1
|
Sinenko SA. Molecular Mechanisms of Drosophila Hematopoiesis. Acta Naturae 2024; 16:4-21. [PMID: 39188265 PMCID: PMC11345091 DOI: 10.32607/actanaturae.27410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 08/28/2024] Open
Abstract
As a model organism, the fruit fly (Drosophila melanogaster) has assumed a leading position in modern biological research. The Drosophila genetic system has a number of advantages making it a key model in investigating the molecular mechanisms of metazoan developmental processes. Over the past two decades, significant progress has been made in understanding the molecular mechanisms regulating Drosophila hematopoiesis. This review discusses the major advances in investigating the molecular mechanisms involved in maintaining the population of multipotent progenitor cells and their differentiation into mature hemocytes in the hematopoietic organ of the Drosophila larva. The use of the Drosophila hematopoietic organ as a model system for hematopoiesis has allowed to characterize the complex interactions between signaling pathways and transcription factors in regulating the maintenance and differentiation of progenitor cells through the signals from the hematopoietic niche, autocrine and paracrine signals, and the signals emanated by differentiated cells.
Collapse
Affiliation(s)
- S. A. Sinenko
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
2
|
Saha B, McNinch CM, Lu S, Ho MCW, De Carvalho SS, Barillas-Mury C. In-depth transcriptomic analysis of Anopheles gambiae hemocytes uncovers novel genes and the oenocytoid developmental lineage. BMC Genomics 2024; 25:80. [PMID: 38243165 PMCID: PMC10799387 DOI: 10.1186/s12864-024-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.
Collapse
Affiliation(s)
- Banhisikha Saha
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Colton M McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Margaret C W Ho
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephanie Serafim De Carvalho
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA.
| |
Collapse
|
3
|
Wang ZH, Ye XQ, Wu XT, Wang ZZ, Huang JH, Chen XX. A new gene family (BAPs) of Cotesia bracovirus induces apoptosis of host hemocytes. Virulence 2023; 14:2171691. [PMID: 36694288 PMCID: PMC9908294 DOI: 10.1080/21505594.2023.2171691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Polydnaviruses (PDVs), obligatory symbionts with parasitoid wasps, function as host immune suppressors and growth and development regulator. PDVs can induce host haemocyte apoptosis, but the underlying mechanism remains largely unknown. Here, we provided evidence that, during the early stages of parasitism, the activated Cotesia vestalis bracovirus (CvBV) reduced the overall number of host haemocytes by inducing apoptosis. We found that one haemocyte-highly expressed CvBV gene, CvBV-26-4, could induce haemocyte apoptosis. Further analyses showed that CvBV-26-4 has four homologs from other Cotesia bracoviruses and BV from wasps in the genus Glyptapanteles, and all four of them possessed a similar structure containing 3 copies of a well-conserved motif (Gly-Tyr-Pro-Tyr, GYPY). Mass spectrometry analysis revealed that CvBV-26-4 was secreted into plasma by haemocytes and then degraded into peptides that induced the apoptosis of haemocytes. Moreover, ectopic expression of CvBV-26-4 caused fly haemocyte apoptosis and increased the susceptibility of flies to bacteria. Based on this research, a new family of bracovirus genes, Bracovirus apoptosis-inducing proteins (BAPs), was proposed. Furthermore, it was discovered that the development of wasp larvae was affected when the function of CvBV BAP was obstructed in the parasitized hosts. The results of our study indicate that the BAP gene family from the bracoviruses group is crucial for immunosuppression during the early stages of parasitism.
Collapse
Affiliation(s)
- Ze-Hua Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Regional Development and Governance Center, Hangzhou, China
| | - Xi-Qian Ye
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Tong Wu
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Zhi-Zhi Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xue-Xin Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China,CONTACT Xue-Xin Chen
| |
Collapse
|
4
|
Gao HS, Hu RM, Wang ZH, Ye XQ, Wu XT, Huang JH, Wang ZZ, Chen XX. A Polydnavirus Protein Tyrosine Phosphatase Negatively Regulates the Host Phenoloxidase Pathway. Viruses 2022; 15:56. [PMID: 36680096 PMCID: PMC9866809 DOI: 10.3390/v15010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Polydnavirus (PDV) is a parasitic factor of endoparasitic wasps and contributes greatly to overcoming the immune response of parasitized hosts. Protein tyrosine phosphatases (PTPs) regulate a wide variety of biological processes at the post-transcriptional level in mammals, but knowledge of PDV PTP action during a parasitoid−host interaction is limited. In this study, we characterized a PTP gene, CvBV_12-6, derived from Cotesia vestalis bracovirus (CvBV), and explored its possible regulatory role in the immune response of the host Plutella xylostella. Our results from qPCR show that CvBV_12-6 was highly expressed in hemocytes at an early stage of parasitization. To explore CvBV_12-6 function, we specifically expressed CvBV_12-6 in Drosophila melanogaster hemocytes. The results show that Hml-Gal4 > CvBV_12-6 suppressed the phenoloxidase activity of hemolymph in D. melanogaster, but exerted no effect on the total count or the viability of the hemocytes. In addition, the Hml-Gal4 > CvBV_12-6 flies exhibited decreased antibacterial abilities against Staphylococcus aureus. Similarly, we found that CvBV_12-6 significantly suppressed the melanization of the host P. xylostella 24 h post parasitization and reduced the viability, but not the number, of hemocytes. In conclusion, CvBV_12-6 negatively regulated both cellular and humoral immunity in P. xylostella, and the related molecular mechanism may be universal to insects.
Collapse
Affiliation(s)
- Hong-Shuai Gao
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Rong-Min Hu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ze-Hua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Tong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Wang ZH, Zhou YN, Ye XQ, Wu XT, Yang P, Shi M, Huang JH, Chen XX. CLP gene family, a new gene family of Cotesia vestalis bracovirus inhibits melanization of Plutella xylostella hemolymph. INSECT SCIENCE 2021; 28:1567-1581. [PMID: 33155403 DOI: 10.1111/1744-7917.12883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Polydnaviruses (PDVs) are obligatory symbionts of parasitoid wasps and play an important role in suppressing host immune defenses. Although PDV genes that inhibit host melanization are known in Microplitis bracovirus, the functional homologs in Cotesia bracoviruses remain unknown. Here, we find that Cotesia vestalis bracovirus (CvBV) can inhibit hemolymph melanization of its host, Plutella xylostella larvae, during the early stages of parasitization, and that overexpression of highly expressed CvBV genes reduced host phenoloxidase activity. Furthermore, CvBV-7-1 in particular reduced host phenoloxidase activity within 12 h, and the injection of anti-CvBV-7-1 antibody increased the melanization of parasitized host larvae. Further analyses showed that CvBV-7-1 and three homologs from other Cotesia bracoviruses possessed a C-terminal leucine/isoleucine-rich region and had a similar function in inhibiting melanization. Therefore, a new family of bracovirus genes was proposed and named as C-terminal Leucine/isoleucine-rich Protein (CLP). Ectopic expression of CvBV-7-1 in Drosophila hemocytes increased susceptibility to bacterial repression of melanization and reduced the melanotic encapsulation of parasitized D. melanogaster by the parasitoid Leptopilina boulardi. The formation rate of wasp pupae and the eclosion rate of C. vestalis were affected when the function of CvBV-7-1 was blocked. Our findings suggest that CLP genes from Cotesia bracoviruses encoded proteins that contain a C-terminal leucine/isoleucine-rich region and function as melanization inhibitors during the early stage of parasitization, which is important for successful parasitization.
Collapse
Affiliation(s)
- Ze-Hua Wang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yue-Nan Zhou
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xi-Qian Ye
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xiao-Tong Wu
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Pei Yang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xue-Xin Chen
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ramond E, Dudzic JP, Lemaitre B. Comparative RNA-Seq analyses of Drosophila plasmatocytes reveal gene specific signatures in response to clean injury and septic injury. PLoS One 2020; 15:e0235294. [PMID: 32598400 PMCID: PMC7323993 DOI: 10.1371/journal.pone.0235294] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
Drosophila melanogaster's blood cells (hemocytes) play essential roles in wound healing and are involved in clearing microbial infections. Here, we report the transcriptional changes of larval plasmatocytes after clean injury or infection with the Gram-negative bacterium Escherichia coli or the Gram-positive bacterium Staphylococcus aureus compared to hemocytes recovered from unchallenged larvae via RNA-Sequencing. This study reveals 676 differentially expressed genes (DEGs) in hemocytes from clean injury samples compared to unchallenged samples, and 235 and 184 DEGs in E. coli and S. aureus samples respectively compared to clean injury samples. The clean injury samples showed enriched DEGs for immunity, clotting, cytoskeleton, cell migration, hemocyte differentiation, and indicated a metabolic reprogramming to aerobic glycolysis, a well-defined metabolic adaptation observed in mammalian macrophages. Microbial infections trigger significant transcription of immune genes, with significant differences between the E. coli and S. aureus samples suggesting that hemocytes have the ability to engage various programs upon infection. Collectively, our data bring new insights on Drosophila hemocyte function and open the route to post-genomic functional analysis of the cellular immune response.
Collapse
Affiliation(s)
- Elodie Ramond
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan Paul Dudzic
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
7
|
Zahler AM, Rogel LE, Glover ML, Yitiz S, Ragle JM, Katzman S. SNRP-27, the C. elegans homolog of the tri-snRNP 27K protein, has a role in 5' splice site positioning in the spliceosome. RNA (NEW YORK, N.Y.) 2018; 24:1314-1325. [PMID: 30006499 PMCID: PMC6140464 DOI: 10.1261/rna.066878.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 05/04/2023]
Abstract
The tri-snRNP 27K protein is a component of the human U4/U6-U5 tri-snRNP and contains an N-terminal phosphorylated RS domain. In a forward genetic screen in C. elegans, we previously identified a dominant mutation, M141T, in the highly-conserved C-terminal region of this protein. The mutant allele promotes changes in cryptic 5' splice site choice. To better understand the function of this poorly characterized splicing factor, we performed high-throughput mRNA sequencing analysis on worms containing this dominant mutation. Comparison of alternative splice site usage between the mutant and wild-type strains led to the identification of 26 native genes whose splicing changes in the presence of the snrp-27 mutation. The changes in splicing are specific to alternative 5' splice sites. Analysis of new alleles suggests that snrp-27 is an essential gene for worm viability. We performed a novel directed-mutation experiment in which we used the CRISPR-cas9 system to randomly generate mutations specifically at M141 of SNRP-27. We identified eight amino acid substitutions at this position that are viable, and three that are homozygous lethal. All viable substitutions at M141 led to varying degrees of changes in alternative 5' splicing of native targets. We hypothesize a role for this SR-related factor in maintaining the position of the 5' splice site as U1snRNA trades interactions at the 5' end of the intron with U6snRNA and PRP8 as the catalytic site is assembled.
Collapse
Affiliation(s)
- Alan M Zahler
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Lucero E Rogel
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Marissa L Glover
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Samira Yitiz
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - J Matthew Ragle
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
8
|
Yu S, Luo F, Jin LH. The Drosophila lymph gland is an ideal model for studying hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:60-69. [PMID: 29191551 DOI: 10.1016/j.dci.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/30/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Hematopoiesis in Drosophila melanogaster occurs throughout the entire life cycle, from the embryo to adulthood. The healthy lymph gland, as a hematopoietic organ during the larval stage, can give rise to two mature types of hemocytes, plasmatocytes and crystal cells, which persist into the pupal and adult stages. Homeostasis of the lymph gland is tightly controlled by a series of conserved factors and signaling pathways, which also play key roles in mammalian hematopoiesis. Thus, revealing the hematopoietic mechanisms in Drosophila will advance our understanding of hematopoietic stem cells and their niche as well as leukemia in mammals. In addition, the lymph gland employs a battery of strategies to produce lamellocytes, another type of mature hemocyte, to fight against parasitic wasp eggs, making the lymph gland an important immunological organ. In this review, the developmental process of the lymph gland and the regulatory networks of hematopoiesis are summarized. Moreover, we outline the current knowledge and novel insight into homeostasis of the lymph gland.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
9
|
Qi YX, Huang J, Li MQ, Wu YS, Xia RY, Ye GY. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors. eLife 2016; 5. [PMID: 26974346 PMCID: PMC4829436 DOI: 10.7554/elife.12241] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022] Open
Abstract
Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution.
Collapse
Affiliation(s)
- Yi-Xiang Qi
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia Huang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meng-Qi Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ya-Su Wu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ren-Ying Xia
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Bretscher AJ, Honti V, Binggeli O, Burri O, Poidevin M, Kurucz É, Zsámboki J, Andó I, Lemaitre B. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster. Biol Open 2015; 4:355-63. [PMID: 25681394 PMCID: PMC4359741 DOI: 10.1242/bio.201410595] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion.
Collapse
Affiliation(s)
- Andrew J Bretscher
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Viktor Honti
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | - Olivier Binggeli
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Olivier Burri
- Bioimaging and Optics Platform, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Mickael Poidevin
- Centre de Génétique Moléculaire, CNRS/Université Pierre et Marie Curie, 91198 Gif-sur-Yvette, France
| | - Éva Kurucz
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | - János Zsámboki
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | - István Andó
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Evans CJ, Liu T, Banerjee U. Drosophila hematopoiesis: Markers and methods for molecular genetic analysis. Methods 2014; 68:242-51. [PMID: 24613936 PMCID: PMC4051208 DOI: 10.1016/j.ymeth.2014.02.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/09/2023] Open
Abstract
Analyses of the Drosophila hematopoietic system are becoming more and more prevalent as developmental and functional parallels with vertebrate blood cells become more evident. Investigative work on the fly blood system has, out of necessity, led to the identification of new molecular markers for blood cell types and lineages and to the refinement of useful molecular genetic tools and analytical methods. This review briefly describes the Drosophila hematopoietic system at different developmental stages, summarizes the major useful cell markers and tools for each stage, and provides basic protocols for practical analysis of circulating blood cells and of the lymph gland, the larval hematopoietic organ.
Collapse
Affiliation(s)
- Cory J Evans
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ting Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
An unexpected link between notch signaling and ROS in restricting the differentiation of hematopoietic progenitors in Drosophila. Genetics 2013; 197:471-83. [PMID: 24318532 DOI: 10.1534/genetics.113.159210] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A fundamental question in hematopoietic development is how multipotent progenitors achieve precise identities, while the progenitors themselves maintain quiescence. In Drosophila melanogaster larvae, multipotent hematopoietic progenitors support the production of three lineages, exhibit quiescence in response to cues from a niche, and from their differentiated progeny. Infection by parasitic wasps alters the course of hematopoiesis. Here we address the role of Notch (N) signaling in lamellocyte differentiation in response to wasp infection. We show that Notch activity is moderately high and ubiquitous in all cells of the lymph gland lobes, with crystal cells exhibiting the highest levels. Wasp infection reduces Notch activity, which results in fewer crystal cells and more lamellocytes. Robust lamellocyte differentiation is induced even in N mutants. Using RNA interference knockdown of N, Serrate, and neuralized (neur), and twin clone analysis of a N null allele, we show that all three genes inhibit lamellocyte differentiation. However, unlike its cell-autonomous function in crystal cell development, Notch's inhibitory influence on lamellocyte differentiation is not cell autonomous. High levels of reactive oxygen species in the lymph gland lobes, but not in the niche, accompany N(RNAi)-induced lamellocyte differentiation and lobe dispersal. Our results define a novel dual role for Notch signaling in maintaining competence for basal hematopoiesis: while crystal cell development is encouraged, lamellocytic fate remains repressed. Repression of Notch signaling in fly hematopoiesis is important for host defense against natural parasitic wasp infections. These findings can serve as a model to understand how reactive oxygen species and Notch signals are integrated and interpreted in vivo.
Collapse
|
13
|
Sinenko SA, Shim J, Banerjee U. Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila. EMBO Rep 2011; 13:83-9. [PMID: 22134547 DOI: 10.1038/embor.2011.223] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress induced by high levels of reactive oxygen species (ROS) is associated with the development of different pathological conditions, including cancers and autoimmune diseases. We analysed whether oxidatively challenged tissue can have systemic effects on the development of cellular immune responses using Drosophila as a model system. Indeed, the haematopoietic niche that normally maintains blood progenitors can sense oxidative stress and regulate the cellular immune response. Pathogen infection induces ROS in the niche cells, resulting in the secretion of an epidermal growth factor-like cytokine signal that leads to the differentiation of specialized cells involved in innate immune responses.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Department of Molecular, Cell and Developmental Biology, Molecular Biology Institute, Los Angeles, 610 Charles Young Drive East, Terasaki Life Science Building, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
14
|
Edwards A, Gladstone M, Yoon P, Raben D, Frederick B, Su TT. Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells. Dis Model Mech 2011; 4:496-503. [PMID: 21504911 PMCID: PMC3124055 DOI: 10.1242/dmm.006486] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Combination therapy, in which two or more agents are applied, is more effective than single therapies for combating cancer. For this reason, combinations of chemotherapy with radiation are being explored in clinical trials, albeit with an empirical approach. We developed a screen to identify, from the onset, molecules that act in vivo in conjunction with radiation, using Drosophila as a model. Screens through two small molecule libraries from the NCI Developmental Therapeutics Program yielded microtubule poisons; this class of agents is known to enhance the effect of radiation in mammalian cancer models. Here we report an analysis of one microtubule depolymerizing agent, maytansinol isobutyrate (NSC292222; maytansinol), in Drosophila and in human cancer cells. We find that the effect of maytansinol is p53 dependent in Drosophila cells and human cancer cells, that maytansinol enhances the effect of radiation in both systems, and that the combinatorial effect of drug and radiation is additive. We also uncover a differential sensitivity to maytansinol between Drosophila cells and Drosophila larvae, which illustrates the value of studying cell behavior in the context of a whole organism. On the basis of these results, we propose that Drosophila might be a useful model for unbiased screens through new molecule libraries to find cancer drugs for combination therapy.
Collapse
Affiliation(s)
- Anthony Edwards
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
15
|
Walker J, Kwon SY, Badenhorst P, East P, McNeill H, Svejstrup JQ. Role of elongator subunit Elp3 in Drosophila melanogaster larval development and immunity. Genetics 2011; 187:1067-75. [PMID: 21288872 PMCID: PMC3070516 DOI: 10.1534/genetics.110.123893] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/12/2011] [Indexed: 12/23/2022] Open
Abstract
The Elongator complex has been implicated in several cellular processes, including gene expression and tRNA modification. We investigated the biological importance of the Elp3 gene in Drosophila melanogaster. Deletion of Elp3 results in larval lethality at the pupal stage. During early development, larval growth is dramatically impaired, with progression to the third instar delayed for ∼24 hr, and pupariation occurring only at day 14 after egg laying. Melanotic nodules appear after 4 days. Microarray analysis shows that stress response genes are induced and ecdysone-induced transcription factors are severely repressed in the mutant. Interestingly, the phenotypes of Elp3 flies are similar to those of flies lacking the domino gene, encoding a SWI/SNF-like ATP-dependent chromatin-remodeling enzyme. Indeed, the gene expression profiles of these mutants are also remarkably similar. Together, these data demonstrate that Drosophila Elp3 is essential for viability, normal development, and hematopoiesis and suggest a functional overlap with the chromatin remodeler Domino.
Collapse
Affiliation(s)
- Jane Walker
- Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
16
|
JAK/STAT and the GATA factor Pannier control hemocyte maturation and differentiation in Drosophila. Dev Biol 2011; 352:308-16. [PMID: 21295568 DOI: 10.1016/j.ydbio.2011.01.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 12/02/2010] [Accepted: 01/26/2011] [Indexed: 11/21/2022]
Abstract
The lymph gland is the major site of hematopoiesis in Drosophila. During late larval stages three types of hemocytes are produced, plasmatocytes, crystal cells, and lamellocytes, and their differentiation is tightly controlled by conserved factors and signaling pathways. JAK/STAT is one of these pathways which have essential roles in vertebrate and fly hematopoiesis. We show that Stat has opposing cell-autonomous and non-autonomous functions in hemocyte differentiation. Using a clonal approach we established that loss of Stat in a set of prohemocytes in the cortical zone induces plasmatocyte maturation in adjacent hemocytes. Hemocytes lacking Stat fail to differentiate into plasmatocytes, indicating that Stat positively and cell-autonomously controls plasmatocyte differentiation. We also identified the GATA factor pannier (pnr) as a downstream target of Stat. By analyzing the phenotypes resulting from clonal loss and over-expression of pnr in lymph glands, we find that Pnr is positively regulated by Stat and specifically required for the differentiation of plasmatocytes. Stat and Pnr represent two essential factors controlling blood cell maturation in the developing lymph gland and exert their functions both in a cell-autonomous and non-cell-autonomous manner.
Collapse
|
17
|
Regulation of hemocytes in Drosophila requires dappled cytochrome b5. Biochem Genet 2011; 49:329-51. [PMID: 21279680 PMCID: PMC3092937 DOI: 10.1007/s10528-010-9411-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/20/2010] [Indexed: 12/12/2022]
Abstract
A major category of mutant hematopoietic phenotypes in Drosophila is melanotic tumors or nodules, which consist of abnormal and overproliferated blood cells, similar to granulomas. Our analyses of the melanotic mutant dappled have revealed a novel type of gene involved in blood cell regulation. The dappled gene is an essential gene that encodes cytochrome b5, a conserved hemoprotein that participates in electron transfer in multiple biochemical reactions and pathways. Viable mutations of dappled cause melanotic nodules and hemocyte misregulation during both hematopoietic waves of development. The sexes are similarly affected, but hemocyte number is different in females and males of both mutants and wild type. Additionally, initial tests show that curcumin enhances the dappled melanotic phenotype and establish screening of endogenous and xenobiotic compounds as a route for analysis of cytochrome b5 function. Overall, dappled provides a tractable genetic model for cytochrome b5, which has been difficult to study in higher organisms.
Collapse
|
18
|
Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood 2010; 116:4612-20. [PMID: 20688956 DOI: 10.1182/blood-2010-03-276998] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Among mutations in human Runx1/AML1 transcription factors, the t(8;21)(q22;q22) genomic translocation that creates an AML1-ETO fusion protein is implicated in etiology of the acute myeloid leukemia. To identify genes and components associated with this oncogene we used Drosophila as a genetic model. Expression of AML1-ETO caused an expansion of hematopoietic precursors in Drosophila, which expressed high levels of reactive oxygen species (ROS). Mutations in functional domains of the fusion protein suppress the proliferative phenotype. In a genetic screen, we found that inactivation of EcRB1 or activation of Foxo and superoxide dismutase-2 (SOD2) suppress the AML1-ETO-induced phenotype by reducing ROS expression in the precursor cells. Our studies indicate that ROS is a signaling factor promoting maintenance of normal as well as the aberrant myeloid precursors and suggests the importance of antioxidant enzymes and their regulators as targets for further study in the context of leukemia.
Collapse
|
19
|
Avet-Rochex A, Boyer K, Polesello C, Gobert V, Osman D, Roch F, Augé B, Zanet J, Haenlin M, Waltzer L. An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:65. [PMID: 20540764 PMCID: PMC2891661 DOI: 10.1186/1471-213x-10-65] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/11/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND In metazoans, the hematopoietic system plays a key role both in normal development and in defense of the organism. In Drosophila, the cellular immune response involves three types of blood cells: plasmatocytes, crystal cells and lamellocytes. This last cell type is barely present in healthy larvae, but its production is strongly induced upon wasp parasitization or in mutant contexts affecting larval blood cell homeostasis. Notably, several zygotic mutations leading to melanotic mass (or "tumor") formation in larvae have been associated to the deregulated differentiation of lamellocytes. To gain further insights into the gene regulatory network and the mechanisms controlling larval blood cell homeostasis, we conducted a tissue-specific loss of function screen using hemocyte-specific Gal4 drivers and UAS-dsRNA transgenic lines. RESULTS By targeting around 10% of the Drosophila genes, this in vivo RNA interference screen allowed us to recover 59 melanotic tumor suppressor genes. In line with previous studies, we show that melanotic tumor formation is associated with the precocious differentiation of stem-cell like blood progenitors in the larval hematopoietic organ (the lymph gland) and the spurious differentiation of lamellocytes. We also find that melanotic tumor formation can be elicited by defects either in the fat body, the embryo-derived hemocytes or the lymph gland. In addition, we provide a definitive confirmation that lymph gland is not the only source of lamellocytes as embryo-derived plasmatocytes can differentiate into lamellocytes either upon wasp infection or upon loss of function of the Friend of GATA cofactor U-shaped. CONCLUSIONS In this study, we identify 55 genes whose function had not been linked to blood cell development or function before in Drosophila. Moreover our analyses reveal an unanticipated plasticity of embryo-derived plasmatocytes, thereby shedding new light on blood cell lineage relationship, and pinpoint the Friend of GATA transcription cofactor U-shaped as a key regulator of the plasmatocyte to lamellocyte transformation.
Collapse
Affiliation(s)
- Amélie Avet-Rochex
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
- King's College London, Guy's Campus, London SE1 1UL, UK
| | - Karène Boyer
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Cédric Polesello
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Vanessa Gobert
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Dani Osman
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Fernando Roch
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Benoit Augé
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Jennifer Zanet
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
- King's College London, Guy's Campus, London SE1 1UL, UK
| | - Marc Haenlin
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| | - Lucas Waltzer
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bât4R3, 118 route de Narbonne, 31062 Toulouse, France
- CNRS, CBD UMR5547, 31062 Toulouse, France
| |
Collapse
|
20
|
Stofanko M, Kwon SY, Badenhorst P. A misexpression screen to identify regulators of Drosophila larval hemocyte development. Genetics 2008; 180:253-67. [PMID: 18757933 PMCID: PMC2535679 DOI: 10.1534/genetics.108.089094] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/14/2008] [Indexed: 12/19/2022] Open
Abstract
In Drosophila, defense against foreign pathogens is mediated by an effective innate immune system, the cellular arm of which is composed of circulating hemocytes that engulf bacteria and encapsulate larger foreign particles. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. The most abundant larval hemocyte type is the plasmatocyte, which is responsible for phagocytosis and is present either in circulation or in adherent sessile domains under the larval cuticle. The mechanisms controlling differentiation of plasmatocytes and their migration toward these sessile compartments are unclear. To address these questions we have conducted a misexpression screen using the plasmatocyte-expressed GAL4 driver Peroxidasin-GAL4 (Pxn-GAL4) and existing enhancer-promoter (EP) and EP yellow (EY) transposon libraries to systematically misexpress approximately 20% of Drosophila genes in larval hemocytes. The Pxn-GAL4 strain also contains a UAS-GFP reporter enabling hemocyte phenotypes to be visualized in the semitransparent larvae. Among 3412 insertions screened we uncovered 101 candidate hemocyte regulators. Some of these are known to control hemocyte development, but the majority either have no characterized function or are proteins of known function not previously implicated in hemocyte development. We have further analyzed three candidate genes for changes in hemocyte morphology, cell-cell adhesion properties, phagocytosis activity, and melanotic tumor formation.
Collapse
Affiliation(s)
- Martin Stofanko
- Institute of Biomedical Research, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | | |
Collapse
|
21
|
Kwon SY, Xiao H, Glover BP, Tjian R, Wu C, Badenhorst P. The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. Dev Biol 2008; 316:538-47. [PMID: 18334252 DOI: 10.1016/j.ydbio.2008.01.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/25/2008] [Accepted: 01/27/2008] [Indexed: 11/30/2022]
Abstract
The Drosophila nucleosome remodeling factor (NURF) is an ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF has the ability to alter chromatin structure and regulate transcription. Previous studies have shown that mutation of Drosophila NURF induces melanotic tumors, implicating NURF in innate immune function. Here, we show that NURF mutants exhibit identical innate immune responses to gain-of-function mutants in the Drosophila JAK/STAT pathway. Using microarrays, we identify a common set of target genes that are activated in both mutants. In silico analysis of promoter sequences of these defines a consensus regulatory element comprising a STAT-binding sequence overlapped by a binding-site for the transcriptional repressor Ken. NURF interacts physically and genetically with Ken. Chromatin immunoprecipitation (ChIP) localizes NURF to Ken-binding sites in hemocytes, suggesting that Ken recruits NURF to repress STAT responders. Loss of NURF leads to precocious activation of STAT target genes.
Collapse
Affiliation(s)
- So Yeon Kwon
- Institute of Biomedical Research, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
22
|
Schlenke TA, Morales J, Govind S, Clark AG. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog 2008; 3:1486-501. [PMID: 17967061 PMCID: PMC2042021 DOI: 10.1371/journal.ppat.0030158] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 09/14/2007] [Indexed: 11/18/2022] Open
Abstract
Although host–parasitoid interactions are becoming well characterized at the organismal and cellular levels, much remains to be understood of the molecular bases for the host immune response and the parasitoids' ability to defeat this immune response. Leptopilina boulardi and L. heterotoma, two closely related, highly infectious natural parasitoids of Drosophila melanogaster, appear to use very different infection strategies at the cellular level. Here, we further characterize cellular level differences in the infection characteristics of these two wasp species using newly derived, virulent inbred strains, and then use whole genome microarrays to compare the transcriptional response of Drosophila to each. While flies attacked by the melanogaster group specialist L. boulardi (strain Lb17) up-regulate numerous genes encoding proteolytic enzymes, components of the Toll and JAK/STAT pathways, and the melanization cascade as part of a combined cellular and humoral innate immune response, flies attacked by the generalist L. heterotoma (strain Lh14) do not appear to initiate an immune transcriptional response at the time points post-infection we assayed, perhaps due to the rapid venom-mediated lysis of host hemocytes (blood cells). Thus, the specialist parasitoid appears to invoke a full-blown immune response in the host, but suppresses and/or evades downstream components of this response. Given that activation of the host immune response likely depletes the energetic resources of the host, the specialist's infection strategy seems relatively disadvantageous. However, we uncover the mechanism for one potentially important fitness tradeoff of the generalist's highly immune suppressive infection strategy. The fruitfly Drosophila melanogaster has become a model system for the study of innate immunity, and parasitic wasps are one of the most obvious natural pathogens of Drosophila, making this a great system for studying interactions between the host immune system and pathogen virulence proteins. We have focused on two closely related wasp species, Leptopilina boulardi and L. heterotoma, that successfully parasitize D. melanogaster hosts in nature. Both wasps inject venom loaded with virus-like particles into their hosts to prevent host-mediated melanotic encapsulation and killing of their eggs. However, there are substantial differences in the effects of the venom from these two wasp species. L. heterotoma venom causes lysis of host hemocytes (blood cells) and prevents the host from mounting any substantial immune transcriptional response, while L. boulardi venom has a relatively weak and localized effect on host hemocyte survival and does not prevent immune response activation. Thus, these wasps allow us to compare the benefits and drawbacks of relatively immune suppressive versus relatively immune evasive parasite infection strategies in a natural system.
Collapse
Affiliation(s)
- Todd A Schlenke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
In Drosophila melanogaster larvae, three classes of circulating cellular immune surveillance cells (hemocytes) can be identified: plasmatocytes, crystal cells, and lamellocytes. Plasmatocytes are professional phagocytes most similar to the mammalian monocyte/macrophage lineage and make up approximately 95% of circulating hemocytes. The other approximately 5% of circulating hemocytes consists of crystal cells, which secrete components necessary for the melanization of invading organisms, as well as for wound repair. A third cell type known as lamellocytes are rarely seen in healthy larvae and are involved in the encapsulation of invading pathogens. There are no obvious mammalian counterparts for crystal cells or lamellocytes, and there is no equivalent to the lymphoid lineage in insects. In this review, I will discuss what is currently known about Drosophila hemopoiesis and the cellular immune response and where possible compare it to vertebrate mechanisms.
Collapse
|
24
|
Abstract
Like in vertebrates, Drosophila haematopoiesis occurs in two waves. It gives rise to three types of haemocytes: plasmatocytes (phagocytosis), crystal cells (melanization) and lamellocytes (encapsulation of parasites). A first population of haemocytes, specified during embryogenesis, gives rise to an invariant number of plasmatocytes and crystal cells. A second population of haemocytes is specified during larval development in a specialized haematopoietic organ, the lymph gland. All three types of haemocytes can be specified in this organ, but lamellocytes only differentiate in response to parasitism. Thus, larval in contrast to embryonic haematopoiesis can be modulated by physiological constraints. Molecular cascades controlling embryonic haematopoiesis are relatively well established and require transactivators such as GATA, FOG and Runx factors, which are also co-opted in mammalian haematopoiesis. Mechanisms involved during larval haematopoiesis are less well understood although a number of chromatin remodelling factors and signalling pathways (JAK/STAT, Toll, Hedgehog, Notch) are required. In healthy larvae a pool of progenitors is maintained within the lymph gland, under the control of a signalling centre which expresses Collier, Serrate, Antennapedia and Hedgehog, and controls haemocyte homeostasis. Its key role in haemocyte homeostasis is reminiscent of interactions described in vertebrates between haematopoietic stem cells and their microenvironment (niche).
Collapse
Affiliation(s)
- Michèle Crozatier
- Centre de Biologie du Développement, UMR 5547 and IFR 109, CNRS/Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | |
Collapse
|
25
|
Williams MJ, Habayeb MS, Hultmark D. Reciprocal regulation of Rac1 and Rho1 inDrosophilacirculating immune surveillance cells. J Cell Sci 2007; 120:502-11. [PMID: 17227793 DOI: 10.1242/jcs.03341] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many cell types it is evident that the small GTPases Rac and Rho regulate each other's activities. What is unclear is exactly how this regulation occurs. To further elucidate this interaction we examined the activities of Rac1 and Rho1 in Drosophila cellular immune surveillance cells. In larvae the cellular immune response involves circulating cells (hemocytes) that can be recruited from a hematopoietic organ located behind the brain, as well as a sessile population found just underneath the larval cuticle. We demonstrate for the first time that Rho-kinase activation requires both Rho1 and the Drosophila c-Jun N-terminal kinase (Basket). We also show that Rac1, via Basket, regulates Rho1 activity, possibly by inhibiting RhoGAPp190. In the reciprocal pathway, co-expression of dominant negative Rho-kinase and constitutive active Rho1 induces a Rac1-like phenotype. This induction requires the formin Diaphanous. Co-expression of dominant negative Rho-kinase and constitutive active Rho1 also induces filopodia formation, with Diaphanous enriched at the tips. The Rac1-like phenotypes, and filopodia formation, could be blocked by co-expression of dominant negative Rac1. Finally, though dominant negative Rac1 is able to block filopodia formation in the overexpression experiments, only Rac2 is necessary for filopodia formed by hemocytes after parasitization.
Collapse
Affiliation(s)
- Michael J Williams
- Umeå Centre for Molecular Pathogenesis (UCMP), Umeå University, S-901 87, Umeå, Sweden.
| | | | | |
Collapse
|
26
|
Yoshiyama T, Namiki T, Mita K, Kataoka H, Niwa R. Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth. Development 2007; 133:2565-74. [PMID: 16763204 DOI: 10.1242/dev.02428] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Steroid hormones mediate a wide variety of developmental and physiological events in multicellular organisms. During larval and pupal stages of insects, the principal steroid hormone is ecdysone, which is synthesized in the prothoracic gland (PG) and plays a central role in the control of development. Although many studies have revealed the biochemical features of ecdysone synthesis in the PG, many aspects of this pathway have remained unclear at the molecular level. We describe the neverland (nvd) gene, which encodes an oxygenase-like protein with a Rieske electron carrier domain, from the silkworm Bombyx mori and the fruitfly Drosophila melanogaster. nvd is expressed specifically in tissues that synthesize ecdysone, such as the PG. We also show that loss of nvd function in the PG causes arrest of both molting and growth during Drosophila development. Furthermore, the phenotype is rescued by application of 20-hydroxyecdysone or the precursor 7-dehydrocholesterol. Given that the nvd family is evolutionally conserved, these results suggest that Nvd is an essential regulator of cholesterol metabolism or trafficking in steroid synthesis across animal phyla.
Collapse
Affiliation(s)
- Takuji Yoshiyama
- Department of Integrated Biosciences, Rm201, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
27
|
Tettweiler G, Lasko P. Investigating Translation Initiation Using Drosophila Molecular Genetics. Methods Enzymol 2007; 429:227-42. [PMID: 17913626 DOI: 10.1016/s0076-6879(07)29011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Genetic tools enable insights into how translation controls development of a multicellular organism. Different genetic approaches offer the ability to manipulate the Drosophila genome in very precise ways, thereby allowing the investigation of how translation factors work in the context of a whole organism. We present here an overview of selected techniques used to identify genes involved in translation initiation, and quantitative methods to characterize phenotypes caused by mutations in genes encoding translation initiation or regulatory factors.
Collapse
Affiliation(s)
- Gritta Tettweiler
- Department of Biology and DBRI, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
28
|
Seong CS, Varela-Ramirez A, Aguilera RJ. DNase II deficiency impairs innate immune function in Drosophila. Cell Immunol 2006; 240:5-13. [PMID: 16854402 PMCID: PMC2430755 DOI: 10.1016/j.cellimm.2006.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/11/2006] [Accepted: 05/12/2006] [Indexed: 01/08/2023]
Abstract
DNase II enzymes are highly conserved proteins that are required for the degradation of DNA within phagolysosomes. Engulfment of apoptotic cells and/or bacteria by phagocytic cells requires the function of DNase II to completely destroy ingested DNA. Mutation of the dnase II gene results in an increase of undegraded apoptotic DNA within phagocytic cells in mice and nematodes. Additionally, reduction of DNase II enzymatic activity in Drosophila melanogaster has been shown to lead to increased accumulation of DNA in the ovaries. Due to the importance of DNA clearance during infection, we hypothesized that a severe reduction of DNase II activity would result in diminished immune function and viability. To test this hypothesis, we knocked down DNase II activity in flies using RNAi. As expected, expression of a dnase II-RNAi construct in flies resulted in a dramatic reduction of DNase II activity and a significant decrease in total hemocyte numbers. Furthermore, infection of dnase II-RNAi flies with Gram negative or positive bacteria resulted in a severe reduction in fly viability. These results confirm that DNase II and the ability to clear macromolecular DNA is essential for maintaining proper immune function in Drosophila.
Collapse
Affiliation(s)
- Chang-Soo Seong
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | | | | |
Collapse
|
29
|
Abstract
Mutations in >30 genes that regulate different pathways and developmental processes are reported to cause a melanotic phenotype in larvae. The observed melanotic masses were generally linked to the hemocyte-mediated immune response. To investigate whether all black masses are associated with the cellular immune response, we characterized melanotic masses from mutants in 14 genes. We found that the melanotic masses can be subdivided into melanotic nodules engaging the hemocyte-mediated encapsulation and into melanizations that are not encapsulated by hemocytes. With rare exception, the encapsulation is carried out by lamellocytes. Encapsulated nodules are found in the hemocoel or in association with the lymph gland, while melanizations are located in the gut, salivary gland, and tracheae. In cactus mutants we found an additional kind of melanized mass containing various tissues. The development of these tissue agglomerates is dependent on the function of the dorsal gene. Our results show that the phenotype of each mutant not only reflects its connection to a particular genetic pathway but also points to the tissue-specific role of the individual gene.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854-8020, USA
| | | |
Collapse
|
30
|
Williams MJ, Wiklund ML, Wikman S, Hultmark D. Rac1 signalling in the Drosophila larval cellular immune response. J Cell Sci 2006; 119:2015-24. [PMID: 16621891 DOI: 10.1242/jcs.02920] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Drosophila larval cellular immune response involves cells (hemocytes) that can be recruited from a hematopoietic organ located behind the brain, as well as a sessile population of cells found just underneath the larval cuticle arranged in a segmental pattern. By using two Rac1 GTPase effector-loop mutants together with epistasis studies, we show that Rac1 requires the Drosophila melanogaster Jun N-terminal kinase Basket (Bsk), as well as stable actin formation to recruit the sessile hemocyte population. We show that actin stabilization is necessary for Rac1-induced hemocyte activation by lowering cofilin (encoded by the twinstar gene tsr) expression in blood cells. Removing Bsk by RNAi suppressed Rac1-induced release of sessile hemocytes. RNAi against Bsk also suppressed Rac1 induction of lamellocytes, a specialized population of hemocytes necessary for the encapsulation of invading pathogens. Furthermore, Rac1 and Bsk are involved in regulating the formation of actin- and focal adhesion kinase (FAK)-rich placodes in hemocytes. Lastly, Rac1 and Bsk are both required for the proper encapsulation of eggs from the parasitoid wasp Leptipolina boulardi. From these data we conclude that Rac1 induces Bsk activity and stable actin formation for cellular immune activation, leading to sessile hemocyte release and an increase in the number of circulating hemocytes.
Collapse
Affiliation(s)
- Michael J Williams
- Umeå Centre for Molecular Pathogenesis (UCMP), Umeå University, S-901 87, Umeå, Sweden.
| | | | | | | |
Collapse
|
31
|
Abstract
Cell-surface proteins of the tetraspanin family are small, and often hidden by a canopy of tall glycoprotein neighbours in the cell membrane. Consequently, tetraspanins have been understudied and underappreciated, despite their presence on nearly all cell and tissue types. Important new genetic evidence has now emerged, and is bolstered by new insights into the cell biology, signalling and biochemistry of tetraspanins. These new findings provide a framework for better understanding of these mysterious molecules in the regulation of cellular processes, from signalling to motility.
Collapse
Affiliation(s)
- Martin E Hemler
- Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
32
|
Huang L, Ohsako S, Tanda S. The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. Dev Biol 2005; 280:407-20. [PMID: 15882582 DOI: 10.1016/j.ydbio.2005.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/04/2005] [Accepted: 02/05/2005] [Indexed: 11/25/2022]
Abstract
The lesswright (lwr) gene encodes an enzyme that conjugates a small ubiquitin-related modifier (SUMO). Since the conjugation of SUMO occurs in many different proteins, a variety of cellular processes probably require lwr function. Here, we demonstrate that lwr function regulates the production of blood cells (hemocytes) in Drosophila larvae. lwr mutant larvae develop many melanotic tumors in the hemolymph at the third instar stage. The formation of melanotic tumors is due to a large number of circulating hemocytes, which is approximately 10 times higher than those of wild type. This overproduction of hemocytes is attributed to the loss of lwr function primarily in hemocytes and the lymph glands, a hematopoietic organ in Drosophila larvae. High incidences of Dorsal (Dl) protein in the nucleus were observed in lwr mutant hemocytes, and the dl and Dorsal-related immunity factor (Dif) mutations were found to be suppressors of the lwr mutation. Therefore, the lwr mutation leads to the activation of these Rel-related proteins, key transcription factors in hematopoiesis. We also demonstrate that dl and Dif play different roles in hematopoiesis. dl primarily stimulates plasmatocyte production, but Dif controls both plasmatocyte and lamellocyte production.
Collapse
Affiliation(s)
- Liang Huang
- Department of Biological Sciences and Molecular and Cell Biology Program, Ohio University, Athens, 45701, USA
| | | | | |
Collapse
|
33
|
Sinenko SA, Mathey-Prevot B. Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene 2005; 23:9120-8. [PMID: 15480416 DOI: 10.1038/sj.onc.1208156] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tetraspanins are evolutionary conserved transmembrane proteins thought to facilitate cell proliferation, movement or fusion by acting as organizers of different signaling events. Despite their prevalence and conservation, their specific role and functions remain largely elusive, as their redundancy in various organisms has hindered loss of function studies. Here, we take a gain of function approach to study Drosophila tetraspanin Tsp68C and its effect on larval hemocytes. We recently characterized a lethal mutation in ytr, a conserved gene that encodes a nuclear arginine-rich protein of unknown function, which is accompanied by abnormal differentiation and proliferation of the larval hematopoietic tissue in flies. A hemolectin (hml)-Gal4 construct carried by hml-Gal4 transgenic flies was sufficient by itself to abrogate the hematopoietic defects in ytr mutant larvae. This rescue correlated with the overexpression of tsp68C, a tetraspanin gene nested in the hml promoter. The suppression of abnormal proliferation by the hml-Gal4 construct was not restricted to ytr-deficient hemocytes, but was also observed in hemocytes expressing the oncogenic forms of Raf or Ras proteins. However, it had no effect on overproliferation mediated by a constitutively active form of Jak. New hml-Gal4 lines, in which the tsp68C gene was silenced or deleted from the promoter, no longer rescued the hematopoietic defect in ytr mutants nor suppressed the activated Raf-induced overproliferation. Therefore, change in tetraspanin Tsp68C expression has a strong suppressor effect on abnormal proliferation and differentiation of hemocytes in the context of specific lesions, such as overactivation of the Ras/Raf/MAPK pathway.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Division of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Boston, MA 02115, USA.
| | | |
Collapse
|