1
|
Libby ARG, Rito T, Radley A, Briscoe J. An in vivo CRISPR screen in chick embryos reveals a role for MLLT3 in specification of neural cells from the caudal epiblast. Development 2025; 152:DEV204591. [PMID: 39804120 PMCID: PMC11883246 DOI: 10.1242/dev.204591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Tissue development relies on the coordinated differentiation of stem cells in dynamically changing environments. The formation of the vertebrate neural tube from stem cells in the caudal lateral epiblast is a well-characterized example. Despite an understanding of the signalling pathways involved, the gene regulatory mechanisms remain poorly defined. To address this, we developed a multiplexed in vivo CRISPR screening approach in chick embryos targeting genes expressed in the caudal epiblast and neural tube. This revealed a role for MLLT3, a component of the super elongation complex, in the specification of neural fate. Perturbation of MLLT3 disrupted neural tube morphology and reduced neural fate acquisition. Mutant forms of retinoic acid receptor A lacking the MLLT3 binding domain similarly reduced neural fate acquisition. Together, these findings validate an in vivo CRISPR screen strategy in chick embryos and identify a previously unreported role for MLLT3 in caudal neural tissue specification.
Collapse
Affiliation(s)
- Ashley R. G Libby
- The Francis Crick Institute, Developmental Dynamics Group, 1 Midland Rd, London, NW1 1AT, UK
| | - Tiago Rito
- The Francis Crick Institute, Developmental Dynamics Group, 1 Midland Rd, London, NW1 1AT, UK
| | - Arthur Radley
- The Francis Crick Institute, Developmental Dynamics Group, 1 Midland Rd, London, NW1 1AT, UK
| | - James Briscoe
- The Francis Crick Institute, Developmental Dynamics Group, 1 Midland Rd, London, NW1 1AT, UK
| |
Collapse
|
2
|
Xue X, Kim YS, Ponce-Arias AI, O'Laughlin R, Yan RZ, Kobayashi N, Tshuva RY, Tsai YH, Sun S, Zheng Y, Liu Y, Wong FCK, Surani A, Spence JR, Song H, Ming GL, Reiner O, Fu J. A patterned human neural tube model using microfluidic gradients. Nature 2024; 628:391-399. [PMID: 38408487 PMCID: PMC11006583 DOI: 10.1038/s41586-024-07204-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/16/2024] [Indexed: 02/28/2024]
Abstract
The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.
Collapse
Affiliation(s)
- Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yung Su Kim
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Alfredo-Isaac Ponce-Arias
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Richard O'Laughlin
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Robin Zhexuan Yan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Norio Kobayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Rami Yair Tshuva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yue Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Frederick C K Wong
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
4
|
Satapathy S, Wilson MR. Roles of constitutively secreted extracellular chaperones in neuronal cell repair and regeneration. Neural Regen Res 2023; 18:769-772. [PMID: 36204835 PMCID: PMC9700095 DOI: 10.4103/1673-5374.353483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022] Open
Abstract
Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the differentiation of stem cells during regeneration. The roles of constitutively secreted extracellular chaperones in neuronal injury and disease are poorly understood. Extracellular chaperones are multifunctional proteins expressed by many cell types, including those of the nervous system, known to facilitate protein quality control processes. These molecules exert pleiotropic effects and have been implicated as playing important protective roles in a variety of stress conditions, including tissue damage, infections, and local tissue inflammation. This article aims to provide a critical review of what is currently known about the functions of extracellular chaperones in neuronal repair and regeneration and highlight future directions for this important research area. We review what is known of four constitutively secreted extracellular chaperones directly implicated in processes of neuronal damage and repair, including transthyretin, clusterin, α2-macroglobulin, and neuroserpin, and propose that investigation into the effects of these and other extracellular chaperones on neuronal repair and regeneration has the potential to yield valuable new therapies.
Collapse
Affiliation(s)
- Sandeep Satapathy
- Blavatnik Institute of Cell Biology, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark R. Wilson
- Molecular Horizons and The School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Gupta S, Kawaguchi R, Heinrichs E, Gallardo S, Castellanos S, Mandric I, Novitch BG, Butler SJ. In vitro atlas of dorsal spinal interneurons reveals Wnt signaling as a critical regulator of progenitor expansion. Cell Rep 2022; 40:111119. [PMID: 35858555 PMCID: PMC9414195 DOI: 10.1016/j.celrep.2022.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Restoring sensation after injury or disease requires a reproducible method for generating large quantities of bona fide somatosensory interneurons. Toward this goal, we assess the mechanisms by which dorsal spinal interneurons (dIs; dI1-dI6) can be derived from mouse embryonic stem cells (mESCs). Using two developmentally relevant growth factors, retinoic acid (RA) and bone morphogenetic protein (BMP) 4, we recapitulate the complete in vivo program of dI differentiation through a neuromesodermal intermediate. Transcriptional profiling reveals that mESC-derived dIs strikingly resemble endogenous dIs, with the correct molecular and functional signatures. We further demonstrate that RA specifies dI4-dI6 fates through a default multipotential state, while the addition of BMP4 induces dI1-dI3 fates and activates Wnt signaling to enhance progenitor proliferation. Constitutively activating Wnt signaling permits the dramatic expansion of neural progenitor cultures. These cultures retain the capacity to differentiate into diverse populations of dIs, thereby providing a method of increasing neuronal yield.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Riki Kawaguchi
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Heinrichs
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Genetics and Genomics Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Salena Gallardo
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie Castellanos
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; CIRM Bridges to Research Program, California State University, Northridge, Los Angeles, CA, USA
| | - Igor Mandric
- Department of Computer Science, Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual & Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samantha J Butler
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual & Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Rekler D, Kalcheim C. Completion of neural crest cell production and emigration is regulated by retinoic-acid-dependent inhibition of BMP signaling. eLife 2022; 11:72723. [PMID: 35394423 PMCID: PMC8993216 DOI: 10.7554/elife.72723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
Production and emigration of neural crest cells is a transient process followed by the emergence of the definitive roof plate. The mechanisms regulating the end of neural crest ontogeny are poorly understood. Whereas early crest development is stimulated by mesoderm-derived retinoic acid, we report that the end of the neural crest period is regulated by retinoic acid synthesized in the dorsal neural tube. Inhibition of retinoic acid signaling in the neural tube prevents the normal upregulation of BMP inhibitors in the nascent roof plate and prolongs the period of BMP responsiveness which otherwise ceases close to roof plate establishment. Consequently, neural crest production and emigration are extended well into the roof plate stage. In turn, extending the activity of neural crest-specific genes inhibits the onset of retinoic acid synthesis in roof plate suggesting a mutual repressive interaction between neural crest and roof plate traits. Although several roof plate-specific genes are normally expressed in the absence of retinoic acid signaling, roof plate and crest markers are co-expressed in single cells and this domain also contains dorsal interneurons. Hence, the cellular and molecular architecture of the roof plate is compromised. Collectively, our results demonstrate that neural tube-derived retinoic acid, via inhibition of BMP signaling, is an essential factor responsible for the end of neural crest generation and the proper segregation of dorsal neural lineages. The division between the central nervous system – formed by the brain and spinal cord – and the peripheral nervous system – which consists of the neurons that sense and relay information to and from the body – takes place early during embryonic development. Initially, the nervous system consists of a tube of cells called the neural tube. From the top region of this tube, some cells change their shape, exit the tube and migrate to different places in the developing body. These cells are called the ‘neural crest’, and they form many different structures, including the peripheral nervous system. Neural crest cells keep leaving the neural tube for a period of time, but after that, the neural tube stops producing them. At this point, the region of the neural tube that had been producing neural crest cells becomes the ‘roof plate’ of the central nervous system, a structure that is essential for the development of specific groups of neurons in the brain and spinal cord. In bird embryos, a protein called bone morphogenetic protein (BMP) is essential for neural crest production because it triggers the migration of these cells away from the neural tube. Before the roof plate is formed, the activity of BMP is blocked by proteins known as BMP inhibitors, which stop more cells from leaving the neural tube. Around the time when neural crest formation stops, another molecule called retinoic acid begins to be synthesized in the top region of the neural tube. Rekler and Kalcheim asked whether retinoic acid is involved in the transition from neural crest to roof plate. To test this hypothesis, Rekler and Kalcheim blocked the activity of retinoic acid in the neural tube of quail embryos at the time when they should stop producing neural crest cells. This resulted in embryos in which the neural tube keeps producing neural crest cells after the roof plate has formed. In these embryos, individual cells in the resulting ‘roof plate’ produced both proteins that are normally only found in neural crest cells, and proteins typically exclusive to the roof plate. This suggests that, in the absence of retinoic acid activity, the segregation of neural crest identity from roof plate identity is compromised. Rekler and Kalcheim also found that, in the embryos where retinoic acid activity had been blocked, the cells in the area where the roof plate should be produced virtually no BMP inhibitors, and exhibited extended BMP activity. This allowed neural crest cells to continue forming and migrating away from the neural tube well after the period when they would stop in a normal embryo. These results indicate that retinoic acid stops the production of neural crest cells by repressing BMP activity in the roof plate of the neural tube. Rekler and Kalcheim’s experiments shed light on the mechanisms that allow the central and peripheral nervous systems to become segregated. This could increase our understanding of the origin of several neurodevelopmental disorders, potentially providing insights into their treatment or prevention. Additionally, the process of neural crest production and exit from the neural tube is highly similar to the process of metastasis in many invasive cancers. Thus, by understanding how the production of neural crest cells is terminated, it may be possible to learn how to prevent malignant cancer cells from spreading through the body.
Collapse
Affiliation(s)
- Dina Rekler
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
7
|
Liu Z, Wang J, Xu Q, Hong Q, Zhu J, Chi X. Research Progress in Vitamin A and Autism Spectrum Disorder. Behav Neurol 2021; 2021:5417497. [PMID: 34917197 PMCID: PMC8670912 DOI: 10.1155/2021/5417497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder. Over the past few decades, many studies have investigated the effects of VA supplementation in ASD patients and the relationship between vitamin A (VA) levels and ASD. VA is an essential micronutrient that plays an important role in various systems and biological processes in the form of retinoic acid (RA). Recent studies have shown that serum VA concentration is negatively correlated with the severity of ASD. The lack of VA during pregnancy or early fetal development can affect brain development and lead to long-term or even permanent impairment in the learning process, memory formation, and cognitive function. In addition, VA deficiency has been reported to have a major impact on the gastrointestinal function of children with ASD, while VA supplementation has been shown to improve the symptoms of ASD to a certain extent. This paper provides a comprehensive review of the relationship between VA and ASD.
Collapse
Affiliation(s)
- Zhonghui Liu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
- Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
- Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
| | - Qu Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
| | - Qin Hong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
| | - Jiansheng Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
- Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
| |
Collapse
|
8
|
Gupta S, Butler SJ. Getting in touch with your senses: Mechanisms specifying sensory interneurons in the dorsal spinal cord. WIREs Mech Dis 2021; 13:e1520. [PMID: 34730293 PMCID: PMC8459260 DOI: 10.1002/wsbm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
The spinal cord is functionally and anatomically divided into ventrally derived motor circuits and dorsally derived somatosensory circuits. Sensory stimuli originating either at the periphery of the body, or internally, are relayed to the dorsal spinal cord where they are processed by distinct classes of sensory dorsal interneurons (dIs). dIs convey sensory information, such as pain, heat or itch, either to the brain, and/or to the motor circuits to initiate the appropriate response. They also regulate the intensity of sensory information and are the major target for the opioid analgesics. While the developmental mechanisms directing ventral and dorsal cell fates have been hypothesized to be similar, more recent research has suggested that dI fates are specified by novel mechanisms. In this review, we will discuss the molecular events that specify dorsal neuronal patterning in the spinal cord, thereby generating diverse dI identities. We will then discuss how this molecular understanding has led to the development of robust stem cell methods to derive multiple spinal cell types, including the dIs, and the implication of these studies for treating spinal cord injuries and neurodegenerative diseases. This article is categorized under: Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Samantha J. Butler
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Intellectual and Developmental Disabilities Research CenterUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Rossillo M, Ringstad N. Development of specialized sensory neurons engages a nuclear receptor required for functional plasticity. Genes Dev 2020; 34:1666-1679. [PMID: 33184226 PMCID: PMC7706712 DOI: 10.1101/gad.342212.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
In this study, Rossillo and Ringstad sought to determine mechanisms that support the physiology and plasticity of BAG neurons, which are specialized neurons that sense the respiratory gas carbon dioxide (CO2) and, in a context-dependent manner, switch from mediating avoidance of CO2 to supporting CO2 attraction in C. elegans. They used tandem ChIP-seq and cell targeted RNA-seq to identify gene targets of the transcription factor ETS-5, which is required for BAG development, and their functional screen of ETS-5 targets revealed that NHR-6, the sole C. elegans NR4A-type nuclear receptor, is required for BAG-mediated avoidance of CO2 and regulates expression of a subset of BAG-specific genes. During development, the nervous system generates neurons that serve highly specialized roles and, accordingly, possess unique functional attributes. The chemosensory BAG neurons of C. elegans are striking exemplars of this. BAGs sense the respiratory gas carbon dioxide (CO2) and, in a context-dependent manner, switch from mediating avoidance of CO2 to supporting CO2 attraction. To determine mechanisms that support the physiology and plasticity of BAG neurons, we used tandem ChIP-seq and cell targeted RNA-seq to identify gene targets of the transcription factor ETS-5, which is required for BAG development. A functional screen of ETS-5 targets revealed that NHR-6, the sole C. elegans NR4A-type nuclear receptor, is required for BAG-mediated avoidance of CO2 and regulates expression of a subset of BAG-specific genes. Unlike ets-5 mutants, which are defective for both attraction to and avoidance of CO2, nhr-6 mutants are fully competent for attraction. These data indicate that the remarkable ability of BAGs to adaptively assign positive or negative valence to a chemosensory stimulus requires a gene-regulatory program supported by an evolutionarily conserved type of nuclear receptor. We suggest that NHR-6 might be an example of a developmental mechanism for modular encoding of functional plasticity in the nervous system.
Collapse
Affiliation(s)
- Mary Rossillo
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
10
|
Andrews MG, Kong J, Novitch BG, Butler SJ. New perspectives on the mechanisms establishing the dorsal-ventral axis of the spinal cord. Curr Top Dev Biol 2018; 132:417-450. [PMID: 30797516 DOI: 10.1016/bs.ctdb.2018.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Distinct classes of neurons arise at different positions along the dorsal-ventral axis of the spinal cord leading to spinal neurons being segregated along this axis according to their physiological properties and functions. Thus, the neurons associated with motor control are generally located in, or adjacent to, the ventral horn whereas the interneurons (INs) that mediate sensory activities are present within the dorsal horn. Here, we review classic and recent studies examining the developmental mechanisms that establish the dorsal-ventral axis in the embryonic spinal cord. Intriguingly, while the cellular organization of the dorsal and ventral halves of the spinal cord looks superficially similar during early development, the underlying molecular mechanisms that establish dorsal vs ventral patterning are markedly distinct. For example, the ventral spinal cord is patterned by the actions of a single growth factor, sonic hedgehog (Shh) acting as a morphogen, i.e., concentration-dependent signal. Recent studies have shed light on the mechanisms by which the spatial and temporal gradient of Shh is transduced by cells to elicit the generation of different classes of ventral INs, and motor neurons (MNs). In contrast, the dorsal spinal cord is patterned by the action of multiple factors, most notably by members of the bone morphogenetic protein (BMP) and Wnt families. While less is known about dorsal patterning, recent studies have suggested that the BMPs do not act as morphogens to specify dorsal IN identities as previously proposed, rather each BMP has signal-specific activities. Finally, we consider the promise that elucidation of these mechanisms holds for neural repair.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of California, Los Angeles, CA, United States
| | - Jennifer Kong
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of California, Los Angeles, CA, United States
| | - Bennett G Novitch
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States.
| |
Collapse
|
11
|
Cardozo MJ, Mysiak KS, Becker T, Becker CG. Reduce, reuse, recycle – Developmental signals in spinal cord regeneration. Dev Biol 2017; 432:53-62. [DOI: 10.1016/j.ydbio.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
|
12
|
Piersma AH, Hessel EV, Staal YC. Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Reprod Toxicol 2017; 72:53-61. [PMID: 28591664 DOI: 10.1016/j.reprotox.2017.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
This review explores the usefulness retinoic acid (RA) related physiological factors as possible biomarkers of embryotoxicity. RA is involved in the morphogenesis of the early embryo as well as in the development and maturation of a wide variety of organ anlagen. The region-specific homeostasis of RA in the embryo is in many ways the driving force determining developmental cell proliferation versus differentiation. As a consequence, RA concentrations are carefully controlled in time and space in the developing embryo. RA deficiency and overdosing both result in characteristic patterns of malformations that may involve many different organ systems. The central role of RA in embryo development provides us with a set of sensitive biomarkers that may be employed in developmental toxicity testing. This includes the synthesizing and metabolizing enzymes of RA, but also a myriad of related morphogenetic factors and their genes, of which the expression may be affected by changes in RA balance. Several examples of embryotoxicants interfering with the homeostasis of RA and related parameters have been described. A preliminary adverse outcome pathway framework for RA mediated malformations has been published. Expansion of this framework and its application in developmental toxicity testing may allow the detection of a large variety of embryotoxicants with diverse modes of action. RA homeostasis therefore provides a promising set of molecular tools that may be employed in the advancement of mode of action driven animal-free developmental toxicity testing.
Collapse
Affiliation(s)
- Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Ellen V Hessel
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Yvonne C Staal
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
13
|
Abstract
The spinal cord consists of multiple neuronal cell types that are critical to motor control and arise from distinct progenitor domains in the developing neural tube. Excitatory V2a interneurons in particular are an integral component of central pattern generators that control respiration and locomotion; however, the lack of a robust source of human V2a interneurons limits the ability to molecularly profile these cells and examine their therapeutic potential to treat spinal cord injury (SCI). Here, we report the directed differentiation of CHX10+ V2a interneurons from human pluripotent stem cells (hPSCs). Signaling pathways (retinoic acid, sonic hedgehog, and Notch) that pattern the neural tube were sequentially perturbed to identify an optimized combination of small molecules that yielded ∼25% CHX10+ cells in four hPSC lines. Differentiated cultures expressed much higher levels of V2a phenotypic markers (CHX10 and SOX14) than other neural lineage markers. Over time, CHX10+ cells expressed neuronal markers [neurofilament, NeuN, and vesicular glutamate transporter 2 (VGlut2)], and cultures exhibited increased action potential frequency. Single-cell RNAseq analysis confirmed CHX10+ cells within the differentiated population, which consisted primarily of neurons with some glial and neural progenitor cells. At 2 wk after transplantation into the spinal cord of mice, hPSC-derived V2a cultures survived at the site of injection, coexpressed NeuN and VGlut2, extended neurites >5 mm, and formed putative synapses with host neurons. These results provide a description of V2a interneurons differentiated from hPSCs that may be used to model central nervous system development and serve as a potential cell therapy for SCI.
Collapse
|
14
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
15
|
Mammadova A, Zhou H, Carels CE, Von den Hoff JW. Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 2016; 92:326-335. [DOI: 10.1016/j.diff.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023]
|
16
|
Sánchez-Hernández D, Anderson GH, Poon AN, Pannia E, Cho CE, Huot PS, Kubant R. Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: an overview of research. Nutr Res 2016; 36:1045-1054. [DOI: 10.1016/j.nutres.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|
17
|
Generating Diverse Spinal Motor Neuron Subtypes from Human Pluripotent Stem Cells. Stem Cells Int 2015; 2016:1036974. [PMID: 26823667 PMCID: PMC4707335 DOI: 10.1155/2016/1036974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022] Open
Abstract
Resolving the mechanisms underlying human neuronal diversification remains a major challenge in developmental and applied neurobiology. Motor neurons (MNs) represent a diverse pool of neuronal subtypes exhibiting differential vulnerability in different human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). The ability to predictably manipulate MN subtype lineage restriction from human pluripotent stem cells (PSCs) will form the essential basis to establishing accurate, clinically relevant in vitro disease models. I first overview motor neuron developmental biology to provide some context for reviewing recent studies interrogating pathways that influence the generation of MN diversity. I conclude that motor neurogenesis from PSCs provides a powerful reductionist model system to gain insight into the developmental logic of MN subtype diversification and serves more broadly as a leading exemplar of potential strategies to resolve the molecular basis of neuronal subclass differentiation within the nervous system. These studies will in turn permit greater mechanistic understanding of differential MN subtype vulnerability using in vitro human disease models.
Collapse
|
18
|
Zannino DA, Sagerström CG. An emerging role for prdm family genes in dorsoventral patterning of the vertebrate nervous system. Neural Dev 2015; 10:24. [PMID: 26499851 PMCID: PMC4620005 DOI: 10.1186/s13064-015-0052-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
The embryonic vertebrate neural tube is divided along its dorsoventral (DV) axis into eleven molecularly discrete progenitor domains. Each of these domains gives rise to distinct neuronal cell types; the ventral-most six domains contribute to motor circuits, while the five dorsal domains contribute to sensory circuits. Following the initial neurogenesis step, these domains also generate glial cell types—either astrocytes or oligodendrocytes. This DV pattern is initiated by two morphogens—Sonic Hedgehog released from notochord and floor plate and Bone Morphogenetic Protein produced in the roof plate—that act in concentration gradients to induce expression of genes along the DV axis. Subsequently, these DV-restricted genes cooperate to define progenitor domains and to control neuronal cell fate specification and differentiation in each domain. Many genes involved in this process have been identified, but significant gaps remain in our understanding of the underlying genetic program. Here we review recent work identifying members of the Prdm gene family as novel regulators of DV patterning in the neural tube. Many Prdm proteins regulate transcription by controlling histone modifications (either via intrinsic histone methyltransferase activity, or by recruiting histone modifying enzymes). Prdm genes are expressed in spatially restricted domains along the DV axis of the neural tube and play important roles in the specification of progenitor domains, as well as in the subsequent differentiation of motor neurons and various types of interneurons. Strikingly, Prdm proteins appear to function by binding to, and modulating the activity of, other transcription factors (particularly bHLH proteins). The identity of key transcription factors in DV patterning of the neural tube has been elucidated previously (e.g. the nkx, bHLH and pax families), but it now appears that an additional family is also required and that it acts in a potentially novel manner.
Collapse
Affiliation(s)
- Denise A Zannino
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| |
Collapse
|
19
|
Seo HI, Cho AN, Jang J, Kim DW, Cho SW, Chung BG. Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1861-9. [DOI: 10.1016/j.nano.2015.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 12/22/2022]
|
20
|
Koszinowski S, Boerries M, Busch H, Krieglstein K. RARβ regulates neuronal cell death and differentiation in the avian ciliary ganglion. Dev Neurobiol 2015; 75:1204-18. [PMID: 25663354 PMCID: PMC4832352 DOI: 10.1002/dneu.22278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 02/06/2023]
Abstract
Programmed cell death during chicken ciliary ganglion (CG) development is mostly discussed as an extrinsically regulated process, guided either by the establishment of a functional balance between preganglionic and postganglionic activity or the availability of target‐derived neurotrophic factors. We found that the expression of the gene coding for the nuclear retinoic acid receptor β (RARB) is transiently upregulated prior to and during the execution phase of cell death in the CG. Using retroviral vectors, the expression of RARB was knocked down during embryonic development in ovo. The knockdown led to a significant increase in CG neuron number after the cell death phase. BrdU injections and active caspase‐3 staining revealed that this increase in neuron number was due to an inhibition of apoptosis during the normal cell death phase. Furthermore, apoptotic neuron numbers were significantly increased at a stage when cell death is normally completed. While the cholinergic phenotype of the neurons remained unchanged after RARB knockdown, the expression of the proneural gene Cash1 was increased, but somatostatin‐like immunoreactivity, a hallmark of the mature choroid neuron population, was decreased. Taken together, these results point toward a delay in neuronal differentiation as well as cell death. The availability of nuclear retinoic acid receptor β (RARβ) and RARβ‐induced transcription of genes could therefore be a new intrinsic cue for the maturation of CG neurons and their predisposition to undergo cell death. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1204–1218, 2015
Collapse
Affiliation(s)
- Sophie Koszinowski
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg (ALU), Freiburg, Germany.,University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, D-79104, Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Centre for Biochemistry und Molecular Cell Research (ZBMZ), University of Freiburg, ALU, Stefan-Meier-Str.17, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Centre for Biochemistry und Molecular Cell Research (ZBMZ), University of Freiburg, ALU, Stefan-Meier-Str.17, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg (ALU), Freiburg, Germany
| |
Collapse
|
21
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
22
|
|
23
|
Guo H, Cao C, Chi X, Zhao J, Liu X, Zhou N, Han S, Yan Y, Wang Y, Xu Y, Yan Y, Cui H, Sun H. Specificity protein 1 regulates topoisomerase IIβ expression in SH-SY5Y cells during neuronal differentiation. J Neurosci Res 2014; 92:1374-83. [DOI: 10.1002/jnr.23403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Hui Guo
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Cuili Cao
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
- Laboratory of Neurobiology; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Xueqian Chi
- Department of Endodontics; The Second Hospital of Hebei Medical University; Shijiazhuang Hebei China
| | - Junxia Zhao
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Xia Liu
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Najing Zhou
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Shuo Han
- Department of Anatomy; College of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Yongxin Yan
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Yanling Wang
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Yannan Xu
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Yunli Yan
- Cell Biology Division; Institute of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Huixian Cui
- Department of Anatomy; College of Basic Medicine; Hebei Medical University; Shijiazhuang Hebei China
| | - Hongxia Sun
- Department of Pathology and Laboratory Medicine; University of Texas Health Science Center at Houston; Houston Texas
| |
Collapse
|
24
|
Brown CR, Butts JC, McCreedy DA, Sakiyama-Elbert SE. Generation of v2a interneurons from mouse embryonic stem cells. Stem Cells Dev 2014; 23:1765-76. [PMID: 24650073 DOI: 10.1089/scd.2013.0628] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
V2a interneurons of the ventral spinal cord and hindbrain play an important role in the central pattern generators (CPGs) involved in locomotion, skilled reaching, and respiration. However, sources of V2a interneurons for in vitro studies are limited. In this study, we developed a differentiation protocol for V2a interneurons from mouse embryonic stem cells (mESCs). Cells were induced in a 2(-)/4(+) induction protocol with varying concentrations of retinoic acid (RA) and the mild sonic hedgehog (Shh) agonist purmorphamine (Pur) in order to increase the expression of V2a interneuron transcription factors (eg, Chx10). Notch signaling, which influences the commitment of p2 progenitor cells to V2a or V2b interneurons, was inhibited in cell cultures to increase the percentage of V2a interneurons. At the end of the induction period, cell commitment was assessed using quantitative real-time polymerase chain reaction, immunocytochemistry, and flow cytometry to quantify expression of transcription factors specific to V2a interneurons and the adjacent ventral spinal cord regions. Low concentrations of RA and high concentrations of Pur led to greater expression of transcription factors specific for V2a interneurons. Notch inhibition favored V2a interneuron over V2b interneuron differentiation. The protocol established in this study can be used to further elucidate the pathways involved in V2a interneuron differentiation and help produce sources of V2a interneurons for developmental neurobiology, electrophysiology, and transplantation studies.
Collapse
Affiliation(s)
- Chelsea R Brown
- Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri
| | | | | | | |
Collapse
|
25
|
Francius C, Clotman F. Generating spinal motor neuron diversity: a long quest for neuronal identity. Cell Mol Life Sci 2014; 71:813-29. [PMID: 23765105 PMCID: PMC11113339 DOI: 10.1007/s00018-013-1398-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 03/26/2023]
Abstract
Understanding how thousands of different neuronal types are generated in the CNS constitutes a major challenge for developmental neurobiologists and is a prerequisite before considering cell or gene therapies of nervous lesions or pathologies. During embryonic development, spinal motor neurons (MNs) segregate into distinct subpopulations that display specific characteristics and properties including molecular identity, migration pattern, allocation to specific motor columns, and innervation of defined target. Because of the facility to correlate these different characteristics, the diversification of spinal MNs has become the model of choice for studying the molecular and cellular mechanisms underlying the generation of multiple neuronal populations in the developing CNS. Therefore, how spinal motor neuron subpopulations are produced during development has been extensively studied during the last two decades. In this review article, we will provide a comprehensive overview of the genetic and molecular mechanisms that contribute to the diversification of spinal MNs.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| |
Collapse
|
26
|
Duester G. Retinoid signaling in control of progenitor cell differentiation during mouse development. Semin Cell Dev Biol 2013; 24:694-700. [PMID: 23973941 DOI: 10.1016/j.semcdb.2013.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/25/2013] [Accepted: 08/10/2013] [Indexed: 02/01/2023]
Abstract
The vitamin A metabolite retinoic acid (RA) serves as a ligand for nuclear RA receptors that control differentiation of progenitor cells important for vertebrate development. Genetic studies in mouse embryos deficient for RA-generating enzymes have been invaluable for deciphering RA function. RA first begins to act during early organogenesis when RA generated in trunk mesoderm begins to function as a diffusible signal controlling progenitor cell differentiation. In neuroectoderm, RA functions as an instructive signal to stimulate neuronal differentiation of progenitor cells in the hindbrain and spinal cord. RA is not required for early neuronal differentiation of the forebrain, but at later stages RA stimulates neuronal differentiation in forebrain basal ganglia. RA also acts as a permissive signal for differentiation by repressing fibroblast growth factor (FGF) signaling in differentiated cells as they emerge from progenitor populations in the caudal progenitor zone and second heart field. In addition, RA signaling stimulates differentiation of spermatogonial germ cells and induces meiosis in male but not female gonads. A more complete understanding of the normal functions of RA signaling during development will guide efforts to use RA as a differentiation agent for therapeutic purposes.
Collapse
Affiliation(s)
- Gregg Duester
- Sanford-Burnham Medical Research Institute, Development and Aging Program, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Francius C, Harris A, Rucchin V, Hendricks TJ, Stam FJ, Barber M, Kurek D, Grosveld FG, Pierani A, Goulding M, Clotman F. Identification of multiple subsets of ventral interneurons and differential distribution along the rostrocaudal axis of the developing spinal cord. PLoS One 2013; 8:e70325. [PMID: 23967072 PMCID: PMC3744532 DOI: 10.1371/journal.pone.0070325] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/17/2013] [Indexed: 01/06/2023] Open
Abstract
The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification. Here, we report that V0, V1 and V2 interneurons exhibit distinct organizational patterns at brachial, thoracic and lumbar levels of the developing spinal cord. In addition, we demonstrate that each cardinal class of ventral interneurons can be subdivided into several subsets according to the combinatorial expression of different sets of transcription factors, and that these subsets are differentially distributed along the rostrocaudal axis of the spinal cord. This comprehensive molecular profiling of ventral interneurons provides an important resource for investigating neuronal diversification in the developing spinal cord and for understanding the contribution of specific interneuron subsets on CPG circuits and motor control.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Audrey Harris
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Vincent Rucchin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Timothy J. Hendricks
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Floor J. Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Melissa Barber
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dorota Kurek
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank G. Grosveld
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alessandra Pierani
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
- * E-mail:
| |
Collapse
|
28
|
Kelly CE, Thymiakou E, Dixon JE, Tanaka S, Godwin J, Episkopou V. Rnf165/Ark2C enhances BMP-Smad signaling to mediate motor axon extension. PLoS Biol 2013; 11:e1001538. [PMID: 23610558 PMCID: PMC3627648 DOI: 10.1371/journal.pbio.1001538] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 03/07/2013] [Indexed: 12/21/2022] Open
Abstract
Little is known about extrinsic signals required for the advancement of motor neuron (MN) axons, which extend over long distances in the periphery to form precise connections with target muscles. Here we present that Rnf165 (Arkadia-like; Arkadia2; Ark2C) is expressed specifically in the nervous system and that its loss in mice causes motor innervation defects that originate during development and lead to wasting and death before weaning. The defects range from severe reduction of motor axon extension as observed in the dorsal forelimb to shortening of presynaptic branches of the phrenic nerve, as observed in the diaphragm. Molecular functional analysis showed that in the context of the spinal cord Ark2C enhances transcriptional responses of the Smad1/5/8 effectors, which are activated (phosphorylated) downstream of Bone Morphogenetic Protein (BMP) signals. Consistent with Ark2C-modulated BMP signaling influencing motor axons, motor pools in the spinal cord were found to harbor phosphorylated Smad1/5/8 (pSmad) and treatment of primary MN with BMP inhibitor diminished axon length. In addition, genetic reduction of BMP-Smad signaling in Ark2C (+/-) mice caused the emergence of Ark2C (-/-) -like dorsal forelimb innervation deficits confirming that enhancement of BMP-Smad responses by Ark2C mediates efficient innervation. Together the above data reveal an involvement of BMP-Smad signaling in motor axon advancement.
Collapse
Affiliation(s)
- Claire E. Kelly
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Efstathia Thymiakou
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - James E. Dixon
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shinya Tanaka
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jonathan Godwin
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vasso Episkopou
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Lara-Ramírez R, Zieger E, Schubert M. Retinoic acid signaling in spinal cord development. Int J Biochem Cell Biol 2013; 45:1302-13. [PMID: 23579094 DOI: 10.1016/j.biocel.2013.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022]
Abstract
Retinoic acid (RA) is an important signaling molecule mediating intercellular communication through vertebrate development. Here, we present and discuss recent information on the roles of the RA signaling pathway in spinal cord development. RA is an important player in the patterning and definition of the spinal cord territory from very early stages of development, even before the appearance of the neural plate and further serves a role in the patterning of the spinal cord both along the dorsoventral and anteroposterior axes, particularly in the promotion of neuronal differentiation. It is thus required to establish a variety of neuronal cell types at specific positions of the spinal cord. The main goal of this review is to gather information from vertebrate models, including fish, frogs, chicken and mice, and to put this information in a comparative context in an effort to visualize how the RA pathway was incorporated into the evolving vertebrate spinal cord and to identify mechanisms that are both common and different in the various vertebrate models. In doing so, we try to reconstruct how spinal cord development has been regulated by the RA signaling cascade through vertebrate diversification, highlighting areas which require further studies to obtain a better understanding of the evolutionary events that shaped this structure in the vertebrate lineage.
Collapse
Affiliation(s)
- Ricardo Lara-Ramírez
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, UMR 7009 - CNRS/UPMC, EvoInSiDe Team, Observatoire Océanologique, 181 Chemin du Lazaret, BP 28, 06230 Villefranche-sur-Mer, France
| | | | | |
Collapse
|
30
|
Law KKL, Makino S, Mo R, Zhang X, Puviindran V, Hui CC. Antagonistic and cooperative actions of Kif7 and Sufu define graded intracellular Gli activities in Hedgehog signaling. PLoS One 2012; 7:e50193. [PMID: 23166838 PMCID: PMC3500354 DOI: 10.1371/journal.pone.0050193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/22/2012] [Indexed: 01/18/2023] Open
Abstract
Graded Hedgehog (Hh) signaling governs the balance of Gli transcriptional activators and repressors to specify diverse ventral cell fates in the spinal cord. It remains unclear how distinct intracellular Gli activity is generated. Here, we demonstrate that Sufu acts universally as a negative regulator of Hh signaling, whereas Kif7 inhibits Gli activity in cooperation with, and independent of, Sufu. Together, they deter naïve precursors from acquiring increasingly ventral identity. We show that Kif7 is also required to establish high intracellular Gli activity by antagonizing the Sufu-inhibition of Gli2. Strikingly, by abolishing the negative regulatory action of Sufu, diverse ventral cell fates can be specified in the absence of extracellular Hh signaling. These data suggest that Sufu is the primary regulator of graded Hh signaling and establish that the antagonistic and cooperative actions of Kif7 and Sufu are responsible for setting up distinct Gli activity in ventral cell fate specification.
Collapse
Affiliation(s)
- Kelvin King Lo Law
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shigeru Makino
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Koyadai, Tsukuba, Ibaraki, Japan
| | - Rong Mo
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Xiaoyun Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Vijitha Puviindran
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Chi-chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Visualization of retinoic acid signaling in transgenic axolotls during limb development and regeneration. Dev Biol 2012; 368:63-75. [PMID: 22627291 DOI: 10.1016/j.ydbio.2012.05.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/26/2012] [Accepted: 05/10/2012] [Indexed: 12/16/2022]
Abstract
Retinoic acid (RA) plays a necessary role in limb development and regeneration, but the precise mechanism by which it acts during these processes is unclear. The role of RA in limb regeneration was first highlighted by the remarkable effect that it has on respecifying the proximodistal axis of the regenerating limb so that serially repeated limbs are produced. To facilitate the study of RA signaling during development and then during regeneration of the same structure we have turned to the axolotl, the master of vertebrate regeneration, and generated transgenic animals that fluorescently report RA signaling in vivo. Characterization of these animals identified an anterior segment of the developing embryo where RA signaling occurs revealing conserved features of the early vertebrate embryo. During limb development RA signaling was present in the developing forelimb bud mesenchyme, but was not detected during hindlimb development. During limb regeneration, RA signaling was surprisingly almost exclusively observed in the apical epithelium suggesting a different role of RA during limb regeneration. After the addition of supplemental RA to regenerating limbs that leads to pattern duplications, the fibroblast stem cells of the blastema responded showing that they are capable of transcriptionally responding to RA. These findings are significant because it means that RA signaling may play a multifunctional role during forelimb development and regeneration and that the fibroblast stem cells that regulate proximodistal limb patterning during regeneration are targets of RA signaling.
Collapse
|
32
|
Abstract
Retinoic acid (RA) is a vitamin A-derived, non-peptidic, small lipophilic molecule that acts as ligand for nuclear RA receptors (RARs), converting them from transcriptional repressors to activators. The distribution and levels of RA in embryonic tissues are tightly controlled by regulated synthesis through the action of specific retinol and retinaldehyde dehydrogenases and by degradation via specific cytochrome P450s (CYP26s). Recent studies indicate that RA action involves an interplay between diffusion (morphogen-like) gradients and the establishment of signalling boundaries due to RA metabolism, thereby allowing RA to finely control the differentiation and patterning of various stem/progenitor cell populations. Here, we provide an overview of the RA biosynthesis, degradation and signalling pathways and review the main functions of this molecule during embryogenesis.
Collapse
Affiliation(s)
- Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
| | | |
Collapse
|
33
|
Paschaki M, Lin SC, Wong RLY, Finnell RH, Dollé P, Niederreither K. Retinoic acid-dependent signaling pathways and lineage events in the developing mouse spinal cord. PLoS One 2012; 7:e32447. [PMID: 22396766 PMCID: PMC3292566 DOI: 10.1371/journal.pone.0032447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
Studies in avian models have demonstrated an involvement of retinoid signaling in early neural tube patterning. The roles of this signaling pathway at later stages of spinal cord development are only partly characterized. Here we use Raldh2-null mouse mutants rescued from early embryonic lethality to study the consequences of lack of endogenous retinoic acid (RA) in the differentiating spinal cord. Mid-gestation RA deficiency produces prominent structural and molecular deficiencies in dorsal regions of the spinal cord. While targets of Wnt signaling in the dorsal neuronal lineage are unaltered, reductions in Fibroblast Growth Factor (FGF) and Notch signaling are clearly observed. We further provide evidence that endogenous RA is capable of driving stem cell differentiation. Raldh2 deficiency results in a decreased number of spinal cord derived neurospheres, which exhibit a reduced differentiation potential. Raldh2-null neurospheres have a decreased number of cells expressing the neuronal marker β-III-tubulin, while the nestin-positive cell population is increased. Hence, in vivo retinoid deficiency impaired neural stem cell growth. We propose that RA has separable functions in the developing spinal cord to (i) maintain high levels of FGF and Notch signaling and (ii) drive stem cell differentiation, thus restricting both the numbers and the pluripotent character of neural stem cells.
Collapse
Affiliation(s)
- Marie Paschaki
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Song-Chang Lin
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca Lee Yean Wong
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, The Texas A&M University System Health Science Center, Houston, Texas, United States of America
| | - Richard H. Finnell
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, Texas, United States of America
| | - Pascal Dollé
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Karen Niederreither
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
England S, Batista MF, Mich JK, Chen JK, Lewis KE. Roles of Hedgehog pathway components and retinoic acid signalling in specifying zebrafish ventral spinal cord neurons. Development 2012; 138:5121-34. [PMID: 22069186 DOI: 10.1242/dev.066159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In mouse, Hedgehog (Hh) signalling is required for most ventral spinal neurons to form. Here, we analyse the spinal cord phenotype of zebrafish maternal-zygotic smoothened (MZsmo) mutants that completely lack Hh signalling. We find that most V3 domain cells and motoneurons are lost, whereas medial floorplate still develops normally and V2, V1 and V0v cells form in normal numbers. This phenotype resembles that of mice that lack both Hh signalling and Gli repressor activity. Ventral spinal cord progenitor domain transcription factors are not expressed at 24 hpf in zebrafish MZsmo mutants. However, pMN, p2 and p1 domain markers are expressed at early somitogenesis stages in these mutants. This suggests that Gli repressor activity does not extend into zebrafish ventral spinal cord at these stages, even in the absence of Hh signalling. Consistent with this, ectopic expression of Gli3R represses ventral progenitor domain expression at these early stages and knocking down Gli repressor activity rescues later expression. We investigated whether retinoic acid (RA) signalling specifies ventral spinal neurons in the absence of Hh signalling. The results suggest that RA is required for the correct number of many different spinal neurons to form. This is probably mediated, in part, by an effect on cell proliferation. However, V0v, V1 and V2 cells are still present, even in the absence of both Hh and RA signalling. We demonstrate that Gli1 has a Hh-independent role in specifying most of the remaining motoneurons and V3 domain cells in embryos that lack Hh signalling, but removal of Gli1 activity does not affect more dorsal neurons.
Collapse
Affiliation(s)
- Samantha England
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | | | | | | | | |
Collapse
|
35
|
Martínez-Morales PL, Diez del Corral R, Olivera-Martínez I, Quiroga AC, Das RM, Barbas JA, Storey KG, Morales AV. FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk. ACTA ACUST UNITED AC 2011; 194:489-503. [PMID: 21807879 PMCID: PMC3153641 DOI: 10.1083/jcb.201011077] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coordination between functionally related adjacent tissues is essential during development. For example, formation of trunk neural crest cells (NCCs) is highly influenced by the adjacent mesoderm, but the molecular mechanism involved is not well understood. As part of this mechanism, fibroblast growth factor (FGF) and retinoic acid (RA) mesodermal gradients control the onset of neurogenesis in the extending neural tube. In this paper, using gain- and loss-of-function experiments, we show that caudal FGF signaling prevents premature specification of NCCs and, consequently, premature epithelial-mesenchymal transition (EMT) to allow cell emigration. In contrast, rostrally generated RA promotes EMT of NCCs at somitic levels. Furthermore, we show that FGF and RA signaling control EMT in part through the modulation of elements of the bone morphogenetic protein and Wnt signaling pathways. These data establish a clear role for opposition of FGF and RA signaling in control of the timing of NCC EMT and emigration and, consequently, coordination of the development of the central and peripheral nervous system during vertebrate trunk elongation.
Collapse
|
36
|
Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation. PLoS One 2011; 6:e20667. [PMID: 21674001 PMCID: PMC3108948 DOI: 10.1371/journal.pone.0020667] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/09/2011] [Indexed: 11/19/2022] Open
Abstract
The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies neurogenesis in vitro.
Collapse
|
37
|
Morona R, Ferran JL, Puelles L, González A. Embryonic genoarchitecture of the pretectum in Xenopus laevis: A conserved pattern in tetrapods. J Comp Neurol 2011; 519:1024-50. [DOI: 10.1002/cne.22548] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Krispin S, Nitzan E, Kalcheim C. The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol 2011; 70:796-812. [PMID: 20683859 DOI: 10.1002/dneu.20826] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dorsal neural tube first generates neural crest cells that exit the neural primordium following an epithelial-to-mesenchymal conversion to become sympathetic ganglia, Schwann cells, dorsal root sensory ganglia, and melanocytes of the skin. Following the end of crest emigration, the dorsal midline of the neural tube becomes the roof plate, a signaling center for the organization of dorsal neuronal cell types. Recent lineage analysis performed before the onset of crest delamination revealed that the dorsal tube is a highly dynamic region sequentially traversed by fate-restricted crest progenitors. Furthermore, prospective roof plate cells were shown to originate ventral to presumptive crest and to progressively relocate dorsalward to occupy their definitive midline position following crest delamination. These data raise important questions regarding the mechanisms of cell emigration in relation to fate acquisition, and suggest the possibility that spatial and/or temporal information in the dorsal neural tube determines initial segregation of neural crest cells into their derivatives. In addition, they emphasize the need to address what controls the end of neural crest production and consequent roof plate formation, a fundamental issue for understanding the separation between central and peripheral lineages during development of the nervous system.
Collapse
Affiliation(s)
- Shlomo Krispin
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
39
|
Patani R, Hollins AJ, Wishart TM, Puddifoot CA, Álvarez S, de Lera AR, Wyllie DJA, Compston DAS, Pedersen RA, Gillingwater TH, Hardingham GE, Allen ND, Chandran S. Retinoid-independent motor neurogenesis from human embryonic stem cells reveals a medial columnar ground state. Nat Commun 2011; 2:214. [PMID: 21364553 PMCID: PMC3072066 DOI: 10.1038/ncomms1216] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/26/2011] [Indexed: 01/12/2023] Open
Abstract
A major challenge in neurobiology is to understand mechanisms underlying human neuronal diversification. Motor neurons (MNs) represent a diverse collection of neuronal subtypes, displaying differential vulnerability in different human neurodegenerative diseases. The ability to manipulate cell subtype diversification is critical to establish accurate, clinically relevant in vitro disease models. Retinoid signalling contributes to caudal precursor specification and subsequent MN subtype diversification. Here we investigate the necessity for retinoic acid in motor neurogenesis from human embryonic stem cells. We show that activin/nodal signalling inhibition, followed by sonic hedgehog agonist treatment, is sufficient for MN precursor specification, which occurs even in the presence of retinoid pathway antagonists. Importantly, precursors mature into HB9/ChAT-expressing functional MNs. Furthermore, retinoid-independent motor neurogenesis results in a ground state biased to caudal, medial motor columnar identities from which a greater retinoid-dependent diversity of MNs, including those of lateral motor columns, can be selectively derived in vitro.
Collapse
Affiliation(s)
- R. Patani
- Anne Mclaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - A. J. Hollins
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - T. M. Wishart
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
- Euan MacDonald Centre, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - C. A. Puddifoot
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
- Euan MacDonald Centre, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - S. Álvarez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, Vigo 36310 Spain
| | - A. R. de Lera
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, Vigo 36310 Spain
| | - D. J. A. Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - D. A. S. Compston
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - R. A. Pedersen
- Anne Mclaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - T. H. Gillingwater
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
- Euan MacDonald Centre, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - G. E. Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - N. D. Allen
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - S. Chandran
- Anne Mclaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Euan MacDonald Centre, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
40
|
Estephane D, Anctil M. Retinoic acid and nitric oxide promote cell proliferation and differentially induce neuronal differentiation in vitro in the cnidarian Renilla koellikeri. Dev Neurobiol 2010; 70:842-52. [DOI: 10.1002/dneu.20824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Castillo HA, Cravo RM, Azambuja AP, Simões-Costa MS, Sura-Trueba S, Gonzalez J, Slonimsky E, Almeida K, Abreu JG, de Almeida MAA, Sobreira TP, de Oliveira SHP, de Oliveira PSL, Signore IA, Colombo A, Concha ML, Spengler TS, Bronner-Fraser M, Nobrega M, Rosenthal N, Xavier-Neto J. Insights into the organization of dorsal spinal cord pathways from an evolutionarily conserved raldh2 intronic enhancer. Development 2010; 137:507-18. [PMID: 20081195 DOI: 10.1242/dev.043257] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dI1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dI1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.
Collapse
Affiliation(s)
- Hozana A Castillo
- Laboratorio de Genética e Cardiologia Molecular, InCor-FMUSP, 05403-000, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee S, Lee B, Lee JW, Lee SK. Retinoid signaling and neurogenin2 function are coupled for the specification of spinal motor neurons through a chromatin modifier CBP. Neuron 2009; 62:641-54. [PMID: 19524524 PMCID: PMC2705669 DOI: 10.1016/j.neuron.2009.04.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/08/2009] [Accepted: 04/30/2009] [Indexed: 11/15/2022]
Abstract
Extracellular signals and cell-intrinsic transcription factors cooperatively instruct generation of diverse neurons. However, little is known about how neural progenitors integrate both cues and orchestrate chromatin changes for neuronal specification. Here, we report that extrinsic signal retinoic acid (RA) and intrinsic transcription factor Neurogenin2 (Ngn2) collaboratively trigger transcriptionally active chromatin in spinal motor neuron genes during development. Retinoic acid receptor (RAR) binds Ngn2 and is thereby recruited to motor neuron genes targeted by Ngn2. RA then facilitates the recruitment of a histone acetyltransferase CBP to the Ngn2/RAR-complex, markedly inducing histone H3/H4-acetylation. Correspondingly, timely inactivation of CBP and its paralog p300 results in profound defects in motor neuron specification and motor axonal projection, accompanied by significantly reduced histone H3-acetylation of the motor neuron enhancer. Our study uncovers the mechanism by which extrinsic RA-signal and intrinsic transcription factor Ngn2 cooperate for cell fate specification through their synergistic activity to trigger transcriptionally active chromatin.
Collapse
Affiliation(s)
- Seunghee Lee
- Dept. Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bora Lee
- Dept. Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jae W. Lee
- Dept. Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Soo-Kyung Lee
- Dept. Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
43
|
Misra M, Shah V, Carpenter E, McCaffery P, Lance-Jones C. Restricted patterns of Hoxd10 and Hoxd11 set segmental differences in motoneuron subtype complement in the lumbosacral spinal cord. Dev Biol 2009; 330:54-72. [PMID: 19306865 PMCID: PMC2699214 DOI: 10.1016/j.ydbio.2009.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 02/01/2023]
Abstract
During normal vertebrate development, Hoxd10 and Hoxd11 are expressed by differentiating motoneurons in restricted patterns along the rostrocaudal axis of the lumbosacral (LS) spinal cord. To assess the roles of these genes in the attainment of motoneuron subtypes characteristic of LS subdomains, we examined subtype complement after overexpression of Hoxd10 or Hoxd11 in the embryonic chick LS cord and in a Hoxd10 loss-of-function mouse embryo. Data presented here provide evidence that Hoxd10 defines the position of the lateral motor column (LMC) as a whole and, in rostral LS segments, specifically promotes the development of motoneurons of the lateral subdivision of the lateral motor column (LMCl). In contrast, Hoxd11 appears to impart a caudal and medial LMC (LMCm) identity to some motoneurons and molecular profiles suggestive of a suppression of LMC development in others. We also provide evidence that Hoxd11 suppresses the expression of Hoxd10 and the retinoic acid synthetic enzyme, retinaldehyde dehydrogenase 2 (RALDH2). In a normal chick embryo, Hoxd10 and RALDH2 are expressed throughout the LS region at early stages of motoneuron differentiation but their levels decline in Hoxd11-expressing caudal LS segments that ultimately contain few LMCl motoneurons. We hypothesize that one of the roles played by Hoxd11 is to modulate Hoxd10 and local retinoic acid levels and thus, perhaps define the caudal boundaries of the LMC and its subtype complement.
Collapse
Affiliation(s)
- Mala Misra
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Veeral Shah
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ellen Carpenter
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Science, UCLA School of Medicine, NRB 303, 635 Charles E. Young Drive South, Los Angeles, CA 90095
| | - Peter McCaffery
- Institute of Medical Science, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Cynthia Lance-Jones
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
44
|
Patterson VL, Damrau C, Paudyal A, Reeve B, Grimes DT, Stewart ME, Williams DJ, Siggers P, Greenfield A, Murdoch JN. Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Hum Mol Genet 2009; 18:1719-39. [PMID: 19223390 PMCID: PMC2671985 DOI: 10.1093/hmg/ddp075] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/06/2009] [Accepted: 02/12/2009] [Indexed: 01/04/2023] Open
Abstract
The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to identify novel components of the pathway, including key molecules that function as positive or negative regulators of Shh signalling. Data presented here define Tulp3 as a novel negative regulator of the Shh pathway. We have identified a new mouse mutant that is a strongly hypomorphic allele of Tulp3 and which exhibits expansion of ventral markers in the caudal spinal cord, as well as neural tube defects and preaxial polydactyly, consistent with increased Shh signalling. We demonstrate that Tulp3 acts genetically downstream of Shh and Smoothened (Smo) in neural tube patterning and exhibits a genetic interaction with Gli3 in limb development. We show that Tulp3 does not appear to alter expression or processing of Gli3, and we demonstrate that transcriptional regulation of other negative regulators (Rab23, Fkbp8, Thm1, Sufu and PKA) is not affected. We discuss the possible mechanism of action of Tulp3 in Shh-mediated signalling in light of these new data.
Collapse
Affiliation(s)
| | | | | | | | | | - Michelle E. Stewart
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Oxon OX11 0RD, UK
| | | | | | | | | |
Collapse
|
45
|
Ribes V, Le Roux I, Rhinn M, Schuhbaur B, Dollé P. Early mouse caudal development relies on crosstalk between retinoic acid, Shh and Fgf signalling pathways. Development 2009; 136:665-76. [PMID: 19168680 DOI: 10.1242/dev.016204] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The progressive generation of embryonic trunk structures relies on the proper patterning of the caudal epiblast, which involves the integration of several signalling pathways. We have investigated the function of retinoic acid (RA) signalling during this process. We show that, in addition to posterior mesendoderm, primitive streak and node cells transiently express the RA-synthesizing enzyme Raldh2 prior to the headfold stage. RA-responsive cells (detected by the RA-activated RARE-lacZ transgene) are additionally found in the epiblast layer. Analysis of RA-deficient Raldh2(-/-) mutants reveals early caudal patterning defects, with an expansion of primitive streak and mesodermal markers at the expense of markers of the prospective neuroepithelium. As a result, many genes involved in neurogenesis and/or patterning of the embryonic spinal cord are affected in their expression. We demonstrate that RA signalling is required at late gastrulation stages for mesodermal and neural progenitors to respond to the Shh signal. Whole-embryo culture experiments indicate that the proper response of cells to Shh requires two RA-dependent mechanisms: (1) a balanced antagonism between Fgf and RA signals, and (2) a RA-mediated repression of Gli2 expression. Thus, an interplay between RA, Fgf and Shh signalling is likely to be an important mechanism underpinning the tight regulation of caudal embryonic development.
Collapse
Affiliation(s)
- Vanessa Ribes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Inserm, U 964, Illkirch, F-67400 France
| | | | | | | | | |
Collapse
|
46
|
Amirthalingam GS, Howard S, Alvarez S, de Lera AR, Itasaki N. Regulation of Hoxb4 induction after neurulation by somite signal and neural competence. BMC DEVELOPMENTAL BIOLOGY 2009; 9:17. [PMID: 19243620 PMCID: PMC2667173 DOI: 10.1186/1471-213x-9-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 02/25/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND While the body axis is largely patterned along the anterior-posterior (A-P) axis during gastrulation, the central nervous system (CNS) shows dynamic changes in the expression pattern of Hox genes during neurulation, suggesting that the CNS refines the A-P pattern continuously after neural tube formation. This study aims at clarifying the role of somites in up-regulating Hoxb4 expression to eventually establish its final pattern and how the neural tube develops a competence to respond to extrinsic signals. RESULTS We show that somites are required for the up-regulation of Hoxb4 in the neural tube at the level of somites 1 to 5, the anterior-most domain of expression. However, each somite immediately adjacent to the neural tube is not sufficient at each level; planar signaling is additionally required particularly at the anterior-most segments of the expression domain. We also show that the dorsal side of the neural tube has a greater susceptibility to expressing Hoxb4 than the ventral region, a feature associated with dorsalization of the neural tube by BMP signals. BMP4 is additionally able to up-regulate Hoxb4 ventrally, but the effect is restricted to the axial levels at which Hoxb4 is normally expressed, and only in the presence of retinoic acid (RA) or somites, suggesting a role for BMP in rendering the neural tube competent to express Hoxb4 in response to RA or somite signals. CONCLUSION In identifying the collaboration between somites and neural tube competence in the induction of Hoxb4, this study demonstrates interplay between A-P and dorsal-ventral (D-V) patterning systems, whereby a specific feature of D-V polarity may be a prerequisite for proper A-P patterning by Hox genes.
Collapse
Affiliation(s)
- Gayana S Amirthalingam
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, London, NW7 1AA, UK
| | - Sara Howard
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, London, NW7 1AA, UK
| | - Susana Alvarez
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Vigo, 36310 Vigo, Spain
| | - Angel R de Lera
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Vigo, 36310 Vigo, Spain
| | - Nobue Itasaki
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, London, NW7 1AA, UK
| |
Collapse
|
47
|
Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M. Retinoic acid signaling in development: Tissue-specific functions and evolutionary origins. Genesis 2008; 46:640-56. [PMID: 19003929 DOI: 10.1002/dvg.20444] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florent Campo-Paysaa
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242-INRA 1288-ENS-UCBL, IFR128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
48
|
Ribes V, Stutzmann F, Bianchetti L, Guillemot F, Dollé P, Le Roux I. Combinatorial signalling controls Neurogenin2 expression at the onset of spinal neurogenesis. Dev Biol 2008; 321:470-81. [PMID: 18590718 DOI: 10.1016/j.ydbio.2008.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/15/2008] [Accepted: 06/03/2008] [Indexed: 11/17/2022]
Abstract
A central issue during embryonic development is to define how different signals cooperate in generating unique cell types. To address this issue, we focused on the function and the regulation of the proneural gene Neurogenin2 (Neurog2) during early mouse spinal neurogenesis. We showed that Neurog2 is first expressed in cells within the neural plate anterior to the node from the 5 somite-stage. The analysis of Neurog2 mutants established a role for this gene in triggering neural differentiation during spinal cord elongation. We identified a 798 base pair enhancer element (Neurog2-798) upstream of the Neurog2 coding sequence that directs the early caudal expression of Neurog2. Embryo culture experiments showed that Retinoic Acid (RA), Sonic hedgehog (Shh) and Fibroblast Growth Factor signals act in concert on this enhancer to control the spatial and temporal induction of Neurog2. We further demonstrated by transgenesis that two RA response elements and a Gli binding site within the Neurog2-798 element are absolutely required for its activity, strongly suggesting that the regulation of Neurog2 early expression by RA and Shh signals is direct. Our data thus support a model where signal integration at the level of a single enhancer constitutes a key mechanism to control the onset of neurogenesis.
Collapse
Affiliation(s)
- Vanessa Ribes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U 596, CNRS UMR 7104, Université Louis Pasteur, 1 rue Laurent Friès, Illkirch, BP 10142 F-67400, France
| | | | | | | | | | | |
Collapse
|
49
|
Wang G, Scott SA. Retinoid signaling is involved in governing the waiting period for axons in chick hindlimb. Dev Biol 2008; 321:216-26. [PMID: 18602384 PMCID: PMC2596718 DOI: 10.1016/j.ydbio.2008.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/12/2008] [Accepted: 06/12/2008] [Indexed: 01/01/2023]
Abstract
During embryonic development in chick, axons pause in a plexus region for approximately 1 day prior to invading the limb. We have previously shown that this "waiting period" is governed by maturational changes in the limb. Here we provide a detailed description of the spatiotemporal pattern of Raldh2 expression in lumbosacral motoneurons and in the limb, and show that retinoid signaling in the limb contributes significantly to terminating the waiting period. Raldh2, indicative of retinoid signaling, first appears in hindlimb mesenchyme near the end of the waiting period. Transcripts are more abundant in connective tissue associated with predominantly fast muscles than predominantly slow muscles, but are not expressed in muscle cells themselves. The tips of ingrowing axons are always found in association with domains of Raldh2, but development of Raldh2 expression is not regulated by the axons. Instead, retinoid signaling appears to regulate axon entry into the limb. Supplying exogenous retinoic acid to proximal limb during the waiting period caused both motor and sensory axons to invade the limb prematurely and altered the normal stereotyped pattern of axon ingrowth without obvious effects on limb morphogenesis or motoneuron specification. Conversely, locally decreasing retinoid synthesis reduced axon growth into the limb. Retinoic acid significantly enhanced motor axon growth in vitro, suggesting that retinoic acid may directly promote axon growth into the limb in vivo. In addition, retinoid signaling may indirectly affect the waiting period by regulating the maturation of other gate keeping or guidance molecules in the limb. Together these findings reveal a novel function of retinoid signaling in governing the timing and patterning of axon growth into the limb.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| | - Sheryl A. Scott
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| |
Collapse
|
50
|
Briscoe J, Novitch BG. Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philos Trans R Soc Lond B Biol Sci 2008; 363:57-70. [PMID: 17282991 PMCID: PMC2605486 DOI: 10.1098/rstb.2006.2012] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The assembly of neural circuits in the vertebrate central nervous system depends on the organized generation of specific neuronal subtypes. Studies over recent years have begun to reveal the principles and elucidate some of the detailed mechanisms that underlie these processes. In general, exposure to different types and concentrations of signals directs neural progenitor populations to generate specific subtypes of neurons. These signals function by regulating the expression of intrinsic determinants, notably transcription factors, which specify the fate of cells as they differentiate into neurons. In this review, we illustrate these concepts by focusing on the generation of neurons in ventral regions of the spinal cord, where detailed knowledge of the mechanisms that regulate cell identity has provided insight into the development of a number of neuronal subtypes, including motor neurons. A greater knowledge of the molecular control of neural development is likely to have practical benefits in understanding the causes and consequences of neurological diseases. Moreover, recent studies have demonstrated how an understanding of normal neural development can be applied to direct differentiation of stem cells in vitro to specific neuronal subtypes. This type of rational manipulation of stem cells may represent the first step in the development of treatments based on therapeutic replacement of diseased or damaged nervous tissue.
Collapse
Affiliation(s)
- James Briscoe
- Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|