1
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
2
|
Bouju A, Nusse R, Wu PV. A primer on the pleiotropic endocrine fibroblast growth factor FGF19/FGF15. Differentiation 2024; 140:100816. [PMID: 39500656 DOI: 10.1016/j.diff.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
Fibroblast Growth Factor 19 (FGF19) is a member of the Fibroblast Growth Factor (FGF) family, known for its role in various cellular processes including embryonic development and metabolic regulation. FGF19 functions as an endocrine factor, influencing energy balance, bile acid synthesis, glucose and lipid metabolism, as well as cell proliferation. FGF19 has a conserved structure typical of FGFs but exhibits unique features. Unlike most FGFs, which act locally, FGF19 travels through the bloodstream to distant targets including the liver. Its interaction with the β-Klotho (KLB) co-receptor and FGF Receptor 4 (FGFR4) in hepatocytes or FGFR1c in extrahepatic tissues initiates signaling cascades crucial for its biological functions. Although the mouse ortholog, FGF15, diverges significantly from human FGF19 in protein sequence and receptor binding, studies of FGF15-deficient mice have led to a better understanding of the proteins' role in bile acid regulation, metabolism, and embryonic development. Overexpression studies in transgenic mice have further revealed roles in not only ameliorating metabolic diseases but also in promoting hepatocyte proliferation and tumorigenesis. This review summarizes the gene and protein structure of FGF19/15, its expression patterns, phenotypes in mutant models, and implication in human diseases, providing insights into potential therapeutic strategies targeting the FGF19 signaling pathway.
Collapse
Affiliation(s)
- Agathe Bouju
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Sorbonne University, Paris, France
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peng V Wu
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA; Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
3
|
Stebbins K, Somaiya RD, Sabbagh U, Khaksar P, Liang Y, Su J, Fox MA. Retinal Input Is Required for the Maintenance of Neuronal Laminae in the Ventrolateral Geniculate Nucleus. eNeuro 2024; 11:ENEURO.0022-24.2024. [PMID: 39160068 PMCID: PMC11373735 DOI: 10.1523/eneuro.0022-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
Retinal ganglion cell (RGC) axons provide direct input into several brain regions, including the dorsal lateral geniculate nucleus (dLGN), which is important for image-forming vision, and the ventrolateral geniculate nucleus (vLGN), which is associated with nonimage-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), timing of corticogeniculate innervation, and recruitment and distribution of inhibitory interneurons. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and nonretinorecipient internal vLGN (vLGNi). Studies previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-type-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for these laminae in the mouse vLGNe, and results indicate that these laminae are specified at or before birth. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell-type-specific layers in mouse vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
Collapse
Affiliation(s)
- Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016
| | - Rachana Deven Somaiya
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Ubadah Sabbagh
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia 24061
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138
| | - Parsa Khaksar
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016
| | - Yanping Liang
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
| | - Jianmin Su
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia 24061
| | - Michael A Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia 24061
- Department of Biology, College of Natural Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
4
|
Shen L, Li Y, Zhao H. Fibroblast growth factor signaling in macrophage polarization: impact on health and diseases. Front Immunol 2024; 15:1390453. [PMID: 38962005 PMCID: PMC11219802 DOI: 10.3389/fimmu.2024.1390453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Fibroblast growth factors (FGFs) are a versatile family of peptide growth factors that are involved in various biological functions, including cell growth and differentiation, embryonic development, angiogenesis, and metabolism. Abnormal FGF/FGF receptor (FGFR) signaling has been implicated in the pathogenesis of multiple diseases such as cancer, metabolic diseases, and inflammatory diseases. It is worth noting that macrophage polarization, which involves distinct functional phenotypes, plays a crucial role in tissue repair, homeostasis maintenance, and immune responses. Recent evidence suggests that FGF/FGFR signaling closely participates in the polarization of macrophages, indicating that they could be potential targets for therapeutic manipulation of diseases associated with dysfunctional macrophages. In this article, we provide an overview of the structure, function, and downstream regulatory pathways of FGFs, as well as crosstalk between FGF signaling and macrophage polarization. Additionally, we summarize the potential application of harnessing FGF signaling to modulate macrophage polarization.
Collapse
Affiliation(s)
- Luyao Shen
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affiliated Hospital & Yuying Children’s Hospital/The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
5
|
Hollenback D, Hambruch E, Fink G, Birkel M, Schulz A, Hornberger M, Liu K, Staiger KM, Krol HD, Deuschle U, Steeneck C, Kinzel O, Liles JT, Budas G, Watkins WJ, Kremoser C. Development of Cilofexor, an Intestinally-Biased Farnesoid X Receptor Agonist, for the Treatment of Fatty Liver Disease. J Pharmacol Exp Ther 2024; 389:61-75. [PMID: 38409114 DOI: 10.1124/jpet.123.001900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
The farnesoid X receptor (FXR) is a nuclear receptor that controls bile acid, lipid, and cholesterol metabolism. FXR-targeted drugs have shown promise in late-stage clinical trials for non-alcoholic steatohepatitis. Herein, we used clinical results from our first non-steroidal FXR agonist, 4-[2-[2-chloro-4-[[5-cyclopropyl-3-(2,6-dichlorophenyl)-4-isoxazolyl]methoxy]phenyl]cyclopropyl] benzoic acid (Px-102), to develop cilofexor, a potent, non-steroidal FXR agonist with a more manageable safety profile. Px-102 demonstrated the anticipated pharmacodynamic (PD) effects in healthy volunteers but caused a 2-fold increase in alanine aminotransferase (ALT) activity and changes in cholesterol levels. These data guided development of a high fat diet mouse model to screen FXR agonists based on ALT and cholesterol changes. Cilofexor was identified to elicit only minor changes in these parameters. The differing effects of cilofexor and Px-102 on ALT/cholesterol in the model could not be explained by potency or specificity, and we hypothesized that the relative contribution of intestinal and liver FXR activation may be responsible. Gene expression analysis from rodent studies revealed that cilofexor, but not Px-102, had a bias for FXR transcriptional activity in the intestine compared with the liver. Fluorescent imaging in hepatoma cells demonstrated similar subcellular localization for cilofexor and Px-102, but cilofexor was more rapidly washed out, consistent with a lower membrane residence time contributing to reduced hepatic transcriptional effects. Cilofexor demonstrated antisteatotic and antifibrotic efficacy in rodent models and antisteatotic efficacy in a monkey model, with the anticipated PD and a manageable safety profile in human phase I studies. SIGNIFICANCE STATEMENT: Farnesoid X receptor (FXR) agonists have shown promise in treating non-alcoholic steatohepatitis and other liver diseases in the clinic, but balancing efficacy with undesired side effects has been difficult. Here, we examined the preclinical and clinical effects of the first-generation FXR agonist, 4-[2-[2-chloro-4-[[5-cyclopropyl-3-(2,6-dichlorophenyl)-4-isoxazolyl]methoxy]phenyl]cyclopropyl] benzoic acid, to enable the selection of an analog, cilofexor, with unique properties that reduced side effects yet maintained efficacy. Cilofexor is one of the few remaining FXR agonists in clinical development.
Collapse
Affiliation(s)
- David Hollenback
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Eva Hambruch
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Gero Fink
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Manfred Birkel
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Andreas Schulz
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Martin Hornberger
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Kathy Liu
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Kelly MacLennan Staiger
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Helen Desiree Krol
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Ulrich Deuschle
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Christoph Steeneck
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Olaf Kinzel
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - John T Liles
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Grant Budas
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - William J Watkins
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| | - Claus Kremoser
- Gilead Sciences, Inc., Foster City, California (D.H., K.L., K.M.S., J.T.L., G.B., W.J.W.) and Phenex Pharmaceuticals, Heidelberg, Germany (E.H., G.F., M.B., A.S., M.H., H.D.K., U.D., C.S., O.K., C.K.)
| |
Collapse
|
6
|
Kobayashi K, Iwasa K, Azuma-Suzuki R, Kawauchi T, Nabeshima YI. Feto-maternal cholesterol transport regulated by β-Klotho-FGF15 axis is essential for fetal growth. Life Sci Alliance 2023; 6:e202301916. [PMID: 37541847 PMCID: PMC10403640 DOI: 10.26508/lsa.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
β-Klotho (β-KL) is indispensable to regulate lipid, glucose, and energy metabolism in adult animals. β-KL is highly expressed in the yolk sac, but its role in the developmental stages has not been established. We hypothesized that β-KL is required for metabolic regulation in the embryo and aimed to clarify the role of β-KL during development. Here, we show that β-KL regulates feto-maternal cholesterol transport through the yolk sac by mediating FGF 15 signaling, and also that impairment of the β-KL-FGF15 axis causes fetal growth restriction (FGR). Embryos of β- kl knockout (β-kl-/-) mice were morphologically normal but exhibited FGR before placental maturation. The body weight of β-kl-/- mice remained lower after birth. β-KL deletion reduced cholesterol supply from the maternal blood and led to lipid shortage in the embryos. These phenotypes were similar to those of embryos lacking FGF15, indicating that β-KL-FGF15 axis is essential for growth and lipid regulation in the embryonic stages. Our findings suggest that lipid abnormalities in early gestation provoke FGR, leading to reduced body size in later life.
Collapse
Affiliation(s)
- Kanako Kobayashi
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Kazuko Iwasa
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Rika Azuma-Suzuki
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Takeshi Kawauchi
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Adaptive and Maladaptive Responses in Health and Disease, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo-Ichi Nabeshima
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
7
|
Washausen S, Knabe W. Patterns of senescence and apoptosis during development of branchial arches, epibranchial placodes, and pharyngeal pouches. Dev Dyn 2023; 252:1189-1223. [PMID: 37345578 DOI: 10.1002/dvdy.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Many developmental processes are coregulated by apoptosis and senescence. However, there is a lack of data on the development of branchial arches, epibranchial placodes, and pharyngeal pouches, which harbor epibranchial signaling centers. RESULTS Using immunohistochemical, histochemical, and 3D reconstruction methods, we show that in mice, senescence and apoptosis together may contribute to the invagination of the branchial clefts and the deepening of the cervical sinus floor, in antagonism to the proliferation acting in the evaginating branchial arches. The concomitant apoptotic elimination of lateral line rudiments occurs in the absence of senescence. In the epibranchial placodes, senescence and apoptosis appear to (1) support invagination or at least indentation by immobilizing the margins of the centrally proliferating pit, (2) coregulate the number and fate of Pax8+ precursors, (3) progressively narrow neuroblast delamination sites, and (4) contribute to placode regression. Putative epibranchial signaling centers in the pharyngeal pouches are likely deactivated by rostral senescence and caudal apoptosis. CONCLUSIONS Our results reveal a plethora of novel patterns of apoptosis and senescence, some overlapping, some complementary, whose functional contributions to the development of the branchial region, including the epibranchial placodes and their signaling centers, can now be tested experimentally.
Collapse
Affiliation(s)
- Stefan Washausen
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
8
|
Wei M, Cao WB, Zhao RD, Sun DP, Liang YZ, Huang YD, Cheng ZW, Ouyang J, Yang WS, Yu WB. Fibroblast growth factor 15, induced by elevated bile acids, mediates the improvement of hepatic glucose metabolism after sleeve gastrectomy. World J Gastroenterol 2023; 29:3280-3291. [PMID: 37377582 PMCID: PMC10292143 DOI: 10.3748/wjg.v29.i21.3280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Fibroblast growth factor (FGF) 15/19, which is expressed in and secreted from the distal ileum, can regulate hepatic glucose metabolism in an endocrine manner. The levels of both bile acids (BAs) and FGF15/19 are elevated after bariatric surgery. However, it is unclear whether the increase in FGF15/19 is induced by BAs. Moreover, it remains to be understood whether FGF15/19 elevations contribute to improvements in hepatic glucose metabolism after bariatric surgery.
AIM To investigate the mechanism of improvement of hepatic glucose metabolism by elevated BAs after sleeve gastrectomy (SG).
METHODS By calculating and comparing the changes of body weight after SG with SHAM group, we examined the weight-loss effect of SG. The oral glucose tolerance test (OGTT) test and area under the curve of OGTT curves were used to assess the anti-diabetic effects of SG. By detecting the glycogen content, expression and activity of glycogen synthase as well as the glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pepck), we evaluated the hepatic glycogen content and gluconeogenesis activity. We examined the levels of total BA (TBA) together with the farnesoid X receptor (FXR)-agonistic BA subspecies in systemic serum and portal vein at week 12 post-surgery. Then the histological expression of ileal FXR and FGF15 and hepatic FGF receptor 4 (FGFR4) with its corresponding signal pathways involved in glucose metabolism were detected.
RESULTS After surgery, food intake and body weight gain of SG group was decreased compare with the SHAM group. The hepatic glycogen content and glycogen synthase activity was significantly stimulated after SG, while the expression of the key enzyme for hepatic gluconeogenesis: G6Pase and Pepck, were depressed. TBA levels in serum and portal vein were both elevated after SG, the FXR-agonistic BA subspecies: Chenodeoxycholic acid (CDCA), lithocholic acid (LCA) in serum and CDCA, DCA, LCA in portal vein were all higher in SG group than that in SHAM group. Consequently, the ileal expression of FXR and FGF15 were also advanced in SG group. Moreover, the hepatic expression of FGFR4 was stimulated in SG-operated rats. As a result, the activity of its corresponding pathway for glycogen synthesis: FGFR4-Ras-extracellular signal regulated kinase pathway was stimulated, while the corresponding pathway for hepatic gluconeogenesis: FGFR4- cAMP regulatory element-binding protein- peroxisome proliferator-activated receptor γ coactivator-1α pathway was suppressed.
CONCLUSION Elevated BAs after SG induced FGF15 expression in distal ileum by activating their receptor FXR. Furthermore, the promoted FGF15 partly mediated the improving effects on hepatic glucose metabolism of SG.
Collapse
Affiliation(s)
- Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wei-Bo Cao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ru-Dong Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Dan-Ping Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Ze Liang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ya-Di Huang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ze-Wei Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jun Ouyang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Shuo Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Bin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
9
|
Mo P, Chen H, Jiang X, Hu F, Zhang F, Shan G, Chen W, Li S, Li Y, Xu G. FGF15 promotes hepatic NPC1L1 degradation in lithogenic diet-fed mice. Lipids Health Dis 2022; 21:97. [PMID: 36209166 PMCID: PMC9547418 DOI: 10.1186/s12944-022-01709-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cholesterol gallstone disease (CGD) is accompanied by biliary cholesterol supersaturation. Hepatic Niemann-Pick C1-like 1 (NPC1L1), which is present in humans but not in wild-type (WT) mice, promotes hepatocyte cholesterol uptake and decreases biliary cholesterol supersaturation. In contrast, intestinal NPC1L1 promotes intestinal cholesterol absorption, increasing biliary cholesterol supersaturation. Ezetimibe (EZE) can inhibit both hepatic and intestinal NPC1L1. However, whether hepatic NPC1L1 can affect CGD progress remains unknown. METHODS Mice expressing hepatic NPC1L1 (NPC1L1hepatic-OE mice) were generated using Adeno-associated viruses (AAV) gene delivery. The protein level and function of hepatic NPC1L1 were examined under chow diet, high fat-cholesterol diet (HFCD), and lithogenic diet (LD) feeding. Gallstone formation rates were examined with or without EZE treatment. Fibroblast growth factor 15 (FGF15) treatment and inhibition of fibroblast growth factor receptor 4 (FGFR4) were applied to verify the mechanism of hepatic NPC1L1 degradation. RESULTS The HFCD-fed NPC1L1hepatic-OE mice retained the biliary cholesterol desaturation function of hepatic NPC1L1, whereas EZE treatment decreased biliary cholesterol saturation and did not cause CGD. The ubiquitination and degradation of hepatic NPC1L1 were discovered in LD-fed NPC1L1hepatic-OE mice. Treatment of FGF15 during HFCD feeding and inhibition of FGFR4 during LD feeding could affect the protein level and function of hepatic NPC1L1. CONCLUSIONS LD induces the ubiquitination and degradation of hepatic NPC1L1 via the FGF15-FGFR4 pathway. EZE may act as an effective preventative agent for CGD.
Collapse
Affiliation(s)
- Pingfan Mo
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Hongtan Chen
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Xin Jiang
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Fengling Hu
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Fenming Zhang
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Guodong Shan
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Wenguo Chen
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Sha Li
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China
| | - Yiqiao Li
- Urology& Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| | - Guoqiang Xu
- Department of Gastroenterology, Zhejiang University School of Medicine, The First Affiliated Hospital, 79 Qingchun Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
10
|
Kong B, Huang M, Taylor RE, Rizzolo D, Otersen KD, Guo GL. Effects of intestine-specific deletion of fibroblast growth factor 15 on alcoholic liver disease development in mice. LIVER RESEARCH 2022; 6:84-92. [PMID: 39958627 PMCID: PMC11791802 DOI: 10.1016/j.livres.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
Background and aims Alcoholic liver disease (ALD) is an important and growing cause for the development of chronic liver diseases in the world. Bile acid (BA) levels are increased in patients with ALD and dysregulation of BA homeostasis worsens ALD. BA synthesis is critically regulated by fibroblast growth factor (FGF)15 in mice and FGF19 in humans. FGF15/19 are mainly produced in the ileum and their main function is to suppress BA synthesis in the liver through the activation of fibroblast growth factor receptor 4 (FGFR4) on hepatocytes. The effects of intestine-specific Fgf15 deficiency on the development of ALD were determined in the current study. Methods Enterocyte-specific Fgf15 knockout mice (Fgf15 int-/- ) and the established mouse model by chronic and binge ethanol feeding (NIAAA model) were adapted in this study. Results The Fgf15 int-/- mice had increased BA pool size, consistent with negative effects of FGF15-FGFR4 signaling on BA synthesis. There were not obviously physical and hepatic histological abnormalities presented in Fgf15 int-/- mice compared to wild-type mice. Following alcohol treatment, the Fgf15 int-/- mice exhibited a higher degree of liver injury, increased hepatic expression of Cd14, a receptor for lipopolysaccharide expressed in the liver, and increased hepatic lipid levels. We did not observe alterations in the levels of fibrosis in the liver or expression of genes involved in hepatic fibrosis, regardless of genotypes or following the alcohol treatment. Conclusions FGF15 may prevent hepatic steatosis in the development of ALD in mice, and maintaining FGF19/FGFR4 signaling may be critical in the prevention and/or treatment of ALD in humans in the future.
Collapse
Affiliation(s)
- Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mingxing Huang
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Rulaiha E. Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Daniel Rizzolo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Katherine D. Otersen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ, USA
| |
Collapse
|
11
|
Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. Int J Mol Sci 2022; 23:ijms23116046. [PMID: 35682726 PMCID: PMC9181207 DOI: 10.3390/ijms23116046] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Bile acids (BAs) are a group of amphiphilic molecules consisting of a rigid steroid core attached to a hydroxyl group with a varying number, position, and orientation, and a hydrophilic side chain. While BAs act as detergents to solubilize lipophilic nutrients in the small intestine during digestion and absorption, they also act as hormones. Farnesoid X receptor (FXR) is a nuclear receptor that forms a heterodimer with retinoid X receptor α (RXRα), is activated by BAs in the enterohepatic circulation reabsorbed via transporters in the ileum and the colon, and plays a critical role in regulating gene expression involved in cholesterol, BA, and lipid metabolism in the liver. The FXR/RXRα heterodimer also exists in the distal ileum and regulates production of fibroblast growth factor (FGF) 15/FGF19, a hormone traveling via the enterohepatic circulation that activates hepatic FGF receptor 4 (FGFR4)-β-klotho receptor complex and regulates gene expression involved in cholesterol, BA, and lipid metabolism, as well as those regulating cell proliferation. Agonists for FXR and analogs for FGF15/19 are currently recognized as a promising therapeutic target for metabolic syndrome and cholestatic diseases.
Collapse
|
12
|
Zelarayan L, Vendrell V, Domínguez-Frutos E, López-Hernández I, Schimmang-Alonso K, Alonso MT, Alvarez Y, Maier H, Anderson MJ, Lewandoski M, Schimmang T. Inactivation of Fgf3 and Fgf4 within the Fgf3/Fgf4/Fgf15 gene cluster reveals their redundant requirement for mouse inner ear induction and embryonic survival. Dev Dyn 2022; 251:877-884. [PMID: 34719815 PMCID: PMC10506400 DOI: 10.1002/dvdy.435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fibroblast growth factors (Fgfs) are required for survival and organ formation during embryogenesis. Fgfs often execute their functions redundantly. Previous analysis of Fgf3 mutants revealed effects on inner ear formation and embryonic survival with incomplete penetrance. RESULTS Here, we show that presence of a neomycin resistance gene (neo) replacing the Fgf3 coding region leads to reduced survival during embryogenesis and an increased penetrance of inner ear defects. Fgf3neo/neo mutants showed reduced expression of Fgf4, which is positioned in close proximity to the Fgf3 locus in the mouse genome. Conditional inactivation of Fgf4 during inner ear development on a Fgf3 null background using Fgf3/4 cis mice revealed a redundant requirement between these Fgfs during otic placode induction. In contrast, inactivation of Fgf3 and Fgf4 in the pharyngeal region where both Fgfs are also co-expressed using a Foxg1-Cre driver did not affect development of the pharyngeal arches. However, these mutants showed reduced perinatal survival. CONCLUSIONS These results highlight the importance of Fgf signaling during development. In particular, different members of the Fgf family act redundantly to guarantee inner ear formation and embryonic survival.
Collapse
Affiliation(s)
- Laura Zelarayan
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Germany
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Victor Vendrell
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Elena Domínguez-Frutos
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Iris López-Hernández
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Kiril Schimmang-Alonso
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - María Teresa Alonso
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Yolanda Alvarez
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Hannes Maier
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Matthew J. Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Thomas Schimmang
- Unidad de Excelencia, Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| |
Collapse
|
13
|
Bhat N, Esteghamat F, Chaube BK, Gunawardhana K, Mani M, Thames C, Jain D, Ginsberg HN, Fernandes-Hernando C, Mani A. TCF7L2 transcriptionally regulates Fgf15 to maintain bile acid and lipid homeostasis through gut-liver crosstalk. FASEB J 2022; 36:e22185. [PMID: 35133032 PMCID: PMC9624374 DOI: 10.1096/fj.202101607r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
FGF19/FGF15 is an endocrine regulator of hepatic bile salt and lipid metabolism, which has shown promising effects in the treatment of NASH in clinical trials. FGF19/15 is transcribed and released from enterocytes of the small intestine into enterohepatic circulation in response to bile-induced FXR activation. Previously, the TSS of FGF19 was identified to bind Wnt-regulated TCF7L2/encoded transcription factor TCF4 in colorectal cancer cells. Impaired Wnt signaling and specifical loss of function of its coreceptor LRP6 have been associated with NASH. We, therefore, examined if TCF7L2/TCF4 upregulates Fgf19 in the small intestine and restrains NASH through gut-liver crosstalk. We examined the mice globally overexpressing, haploinsufficient, and conditional knockout models of TCF7L2 in the intestinal epithelium. The TCF7L2+/- mice exhibited increased plasma bile salts and lipids and developed diet-induced fatty liver disease while mice globally overexpressing TCF7L2 were protected against these traits. Comprehensive in vivo analysis revealed that TCF7L2 transcriptionally upregulates FGF15 in the gut, leading to reduced bile synthesis and diminished intestinal lipid uptake. Accordingly, VilinCreert2 ; Tcf7L2fl/fl mice showed reduced Fgf19 in the ileum, and increased plasma bile. The global overexpression of TCF7L2 in mice with metabolic syndrome-linked LRP6R611C substitution rescued the fatty liver and fibrosis in the latter. Strikingly, the hepatic levels of TCF4 were reduced and CYP7a1 was increased in human NASH, indicating the relevance of TCF4-dependent regulation of bile synthesis to human disease. These studies identify the critical role of TCF4 as an upstream regulator of the FGF15-mediated gut-liver crosstalk that maintains bile and liver triglyceride homeostasis.
Collapse
Affiliation(s)
- Neha Bhat
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fatemehsadat Esteghamat
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bal Krishna Chaube
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kushan Gunawardhana
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mitra Mani
- New York Medical College, Valhalla, New York, USA,Department of Internal Medicine, Columbia University College of Physicians and Surgeon, New York, New York, USA
| | - Clay Thames
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dhanpat Jain
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Henry N. Ginsberg
- Department of Internal Medicine, Columbia University College of Physicians and Surgeon, New York, New York, USA
| | | | - Arya Mani
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Vonderohe C, Guthrie G, Stoll B, Chacko S, Dawson H, Burrin DG. Tissue-specific mechanisms of bile acid homeostasis and activation of FXR-FGF19 signaling in preterm and term neonatal pigs. Am J Physiol Gastrointest Liver Physiol 2022; 322:G117-G133. [PMID: 34851728 PMCID: PMC8742725 DOI: 10.1152/ajpgi.00274.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The tissue-specific molecular mechanisms involved in perinatal liver and intestinal farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling are poorly defined. Our aim was to establish how gestational age and feeding status affect bile acid synthesis pathway, bile acid pool size, ileal response to bile acid stimulation, genes involved in bile acid-FXR-FGF19 signaling and plasma FGF19 in neonatal pigs. Term (n = 23) and preterm (n = 33) pigs were born via cesarean section at 100% and 90% gestation, respectively. Plasma FGF19, hepatic bile acid and oxysterol profiles, and FXR target gene expression were assessed in pigs at birth and after a bolus feed on day 3 of life. Pig ileal tissue explants were used to measure signaling response to bile acids. Preterm pigs had smaller, more hydrophobic bile acid pools, lower plasma FGF19, and blunted FXR-mediated ileal response to bile acid stimulation than term pigs. GATA binding protein 4 (GATA-4) expression was higher in jejunum than ileum and was higher in preterm than term pig ileum. Hepatic oxysterol analysis suggested dominance of the alternative pathway of bile acid synthesis in neonates, regardless of gestational age and persists in preterm pigs after feeding on day 3. These results highlight the tissue-specific molecular basis for the immature enterohepatic bile acid signaling via FXR-FGF19 in preterm pigs and may have implications for disturbances of bile acid homeostasis and metabolism in preterm infants.NEW & NOTEWORTHY Our results show that the lower hepatic bile acid synthesis and ileum FXR-FGF19 pathway responsiveness to bile acids contribute to low-circulating FGF19 in preterm compared with term neonatal pigs. The molecular mechanism explaining immature or low-ileum FXR-FGF19 signaling may be linked to developmental patterning effects of GATA-4.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| | - Greg Guthrie
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| | - Shaji Chacko
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| | - Harry Dawson
- 3United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, Maryland
| | - Douglas G. Burrin
- 1United States Department of Agriculture, Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,2Pediatric Gastroenterology & Nutrition, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
16
|
Washausen S, Knabe W. Responses of Epibranchial Placodes to Disruptions of the FGF and BMP Signaling Pathways in Embryonic Mice. Front Cell Dev Biol 2021; 9:712522. [PMID: 34589483 PMCID: PMC8473811 DOI: 10.3389/fcell.2021.712522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Placodes are ectodermal thickenings of the embryonic vertebrate head. Their descendants contribute to sensory organ development, but also give rise to sensory neurons of the cranial nerves. In mammals, the signaling pathways which regulate the morphogenesis and neurogenesis of epibranchial placodes, localized dorsocaudally to the pharyngeal clefts, are poorly understood. Therefore, we performed mouse whole embryo culture experiments to assess the impact of pan-fibroblast growth factor receptor (FGFR) inhibitors, anti-FGFR3 neutralizing antibodies or the pan-bone morphogenetic protein receptor (BMPR) inhibitor LDN193189 on epibranchial development. We demonstrate that each of the three paired epibranchial placodes is regulated by a unique combination of FGF and/or bone morphogenetic protein (BMP) signaling. Thus, neurogenesis depends on fibroblast growth factor (FGF) signals, albeit to different degrees, in all epibranchial placodes (EP), whereas only EP1 and EP3 significantly rely on neurogenic BMP signals. Furthermore, individual epibranchial placodes vary in the extent to which FGF and/or BMP signals (1) have access to certain receptor subtypes, (2) affect the production of Neurogenin (Ngn)2+ and/or Ngn1+ neuroblasts, and (3) regulate either neurogenesis alone or together with structural maintenance. In EP2 and EP3, all FGF-dependent production of Ngn2+ neuroblasts is mediated via FGFR3 whereas, in EP1, it depends on FGFR1 and FGFR3. Differently, production of FGF-dependent Ngn1+ neuroblasts almost completely depends on FGFR3 in EP1 and EP2, but not in EP3. Finally, FGF signals turned out to be responsible for the maintenance of both placodal thickening and neurogenesis in all epibranchial placodes, whereas administration of the pan-BMPR inhibitor, apart from its negative neurogenic effects in EP1 and EP3, causes only decreases in the thickness of EP3. Experimentally applied inhibitors most probably not only blocked receptors in the epibranchial placodes, but also endodermal receptors in the pharyngeal pouches, which act as epibranchial signaling centers. While high doses of pan-FGFR inhibitors impaired the development of all pharyngeal pouches, high doses of the pan-BMPR inhibitor negatively affected only the pharyngeal pouches 3 and 4. In combination with partly concordant, partly divergent findings in other vertebrate classes our observations open up new approaches for research into the complex regulation of neurogenic placode development.
Collapse
Affiliation(s)
- Stefan Washausen
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
17
|
Abstract
Fibroblast growth factors (FGFs) are cell-signaling proteins with diverse functions in cell development, repair, and metabolism. The human FGF family consists of 22 structurally related members, which can be classified into three separate groups based on their action of mechanisms, namely: intracrine, paracrine/autocrine, and endocrine FGF subfamilies. FGF19, FGF21, and FGF23 belong to the hormone-like/endocrine FGF subfamily. These endocrine FGFs are mainly associated with the regulation of cell metabolic activities such as homeostasis of lipids, glucose, energy, bile acids, and minerals (phosphate/active vitamin D). Endocrine FGFs function through a unique protein family called klotho. Two members of this family, α-klotho, or β-klotho, act as main cofactors which can scaffold to tether FGF19/21/23 to their receptor(s) (FGFRs) to form an active complex. There are ongoing studies pertaining to the structure and mechanism of these individual ternary complexes. These studies aim to provide potential insights into the physiological and pathophysiological roles and therapeutic strategies for metabolic diseases. Herein, we provide a comprehensive review of the history, structure–function relationship(s), downstream signaling, physiological roles, and future perspectives on endocrine FGFs.
Collapse
|
18
|
Sobhani N, Fassl A, Mondani G, Generali D, Otto T. Targeting Aberrant FGFR Signaling to Overcome CDK4/6 Inhibitor Resistance in Breast Cancer. Cells 2021; 10:293. [PMID: 33535617 PMCID: PMC7912842 DOI: 10.3390/cells10020293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) is the most common cause of cancer-related death in women worldwide. Therapies targeting molecular pathways altered in BC had significantly enhanced treatment options for BC over the last decades, which ultimately improved the lives of millions of women worldwide. Among various molecular pathways accruing substantial interest for the development of targeted therapies are cyclin-dependent kinases (CDKs)-in particular, the two closely related members CDK4 and CDK6. CDK4/6 inhibitors indirectly trigger the dephosphorylation of retinoblastoma tumor suppressor protein by blocking CDK4/6, thereby blocking the cell cycle transition from the G1 to S phase. Although the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib gained FDA approval for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative BC as they significantly improved progression-free survival (PFS) in randomized clinical trials, regrettably, some patients showed resistance to these therapies. Though multiple molecular pathways could be mechanistically responsible for CDK4/6 inhibitor therapy resistance, one of the most predominant ones seems to be the fibroblast growth factor receptor (FGFR) pathway. FGFRs are involved in many aspects of cancer formation, such as cell proliferation, differentiation, and growth. Importantly, FGFRs are frequently mutated in BC, and their overexpression and/or hyperactivation correlates with CDK4/6 inhibitor resistance and shortened PFS in BC. Intriguingly, the inhibition of aberrant FGFR activity is capable of reversing the resistance to CDK4/6 inhibitors. This review summarizes the molecular background of FGFR signaling and discusses the role of aberrant FGFR signaling during cancer development in general and during the development of CDK4/6 inhibitor resistance in BC in particular, together with other possible mechanisms for resistance to CDK4/6 inhibitors. Subsequently, future directions on novel therapeutic strategies targeting FGFR signaling to overcome such resistance during BC treatment will be further debated.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Giuseppina Mondani
- Department Breast Oncoplastic Surgery Royal Cornwall Hospital, Treliske, Truro TR13LJ, UK;
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, 34149 Trieste, Italy;
| | - Tobias Otto
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
19
|
Williams CM, Harper Calderon J, E H, Jimenez Y, Barringer K, Carbonaro M, Molina‐Portela MDP, Thurston G, Li Z, Daly C. Monomeric/dimeric forms of Fgf15/FGF19 show differential activity in hepatocyte proliferation and metabolic function. FASEB J 2021; 35:e21286. [DOI: 10.1096/fj.202002203r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Courtney M. Williams
- Oncology and Angiogenesis Department Regeneron Pharmaceuticals, Inc Tarrytown NY USA
| | | | - Hock E
- Oncology and Angiogenesis Department Regeneron Pharmaceuticals, Inc Tarrytown NY USA
| | - Yasalp Jimenez
- Oncology and Angiogenesis Department Regeneron Pharmaceuticals, Inc Tarrytown NY USA
| | - Kevin Barringer
- Oncology and Angiogenesis Department Regeneron Pharmaceuticals, Inc Tarrytown NY USA
| | - Marisa Carbonaro
- Oncology and Angiogenesis Department Regeneron Pharmaceuticals, Inc Tarrytown NY USA
| | | | - Gavin Thurston
- Oncology and Angiogenesis Department Regeneron Pharmaceuticals, Inc Tarrytown NY USA
| | - Zhe Li
- Oncology and Angiogenesis Department Regeneron Pharmaceuticals, Inc Tarrytown NY USA
| | - Christopher Daly
- Oncology and Angiogenesis Department Regeneron Pharmaceuticals, Inc Tarrytown NY USA
| |
Collapse
|
20
|
Morón-Ros S, Uriarte I, Berasain C, Avila MA, Sabater-Masdeu M, Moreno-Navarrete JM, Fernández-Real JM, Giralt M, Villarroya F, Gavaldà-Navarro A. FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations. Mol Metab 2020; 43:101113. [PMID: 33171307 PMCID: PMC7691747 DOI: 10.1016/j.molmet.2020.101113] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To determine the role of enterokine FGF15/19 in adipose tissue thermogenic adaptations. Methods Circulating FGF19 and gene expression (qRT-PCR) levels were assessed in subcutaneous adipose tissue from obese human patients. Effects of experimentally increased FGF15 and FGF19 levels in vivo were determined in mice using adenoviral and adeno-associated vectors. Adipose tissues were characterized in FGF15-null mice under distinct cold-related thermogenic challenges. The analyses spanned metabolic profiling, tissue characterization, histology, gene expression, and immunoblot assays. Results In humans, FGF19 levels are directly associated with UCP1 gene expression in subcutaneous adipose tissue. Experimental increases in FGF15 or FGF19 induced white fat browning in mice as demonstrated by the appearance of multilocular beige cells and markers indicative of a beige phenotype, including increased UCP1 protein levels. Mice lacking FGF15 showed markedly impaired white adipose tissue browning and a mild reduction in parameters indicative of BAT activity in response to cold-induced environmental thermogenic challenges. This was concomitant with signs of altered systemic metabolism, such as reduced glucose tolerance and impaired cold-induced insulin sensitization. Conclusions Enterokine FGF15/19 is a key factor required for adipose tissue plasticity in response to thermogenic adaptations. Circulating FGF19 levels correlate positively with signs of fat browning in humans. Adaptive adipose tissue browning in response to cold is impaired in mice lacking FGF15. Experimentally induced increase in FGF15 or FGF19 promotes fat browning in mice. FGF15/19 signaling is required for thermogenic challenge-induced plasticity of adipose tissue.
Collapse
Affiliation(s)
- Samantha Morón-Ros
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine, University of Barcelona, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; CIBEROBN, Carlos III Health Institute, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, University of Navarra, IdiSNA, Pamplona, Spain; CIBEREHD, Carlos III Health Institute, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, IdiSNA, Pamplona, Spain; CIBEREHD, Carlos III Health Institute, Spain
| | - Matías A Avila
- Hepatology Program, CIMA, University of Navarra, IdiSNA, Pamplona, Spain; CIBEREHD, Carlos III Health Institute, Spain
| | - Mònica Sabater-Masdeu
- CIBEROBN, Carlos III Health Institute, Spain; Department of Diabetes, Endocrinology and Nutrition, de Girona Biomedical Research Institute (IdIBGi), Girona, Spain
| | - José María Moreno-Navarrete
- CIBEROBN, Carlos III Health Institute, Spain; Department of Diabetes, Endocrinology and Nutrition, de Girona Biomedical Research Institute (IdIBGi), Girona, Spain
| | - José Manuel Fernández-Real
- CIBEROBN, Carlos III Health Institute, Spain; Department of Diabetes, Endocrinology and Nutrition, de Girona Biomedical Research Institute (IdIBGi), Girona, Spain
| | - Marta Giralt
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine, University of Barcelona, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; CIBEROBN, Carlos III Health Institute, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine, University of Barcelona, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; CIBEROBN, Carlos III Health Institute, Spain.
| | - Aleix Gavaldà-Navarro
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine, University of Barcelona, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; CIBEROBN, Carlos III Health Institute, Spain.
| |
Collapse
|
21
|
Rapid Postnatal Upregulation of Intestinal Farnesoid X Receptor-Fibroblast Growth Factor 19 Signaling in Premature Pigs. J Pediatr Gastroenterol Nutr 2020; 70:e94-e99. [PMID: 31990866 PMCID: PMC7183908 DOI: 10.1097/mpg.0000000000002645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Bile acid (BA) homeostasis is regulated by intestinal cellular signaling involving the farnesoid X receptor (FXR) and fibroblast growth factor 19 (FGF19) secretion. Using preterm and term pigs as a model, we examined postnatal changes in expression of the FXR-FGF19 axis that is poorly characterized in human infants. METHODS Pigs delivered by caesarean section at 10-day preterm and near full term (115-day gestation) were fitted with orogastric and umbilical arterial catheters. Pigs were fed combined parenteral nutrition and minimal enteral nutrition for 5 days, followed by milk formula until 26 d days. Plasma and tissue samples were collected at days 0, 5, 11, and 26. Plasma FGF19 concentration and liver and distal intestinal gene expression of FGF19 and other FXR target genes were quantified. RESULTS Plasma FGF19 levels were lower in preterm versus term newborn pigs (P < 0.05), increased markedly by 5 days, especially in preterm pigs, and decreased in both groups until day 26. Likewise, intestinal FXR and FGF19 expression was lower (P ≤ 0.05) in premature versus term newborn pigs and decreased (P ≤ 0.05) between days 5 and 26. Hepatic expression of cholesterol 7α-hydroxylase (CYP7A1) was inversely correlated with plasma FGF19 in both groups. CONCLUSIONS We conclude that the activity of FXR-FGF19 axis is lower in preterm than in term newborn pigs but increases transiently and then declines by the first month of age. We also provide supportive evidence of negative feedback between plasma FGF19 and hepatic CYP7A1 expression.
Collapse
|
22
|
Liu H, Zheng S, Hou X, Liu X, Du K, Lv X, Li Y, Yang F, Li W, Sui J. Novel Abs targeting the N-terminus of fibroblast growth factor 19 inhibit hepatocellular carcinoma growth without bile-acid-related side-effects. Cancer Sci 2020; 111:1750-1760. [PMID: 32061104 PMCID: PMC7226213 DOI: 10.1111/cas.14353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and particularly fatal form of cancer for which very few drugs are effective. The fibroblast growth factor 19 (FGF19) has been viewed as a driver of HCC development and a potential Ab target for developing novel HCC therapy. However, a previously developed anti‐FGF19 Ab disrupted FGF19’s normal regulatory function and caused severe bile‐acid‐related side‐effects despite of having potent antitumor effects in preclinical models. Here, we developed novel human Abs (G1A8 and HS29) that specifically target the N‐terminus of FGF19. Both Abs inhibited FGF19‐induced HCC cell proliferation in vitro and significantly suppressed HCC tumor growth in mouse models. Importantly, no bile‐acid‐related side effects were observed in preclinical cynomolgus monkeys. Fundamentally, our study demonstrates that it is possible to target FGF19 for anti‐HCC therapies without adversely affecting its normal bile acid regulatory function, and highlights the exciting promise of G1A8 or HS29 as potential therapy for HCC.
Collapse
Affiliation(s)
- Huisi Liu
- National Institute of Biological Sciences (NIBS), Beijing, China.,Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Sanduo Zheng
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Xinfeng Hou
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Ximing Liu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Kaixin Du
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Xueyuan Lv
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yulu Li
- National Institute of Biological Sciences (NIBS), Beijing, China.,Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Fang Yang
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences (NIBS), Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences (NIBS), Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Burrin D, Sangild PT, Stoll B, Thymann T, Buddington R, Marini J, Olutoye O, Shulman RJ. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu Rev Anim Biosci 2020; 8:321-354. [PMID: 32069436 DOI: 10.1146/annurev-animal-020518-115142] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pigs are increasingly important animals for modeling human pediatric nutrition and gastroenterology and complementing mechanistic studies in rodents. The comparative advantages in size and physiology of the neonatal pig have led to new translational and clinically relevant models of important diseases of the gastrointestinal tract and liver in premature infants. Studies in pigs have established the essential roles of prematurity, microbial colonization, and enteral nutrition in the pathogenesis of necrotizing enterocolitis. Studies in neonatal pigs have demonstrated the intestinal trophic effects of akey gut hormone, glucagon-like peptide 2 (GLP-2), and its role in the intestinal adaptation process and efficacy in the treatment of short bowel syndrome. Further, pigs have been instrumental in elucidating the physiology of parenteral nutrition-associated liver disease and the means by which phytosterols, fibroblast growth factor 19, and a new generation of lipid emulsions may modify disease. The premature pig will continue to be a valuable model in the development of optimal infant diets (donor human milk, colostrum), specific milk bioactives (arginine, growth factors), gut microbiota modifiers (pre-, pro-, and antibiotics), pharmaceutical drugs (GLP-2 analogs, FXR agonists), and novel diagnostic tools (near-infrared spectroscopy) to prevent and treat these pediatric diseases.
Collapse
Affiliation(s)
- Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Barbara Stoll
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Randal Buddington
- College of Nursing, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Juan Marini
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
- Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Oluyinka Olutoye
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robert J Shulman
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
24
|
Su J, Charalambakis NE, Sabbagh U, Somaiya RD, Monavarfeshani A, Guido W, Fox MA. Retinal inputs signal astrocytes to recruit interneurons into visual thalamus. Proc Natl Acad Sci U S A 2020; 117:2671-2682. [PMID: 31964831 PMCID: PMC7007527 DOI: 10.1073/pnas.1913053117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhibitory interneurons comprise a fraction of the total neurons in the visual thalamus but are essential for sharpening receptive field properties and improving contrast-gain of retinogeniculate transmission. During early development, these interneurons undergo long-range migration from germinal zones, a process regulated by the innervation of the visual thalamus by retinal ganglion cells. Here, using transcriptomic approaches, we identified a motogenic cue, fibroblast growth factor 15 (FGF15), whose expression in the visual thalamus is regulated by retinal input. Targeted deletion of functional FGF15 in mice led to a reduction in thalamic GABAergic interneurons similar to that observed in the absence of retinal input. This loss may be attributed, at least in part, to misrouting of interneurons into nonvisual thalamic nuclei. Unexpectedly, expression analysis revealed that FGF15 is generated by thalamic astrocytes and not retino-recipient neurons. Thus, these data show that retinal inputs signal through astrocytes to direct the long-range recruitment of interneurons into the visual thalamus.
Collapse
Affiliation(s)
- Jianmin Su
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Naomi E Charalambakis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Ubadah Sabbagh
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Rachana D Somaiya
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Aboozar Monavarfeshani
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202;
| | - Michael A Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016;
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
25
|
Danopoulos S, Shiosaki J, Al Alam D. FGF Signaling in Lung Development and Disease: Human Versus Mouse. Front Genet 2019; 10:170. [PMID: 30930931 PMCID: PMC6423913 DOI: 10.3389/fgene.2019.00170] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factor 10 (FGF10) plays an important role in mouse lung development, injury, and repair. It is considered the main morphogen driving lung branching morphogenesis in rodents. While many studies have found FGF10 SNPs associated with COPD and branch variants in COPD smokers, there is no evidence of a causative role for FGF10 or these SNPs in human lung development and pediatric lung diseases. We and others have shown divergent roles for FGF10 in mouse lung development and early human lung development. Herein, we only review the existing literature on FGF signaling in human lung development and pediatric human lung diseases, comparing what is known in mouse lung to that in human lung.
Collapse
Affiliation(s)
- Soula Danopoulos
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Jessica Shiosaki
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Denise Al Alam
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 2018; 39:960-989. [PMID: 30124818 DOI: 10.1210/er.2018-00134] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
27
|
Differential receptor selectivity of the FGF15/FGF19 orthologues determines distinct metabolic activities in db/db mice. Biochem J 2018; 475:2985-2996. [PMID: 30127091 DOI: 10.1042/bcj20180555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 01/18/2023]
Abstract
Fibroblast growth factors (FGF) 19, 21 and 23 are characterized by being endocrinely secreted and require co-receptor α-klotho or β-klotho (BKL) for binding and activation of the FGF receptors (FGFR). FGF15 is the rodent orthologue of human FGF19, but the two proteins share only 52% amino acid identity. Despite the physiological role of FGF21 and FGF19 being quite different, both lower blood glucose (BG) when administered to diabetic mice. The present study was designed to clarify why two human proteins with distinct physiological functions both lower BG in db/db mice and if the mouse orthologue FGF15 has similar effect to FGF19 and FGF21. Recombinant human FGF19, -21 and a mouse FGF15 variant (C110S) were expressed and purified from Escherichia coli While rhFGF19 (recombinant human fibroblast growth factor 19) and rhFGF21 (recombinant human fibroblast growth factor) bound FGFRs in complex with both human and mouse BKL, rmFGF15CS (recombinant mouse fibroblast growth factor 15 C110S) only bound the FGFRs when combined with mouse BKL. Recombinant hFGF21 and rhFGF19, but not rmFGF15CS, increased glucose uptake in mouse adipocytes, while rhFGF19 and rmFGF15CS potently decreased Cyp7a1 expression in rat hepatocytes. The lack of effect of rmFGF15CS on glucose uptake in adipocytes was associated with rmFGF15CS's inability to signal through the FGFR1c/mouse BKL complex. In db/db mice, only rhFGF19 and rhFGF21 decreased BG while rmFGF15CS and rhFGF19, but not rhFGF21, increased total cholesterol. These data demonstrate receptor- and species-specific differential activity of FGF15 and FGF19 which should be taken into consideration when FGF19 is used as a substitute for FGF15.
Collapse
|
28
|
Zhang Y, LaCerte C, Kansra S, Jackson JP, Brouwer KR, Edwards JE. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models. Pharmacol Res Perspect 2018; 5. [PMID: 29226620 PMCID: PMC5723701 DOI: 10.1002/prp2.368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Obeticholic acid (OCA) is a semisynthetic farnesoid X receptor (FXR) agonist, an analogue of chenodeoxycholic acid (CDCA) which is indicated for the treatment of primary biliary cholangitis (PBC) in combination with ursodeoxycholic acid (UDCA). OCA efficiently inhibits bile acid synthesis and promotes bile acid efflux via activating FXR-mediated mechanisms in a physiologically relevant in vitro cell system, Sandwich-cultured Transporter Certified ™ human primary hepatocytes (SCHH). The study herein evaluated the effects of UDCA alone or in combination with OCA in SCHH. UDCA (≤100 μmol/L) alone did not inhibit CYP7A1 mRNA, and thus, no reduction in the endogenous bile acid pool observed. UDCA ≤100 μmol/L concomitantly administered with 0.1 μmol/L OCA had no effect on bile acid synthesis beyond what was observed with OCA alone. Furthermore, this study evaluated human Caco-2 cells (clone C2BBe1) as in vitro intestinal models. Glycine conjugate of OCA increased mRNA levels of FXR target genes in Caco-2 cells, FGF-19, SHP, OSTα/β, and IBABP, but not ASBT, in a concentration-dependent manner, while glycine conjugate of UDCA had no effect on the expression of these genes. The results suggested that UDCA ≤100 μmol/L did not activate FXR in human primary hepatocytes or intestinal cell line Caco-2. Thus, co-administration of UDCA with OCA did not affect OCA-dependent pharmacological effects.
Collapse
Affiliation(s)
| | - Carl LaCerte
- Intercept Pharmaceuticals Inc., San Diego, CA, USA
| | | | | | | | | |
Collapse
|
29
|
Slijepcevic D, Roscam Abbing RL, Katafuchi T, Blank A, Donkers JM, van Hoppe S, de Waart DR, Tolenaars D, van der Meer JH, Wildenberg M, Beuers U, Oude Elferink RP, Schinkel AH, van de Graaf SF. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology 2017; 66:1631-1643. [PMID: 28498614 PMCID: PMC5698707 DOI: 10.1002/hep.29251] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022]
Abstract
UNLABELLED The Na+ -taurocholate cotransporting polypeptide (NTCP/SLC10A1) is believed to be pivotal for hepatic uptake of conjugated bile acids. However, plasma bile acid levels are normal in a subset of NTCP knockout mice and in mice treated with myrcludex B, a specific NTCP inhibitor. Here, we elucidated which transport proteins mediate the hepatic uptake of conjugated bile acids and demonstrated intestinal sensing of elevated bile acid levels in plasma in mice. Mice or healthy volunteers were treated with myrcludex B. Hepatic bile acid uptake kinetics were determined in wild-type (WT), organic anion transporting polypeptide (OATP) knockout mice (lacking Slco1a/1b isoforms), and human OATP1B1-transgenic mice. Effects of fibroblast growth factor 19 (FGF19) on hepatic transporter mRNA levels were assessed in rat hepatoma cells and in mice by peptide injection or adeno-associated virus-mediated overexpression. NTCP inhibition using myrcludex B had only moderate effects on bile acid kinetics in WT mice, but completely inhibited active transport of conjugated bile acid species in OATP knockout mice. Cholesterol 7α-hydroxylase Cyp7a1 expression was strongly down-regulated upon prolonged inhibition of hepatic uptake of conjugated bile acids. Fgf15 (mouse counterpart of FGF19) expression was induced in hypercholanemic OATP and NTCP knockout mice, as well as in myrcludex B-treated cholestatic mice, whereas plasma FGF19 was not induced in humans treated with myrcludex B. Fgf15/FGF19 expression was induced in polarized human enterocyte-models and mouse organoids by basolateral incubation with a high concentration (1 mM) of conjugated bile acids. CONCLUSION NTCP and OATPs contribute to hepatic uptake of conjugated bile acids in mice, whereas the predominant uptake in humans is NTCP mediated. Enterocytes sense highly elevated levels of (conjugated) bile acids in the systemic circulation to induce FGF15/19, which modulates hepatic bile acid synthesis and uptake. (Hepatology 2017;66:1631-1643).
Collapse
Affiliation(s)
- Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands
| | | | | | - Antje Blank
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany,German Center for Infection Research (DZIF)Heidelberg Partner SiteHeidelbergGermany
| | - Joanne M. Donkers
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands
| | - Stéphanie van Hoppe
- Division of Molecular Oncologythe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Dirk. R. de Waart
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands
| | - Dagmar Tolenaars
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands
| | | | - Manon Wildenberg
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands,Department of Gastroenterology and HepatologyAcademic Medical CenterAmsterdamThe Netherlands
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands,Department of Gastroenterology and HepatologyAcademic Medical CenterAmsterdamThe Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands,Department of Gastroenterology and HepatologyAcademic Medical CenterAmsterdamThe Netherlands
| | - Alfred H. Schinkel
- Division of Molecular Oncologythe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands,Department of Gastroenterology and HepatologyAcademic Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
30
|
Garg A, Bansal M, Gotoh N, Feng GS, Zhong J, Wang F, Kariminejad A, Brooks S, Zhang X. Alx4 relays sequential FGF signaling to induce lacrimal gland morphogenesis. PLoS Genet 2017; 13:e1007047. [PMID: 29028795 PMCID: PMC5656309 DOI: 10.1371/journal.pgen.1007047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/25/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
The sequential use of signaling pathways is essential for the guidance of pluripotent progenitors into diverse cell fates. Here, we show that Shp2 exclusively mediates FGF but not PDGF signaling in the neural crest to control lacrimal gland development. In addition to preventing p53-independent apoptosis and promoting the migration of Sox10-expressing neural crests, Shp2 is also required for expression of the homeodomain transcription factor Alx4, which directly controls Fgf10 expression in the periocular mesenchyme that is necessary for lacrimal gland induction. We show that Alx4 binds an Fgf10 intronic element conserved in terrestrial but not aquatic animals, underlying the evolutionary emergence of the lacrimal gland system in response to an airy environment. Inactivation of ALX4/Alx4 causes lacrimal gland aplasia in both human and mouse. These results reveal a key role of Alx4 in mediating FGF-Shp2-FGF signaling in the neural crest for lacrimal gland development. The dry eye disease caused by lacrimal gland dysgenesis is one of the most common ocular ailments. In this study, we show that Shp2 mediates the sequential use of FGF signaling in lacrimal gland development. Our study identifies Alx4 as a novel target of Shp2 signaling and a causal gene for lacrimal gland aplasia in humans. Given this result, there may also be a potential role for Alx4 in guiding pluripotent stem cells to produce lacrimal gland tissue. Finally, our data reveals an Alx4-Fgf10 regulatory unit broadly conserved in the diverse array of terrestrial animals from humans to reptiles, but not in aquatic animals such as amphibians and fish, which sheds light on how the lacrimal gland arose as an evolutionary innovation of terrestrial animals to adapt to their newfound exposure to an airy environment.
Collapse
Affiliation(s)
- Ankur Garg
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Mukesh Bansal
- PsychoGenics Inc., Tarrytown, NY, United States of America
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University Kakuma-machi, Kanazawa city, Japan
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, and Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jian Zhong
- Burke Medical Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, NY, United States of America
| | - Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States of America
| | | | - Steven Brooks
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kim JJ, Jiwani T, Erwood S, Loree J, Rosenblum ND. Suppressor of fused controls cerebellar neuronal differentiation in a manner modulated by GLI3 repressor and Fgf15. Dev Dyn 2017; 247:156-169. [PMID: 28560839 DOI: 10.1002/dvdy.24526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Deficiency of Suppressor of Fused (SuFu), an intracellular mediator of Hedgehog signaling, in the murine mid-hindbrain disrupts cerebellar morphogenesis and cell differentiation in a manner that is rescued by constitutive expression of GLI3 transcriptional repressor (GLI3R). Here, we determined SuFu functions in cerebellar radial precursors following the stage of mid-hindbrain specification using a Blbp-Cre transgene. RESULTS SuFu-deficient cerebella were severely dysplastic, and characterized by laminar disorganization, and delayed differentiation of ventricular zone-derived precursors. In vitro analysis of cerebellar precursors isolated from control and mutant mice demonstrated an increased proportion of radial glial precursors vs. Tuj1-positive neurons in mutant cultures. Abnormal cell differentiation in SuFu-deficient precursors was rescued by a constitutively expressed GLI3R knock-in allele, albeit with variable penetrance. Using RNA expression analysis in control and SuFu-deficient cerebellar anlage, we identified up-regulation of Fgf15 in mutant tissue. Strikingly, exogenous hFGF19, a mFGF15 ortholog, inhibited neuronal differentiation in cultures of wild-type cerebellar precursors. Moreover, siRNA-mediated knockdown of Fgf15 in SuFu-deficient cerebellar precursors rescued their delayed differentiation to neurons. CONCLUSIONS Together, our results show that SuFu promotes cerebellar radial precursor differentiation to neurons. SuFu function is mediated in part by GLI3R and down-regulation of Fgf15 expression. Developmental Dynamics 247:156-169, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinny J Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Medical Sciences Building, Toronto, ON, Canada
| | - Tayyaba Jiwani
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Toronto, ON, Canada
| | - Steven Erwood
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
| | - Jillian Loree
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Medical Sciences Building, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Toronto, ON, Canada.,Division of Nephrology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Medical Sciences Building, Toronto, ON, Canada
| |
Collapse
|
32
|
Liu YC, Ho HC, Lee MR, Yeh CM, Tseng HC, Lin YC, Chung JG. Cortactin is a prognostic marker for oral squamous cell carcinoma and its overexpression is involved in oral carcinogenesis. ENVIRONMENTAL TOXICOLOGY 2017; 32:799-812. [PMID: 27148699 DOI: 10.1002/tox.22280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
EMS1 (chromosome eleven, band q13, mammary tumor and squamous cell carcinoma-associated gene 1) gene amplification and the concomitant cortactin overexpression have been reported to associate with poor prognosis and tumor metastasis. In this study, we examined cortactin expression by immunohistochemistry in human oral tumors and murine tongue tumors which were induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO). The immunostaining results show over- to moderate expression of cortactin in 85% (104/122) of oral squamous cell carcinoma (OSCC) tissues and in all 15 leukoplakia tissues examined. Further, statistical analysis indicates that cortactin overexpression appears to be a predictor for shorter survival and poorer prognosis in OSCC patients. In an animal model, cortactin is shown to upregulate in infiltrating squamous cell carcinoma, papilloma, and epithelia with squamous hyperplasia, indicating that cortactin induction is an early event during oral carcinogenesis. It is suggested that cortactin expression is mediated in the progression of pre-malignancy to papilloma, based on earlier cortactin induction in pre-malignancy preceding cyclin D1 in papilloma. In conclusion, cortactin overexpression is frequently observed in human OSCC and mouse tongue tumors. Thus, cortactin may have an important role in the development of oral tumors in human and mice. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 799-812, 2017.
Collapse
Affiliation(s)
- Yu-Ching Liu
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Heng-Chien Ho
- Departments of Biochemistry, China Medical University, Taichung, Taiwan
| | - Miau-Rong Lee
- Departments of Biochemistry, China Medical University, Taichung, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsien-Chang Tseng
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Yung-Chang Lin
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jing-Gung Chung
- Departments of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
33
|
Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2015; 15:51-69. [PMID: 26567701 DOI: 10.1038/nrd.2015.9] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21 and FGF23, are critical for maintaining whole-body homeostasis, with roles in bile acid, glucose and lipid metabolism, modulation of vitamin D and phosphate homeostasis and metabolic adaptation during fasting. Given these functions, the endocrine FGFs have therapeutic potential in a wide array of chronic human diseases, including obesity, type 2 diabetes, cancer, and kidney and cardiovascular disease. However, the safety and feasibility of chronic endocrine FGF administration has been challenged, and FGF analogues and mimetics are now being investigated. Here, we discuss current knowledge of the complex biology of the endocrine FGFs and assess how this may be harnessed therapeutically.
Collapse
|
34
|
Markan KR, Potthoff MJ. Metabolic fibroblast growth factors (FGFs): Mediators of energy homeostasis. Semin Cell Dev Biol 2015; 53:85-93. [PMID: 26428296 DOI: 10.1016/j.semcdb.2015.09.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023]
Abstract
The metabolic fibroblast growth factors (FGFs), FGF1, FGF15/19, and FGF21 differ from classic FGFs in that they modulate energy homeostasis in response to fluctuating nutrient availability. These unique mediators of metabolism regulate a number of physiological processes which contribute to their potent pharmacological properties. Administration of pharmacological doses of these FGFs causes weight loss, increases energy expenditure, and improves carbohydrate and lipid metabolism in obese animal models. However, many questions remain regarding the precise molecular and physiological mechanisms governing the effects of individual metabolic FGFs. Here we review the metabolic actions of FGF1, FGF15/19, and FGF21 while providing insights into their pharmacological effects by examining known biological functions.
Collapse
Affiliation(s)
- Kathleen R Markan
- Department of Pharmacology and University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Pharmacology and University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
35
|
Naugler WE, Tarlow BD, Fedorov LM, Taylor M, Pelz C, Li B, Darnell J, Grompe M. Fibroblast Growth Factor Signaling Controls Liver Size in Mice With Humanized Livers. Gastroenterology 2015; 149:728-40.e15. [PMID: 26028580 PMCID: PMC4550566 DOI: 10.1053/j.gastro.2015.05.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/07/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The ratio of liver size to body weight (hepatostat) is tightly controlled, but little is known about how the physiologic functions of the liver help determine its size. Livers of mice repopulated with human hepatocytes (humanized livers) grow to larger than normal; the human hepatocytes do not recognize the fibroblast growth factor (FGF)-15 produced by mouse intestine. This results in up-regulation of bile acid synthesis in the human hepatocytes and enlargement of the bile acid pool. We investigated whether abnormal bile acid signaling affects the hepatostat in mice. METHODS We crossed Fah(-/-), Rag2(-/-), Il2r(-/-) mice with nonobese diabetic mice to create FRGN mice, whose livers can be fully repopulated with human hepatocytes. We inserted the gene for human FGF19 (ortholog to mouse Fgf15), including regulatory sequences, into the FRGN mice to create FRGN19(+) mice. Livers of FRGN19(+) mice and their FRGN littermates were fully repopulated with human hepatocytes. Liver tissues were collected and bile acid pool sizes and RNA sequences were analyzed and compared with those of mice without humanized livers (controls). RESULTS Livers were larger in FRGN mice with humanized livers (13% of body weight), compared with control FRGN mice; they also had much larger bile acid pools and aberrant bile acid signaling. Livers from FRGN19(+) normalized to 7.8% of body weight, and their bile acid pool and signaling more closely resembled that of control FRGN19(+) mice. RNA sequence analysis showed activation of the Hippo pathway, and immunohistochemical and transcription analyses revealed increased hepatocyte proliferation, but not apoptosis, in the enlarged humanized livers of FRGN mice. Cell sorting experiments showed that although healthy human liver does not produce FGF19, nonparenchymal cells from cholestatic livers produce FGF19. CONCLUSIONS In mice with humanized livers, expression of an FGF19 transgene corrects bile acid signaling defects, resulting in normalization of bile acid synthesis, the bile acid pool, and liver size. These findings indicate that liver size is, in part, regulated by the size of the bile acid pool that the liver must circulate.
Collapse
Affiliation(s)
- Willscott E. Naugler
- Dept. of Medicine, Division of GI & Hepatology, Oregon Health & Science Center, Portland, OR,Oregon Stem Cell Center, Oregon Health & Science Center, Portland, OR
| | - Branden D. Tarlow
- Dept. of Cell, Developmental, and Cancer Biology, Oregon Health & Science Center, Portland, OR
| | - Lev M. Fedorov
- OHSU Transgenic Mouse Models Shared Resource, Oregon Health & Science Center, Portland, OR
| | - Matthew Taylor
- Dept. of Hematology & Oncology, Oregon Health & Science Center, Portland, OR
| | - Carl Pelz
- Dept. of Pediatrics, Papé Family Pediatric Research Institute Oregon Health & Science Center, Portland, OR
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health & Science Center, Portland, OR
| | - Jennifer Darnell
- Dept. of Medicine, Division of GI & Hepatology, Oregon Health & Science Center, Portland, OR
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science Center, Portland, OR,Dept. of Hematology & Oncology, Oregon Health & Science Center, Portland, OR
| |
Collapse
|
36
|
Martinez-Ferre A, Lloret-Quesada C, Prakash N, Wurst W, Rubenstein JLR, Martinez S. Fgf15 regulates thalamic development by controlling the expression of proneural genes. Brain Struct Funct 2015; 221:3095-109. [PMID: 26311466 DOI: 10.1007/s00429-015-1089-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/21/2015] [Indexed: 01/01/2023]
Abstract
The establishment of the brain structural complexity requires a precisely orchestrated interplay between extrinsic and intrinsic signals modulating cellular mechanisms to guide neuronal differentiation. However, little is known about the nature of these signals in the diencephalon, a complex brain region that processes and relays sensory and motor information to and from the cerebral cortex and subcortical structures. Morphogenetic signals from brain organizers regulate histogenetic processes such as cellular proliferation, migration, and differentiation. Sonic hedgehog (Shh) in the key signal of the ZLI, identified as the diencephalic organizer. Fgf15, the mouse gene orthologous of human, chick, and zebrafish Fgf19, is induced by Shh signal and expressed in the diencephalic alar plate progenitors during histogenetic developmental stages. This work investigates the role of Fgf15 signal in diencephalic development. In the absence of Fgf15, the complementary expression pattern of proneural genes: Ascl1 and Nng2, is disrupted and the GABAergic thalamic cells do not differentiate; in addition dorsal thalamic progenitors failed to exit from the mitotic cycle and to differentiate into neurons. Therefore, our findings indicate that Fgf15 is the Shh downstream signal to control thalamic regionalization, neurogenesis, and neuronal differentiation by regulating the expression and mutual segregation of neurogenic and proneural regulatory genes.
Collapse
Affiliation(s)
- Almudena Martinez-Ferre
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30120, El Palmar, Murcia, Spain
| | - Cosme Lloret-Quesada
- Institute of Neurosciences, Miguel Hernández University, Spanish National Research Council, San Juan Campus, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH), Technical University Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH), Technical University Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - John L R Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Salvador Martinez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30120, El Palmar, Murcia, Spain. .,Institute of Neurosciences, Miguel Hernández University, Spanish National Research Council, San Juan Campus, 03550, Sant Joan d'Alacant, Alicante, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Valencia, Spain.
| |
Collapse
|
37
|
Katafuchi T, Esterházy D, Lemoff A, Ding X, Sondhi V, Kliewer SA, Mirzaei H, Mangelsdorf DJ. Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry. Cell Metab 2015; 21:898-904. [PMID: 26039452 PMCID: PMC4454892 DOI: 10.1016/j.cmet.2015.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/18/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Fibroblast growth factor 15 (FGF15) has been proposed as a postprandial hormone that signals from intestine to liver to regulate bile acid and carbohydrate homeostasis. However, detecting FGF15 in blood using conventional techniques has proven difficult. Here, we describe a stable isotope standards and capture by anti-peptide antibodies (SISCAPA) assay that combines immuno-enrichment with selected reaction monitoring (SRM) mass spectrometry to overcome this issue. Using this assay, we show that FGF15 circulates in plasma in an FXR and circadian rhythm-dependent manner at concentrations that activate its receptor. Consistent with the proposed endocrine role for FGF15 in liver, mice lacking hepatocyte expression of the obligate FGF15 co-receptor, β-Klotho, have increased bile acid synthesis and reduced glycogen storage despite having supraphysiological plasma FGF15 concentrations. Collectively, these data demonstrate that FGF15 functions as a hormone and highlight the utility of SISCAPA-SRM as a sensitive assay for detecting low-abundance proteins in plasma.
Collapse
Affiliation(s)
- Takeshi Katafuchi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daria Esterházy
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xunshan Ding
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Varun Sondhi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Steven A Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
38
|
Yousef H, Conboy MJ, Mamiya H, Zeiderman M, Schlesinger C, Schaffer DV, Conboy IM. Mechanisms of action of hESC-secreted proteins that enhance human and mouse myogenesis. Aging (Albany NY) 2015; 6:602-20. [PMID: 25109702 PMCID: PMC4169857 DOI: 10.18632/aging.100659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adult stem cells grow poorly in vitro compared to embryonic stem cells, and in vivo stem cell maintenance and proliferation by tissue niches progressively deteriorates with age. We previously reported that factors produced by human embryonic stem cells (hESCs) support a robust regenerative capacity for adult and old mouse muscle stem/progenitor cells. Here we extend these findings to human muscle progenitors and investigate underlying molecular mechanisms. Our results demonstrate that hESC-conditioned medium enhanced the proliferation of mouse and human muscle progenitors. Furthermore, hESC-produced factors activated MAPK and Notch signaling in human myogenic progenitors, and Delta/Notch-1 activation was dependent on MAPK/pERK. The Wnt, TGF-β and BMP/pSmad1,5,8 pathways were unresponsive to hESC-produced factors, but BMP signaling was dependent on intact MAPK/pERK. c-Myc, p57, and p18 were key effectors of the enhanced myogenesis promoted by the hECS factors. To define some of the active ingredients of the hESC-secretome which may have therapeutic potential, a comparative proteomic antibody array analysis was performed and identified several putative proteins, including FGF2, 6 and 19 which as ligands for MAPK signaling, were investigated in more detail. These studies emphasize that a “youthful” signaling of multiple signaling pathways is responsible for the pro-regenerative activity of the hESC factors.
Collapse
Affiliation(s)
- Hanadie Yousef
- Department of Molecular and Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA. co-first authors
| | - Michael J Conboy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA. co-first authors
| | - Hikaru Mamiya
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA
| | - Matthew Zeiderman
- Department of Molecular and Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Christina Schlesinger
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA
| | - David V Schaffer
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA. Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720 USA
| | - Irina M Conboy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1457] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
40
|
Reue K, Lee JM, Vergnes L. Diet1 is a regulator of fibroblast growth factor 15/19-dependent bile acid synthesis. Dig Dis 2015; 33:307-13. [PMID: 26045262 PMCID: PMC4809532 DOI: 10.1159/000371649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND A fascinating aspect of bile acid homeostasis is the coordination between bile acid uptake in intestine and hepatic bile acid synthesis. In response to bile acid uptake in enterocytes, farnesoid X receptor is activated and induces transcription of fibroblast growth factor (FGF)15 in mice, or FGF19 in humans. FGF15/19 is secreted into the enterohepatic circulation, and through activation of hepatic receptors, leads to repression of Cyp7a1, a rate-limiting enzyme for bile acid synthesis. Using a genetic approach, we identified a novel protein, Diet1, as a control point for FGF15/19 production. KEY MESSAGES Mice with a Diet1-null mutation have reduced FGF15 secretion, causing impaired feedback repression of hepatic bile acid synthesis, and increased fecal bile acid excretion. As a result, Diet1-deficient mice constitutively convert cholesterol to bile acids and are resistant to diet-induced hypercholesterolemia and atherosclerosis. Diet1 affects FGF15/19 production at the posttranscriptional level, and the proteins appear to have overlapping subcellular localization in enterocytes. Diet1 appears to be a control point for the production of FGF15/19 in enterocytes, and thus a regulator of bile acid and lipid homeostasis. Studies to evaluate the role of common and rare DIET1 genetic variants in human health and disease are warranted. CONCLUSIONS Further elucidation of the Diet1-FGF15/19 interaction will provide new insights into the intricate regulatory mechanisms underlying bile acid metabolism.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, University of California, Los Angeles, California 90095,Department of Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Jessica M. Lee
- Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, California 90095
| |
Collapse
|
41
|
Maulding K, Padanad MS, Dong J, Riley BB. Mesodermal Fgf10b cooperates with other fibroblast growth factors during induction of otic and epibranchial placodes in zebrafish. Dev Dyn 2014; 243:1275-85. [PMID: 24677486 PMCID: PMC4313390 DOI: 10.1002/dvdy.24119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/27/2014] [Accepted: 02/16/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vertebrate otic and epibranchial placodes develop in close proximity in response to localized fibroblast growth factor (Fgf) signaling. Although less is known about epibranchial induction, the process of otic induction in highly conserved, with important roles for Fgf3 and Fgf8 reported in all species examined. Fgf10 is also critical for otic induction in mouse, but the only zebrafish ortholog examined to date, fgf10a, is not expressed early enough to play such a role. A second zebrafish ortholog, fgf10b, has not been previously examined. RESULTS We find that zebrafish fgf10b is expressed at tailbud stage in paraxial cephalic mesoderm beneath prospective epibranchial tissue, lateral to the developing otic placode. Knockdown of fgf10b does not affect initial otic induction but impairs subsequent accumulation of otic cells. Formation of epibranchial placodes and ganglia are also moderately impaired. Combinatorial disruption of fgf10b and fgf3 exacerbates the deficiency of otic cells and eliminates epibranchial induction entirely. Disruption of fgf10b and fgf24 also strongly reduces, but does not eliminate, epibranchial induction. CONCLUSIONS fgf10b participates in a late phase of otic induction and, in combination with fgf3, is especially critical for epibranchial induction.
Collapse
Affiliation(s)
- Kirstin Maulding
- Biology Department, Texas A&M University, College Station, TX 77843-3258
| | - Mahesh S. Padanad
- Biology Department, Texas A&M University, College Station, TX 77843-3258
| | - Jennifer Dong
- Biology Department, Texas A&M University, College Station, TX 77843-3258
| | - Bruce B. Riley
- Biology Department, Texas A&M University, College Station, TX 77843-3258
| |
Collapse
|
42
|
Kong B, Huang J, Zhu Y, Li G, Williams J, Shen S, Aleksunes LM, Richardson JR, Apte U, Rudnick DA, Guo GL. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G893-902. [PMID: 24699334 PMCID: PMC4024724 DOI: 10.1152/ajpgi.00337.2013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an endocrine FGF highly expressed in the small intestine of mice. Emerging evidence suggests that FGF15 is critical for regulating hepatic functions; however, the role of FGF15 in liver regeneration is unclear. This study assessed whether liver regeneration is altered in FGF15 knockout (KO) mice following 2/3 partial hepatectomy (PHx). The results showed that FGF15 KO mice had marked mortality, with the survival rate influenced by genetic background. Compared with wild-type mice, the KO mice displayed extensive liver necrosis and marked elevation of serum bile acids and bilirubin. Furthermore, hepatocyte proliferation was reduced in the KO mice because of impaired cell cycle progression. After PHx, the KO mice had weaker activation of signaling pathways that are important for liver regeneration, including signal transducer and activator of transcription 3, nuclear factor-κB, and mitogen-activated protein kinase. Examination of the KO mice at early time points after PHx revealed a reduced and/or delayed induction of immediate-early response genes, including growth-control transcription factors that are critical for liver regeneration. In conclusion, the results suggest that FGF15 deficiency severely impairs liver regeneration in mice after PHx. The underlying mechanism is likely the result of disrupted bile acid homeostasis and impaired priming of hepatocyte proliferation.
Collapse
Affiliation(s)
- Bo Kong
- 1Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey;
| | - Jiansheng Huang
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri;
| | - Yan Zhu
- 3Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, Peoples Republic of China;
| | - Guodong Li
- 4Department of Surgical Oncology, Cancer Treatment Center, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China;
| | - Jessica Williams
- 6Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Steven Shen
- 6Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Lauren M. Aleksunes
- 1Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey;
| | - Jason R. Richardson
- 5Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and
| | - Udayan Apte
- 6Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - David A. Rudnick
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri;
| | - Grace L. Guo
- 1Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey;
| |
Collapse
|
43
|
Laugel-Haushalter V, Paschaki M, Marangoni P, Pilgram C, Langer A, Kuntz T, Demassue J, Morkmued S, Choquet P, Constantinesco A, Bornert F, Schmittbuhl M, Pannetier S, Viriot L, Hanauer A, Dollé P, Bloch-Zupan A. RSK2 is a modulator of craniofacial development. PLoS One 2014; 9:e84343. [PMID: 24416220 PMCID: PMC3885557 DOI: 10.1371/journal.pone.0084343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/21/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked dominant genetic disorder causing mental retardation, skeletal growth delays, with craniofacial and digital abnormalities typically associated with this syndrome. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS We examined, using X-Ray microtomographic analysis, the variable craniofacial dysmorphism and dental anomalies present in Rsk2 knockout mice, a model of Coffin-Lowry syndrome, as well as in triple Rsk1,2,3 knockout mutants. We report Rsk mutation produces surpernumerary teeth midline/mesial to the first molar. This highly penetrant phenotype recapitulates more ancestral tooth structures lost with evolution. Most likely this leads to a reduction of the maxillary diastema. Abnormalities of molar shape were generally restricted to the mesial part of both upper and lower first molars (M1). Expression analysis of the four Rsk genes (Rsk1, 2, 3 and 4) was performed at various stages of odontogenesis in wild-type (WT) mice. Rsk2 is expressed in the mesenchymal, neural crest-derived compartment, correlating with proliferative areas of the developing teeth. This is consistent with RSK2 functioning in cell cycle control and growth regulation, functions potentially responsible for severe dental phenotypes. To uncover molecular pathways involved in the etiology of these defects, we performed a comparative transcriptomic (DNA microarray) analysis of mandibular wild-type versus Rsk2-/Y molars. We further demonstrated a misregulation of several critical genes, using a Rsk2 shRNA knock-down strategy in molar tooth germs cultured in vitro. CONCLUSIONS This study reveals RSK2 regulates craniofacial development including tooth development and patterning via novel transcriptional targets.
Collapse
Affiliation(s)
- Virginie Laugel-Haushalter
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), University of Strasbourg, Illkirch, France
| | - Marie Paschaki
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), University of Strasbourg, Illkirch, France
| | - Pauline Marangoni
- Team «Evo-Devo of Vertebrate Dentition», Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242 Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Coralie Pilgram
- Faculty of Dentistry, University of Strasbourg, Strasbourg France
| | - Arnaud Langer
- Faculty of Dentistry, University of Strasbourg, Strasbourg France
| | - Thibaut Kuntz
- Faculty of Dentistry, University of Strasbourg, Strasbourg France
| | - Julie Demassue
- Faculty of Dentistry, University of Strasbourg, Strasbourg France
| | - Supawich Morkmued
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), University of Strasbourg, Illkirch, France
- Faculty of Dentistry, University of Strasbourg, Strasbourg France
- Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Philippe Choquet
- UF6237 Preclinical Imaging Lab, Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France; ICube, CNRS, University of Strasbourg, Strasbourg, France
| | - André Constantinesco
- UF6237 Preclinical Imaging Lab, Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France; ICube, CNRS, University of Strasbourg, Strasbourg, France
| | - Fabien Bornert
- Faculty of Dentistry, University of Strasbourg, Strasbourg France
- INSERM U1121, "Biomaterials and Bioengineering", University of Strasbourg, Strasbourg, France
| | - Matthieu Schmittbuhl
- Faculty of Dentistry, University of Strasbourg, Strasbourg France
- Reference Centre for Orodental Manifestations of Rare Diseases, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- INSERM U1121, "Biomaterials and Bioengineering", University of Strasbourg, Strasbourg, France
| | - Solange Pannetier
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), University of Strasbourg, Illkirch, France
| | - Laurent Viriot
- Team «Evo-Devo of Vertebrate Dentition», Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242 Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - André Hanauer
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), University of Strasbourg, Illkirch, France
| | - Pascal Dollé
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), University of Strasbourg, Illkirch, France
| | - Agnès Bloch-Zupan
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), University of Strasbourg, Illkirch, France
- Faculty of Dentistry, University of Strasbourg, Strasbourg France
- Reference Centre for Orodental Manifestations of Rare Diseases, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
- * E-mail:
| |
Collapse
|
44
|
Paschaki M, Cammas L, Muta Y, Matsuoka Y, Mak SS, Rataj-Baniowska M, Fraulob V, Dollé P, Ladher RK. Retinoic acid regulates olfactory progenitor cell fate and differentiation. Neural Dev 2013; 8:13. [PMID: 23829703 PMCID: PMC3717070 DOI: 10.1186/1749-8104-8-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In order to fulfill their chemosensory function, olfactory neurons are in direct contact with the external environment and are therefore exposed to environmental aggressive factors. Olfaction is maintained through life because, unlike for other sensory neuroepithelia, olfactory neurons have a unique capacity to regenerate after trauma. The mechanisms that control the ontogenesis and regenerative ability of these neurons are not fully understood. Here, we used various experimental approaches in two model systems (chick and mouse) to assess the contribution of retinoic acid signaling in the induction of the olfactory epithelium, the generation and maintenance of progenitor populations, and the ontogenesis and differentiation of olfactory neurons. RESULTS We show that retinoic acid signaling, although dispensable for initial induction of the olfactory placode, plays a key role in neurogenesis within this neuroepithelium. Retinoic acid depletion in the olfactory epithelium, both in chick and mouse models, results in a failure of progenitor cell maintenance and, consequently, differentiation of olfactory neurons is not sustained. Using an explant system, we further show that renewal of olfactory neurons is hindered if the olfactory epithelium is unable to synthesize retinoic acid. CONCLUSIONS Our data show that retinoic acid is not a simple placodal inductive signal, but rather controls olfactory neuronal production by regulating the fate of olfactory progenitor cells. Retinaldehyde dehydrogenase 3 (RALDH3) is the key enzyme required to generate retinoic acid within the olfactory epithelium.
Collapse
Affiliation(s)
- Marie Paschaki
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell Metab 2013; 17:916-928. [PMID: 23747249 PMCID: PMC3956443 DOI: 10.1016/j.cmet.2013.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/06/2013] [Accepted: 04/02/2013] [Indexed: 12/19/2022]
Abstract
We identified a mutation in the Diet1 gene in a mouse strain that is resistant to hyperlipidemia and atherosclerosis. Diet1 encodes a 236 kD protein consisting of tandem low-density lipoprotein receptor and MAM (meprin-A5-protein tyrosine phosphatase mu) domains and is expressed in the enterocytes of the small intestine. Diet1-deficient mice exhibited an elevated bile acid pool size and impaired feedback regulation of hepatic Cyp7a1, which encodes the rate-limiting enzyme in bile acid synthesis. In mouse intestine and in cultured human intestinal cells, Diet1 expression levels influenced the production of fibroblast growth factor 15/19 (FGF15/19), a hormone that signals from the intestine to liver to regulate Cyp7a1. Transgenic expression of Diet1, or adenoviral-mediated Fgf15 expression, restored normal Cyp7a1 regulation in Diet-1-deficient mice. Diet1 and FGF19 proteins exhibited overlapping subcellular localization in cultured intestinal cells. These results establish Diet1 as a control point in enterohepatic bile acid signaling and lipid homeostasis.
Collapse
|
46
|
Vendrell V, Vázquez-Echeverría C, López-Hernández I, Alonso BD, Martinez S, Pujades C, Schimmang T. Roles of Wnt8a during formation and patterning of the mouse inner ear. Mech Dev 2013; 130:160-168. [PMID: 23041177 DOI: 10.1016/j.mod.2012.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 12/22/2022]
Abstract
Fgf and Wnt signalling have been shown to be required for formation of the otic placode in vertebrates. Whereas several Fgfs including Fgf3, Fgf8 and Fgf10 have been shown to participate during early placode induction, Wnt signalling is required for specification and maintenance of the otic placode, and dorsal patterning of the otic vesicle. However, the requirement for specific members of the Wnt gene family for otic placode and vesicle formation and their potential interaction with Fgf signalling has been poorly defined. Due to its spatiotemporal expression during placode formation in the hindbrain Wnt8a has been postulated as a potential candidate for its specification. Here we have examined the role of Wnt8a during formation of the otic placode and vesicle in mouse embryos. Wnt8a expression depends on the presence of Fgf3 indicating a serial regulation between Fgf and Wnt signalling during otic placode induction and specification. Wnt8a by itself however is neither essential for placode specification nor redundantly required together with Fgfs for otic placode and vesicle formation. Interestingly however, Wnt8a and Fgf3 are redundantly required for expression of Fgf15 in the hindbrain indicating additional reciprocal interactions between Fgf and Wnt signalling. Further reduction of Wnt signalling by the inactivation of Wnt1 in a Wnt8a mutant background revealed a redundant requirement for both genes during morphogenesis of the dorsal portion of the otic vesicle.
Collapse
Affiliation(s)
- Victor Vendrell
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, E-47003 Valladolid, Spain.
| | | | | | | | | | | | | |
Collapse
|
47
|
Cicione C, Degirolamo C, Moschetta A. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology 2012; 56:2404-11. [PMID: 22753116 DOI: 10.1002/hep.25929] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/14/2012] [Indexed: 12/07/2022]
Abstract
Fibroblast growth factors (FGFs) 15/19 and 21 belong to the FGF endocrine subfamily. They present the intriguing characteristic to be transcribed and secreted in certain tissues and to act as hormones. The insulin-mimetic properties of FGF21 and the regulatory role of FGF15/19 in bile acid and glucose homeostasis endorse these hormones as druggable targets in metabolic disorders. Here, we present details on discoveries, identification, transcriptional regulation, and mechanism of actions of FGF15/19 and FGF21 with a critical perspective view on their putative role as metabolic integrators in the liver.
Collapse
Affiliation(s)
- Claudia Cicione
- Laboratory of Lipid Metabolism and Cancer, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | | | | |
Collapse
|
48
|
Nakamura M, Uehara Y, Asada M, Suzuki M, Imamura T. Sulfated glycosaminoglycan-assisted receptor specificity of human fibroblast growth factor (FGF) 19 signaling in a mouse system is different from that in a human system. ACTA ACUST UNITED AC 2012; 18:321-30. [PMID: 23064887 DOI: 10.1177/1087057112463820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The endocrine action of human (h) intestine-derived fibroblast growth factor 19 (hFGF19) toward liver cells necessitates a highly specific recognition system. We previously reported that at physiological concentrations (~30 pM), hFGF19 requires sulfated glycosaminoglycans (sGAGs) for its signaling via human FGF receptor 4 (hFGFR4) in the presence of a co-receptor, human βKlotho (hKLB), thus establishing specific targeting. Here we report that the specificity of hFGF19 signaling is greatly altered in a mouse model system. In in vitro cellular systems, at concentrations achievable in transgenic animals and in pharmacologic animal experiments (1-100 nM), hFGF19 activates mouse (m)FGFR1c, mFGFR2c, and mFGFR3c but not mFGFR4 in the presence of mKLB and nonheparin authentic sGAGs. Furthermore, in the presence of hepatic sGAGs or heparin, nanomolar hFGF19 activates mFGFR4, even in the absence of co-expressed mKLB. Taken together, these results indicate that the sGAG-assisted receptor specificity of hFGF19 signaling achieved in experimental mouse systems differs greatly from that in physiological human systems. This suggests the function and mechanism of hFGF19 signaling identified using mouse systems should be reevaluated.
Collapse
Affiliation(s)
- Masao Nakamura
- National Institute of Advanced Industrial Science and Technology AIST, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|
49
|
Kong B, Wang L, Chiang JYL, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 2012; 56:1034-43. [PMID: 22467244 PMCID: PMC3390456 DOI: 10.1002/hep.25740] [Citation(s) in RCA: 362] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/19/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED Activation of farnesoid X receptor (Fxr, Nr1h4) is a major mechanism in suppressing bile-acid synthesis by reducing the expression levels of genes encoding key bile-acid synthetic enzymes (e.g., cytochrome P450 [CYP]7A1/Cyp7a1 and CYP8B1/Cyp8b1). FXR-mediated induction of hepatic small heterodimer partner (SHP/Shp, Nr0b2) and intestinal fibroblast growth factor 15 (Fgf15; FGF19 in humans) has been shown to be responsible for this suppression. However, the exact contribution of Shp/Fgf15 to this suppression, and the associated cell-signaling pathway, is unclear. By using novel genetically modified mice, the current study showed that the intestinal Fxr/Fgf15 pathway was critical for suppressing both Cyp7a1 and Cyp8b1 gene expression, but the liver Fxr/Shp pathway was important for suppressing Cyp8b1 gene expression and had a minor role in suppressing Cyp7a1 gene expression. Furthermore, in vivo administration of Fgf15 protein to mice led to a strong activation of extracellular signal-related kinase (ERK) and, to a smaller degree, Jun N-terminal kinase (JNK) in the liver. In addition, deficiency of either the ERK or JNK pathway in mouse livers reduced the basal, but not the Fgf15-mediated, suppression of Cyp7a1 and Cyp8b1 gene expression. However, deficiency of both ERK and JNK pathways prevented Fgf15-mediated suppression of Cyp7a1 and Cyp8b1 gene expression. CONCLUSION The current study clearly elucidates the underlying molecular mechanism of hepatic versus intestinal Fxr in regulating the expression of genes critical for bile-acid synthesis and hydrophobicity in the liver.
Collapse
Affiliation(s)
- Bo Kong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| | - Li Wang
- Department of Oncological Sciences, University of Utah
| | - John Y. L. Chiang
- Department of Biochemistry and Molecular Pathology, Northeast Ohio Medical University
| | - Youcai Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| | - Curtis D. Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| | - Grace L. Guo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| |
Collapse
|
50
|
Murakami M, Sakurai T. Role of fibroblast growth factor signaling in vascular formation and maintenance: orchestrating signaling networks as an integrated system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:615-29. [PMID: 22930472 DOI: 10.1002/wsbm.1190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular system has begun to be perceived as a dynamic organ actively controlling a wide variety of physiological processes. The structural and functional integrity of blood vessels, regulated by signaling activities finely modulating cell-cell and cell-matrix interactions, is crucial for vessel physiology, as well as basic functionality of the tissue. Throughout the process of new vessel formation, while blood vessels are actively reorganized and remodeled with migration and proliferation of vascular cells, maintenance of vascular barrier function is essentially important. These conflicting properties, i.e., dynamic cellular mobilization and maintenance of barrier integrity, are simultaneously achieved through the interaction of highly organized signaling networks governing coordinated cell-cell interplay. Recent evidence suggests that the fibroblast growth factor (FGF) system plays a regulatory role in several physiological conditions in the vascular system. In this article, we will attempt to summarize current knowledge in order to understand the mechanism of this coordination and evaluate the pivotal role of FGF signaling in integrating a diverse range of signaling events in vascular growth and maintenance.
Collapse
Affiliation(s)
- Masahiro Murakami
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|