy, College of PharmacyAjou UniversitySuwon16499Republic of Korea
| | - Hai Van Ngo
- Department of Pharmacy, College of PharmacyAjou UniversitySuwon16499Republic of Korea
| | - Beom‐Jin Lee
- Department of Pharmacy, College of PharmacyAjou UniversitySuwon16499Republic of Korea
- Institute of Pharmaceutical Science and TechnologyAjou UniversitySuwon16499Republic of Korea
| |
Collapse
|
7
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
8
|
Camacho Vieira C, Peltonen L, Karttunen AP, Ribeiro AJ. Is it advantageous to use quality by design (QbD) to develop nanoparticle-based dosage forms for parenteral drug administration? Int J Pharm 2024; 657:124163. [PMID: 38670473 DOI: 10.1016/j.ijpharm.2024.124163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Parenteral administration is one of the most commonly used drug delivery routes for nanoparticle-based dosage forms, such as lipid-based and polymeric nanoparticles. For the treatment of various diseases, parenteral administration include intravenous, subcutaneous, and intramuscular route. In drug development phase, multiparameter strategy with a focus on drug physicochemical properties and the specificity of the administration route is required. Nanoparticle properties in terms of size and targeted delivery, among others, are able to surpass many drawbacks of conventional dosage forms, but these unique properties can be a bottleneck for approval by regulatory authorities. Quality by Design (QbD) approach has been widely utilized in development of parenteral nanoparticle-based dosage forms. It fosters knowledge of product and process quality by involving sound scientific data and risk assessment strategies. A full and comprehensive investigation into the state of implementation and applications of the QbD approach in these complex drug products can highlight the gaps and challenges. In this review, the analysis of critical attributes and Design of Experiment (DoE) approach in different nanoparticulate systems, together with the proper utilization of Process Analytical Technology (PAT) applications are described. The essential of QbD approach for the design and development of nanoparticle-based dosage forms for delivery via parenteral routes is discussed thoroughly.
Collapse
Affiliation(s)
- C Camacho Vieira
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal
| | - L Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - A P Karttunen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal; i(3)S, IBMC, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
9
|
Oladejo M, Tijani AO, Puri A, Chablani L. Adjuvants in cutaneous vaccination: A comprehensive analysis. J Control Release 2024; 369:475-492. [PMID: 38569943 DOI: 10.1016/j.jconrel.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY 14618, USA.
| |
Collapse
|
10
|
Lou H, Luan X, Hu G, Hageman MJ. Development of a drying method for proteins based on protein-hyaluronic acid precipitation. Int J Pharm 2024; 654:123940. [PMID: 38408551 DOI: 10.1016/j.ijpharm.2024.123940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
This study aims to develop a new method to dry proteins based on protein-hyaluronic acid (HA) precipitation and apply the precipitation-redissolution technique to develop highly concentrated protein formulations. Lysozyme was used as a model protein and HA with various molecular weights (MW) were investigated. Under low ionic strength, low-MW HA (e.g., MW: around 5 K) did not induce lysozyme precipitation. Conversely, high-MW HA (e.g., MW: approximately from 40 K to 1.5 M) precipitated more than 90 % of lysozyme. The dried lysozyme-HA precipitates had moisture levels between 4 % and 5 %. The lysozyme-HA precipitates could be redissolved using PBS (pH 7.4, ionic strength: ∼ 163 mM). The viscosity of the reconstituted solution was dependent on HA MW, e.g., 4 cP for HA40K, and 155 cP for HA1.5 M, suggesting low-MW HA might be a proper excipient for highly concentrated solution formulations for subcutaneous/intraocular injection and high-MW HA may fit for other applications. The tertiary structure of lysozyme after the precipitation-redissolution steps had no significant difference from that of the original lysozyme as confirmed by fluorescence spectroscopy. The denaturation temperature of lysozyme after the precipitation-redissolution steps and that of the original lysozyme were close, indicating they possessed similar thermal stability. The accelerated stability study revealed that lysozyme stored in the dry precipitates was more physically stable than that in the buffer solution. Overall, this new drying technique is suitable for drying proteins and exhibits several benefits such as minimum energy consumption, cost effectiveness, high production yield, and mild processing conditions. In addition, the precipitation-redissolution technique proposed in this study can potentially be used to develop highly concentrated formulations, especially for proteins experiencing poor stability in the liquid state.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS 66047, USA
| | - Xi Luan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS 66047, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
11
|
Ait-Oudhia S, Wang YM, Dosne AG, Roy A, Jin JY, Shen J, Kagan L, Musuamba FT, Zhang L, Kijima S, Gastonguay MR, Ouellet D. Challenging the Norm: A Multidisciplinary Perspective on Intravenous to Subcutaneous Bridging Strategies for Biologics. Clin Pharmacol Ther 2024; 115:412-421. [PMID: 38069528 DOI: 10.1002/cpt.3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
The transition from intravenous (i.v.) to subcutaneous (s.c.) administration of biologics is a critical strategy in drug development aimed at improving patient convenience, compliance, and therapeutic outcomes. Focusing on the increasing role of model-informed drug development (MIDD) in the acceleration of this transition, an in-depth overview of the essential clinical pharmacology, and regulatory considerations for successful i.v. to s.c. bridging for biologics after the i.v. formulation has been approved are presented. Considerations encompass multiple aspects beginning with adequate pharmacokinetic (PK) and pharmacodynamic (i.e., exposure-response) evaluations which play a vital role in establishing comparability between the i.v. and s.c. routes of administrations. Selected key recommendations and points to consider include: (i) PK characterization of the s.c. formulation, supported by the increasing preclinical understanding of the s.c. absorption, and robust PK study design and analyses in humans; (ii) a thorough characterization of the exposure-response profiles including important metrics of exposure for both efficacy and safety; (iii) comparability studies designed to meet regulatory considerations and support approval of the s.c. formulation, including noninferiority studies with PK and/or efficacy and safety as primary end points; and (iv) comprehensive safety package addressing assessments of immunogenicity and patients' safety profile with the new route of administration. Recommendations for successful bridging strategies are evolving and MIDD approaches have been used successfully to accelerate the transition to s.c. dosing, ultimately leading to improved patient experiences, adherence, and clinical outcomes.
Collapse
Affiliation(s)
| | - Yow-Ming Wang
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anne-Gaelle Dosne
- Janssen Research & Development, LLC, Beerse, Belgium
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Amit Roy
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Jin Y Jin
- Genentech Inc., South San Francisco, California, USA
| | - Jun Shen
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Leonid Kagan
- Department of Pharmaceutics and Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Flora T Musuamba
- Belgian Federal Agency for Medicines and Health Products, Brussels, Belgium
- NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Lucia Zhang
- Health Canada, Biologic and Radiopharmaceutical Drugs Directorate, Ottawa, Ontario, Canada
| | - Shinichi Kijima
- Pharmaceuticals and Medical Devices Agency (PMDA), Tokyo, Japan
| | | | - Daniele Ouellet
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
12
|
de Paiva Narciso N, Navarro RS, Gilchrist A, Trigo MLM, Rodriguez GA, Heilshorn SC. Design Parameters for Injectable Biopolymeric Hydrogels with Dynamic Covalent Chemistry Crosslinks. Adv Healthc Mater 2023; 12:e2301265. [PMID: 37389811 PMCID: PMC10638947 DOI: 10.1002/adhm.202301265] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Dynamic covalent chemistry (DCC) crosslinks can form hydrogels with tunable mechanical properties permissive to injectability and self-healing. However, not all hydrogels with transient crosslinks are easily extrudable. For this reason, two additional design parameters must be considered when formulating DCC-crosslinked hydrogels: 1) degree of functionalization (DoF) and 2) polymer molecular weight (MW). To investigate these parameters, hydrogels comprised of two recombinant biopolymers: 1) a hyaluronic acid (HA) modified with benzaldehyde and 2) an elastin-like protein (ELP) modified with hydrazine (ELP-HYD), are formulated. Several hydrogel families are synthesized with distinct HA MW and DoF while keeping the ELP-HYD component constant. The resulting hydrogels have a range of stiffnesses, G' ≈ 10-1000 Pa, and extrudability, which is attributed to the combined effects of DCC crosslinks and polymer entanglements. In general, lower MW formulations require lower forces for injectability, regardless of stiffness. Higher DoF formulations exhibit more rapid self-healing. Gel extrusion through a cannula (2 m length, 0.25 mm diameter) demonstrates the potential for minimally invasive delivery for future biomedical applications. In summary, this work highlights additional parameters that influence the injectability and network formation of DCC-crosslinked hydrogels and aims to guide future design of injectable hydrogels.
Collapse
Affiliation(s)
| | - Renato S. Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Aidan Gilchrist
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Miriam L. M. Trigo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Nassar N, Kasapis S. Fundamental advances in hydrogels for the development of the next generation of smart delivery systems as biopharmaceuticals. Int J Pharm 2023; 633:122634. [PMID: 36690133 DOI: 10.1016/j.ijpharm.2023.122634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Recent advances in developing and applying therapeutic peptides for anticancer, antimicrobial and immunomodulatory remedies have opened a new era in therapeutics. This development has resulted in the engineering of new biologics as part of a concerted effort by the pharmaceutical industry. Many alternative routes of administration and delivery vehicles, targeting better patient compliance and optimal therapeutic bioavailability, have emerged. However, the design of drug delivery systems to protect a range of unstable macromolecules, including peptides and proteins, from high temperatures, acidic environments, and enzymatic degradation remains a priority. Herein, we give chronological insights in the development of controlled-release drug delivery systems that occurred in the last 70 years or so. Subsequently, we summarise the key physicochemical characteristics of hydrogels contributing to the development of protective delivery systems concerning drug-targeted delivery in the chronospatial domain for biopharmaceuticals. Furthermore, we shed some light on promising hydrogels that can be utilised for systemic bioactive administration.
Collapse
Affiliation(s)
- Nazim Nassar
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia.
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Melbourne, Vic 3083, Australia
| |
Collapse
|
14
|
Desai M, Kundu A, Hageman M, Lou H, Boisvert D. Monoclonal antibody and protein therapeutic formulations for subcutaneous delivery: high-concentration, low-volume vs. low-concentration, high-volume. MAbs 2023; 15:2285277. [PMID: 38013454 DOI: 10.1080/19420862.2023.2285277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Biologic drugs are used to treat a variety of cancers and chronic diseases. While most of these treatments are administered intravenously by trained healthcare professionals, a noticeable trend has emerged favoring subcutaneous (SC) administration. SC administration of biologics poses several challenges. Biologic drugs often require higher doses for optimal efficacy, surpassing the low volume capacity of traditional SC delivery methods like autoinjectors. Consequently, high concentrations of active ingredients are needed, creating time-consuming formulation obstacles. Alternatives to traditional SC delivery systems are therefore needed to support higher-volume biologic formulations and to reduce development time and other risks associated with high-concentration biologic formulations. Here, we outline key considerations for SC biologic drug formulations and delivery and explore a paradigm shift: the flexibility afforded by low-to-moderate-concentration drugs in high-volume formulations as an alternative to the traditionally difficult approach of high-concentration, low-volume SC formulation delivery.
Collapse
Affiliation(s)
- M Desai
- Medical Affairs, Enable Injections, Inc, Cincinnati, OH, USA
| | - A Kundu
- Manufacturing Sciences, Takeda Pharmaceuticals, Brooklyn Park, MN, USA
| | - M Hageman
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| | - H Lou
- Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS, USA
| | - D Boisvert
- Independent Chemistry Manufacturing & Controls (CMC) Consultant, El Cerrito, CA, USA
| |
Collapse
|
15
|
Lou H, Hageman MJ. Development of an In Vitro System To Emulate an In Vivo Subcutaneous Environment: Small Molecule Drug Assessment. Mol Pharm 2022; 19:4017-4025. [PMID: 36279508 DOI: 10.1021/acs.molpharmaceut.2c00490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reliable in vitro system can support and guide the development of subcutaneous (SC) drug products. Although several in vitro systems have been developed, they have some limitations, which may hinder them from getting more engaged in SC drug product development. This study sought to develop a novel in vitro system, namely, Emulator of SubCutaneous Absorption and Release (ESCAR), to better emulate the in vivo SC environment and predict the fate of drugs in SC delivery. ESCAR was designed using computer-aided design (CAD) software and fabricated using the three-dimensional (3D) printing technique. ESCAR has a design of two acceptor chambers representing the blood uptake pathway and the lymphatic uptake pathway, respectively, although only the blood uptake pathway was investigated for small molecules in this study. Via conducting a DoE factor screening study using acetaminophen solution, the relationship of the output (drug release from the "SC" chamber to the "blood circulation" chamber) and the input parameters could be modeled using a variety of methods, including polynomial equations, machine learning methods, and Monte Carlo simulation-based methods. The results suggested that the hyaluronic acid (HA) concentration was a critical parameter, whereas the influence of the injection volume and injection position was not substantial. An in vitro-in vivo correlation (IVIVC) study was developed using griseofulvin suspension to explore the feasibility of applying ESCAR in formulation development and bioequivalence studies. The developed LEVEL A IVIVC model demonstrated that the in vivo PK profile could be correlated with the in vitro release profile. Therefore, using this model, for new formulations, only in vitro studies need to be conducted in ESCAR, and in vivo studies might be waived. In conclusion, ESCAR had important implications for research and development and quality control of SC drug products. Future work would be focused on further optimizing ESCAR and expanding its applications via assessing more types of molecules and formulations.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas66047, United States
| | - Michael J. Hageman
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas66047, United States
| |
Collapse
|