1
|
Majesky MW. New Tools for Precision Targeting of Origin-Specific Vascular Smooth Muscle Cells Using Intersectional Genetics. Circulation 2025; 151:1268-1271. [PMID: 40294144 DOI: 10.1161/circulationaha.125.073364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Affiliation(s)
- Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA. Heart Center, Division of Cardiology, Seattle Children's Hospital, Seattle, WA. Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98105
| |
Collapse
|
2
|
Greene CL, Traeger G, Venkatesh A, Han D, Majesky MW. Origins of Aortic Coarctation: A Vascular Smooth Muscle Compartment Boundary Model. J Dev Biol 2025; 13:13. [PMID: 40265371 PMCID: PMC12015864 DOI: 10.3390/jdb13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Compartment boundaries divide the embryo into segments with distinct fates and functions. In the vascular system, compartment boundaries organize endothelial cells into arteries, capillaries, and veins that are the fundamental units of a circulatory network. For vascular smooth muscle cells (SMCs), such boundaries produce mosaic patterns of investment based on embryonic origins with important implications for the non-uniform distribution of vascular disease later in life. The morphogenesis of blood vessels requires vascular cell movements within compartments as highly-sensitive responses to changes in fluid flow shear stress and wall strain. These movements underline the remodeling of primitive plexuses, expansion of lumen diameters, regression of unused vessels, and building of multilayered artery walls. Although the loss of endothelial compartment boundaries can produce arterial-venous malformations, little is known about the consequences of mislocalization or the failure to form SMC-origin-specific boundaries during vascular development. We propose that the failure to establish a normal compartment boundary between cardiac neural-crest-derived SMCs of the 6th pharyngeal arch artery (future ductus arteriosus) and paraxial-mesoderm-derived SMCs of the dorsal aorta in mid-gestation embryos leads to aortic coarctation observed at birth. This model raises new questions about the effects of fluid flow dynamics on SMC investment and the formation of SMC compartment borders during pharyngeal arch artery remodeling and vascular development.
Collapse
Affiliation(s)
- Christina L. Greene
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Department of Surgery, School of Medicine, University of Washington, Seattle, WA 98105, USA
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Geoffrey Traeger
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Akshay Venkatesh
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98105, USA;
| | - David Han
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Cell Biology & Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mark W. Majesky
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
3
|
Derrick CJ, Eley L, Alqahtani A, Henderson DJ, Chaudhry B. Zebrafish arterial valve development occurs through direct differentiation of second heart field progenitors. Cardiovasc Res 2025; 121:157-173. [PMID: 39460530 PMCID: PMC11998914 DOI: 10.1093/cvr/cvae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
AIMS Bicuspid aortic valve (BAV) is the most common congenital heart defect, affecting at least 2% of the population. The embryonic origins of BAV remain poorly understood, with few assays for validating patient variants, limiting the identification of causative genes for BAV. In both human and mouse, the left and right leaflets of the arterial valves arise from the outflow tract cushions, with interstitial cells originating from neural crest cells and the overlying endocardium through endothelial-to-mesenchymal transition (EndoMT). In contrast, an EndoMT-independent mechanism of direct differentiation of cardiac progenitors from the second heart field (SHF) is responsible for the formation of the anterior and posterior leaflets. Defects in either of these developmental mechanisms can result in BAV. Although zebrafish have been suggested as a model for human variant testing, their naturally bicuspid arterial valve has not been considered suitable for understanding human arterial valve development. Here, we have set out to investigate to what extent the processes involved in arterial valve development are conserved in zebrafish and, ultimately, whether functional testing of BAV variants could be carried out. METHODS AND RESULTS Using a combination of live imaging, immunohistochemistry, and Cre-mediated lineage tracing, we show that the zebrafish arterial valve primordia develop directly from SHF progenitors with no contribution from EndoMT or neural crest, in keeping with the human and mouse anterior and posterior leaflets. Moreover, once formed, these primordia share common subsequent developmental events with all three aortic valve leaflets. CONCLUSION Our work highlights a conserved ancestral mechanism of arterial valve leaflet formation from the SHF and identifies that development of the arterial valve is distinct from that of the atrioventricular valve in zebrafish. Crucially, this confirms the utility of zebrafish for understanding the development of specific BAV subtypes and arterial valve dysplasia, offering potential for high-throughput variant testing.
Collapse
Affiliation(s)
- Christopher J Derrick
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Ahlam Alqahtani
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- International Centre for Life, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
4
|
Ouyang J, Wu D, Gan Y, Tang Y, Wang H, Huang J. Unraveling the metabolic‒epigenetic nexus: a new frontier in cardiovascular disease treatment. Cell Death Dis 2025; 16:183. [PMID: 40102393 PMCID: PMC11920384 DOI: 10.1038/s41419-025-07525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/16/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Cardiovascular diseases are the leading causes of death worldwide. However, there are still shortcomings in the currently employed treatment methods for these diseases. Therefore, exploring the molecular mechanisms underlying cardiovascular diseases is an important avenue for developing new treatment strategies. Previous studies have confirmed that metabolic and epigenetic alterations are often involved in cardiovascular diseases across patients. Moreover, metabolic and epigenetic factors interact with each other and affect the progression of cardiovascular diseases in a coordinated manner. Lactylation is a novel posttranslational modification (PTM) that links metabolism with epigenetics and affects disease progression. Therefore, analyzing the crosstalk between cellular metabolic and epigenetic factors in cardiovascular diseases is expected to provide insights for the development of new treatment strategies. The purpose of this review is to describe the relationship between metabolic and epigenetic factors in heart development and cardiovascular diseases such as heart failure, myocardial infarction, and atherosclerosis, with a focus on acylation and methylation, and to propose potential therapeutic measures.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Deping Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yumei Gan
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuming Tang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Ren P, Jiang B, Hassab A, Li G, Li W, Assi R, Tellides G. Heterogeneous Cardiac-Derived and Neural Crest-Derived Aortic Smooth Muscle Cells Exhibit Similar Transcriptional Changes After TGFβ Signaling Disruption. Arterioscler Thromb Vasc Biol 2025; 45:260-276. [PMID: 39697172 PMCID: PMC12053597 DOI: 10.1161/atvbaha.124.321706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Smooth muscle cells (SMCs) of cardiac and neural crest origin contribute to the developing proximal aorta and are linked to disease propensity in adults. METHODS We analyzed single-cell transcriptomes of aortic SMCs from adult mice to determine basal states and changes after disrupting TGFβ (transforming growth factor-β) signaling necessary for aortic homeostasis. RESULTS A minority of Myh11 lineage-marked SMCs differentially expressed genes suggestive of embryological origin. Additional analyses in Nkx2-5 and Wnt1 lineage-marked SMCs derived from cardiac and neural crest progenitors, respectively, showed both lineages contributed to a major common cluster and each lineage to a minor distinct cluster. Common cluster SMCs extended from root to arch, cardiac subset cluster SMCs from root to ascending, and neural crest subset cluster SMCs were restricted to the arch. The neural crest subset cluster had greater expression of a subgroup of TGFβ-dependent genes. Nonetheless, conditional deletion of TGFβ receptors resulted in similar transcriptional changes among all SMC clusters. Several disease-associated transcriptional responses were comparable among SMC clusters in a mouse model of Marfan syndrome aortopathy, while many embryological markers of murine aortic SMCs were not detected in adult human aortas. CONCLUSIONS There are multiple subtypes of cardiac-derived and neural crest-derived SMCs with shared or distinctive transcriptional profiles; neural crest subset cluster SMCs with increased expression of certain TGFβ-inducible genes are not spatially linked to the aortic root predisposed to aneurysms from aberrant TGFβ signaling; and loss of TGFβ responses after receptor deletion is uniform among SMC clusters.
Collapse
Affiliation(s)
- Pengwei Ren
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, CT, USA
- Current affiliation: Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Abdulrahman Hassab
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, CT, USA
| | - Guangxin Li
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, CT, USA
- Current affiliation: Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wei Li
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, CT, USA
- Current affiliation: Department of Vascular Surgery, Peking University People’s Hospital, Beijing, China
| | - Roland Assi
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, CT, USA
| | - George Tellides
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Arroyo-Ataz G, Jones D. Overview of Lymphatic Muscle Cells in Development, Physiology, and Disease. Microcirculation 2024; 31:e12887. [PMID: 39329178 PMCID: PMC11560633 DOI: 10.1111/micc.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Lymphatic muscle cells (LMCs) are indispensable for proper functioning of the lymphatic system, as they provide the driving force for lymph transport. Recent studies have advanced our understanding of the molecular mechanisms that regulate LMCs, which control rhythmic contraction and vessel tone of lymphatic vessels-traits also found in cardiac and vascular smooth muscle. In this review, we discuss the molecular pathways that orchestrate LMC-mediated contractility and summarize current knowledge about their developmental origin, which may shed light on the distinct contractile characteristics of LMCs. Further, we highlight the growing evidence implicating LMC dysregulation in the pathogenesis of lymphedema and other diseases related to lymphatic vessel dysfunction. Given the limited number and efficacy of existing therapies to treat lymphedema, LMCs present a promising focus for identifying novel therapeutic targets aimed at improving lymphatic vessel contractility. Here, we discuss LMCs in health and disease, as well as therapeutic strategies aimed at targeting them to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| |
Collapse
|
8
|
Piñeiro-Sabarís R, MacGrogan D, de la Pompa JL. Deficient GATA6-CXCR7 signaling leads to bicuspid aortic valve. Dis Model Mech 2024; 17:dmm050934. [PMID: 39253784 PMCID: PMC11413932 DOI: 10.1242/dmm.050934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
The cardiac outflow tract (OFT) transiently links the ventricles to the aortic sac and forms the arterial valves. Abnormalities in these valves, such as bicuspid aortic valve (BAV), are common congenital anomalies. GATA6-inactivating variants cause cardiac OFT defects and BAV, but their mechanisms are unclear. We generated Gata6STOP/+ mice using CRISPR-Cas9, which show highly penetrant BAV (70%) and membranous ventricular septal defects (43%). These mice exhibited decreased proliferation and increased ISL1-positive progenitor cells in the OFT, indicating abnormal cardiovascular differentiation. Gata6 deletion with the Mef2cCre driver line recapitulated Gata6STOP/+ phenotypes, indicating a cell-autonomous role for Gata6 in the second heart field. Gata6STOP/+ mice showed reduced OFT length and caliber, associated with deficient cardiac neural crest cell contribution, which may cause valvulo-septal defects. RNA-sequencing analysis showed depletion in pathways related to cell proliferation and migration, highlighting Cxcr7 (also known as Ackr3) as a candidate gene. Reduced mesenchymal cell migration and invasion were observed in Gata6STOP/+ OFT tissue. CXCR7 agonists reduced mesenchymal cell migration and increased invasion in wild-type but not in Gata6STOP/+ explants, indicating the GATA6-dependent role of CXCR7 in OFT development and its potential link to BAV.
Collapse
Affiliation(s)
- Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
9
|
García-Padilla C, Lozano-Velasco E, García-López V, Aránega A, Franco D, García-Martínez V, López-Sánchez C. miR-1 as a Key Epigenetic Regulator in Early Differentiation of Cardiac Sinoatrial Region. Int J Mol Sci 2024; 25:6608. [PMID: 38928314 PMCID: PMC11204236 DOI: 10.3390/ijms25126608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways. For this, we performed in chick embryos functional experiments by means of miR-1 microinjections into the posterior cardiac precursors-of both primitive endocardial tubes-committed to sinoatrial region fates. Subsequently, embryos were subjected to whole mount in situ hybridization, immunohistochemistry and RT-qPCR analysis. As a relevant novelty, our results revealed that miR-1 increased Amhc1, Tbx5 and Gata4, while this microRNA diminished Mef2c and Cripto expressions during early differentiation of the cardiac sinoatrial region. Furthermore, we observed in this developmental context that miR-1 upregulated CrabpII and Rarß and downregulated CrabpI, which are three crucial factors in the retinoic acid signaling pathway. Interestingly, we also noticed that miR-1 directly interacted with Hdac4 and Calm1/Calmodulin, as well as with Erk2/Mapk1, which are three key factors actively involved in Mef2c regulation. Our study shows, for the first time, a key role of miR-1 as an epigenetic regulator in the early differentiation of the cardiac sinoatrial region through orchestrating opposite actions between retinoic acid and Mef2c, fundamental to properly assign cardiac cells to their respective heart chambers. A better understanding of those molecular mechanisms modulated by miR-1 will definitely help in fields applied to therapy and cardiac regeneration and repair.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (A.A.); (D.F.)
- Medina Foundation, 18016 Granada, Spain
| | - Virginio García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.G.-P.); (E.L.-V.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
10
|
Karianna Milewski RC, Habertheuer A, Bavaria JE, Suhail M, Siki M, Hu R, Freas MA, Ram C, Nanduri A, Szeto WY, Vallabhajosyula P. Long-term outcomes of aortic root procedures for heterogenous ascending aneurysm disease in bicuspid aortic valve syndrome. J Thorac Cardiovasc Surg 2024; 167:2063-2075.e4. [PMID: 36631305 DOI: 10.1016/j.jtcvs.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Surgery for ascending aneurysms in bicuspid aortic valve syndrome primarily includes Bentall root replacement, aortic valve replacement with supracoronary ascending aorta replacement (AVRSCAAR), and valve-sparing root reimplantation (VSRR). Comparative analysis of long-term clinical and functional outcomes of these procedures is detailed. METHODS From 1997 to 2017, 635 patients with bicuspid aortic valve undergoing root complex-focused procedures electively were stratified by valvulopathy (ie, aortic stenosis vs aortic insufficiency) and substratified into ascending or root aneurysm phenotype. Inverse probability weights were calculated to adjust for baseline differences. RESULTS Kaplan-Meier curves for all-cause mortality demonstrated no difference between Bentall versus AVRSCAAR for aortic stenosis and aortic insufficiency presentations (log-rank P > .05). In patients with aortic stenosis, multivariable Cox regression showed significantly decreased risk of stroke for biologic AVRSCAAR (hazard ratio, 0.04; P = .013). Aortic reoperation rates were similar for biologic versus mechanical valves (P = .353). In patients with aortic insufficiency, similar long-term mortality (hazard ratio, 0.95; P = .93), but lower stroke risk in biologic AVRSCAAR group by Cox regression, and lower aortic reoperation rate was noted (coefficient < 0.01; P < .001). Comparing Bentall to VSRR, mortality (hazard ratio, 0.12; P = .022) was significantly improved in patients undergoing VSRR, but recurrence of moderate or greater aortic insufficiency was higher in VSRR by multistate model (beta coefficient 2.63; P < .001). CONCLUSIONS A tailored approach to heterogeneous ascending aneurysm pathologies in bicuspid aortic valve syndrome utilizing Bentall, AVRSCAAR, and VSRR procedures renders excellent long-term clinical and functional outcomes, with biologic conduits showing equivalent to improved clinical outcomes.
Collapse
Affiliation(s)
- Rita Carrie Karianna Milewski
- Division of Cardiac Surgery, Yale University School of Medicine, New Haven, Conn; Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Andreas Habertheuer
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa; Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Joseph E Bavaria
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Maham Suhail
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Mary Siki
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Robert Hu
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Melanie A Freas
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Chirag Ram
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Ananya Nanduri
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Wilson Y Szeto
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Prashanth Vallabhajosyula
- Division of Cardiac Surgery, Yale University School of Medicine, New Haven, Conn; Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
11
|
Ren P, Jiang B, Hassab A, Li G, Li W, Assi R, Tellides G. Heterogeneous Cardiac- and Neural Crest-Derived Aortic Smooth Muscle Cells have Similar Transcriptional Changes after TGFβ Signaling Disruption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591539. [PMID: 38746256 PMCID: PMC11092432 DOI: 10.1101/2024.04.28.591539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Smooth muscle cells (SMCs) of cardiac and neural crest origin contribute to the developing proximal aorta and are linked to disease propensity in adults. We analyzed single-cell transcriptomes of SMCs from mature thoracic aortas in mice to determine basal states and changes after disrupting transforming growth factor-β (TGFβ) signaling necessary for aortic homeostasis. A minority of Myh11 lineage-marked SMCs differentially expressed genes suggestive of embryological origin. Additional analyses in Nkx2-5 and Wnt1 lineage-marked SMCs derived from cardiac and neural crest progenitors, respectively, showed both lineages contributed to a major common cluster and each lineage to a minor distinct cluster. Common cluster SMCs extended from root to arch, cardiac subset cluster SMCs from root to mid-ascending, while neural crest subset cluster SMCs were restricted to the arch. The neural crest subset cluster had greater expression of a subgroup of TGFβ-dependent genes suggesting specific responsiveness or skewed extracellular matrix synthesis. Nonetheless, deletion of TGFβ receptors in SMCs resulted in similar transcriptional changes among all clusters, primarily decreased extracellular matrix molecules and modulators of TGFβ signaling. Many embryological markers of murine aortic SMCs were not confirmed in adult human aortas. We conclude: (i) there are multiple subtypes of cardiac- and neural crest-derived SMCs with shared or distinctive transcriptional profiles, (ii) neural crest subset SMCs with increased expression of certain TGFβ-inducible genes are not spatially linked to the aortic root predisposed to aneurysms from aberrant TGFβ signaling, and (iii) loss of TGFβ responses after receptor deletion is uniform among SMCs of different embryological origins.
Collapse
|
12
|
Lin A, Ramaswamy Y, Misra A. Developmental heterogeneity of vascular cells: Insights into cellular plasticity in atherosclerosis? Semin Cell Dev Biol 2024; 155:3-15. [PMID: 37316416 DOI: 10.1016/j.semcdb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Alexander BE, Zhao H, Astrof S. SMAD4: A critical regulator of cardiac neural crest cell fate and vascular smooth muscle development. Dev Dyn 2024; 253:119-143. [PMID: 37650555 PMCID: PMC10842824 DOI: 10.1002/dvdy.652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND During embryogenesis, cardiac neural crest-derived cells (NCs) migrate into the pharyngeal arches and give rise to the vascular smooth muscle cells (vSMCs) of the pharyngeal arch arteries (PAAs). vSMCs are critical for the remodeling of the PAAs into their final adult configuration, giving rise to the aortic arch and its arteries (AAAs). RESULTS We investigated the role of SMAD4 in NC-to-vSMC differentiation using lineage-specific inducible mouse strains. We found that the expression of SMAD4 in the NC is indelible for regulating the survival of cardiac NCs. Although the ablation of SMAD4 at E9.5 in the NC lineage led to a near-complete absence of NCs in the pharyngeal arches, PAAs became invested with vSMCs derived from a compensatory source. Analysis of AAA development at E16.5 showed that the alternative vSMC source compensated for the lack of NC-derived vSMCs and rescued AAA morphogenesis. CONCLUSIONS Our studies uncovered the requisite role of SMAD4 in the contribution of the NC to the pharyngeal arch mesenchyme. We found that in the absence of SMAD4+ NCs, vSMCs around the PAAs arose from a different progenitor source, rescuing AAA morphogenesis. These findings shed light on the remarkable plasticity of developmental mechanisms governing AAA development.
Collapse
Affiliation(s)
- Brianna E. Alexander
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
14
|
Houyel L. Ventricular Septal Defects: Molecular Pathways and Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:535-549. [PMID: 38884730 DOI: 10.1007/978-3-031-44087-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ventricular septation is a complex process which involves the major genes of cardiac development, acting on myocardial cells from first and second heart fields, and on mesenchymal cells from endocardial cushions. These genes, coding for transcription factors, interact with each other, and their differential expression conditions the severity of the phenotype. In this chapter, we will describe the formation of the ventricular septum in the normal heart, as well as the molecular mechanisms leading to the four main anatomic types of ventricular septal defects: outlet, inlet, muscular, and central perimembranous, resulting from failure of development of the different parts of the ventricular septum. Experiments on animal models, particularly transgenic mouse lines, have helped us to decipher the molecular determinants of ventricular septation. However, a precise description of the anatomic phenotypes found in these models is mandatory to achieve a better comprehension of the complex mechanisms responsible for the various types of VSDs.
Collapse
Affiliation(s)
- Lucile Houyel
- Pediatric and Congenital Cardiology Unit, Necker-Enfants Malades Hospital - M3C, University of Paris, Paris, France.
| |
Collapse
|
15
|
Eley L, Richardson RV, Alqahtani A, Chaudhry B, Henderson DJ. eNOS plays essential roles in the developing heart and aorta linked to disruption of Notch signalling. Dis Model Mech 2024; 17:dmm050265. [PMID: 38111957 PMCID: PMC10846539 DOI: 10.1242/dmm.050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
eNOS (NOS3) is the enzyme that generates nitric oxide, a signalling molecule and regulator of vascular tone. Loss of eNOS function is associated with increased susceptibility to atherosclerosis, hypertension, thrombosis and stroke. Aortopathy and cardiac hypertrophy have also been found in eNOS null mice, but their aetiology is unclear. We evaluated eNOS nulls before and around birth for cardiac defects, revealing severe abnormalities in the ventricular myocardium and pharyngeal arch arteries. Moreover, in the aortic arch, there were fewer baroreceptors, which sense changes in blood pressure. Adult eNOS null survivors showed evidence of cardiac hypertrophy, aortopathy and cartilaginous metaplasia in the periductal region of the aortic arch. Notch1 and neuregulin were dysregulated in the forming pharyngeal arch arteries and ventricles, suggesting that these pathways may be relevant to the defects observed. Dysregulation of eNOS leads to embryonic and perinatal death, suggesting mutations in eNOS are candidates for causing congenital heart defects in humans. Surviving eNOS mutants have a deficiency of baroreceptors that likely contributes to high blood pressure and may have relevance to human patients who suffer from hypertension associated with aortic arch abnormalities.
Collapse
Affiliation(s)
- Lorraine Eley
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rachel V. Richardson
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ahlam Alqahtani
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Bill Chaudhry
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Deborah J. Henderson
- Bioscience Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
16
|
Alzamrooni A, Mendes Vieira P, Murciano N, Wolton M, Schubert FR, Robson SC, Dietrich S. Cardiac competence of the paraxial head mesoderm fades concomitant with a shift towards the head skeletal muscle programme. Dev Biol 2023; 501:39-59. [PMID: 37301464 DOI: 10.1016/j.ydbio.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The vertebrate head mesoderm provides the heart, the great vessels, some smooth and most head skeletal muscle, in addition to parts of the skull. It has been speculated that the ability to generate cardiac and smooth muscle is the evolutionary ground-state of the tissue. However, whether indeed the entire head mesoderm has generic cardiac competence, how long this may last, and what happens as cardiac competence fades, is not clear. Bone morphogenetic proteins (Bmps) are known to promote cardiogenesis. Using 41 different marker genes in the chicken embryo, we show that the paraxial head mesoderm that normally does not engage in cardiogenesis has the ability to respond to Bmp for a long time. However, Bmp signals are interpreted differently at different time points. Up to early head fold stages, the paraxial head mesoderm is able to read Bmps as signal to engage in the cardiac programme; the ability to upregulate smooth muscle markers is retained slightly longer. Notably, as cardiac competence fades, Bmp promotes the head skeletal muscle programme instead. The switch from cardiac to skeletal muscle competence is Wnt-independent as Wnt caudalises the head mesoderm and also suppresses Msc-inducing Bmp provided by the prechordal plate, thus suppressing both the cardiac and the head skeletal muscle programmes. Our study for the first time suggests a specific transition state in the embryo when cardiac competence is replaced by skeletal muscle competence. It sets the stage to unravel the cardiac-skeletal muscle antagonism that is known to partially collapse in heart failure.
Collapse
Affiliation(s)
- Afnan Alzamrooni
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Petra Mendes Vieira
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Nicoletta Murciano
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK; Nanion Technologies GmbH, Ganghoferstr. 70A, DE - 80339, München, Germany; Saarland University, Theoretical Medicine and Biosciences, Kirrbergerstr. 100, DE - 66424, Homburg, Germany
| | - Matthew Wolton
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Frank R Schubert
- Institute of Biological and Biomedical Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Samuel C Robson
- Institute of Biological and Biomedical Sciences, Faculty of Science & Health, University of Portsmouth, Portsmouth, UK
| | - Susanne Dietrich
- Institute of Biological and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
17
|
Hu Y, Cai Z, He B. Smooth Muscle Heterogeneity and Plasticity in Health and Aortic Aneurysmal Disease. Int J Mol Sci 2023; 24:11701. [PMID: 37511460 PMCID: PMC10380637 DOI: 10.3390/ijms241411701] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in the maintenance of aortic wall integrity. VSMCs have been suggested to have contractile and synthetic phenotypes and undergo phenotypic switching to contribute to the deteriorating aortic wall structure. Recently, the unprecedented heterogeneity and diversity of VSMCs and their complex relationship to aortic aneurysms (AAs) have been revealed by high-resolution research methods, such as lineage tracing and single-cell RNA sequencing. The aortic wall consists of VSMCs from different embryonic origins that respond unevenly to genetic defects that directly or indirectly regulate VSMC contractile phenotype. This difference predisposes to hereditary AAs in the aortic root and ascending aorta. Several VSMC phenotypes with different functions, for example, secreting VSMCs, proliferative VSMCs, mesenchymal stem cell-like VSMCs, immune-related VSMCs, proinflammatory VSMCs, senescent VSMCs, and stressed VSMCs are identified in non-hereditary AAs. The transformation of VSMCs into different phenotypes is an adaptive response to deleterious stimuli but can also trigger pathological remodeling that exacerbates the pathogenesis and development of AAs. This review is intended to contribute to the understanding of VSMC diversity in health and aneurysmal diseases. Papers that give an update on VSMC phenotype diversity in health and aneurysmal disease are summarized and recent insights on the role of VSMCs in AAs are discussed.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
18
|
Nakamura K, Dalal AR, Yokoyama N, Pedroza AJ, Kusadokoro S, Mitchel O, Gilles C, Masoudian B, Leipzig M, Casey KM, Hiesinger W, Uchida T, Fischbein MP. Lineage-Specific Induced Pluripotent Stem Cell-Derived Smooth Muscle Cell Modeling Predicts Integrin Alpha-V Antagonism Reduces Aortic Root Aneurysm Formation in Marfan Syndrome Mice. Arterioscler Thromb Vasc Biol 2023; 43:1134-1153. [PMID: 37078287 PMCID: PMC10330156 DOI: 10.1161/atvbaha.122.318448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND The role of increased smooth muscle cell (SMC) integrin αv signaling in Marfan syndrome (MFS) aortic aneurysm remains unclear. Herein, we examine the mechanism and potential efficacy of integrin αv blockade as a therapeutic strategy to reduce aneurysm progression in MFS. METHODS Induced pluripotent stem cells (iPSCs) were differentiated into aortic SMCs of the second heart field (SHF) and neural crest (NC) lineages, enabling in vitro modeling of MFS thoracic aortic aneurysms. The pathological role of integrin αv during aneurysm formation was confirmed by blockade of integrin αv with GLPG0187 in Fbn1C1039G/+ MFS mice. RESULTS iPSC-derived MFS SHF SMCs overexpress integrin αv relative to MFS NC and healthy control SHF cells. Furthermore, integrin αv downstream targets (FAK [focal adhesion kinase]/AktThr308/mTORC1 [mechanistic target of rapamycin complex 1]) were activated, especially in MFS SHF. Treatment of MFS SHF SMCs with GLPG0187 reduced p-FAK/p-AktThr308/mTORC1 activity back to control SHF levels. Functionally, MFS SHF SMCs had increased proliferation and migration compared to MFS NC SMCs and control SMCs, which normalized with GLPG0187 treatment. In the Fbn1C1039G/+ MFS mouse model, integrin αv, p-AktThr308, and downstream targets of mTORC1 proteins were elevated in the aortic root/ascending segment compared to littermate wild-type control. Mice treated with GLPG0187 (age 6-14 weeks) had reduced aneurysm growth, elastin fragmentation, and reduction of the FAK/AktThr308/mTORC1 pathway. GLPG0187 treatment reduced the amount and severity of SMC modulation assessed by single-cell RNA sequencing. CONCLUSIONS The integrin αv-FAK-AktThr308 signaling pathway is activated in iPSC SMCs from MFS patients, specifically from the SHF lineage. Mechanistically, this signaling pathway promotes SMC proliferation and migration in vitro. As biological proof of concept, GLPG0187 treatment slowed aneurysm growth and p-AktThr308 signaling in Fbn1C1039G/+ mice. Integrin αv blockade via GLPG0187 may be a promising therapeutic approach to inhibit MFS aneurysmal growth.
Collapse
Affiliation(s)
- Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Alex R. Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Sho Kusadokoro
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Casey Gilles
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Bahar Masoudian
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Matthew Leipzig
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Kerriann M. Casey
- Department of Comparative Medicine, Stanford University School of Medicine. Stanford CA, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Tetsuro Uchida
- Second Department of Surgery, Yamagata University Faculty of Medicine. Yamagata, Japan
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| |
Collapse
|
19
|
Smallwood K, Watt KEN, Ide S, Baltrunaite K, Brunswick C, Inskeep K, Capannari C, Adam MP, Begtrup A, Bertola DR, Demmer L, Demo E, Devinsky O, Gallagher ER, Guillen Sacoto MJ, Jech R, Keren B, Kussmann J, Ladda R, Lansdon LA, Lunke S, Mardy A, McWalters K, Person R, Raiti L, Saitoh N, Saunders CJ, Schnur R, Skorvanek M, Sell SL, Slavotinek A, Sullivan BR, Stark Z, Symonds JD, Wenger T, Weber S, Whalen S, White SM, Winkelmann J, Zech M, Zeidler S, Maeshima K, Stottmann RW, Trainor PA, Weaver KN. POLR1A variants underlie phenotypic heterogeneity in craniofacial, neural, and cardiac anomalies. Am J Hum Genet 2023; 110:809-825. [PMID: 37075751 PMCID: PMC10183370 DOI: 10.1016/j.ajhg.2023.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023] Open
Abstract
Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.
Collapse
Affiliation(s)
- Kelly Smallwood
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Kristina Baltrunaite
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chad Brunswick
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine Inskeep
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Corrine Capannari
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Margaret P Adam
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | | | - Laurie Demmer
- Atrium Health's Levine Children's Hospital, Charlotte, NC, USA
| | - Erin Demo
- Sibley Heart Center, Atlanta, GA, USA
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Emily R Gallagher
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Boris Keren
- Genetic Department, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Jennifer Kussmann
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Roger Ladda
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Lisa A Lansdon
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy Research Institute, 2401 Gillham Road, Kansas City, MO, USA; School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, USA
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Anne Mardy
- Department of Women's Health, University of Texas Austin Dell Medical Center, Austin, TX, USA
| | | | | | - Laura Raiti
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia
| | | | - Carol J Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy Research Institute, 2401 Gillham Road, Kansas City, MO, USA; School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, USA
| | | | - Matej Skorvanek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic; Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Susan L Sell
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Joseph D Symonds
- Paediatric Neuroscience Research Group, Royal Hospital for Children, Glasgow G667AB, UK
| | - Tara Wenger
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sacha Weber
- CCA-AHU de génétique clinique et de neurogénétique, Service de Génétique et de Neurologie, CHU de Caen, Caen, France
| | - Sandra Whalen
- Genetic Department, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Rolf W Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Odelin G, Faucherre A, Marchese D, Pinard A, Jaouadi H, Le Scouarnec S, Chiarelli R, Achouri Y, Faure E, Herbane M, Théron A, Avierinos JF, Jopling C, Collod-Béroud G, Rezsohazy R, Zaffran S. Variations in the poly-histidine repeat motif of HOXA1 contribute to bicuspid aortic valve in mouse and zebrafish. Nat Commun 2023; 14:1543. [PMID: 36941270 PMCID: PMC10027860 DOI: 10.1038/s41467-023-37110-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Damien Marchese
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Amélie Pinard
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Hager Jaouadi
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | | | | | - Raphaël Chiarelli
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emilie Faure
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Marine Herbane
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Alexis Théron
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - René Rezsohazy
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France.
| |
Collapse
|
21
|
Yahya I, Brand-Saberi B, Morosan-Puopolo G. Chicken embryo as a model in second heart field development. Heliyon 2023; 9:e14230. [PMID: 36923876 PMCID: PMC10009738 DOI: 10.1016/j.heliyon.2023.e14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Previously, a single source of progenitor cells was thought to be responsible for the formation of the cardiac muscle. However, the second heart field has recently been identified as an additional source of myocardial progenitor cells. The chicken embryo, which develops in the egg, outside the mother can easily be manipulated in vivo and in vitro. Hence, it was an excellent model for establishing the concept of the second heart field. Here, our review will focus on the chicken model, specifically its role in understanding the second heart field. In addition to discussing historical aspects, we provide an overview of recent findings that have helped to define the chicken second heart field progenitor cells. A better understanding of the second heart field development will provide important insights into the congenital malformations affecting cardiac muscle formation and function.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801, Bochum, Germany
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, 11115, Sudan
- Corresponding author. Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, 44801, Bochum, Germany
| | | |
Collapse
|
22
|
Restivo A, di Gioia C, Marino B, Putotto C. Transpositions of the great arteries versus aortic dextropositions. A review of some embryogenetic and morphological aspects. Anat Rec (Hoboken) 2023; 306:502-514. [PMID: 36426596 DOI: 10.1002/ar.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
This review examines and discusses the morphology and embryology of two main groups of conotruncal cardiac malformations: (a) transposition of the great arteries (complete transposition and incomplete/partial transposition namely double outlet right ventricle), and (b) aortic dextroposition defects (tetralogy of Fallot and Eisenmenger malformation). In both groups, persistent truncus arteriosus was included because maldevelopment of the neural crest cell supply to the outflow tract, contributing to the production of the persistent truncus arteriosus, is shared by both groups of malformations. The potentially important role of the proximal conal cushions in the rotatory sequence of the conotruncus is emphasized. Most importantly, this study emphasizes the differentiation between the double-outlet right ventricle, which is a partial or incomplete transposition of the great arteries, and the Eisenmenger malformation, which is an aortic dextroposition. Special emphasis is also given to the leftward shift of the conoventricular junction, which covers an important morphogenetic role in both aortic dextropositions and transposition defects as well as in normal development, and whose molecular genetic regulation seems to remain unclear at present. Emphasis is placed on the distinct and overlapping roles of Tbx1 and Pitx2 transcription factors in modulating the development of the cardiac outflow tract.
Collapse
Affiliation(s)
- Angelo Restivo
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy.,Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy
| | - Cira di Gioia
- Museum of Pathological Anatomy, Sapienza University of Rome, Rome, Italy.,Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Human Heart Morphogenesis: A New Vision Based on In Vivo Labeling and Cell Tracking. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010165. [PMID: 36676114 PMCID: PMC9861877 DOI: 10.3390/life13010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
Despite the extensive information available on the different genetic, epigenetic, and molecular features of cardiogenesis, the origin of congenital heart defects remains unknown. Most genetic and molecular studies have been conducted outside the context of the progressive anatomical and histological changes in the embryonic heart, which is one of the reasons for the limited knowledge of the origins of congenital heart diseases. We integrated the findings of descriptive studies on human embryos and experimental studies on chick, rat, and mouse embryos. This research is based on the new dynamic concept of heart development and the existence of two heart fields. The first field corresponds to the straight heart tube, into which splanchnic mesodermal cells from the second heart field are gradually recruited. The overall aim was to create a new vision for the analysis, diagnosis, and regionalized classification of congenital defects of the heart and great arteries. In addition to highlighting the importance of genetic factors in the development of congenital heart disease, this study provides new insights into the composition of the straight heart tube, the processes of twisting and folding, and the fate of the conus in the development of the right ventricle and its outflow tract. The new vision, based on in vivo labeling and cell tracking and enhanced by models such as gastruloids and organoids, has contributed to a better understanding of important errors in cardiac morphogenesis, which may lead to several congenital heart diseases.
Collapse
|
24
|
Erhardt S, Wang J. Cardiac Neural Crest and Cardiac Regeneration. Cells 2022; 12:cells12010111. [PMID: 36611905 PMCID: PMC9818523 DOI: 10.3390/cells12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that have the ability to migrate and differentiate into various cell populations throughout the embryo during embryogenesis. The heart is a muscular and complex organ whose primary function is to pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish, have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the neural crest's regenerative capacity in various tissues and organs, and in particular, we summarize the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We further discuss emerging and future work to determine the potential contributions of NCCs for disease treatment.
Collapse
Affiliation(s)
- Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
25
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
26
|
Ding S, Zhang X, Qiu H, Wo J, Zhang F, Na J. Non-cardiomyocytes in the heart in embryo development, health, and disease, a single-cell perspective. Front Cell Dev Biol 2022; 10:873264. [PMID: 36393852 PMCID: PMC9661523 DOI: 10.3389/fcell.2022.873264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Recent single-cell atlases of the heart gave unprecedented details about the diversity of cell types and states during heart development in health and disease conditions. Beyond a profiling tool, researchers also use single-cell analyses to dissect the mechanism of diseases in animal models. The new knowledge from these studies revealed that beating cardiomyocytes account for less than 50% of the total heart cell population. In contrast, non-cardiomyocytes (NCMs), such as cardiac fibroblasts, endothelial cells, and immune cells, make up the remaining proportion and have indispensable roles in structural support, homeostasis maintenance, and injury repair of the heart. In this review, we categorize the composition and characteristics of NCMs from the latest single-cell studies of the heart in various contexts and compare the findings from both human samples and mouse models. This information will enrich our understanding of the cellular basis of heart development and diseases and provide insights into the potential therapeutic targets in NCMs to repair the heart.
Collapse
Affiliation(s)
- Shuangyuan Ding
- School of Medicine, Tsinghua University, Beijing, China
- Center for Life Sciences, Tsinghua University and Peking University, Beijing, China
- *Correspondence: Shuangyuan Ding, ; Jie Na,
| | - Xingwu Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Hui Qiu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaoyang Wo
- Center for Life Sciences, Tsinghua University and Peking University, Beijing, China
| | - Fengzhi Zhang
- Central Laboratory, First Hospital of Tsinghua University, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, Beijing, China
- *Correspondence: Shuangyuan Ding, ; Jie Na,
| |
Collapse
|
27
|
The adventitia in arterial development, remodeling, and hypertension. Biochem Pharmacol 2022; 205:115259. [PMID: 36150432 DOI: 10.1016/j.bcp.2022.115259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
Abstract
The adventitia receives input signals from the vessel wall, the immune system, perivascular nerves and from surrounding tissues to generate effector responses that regulate structural and mechanical properties of blood vessels. It is a complex and dynamic tissue that orchestrates multiple functions for vascular development, homeostasis, repair, and disease. The purpose of this review is to highlight recent advances in our understanding of the origins, phenotypes, and functions of adventitial and perivascular cells with particular emphasis on hypertensive vascular remodeling.
Collapse
|
28
|
Ito S, Lu HS, Daugherty A, Sawada H. Embryonic Heterogeneity of Smooth Muscle Cells in the Complex Mechanisms of Thoracic Aortic Aneurysms. Genes (Basel) 2022; 13:genes13091618. [PMID: 36140786 PMCID: PMC9498804 DOI: 10.3390/genes13091618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Smooth muscle cells (SMCs) are the major cell type of the aortic wall and play a pivotal role in the pathophysiology of thoracic aortic aneurysms (TAAs). TAAs occur in a region-specific manner with the proximal region being a common location. In this region, SMCs are derived embryonically from either the cardiac neural crest or the second heart field. These cells of distinct origins reside in specific locations and exhibit different biological behaviors in the complex mechanism of TAAs. The purpose of this review is to enhance understanding of the embryonic heterogeneity of SMCs in the proximal thoracic aorta and their functions in TAAs.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-(859)-218-1705
| |
Collapse
|
29
|
Trinidad F, Rubonal F, Rodriguez de Castro I, Pirzadeh I, Gerrah R, Kheradvar A, Rugonyi S. Effect of Blood Flow on Cardiac Morphogenesis and Formation of Congenital Heart Defects. J Cardiovasc Dev Dis 2022; 9:jcdd9090303. [PMID: 36135448 PMCID: PMC9503889 DOI: 10.3390/jcdd9090303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Congenital heart disease (CHD) affects about 1 in 100 newborns and its causes are multifactorial. In the embryo, blood flow within the heart and vasculature is essential for proper heart development, with abnormal blood flow leading to CHD. Here, we discuss how blood flow (hemodynamics) affects heart development from embryonic to fetal stages, and how abnormal blood flow solely can lead to CHD. We emphasize studies performed using avian models of heart development, because those models allow for hemodynamic interventions, in vivo imaging, and follow up, while they closely recapitulate heart defects observed in humans. We conclude with recommendations on investigations that must be performed to bridge the gaps in understanding how blood flow alone, or together with other factors, contributes to CHD.
Collapse
Affiliation(s)
- Fernando Trinidad
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Floyd Rubonal
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Ida Pirzadeh
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Rabin Gerrah
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Arash Kheradvar
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
30
|
Pedroza AJ, Dalal AR, Shad R, Yokoyama N, Nakamura K, Cheng P, Wirka RC, Mitchel O, Baiocchi M, Hiesinger W, Quertermous T, Fischbein MP. Embryologic Origin Influences Smooth Muscle Cell Phenotypic Modulation Signatures in Murine Marfan Syndrome Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2022; 42:1154-1168. [PMID: 35861960 PMCID: PMC9420801 DOI: 10.1161/atvbaha.122.317381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aortic root smooth muscle cells (SMC) develop from both the second heart field (SHF) and neural crest. Disparate responses to disease-causing Fbn1 variants by these lineages are proposed to promote focal aortic root aneurysm formation in Marfan syndrome (MFS), but lineage-stratified SMC analysis in vivo is lacking. METHODS We generated SHF lineage-traced MFS mice and performed integrated multiomic (single-cell RNA and assay for transposase-accessible chromatin sequencing) analysis stratified by embryological origin. SMC subtypes were spatially identified via RNA in situ hybridization. Response to TWIST1 overexpression was determined via lentiviral transduction in human aortic SMCs. RESULTS Lineage stratification enabled nuanced characterization of aortic root cells. We identified heightened SHF-derived SMC heterogeneity including a subset of Tnnt2 (cardiac troponin T)-expressing cells distinguished by altered proteoglycan expression. MFS aneurysm-associated SMC phenotypic modulation was identified in both SHF-traced and nontraced (neural crest-derived) SMCs; however, transcriptomic responses were distinct between lineages. SHF-derived modulated SMCs overexpressed collagen synthetic genes and small leucine-rich proteoglycans while nontraced SMCs activated chondrogenic genes. These modulated SMCs clustered focally in the aneurysmal aortic root at the region of SHF/neural crest lineage overlap. Integrated RNA-assay for transposase-accessible chromatin analysis identified enriched Twist1 and Smad2/3/4 complex binding motifs in SHF-derived modulated SMCs. TWIST1 overexpression promoted collagen and SLRP gene expression in vitro, suggesting TWIST1 may drive SHF-enriched collagen synthesis in MFS aneurysm. CONCLUSIONS SMCs derived from both SHF and neural crest lineages undergo phenotypic modulation in MFS aneurysm but are defined by subtly distinct transcriptional responses. Enhanced TWIST1 transcription factor activity may contribute to enriched collagen synthetic pathways SHF-derived SMCs in MFS.
Collapse
Affiliation(s)
- Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Alex R. Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine. Stanford CA, USA
| | - Robert C. Wirka
- Division of Cardiology, UNC School of Medicine, Chapel Hill NC, USA
| | | | - Michael Baiocchi
- Department of Epidemiology and Population Health, Stanford Unviersity School of Medicine. Stanford CA, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine. Stanford CA, USA
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| |
Collapse
|
31
|
Nekoui M, Pirruccello JP, Di Achille P, Choi SH, Friedman SN, Nauffal V, Ng K, Batra P, Ho JE, Philippakis AA, Lubitz SA, Lindsay ME, Ellinor PT. Spatially Distinct Genetic Determinants of Aortic Dimensions Influence Risks of Aneurysm and Stenosis. J Am Coll Cardiol 2022; 80:486-497. [PMID: 35902171 PMCID: PMC11216157 DOI: 10.1016/j.jacc.2022.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The left ventricular outflow tract (LVOT) and ascending aorta are spatially complex, with distinct pathologies and embryologic origins. Prior work examined the genetics of thoracic aortic diameter in a single plane. OBJECTIVES We sought to elucidate the genetic basis for the diameter of the LVOT, aortic root, and ascending aorta. METHODS Using deep learning, we analyzed 2.3 million cardiac magnetic resonance images from 43,317 UK Biobank participants. We computed the diameters of the LVOT, the aortic root, and at 6 locations of ascending aorta. For each diameter, we conducted a genome-wide association study and generated a polygenic score. Finally, we investigated associations between these scores and disease incidence. RESULTS A total of 79 loci were significantly associated with at least 1 diameter. Of these, 35 were novel, and most were associated with 1 or 2 diameters. A polygenic score of aortic diameter approximately 13 mm from the sinotubular junction most strongly predicted thoracic aortic aneurysm (n = 427,016; mean HR: 1.42 per SD; 95% CI: 1.34-1.50; P = 6.67 × 10-21). A polygenic score predicting a smaller aortic root was predictive of aortic stenosis (n = 426,502; mean HR: 1.08 per SD; 95% CI: 1.03-1.12; P = 5 × 10-6). CONCLUSIONS We detected distinct genetic loci underpinning the diameters of the LVOT, aortic root, and at several segments of ascending aorta. We spatially defined a region of aorta whose genetics may be most relevant to predicting thoracic aortic aneurysm. We further described a genetic signature that may predispose to aortic stenosis. Understanding genetic contributions to proximal aortic diameter may enable identification of individuals at risk for aortic disease and facilitate prioritization of therapeutic targets.
Collapse
Affiliation(s)
- Mahan Nekoui
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA. https://twitter.com/MahanNekoui
| | - James P Pirruccello
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA; Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA. https://twitter.com/jpirruccello
| | - Paolo Di Achille
- Data Sciences Platform, Broad Institute, Cambridge, Massachusetts, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
| | - Samuel N Friedman
- Data Sciences Platform, Broad Institute, Cambridge, Massachusetts, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kenney Ng
- IBM Research, Cambridge, Massachusetts, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute, Cambridge, Massachusetts, USA
| | - Jennifer E Ho
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Anthony A Philippakis
- Data Sciences Platform, Broad Institute, Cambridge, Massachusetts, USA; GV, Mountain View, California, USA
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA; Demoulas Center for Cardiac Arrhythmias, Boston, Massachusetts, USA
| | - Mark E Lindsay
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA; Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA; Thoracic Aortic Center, Massachusetts General Hospital, Boston, Massachusetts, USA. https://twitter.com/MarkELindsay
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA; Demoulas Center for Cardiac Arrhythmias, Boston, Massachusetts, USA.
| |
Collapse
|
32
|
Gomez A, Wang Z, Xuan Y, Hope MD, Saloner DA, Guccione JM, Ge L, Tseng EE. Regional wall stress differences on tricuspid aortic valve-associated ascending aortic aneurysms. Interact Cardiovasc Thorac Surg 2022; 34:1115-1123. [PMID: 34718581 PMCID: PMC10634398 DOI: 10.1093/icvts/ivab269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Ascending thoracic aortic aneurysms (aTAAs) carry a risk of acute type A dissection. Elective repair guidelines are based on diameter, but complications often occur below diameter threshold. Biomechanically, dissection can occur when wall stress exceeds wall strength. Aneurysm wall stresses may better capture dissection risk. Our aim was to investigate patient-specific aTAA wall stresses associated with a tricuspid aortic valve (TAV) by anatomic region. METHODS Patients with aneurysm diameter ≥4.0 cm underwent computed tomography angiography. Aneurysm geometries were reconstructed and loaded to systemic pressure while taking prestress into account. Finite element analyses were conducted to obtain wall stress distributions. The 99th percentile longitudinal and circumferential stresses were determined at systole. Wall stresses between regions were compared using one-way analysis of variance with post hoc Tukey HSD for pairwise comparisons. RESULTS Peak longitudinal wall stresses on aneurysms (n = 204) were 326 [standard deviation (SD): 61.7], 246 (SD: 63.4) and 195 (SD: 38.7) kPa in sinuses of Valsalva, sinotubular junction (STJ) and ascending aorta (AscAo), respectively, with significant differences between AscAo and both sinuses (P < 0.001) and STJ (P < 0.001). Peak circumferential wall stresses were 416 (SD: 85.1), 501 (SD: 119) and 340 (SD: 57.6) kPa for sinuses, STJ and AscAo, respectively, with significant differences between AscAo and both sinuses (P < 0.001) and STJ (P < 0.001). CONCLUSIONS Circumferential and longitudinal wall stresses were greater in the aortic root than AscAo on aneurysm patients with a TAV. Aneurysm wall stress magnitudes and distribution relative to respective regional wall strength could improve understanding of aortic regions at greater risk of dissection in a particular patient.
Collapse
Affiliation(s)
- Axel Gomez
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Zhongjie Wang
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Yue Xuan
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Michael D Hope
- Department of Radiology, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - David A Saloner
- Department of Radiology, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Julius M Guccione
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Liang Ge
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| | - Elaine E Tseng
- Division of Adult Cardiothoracic Surgery, Department of Surgery, University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
33
|
Ganapathi AM, Ranney DN, Peterson MD, Lindsay ME, Patel HJ, Pyeritz RE, Trimarchi S, Hutchison S, Harris KM, Greason KL, Ota T, Montgomery DG, Nienaber CA, Eagle KA, Isselbacher EM, Hughes GC. Location of Aortic Enlargement and Risk of Type A Dissection at Smaller Diameters. J Am Coll Cardiol 2022; 79:1890-1897. [PMID: 35550685 DOI: 10.1016/j.jacc.2022.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous work has demonstrated that more than one-half of acute type A aortic dissections (ATADs) occur at a maximal aortic diameter (MAD) of <5.5 cm. However, no analysis has investigated whether ATAD risk at smaller MADs is more common with modest dilation of the aortic root (AR) or supracoronary ascending aorta (AA) in patients without genetically triggered aortopathy. OBJECTIVES This study sought to determine if the segment of modest aortic dilation affects risk of ATAD. METHODS Using the International Registry of Acute Aortic Dissection (IRAD) database from May 1996 to October 2016, we identified 667 ATAD patients with MAD <5.5 cm. Patients were stratified by location of the largest proximal aortic segment (AR or AA). Patients with known genetically triggered aortopathy were excluded. MADs at time of dissection were compared between AR and AA groups. Secondary outcomes included operation, postoperative outcomes, and long-term survival. RESULTS Of patients with ATAD at an MAD <5.5 cm, 79.5% (n = 530) were in the AA group and 20.5% (n = 137) in the AR group. Modestly dilated ARs (median MAD 4.6 cm [IQR: 4.1-5.0 cm]) dissected at a significantly smaller diameter than modestly dilated AAs (median MAD 4.8 cm [IQR: 4.4-5.1 cm]) (P < 0.01). AR patients were significantly younger than AA patients (58.5 ± 13.0 years vs 63.2 ± 13.3 years; P < 0.01) and more commonly male (78% vs 65%; P < 0.01). Postoperative and long-term outcomes did not differ between groups. CONCLUSIONS ATAD appears to occur at smaller diameters in patients with modest dilation in the AR vs the AA (4.6 vs 4.8 cm). These findings may have implications for future consensus guidelines regarding the management of patients with aortic disease.
Collapse
Affiliation(s)
- Asvin M Ganapathi
- Department of Surgery, Division of Cardiac Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - David N Ranney
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark D Peterson
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark E Lindsay
- Thoracic Aortic Center, Massachusetts General Hospital, Boson, Massachusetts, USA
| | - Himanshu J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Reed E Pyeritz
- Departments of Medicine and Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Santi Trimarchi
- Department of Scienze Cliniche e di Comunita, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico-University of Milan, Milan, Italy
| | - Stuart Hutchison
- Departments of Cardiac Sciences, Medicine, and Radiology, University of Calgary Medical Centre, Calgary, Alberta, Canada
| | - Kevin M Harris
- Cardiovascular Division, Minneapolis Heart Institute, Minneapolis, Minnesota, USA
| | - Kevin L Greason
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Takeyoshi Ota
- Department of Surgery, University of Chicago Medical Center, Chicago, Illinois, USA
| | | | - Christoph A Nienaber
- Cardiology and Aortic Centre, The Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Kim A Eagle
- Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric M Isselbacher
- Thoracic Aortic Center, Massachusetts General Hospital, Boson, Massachusetts, USA
| | - G Chad Hughes
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
34
|
Inhibition of RhoA and Cdc42 by miR-133a Modulates Retinoic Acid Signalling during Early Development of Posterior Cardiac Tube Segment. Int J Mol Sci 2022; 23:ijms23084179. [PMID: 35456995 PMCID: PMC9025022 DOI: 10.3390/ijms23084179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
It is well known that multiple microRNAs play crucial roles in cardiovascular development, including miR-133a. Additionally, retinoic acid regulates atrial marker expression. In order to analyse the role of miR-133a as a modulator of retinoic acid signalling during the posterior segment of heart tube formation, we performed functional experiments with miR-133a and retinoic acid by means of microinjections into the posterior cardiac precursors of both primitive endocardial tubes in chick embryos. Subsequently, we subjected embryos to whole mount in situ hybridisation, immunohistochemistry and qPCR analysis. Our results demonstrate that miR-133a represses RhoA and Cdc42, as well as Raldh2/Aldh1a2, and the specific atrial markers Tbx5 and AMHC1, which play a key role during differentiation. Furthermore, we observed that miR-133a upregulates p21 and downregulates cyclin A by repressing RhoA and Cdc42, respectively, thus functioning as a cell proliferation inhibitor. Additionally, retinoic acid represses miR-133a, while it increases Raldh2, Tbx5 and AMHC1. Given that RhoA and Cdc42 are involved in Raldh2 expression and that they are modulated by miR-133a, which is influenced by retinoic acid signalling, our results suggest the presence of a negative feedback mechanism between miR-133a and retinoic acid during early development of the posterior cardiac tube segment. Despite additional unexplored factors being possible contributors to this negative feedback mechanism, miR-133a might also be considered as a potential therapeutic tool for the diagnosis, therapy and prognosis of cardiac diseases.
Collapse
|
35
|
Niu Z, Su G, Li T, Yu H, Shen Y, Zhang D, Liu X. Vascular Calcification: New Insights Into BMP Type I Receptor A. Front Pharmacol 2022; 13:887253. [PMID: 35462911 PMCID: PMC9019578 DOI: 10.3389/fphar.2022.887253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is a complex ectopic calcification process and an important indicator of increased risk for diabetes, atherosclerosis, chronic kidney disease, and other diseases. Therefore, clarifying the pathogenesis of VC is of great clinical significance. Numerous studies have shown that the onset and progression of VC are similar to bone formation. Members of the bone morphogenetic protein (BMP) family of proteins are considered key molecules in the progression of vascular calcification. BMP type I receptor A (BMPR1A) is a key receptor of BMP factors acting on the cell membrane, is widely expressed in various tissues and cells, and is an important “portal” for BMP to enter cells and exert their biological effect. In recent years, many discoveries have been made regarding the occurrence and treatment of ectopic ossification-related diseases involving BMP signaling targets. Studies have confirmed that BMPR1A is involved in osteogenic differentiation and that its high expression in vascular endothelial cells and smooth muscle cells can lead to vascular calcification. This article reviews the role of BMPR1A in vascular calcification and the possible underlying molecular mechanisms to provide clues for the clinical treatment of such diseases.
Collapse
Affiliation(s)
- Zhixing Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyue Su
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tiantian Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongchi Yu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yang Shen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| |
Collapse
|
36
|
Abrial M, Basu S, Huang M, Butty V, Schwertner A, Jeffrey S, Jordan D, Burns CE, Burns CG. Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. Dis Model Mech 2022; 15:dmm046979. [PMID: 35098309 PMCID: PMC8990920 DOI: 10.1242/dmm.046979] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFβ) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFβ signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFβ signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFβ signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maryline Abrial
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep Basu
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mengmeng Huang
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vincent Butty
- BioMicroCenter, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asya Schwertner
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Spencer Jeffrey
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Daniel Jordan
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Caroline E. Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C. Geoffrey Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
37
|
Garcia-Padilla C, Dueñas A, Franco D, Garcia-Lopez V, Aranega A, Garcia-Martinez V, Lopez-Sanchez C. Dynamic MicroRNA Expression Profiles During Embryonic Development Provide Novel Insights Into Cardiac Sinus Venosus/Inflow Tract Differentiation. Front Cell Dev Biol 2022; 9:767954. [PMID: 35087828 PMCID: PMC8787322 DOI: 10.3389/fcell.2021.767954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs have been explored in different organisms and are involved as molecular switches modulating cellular specification and differentiation during the embryonic development, including the cardiovascular system. In this study, we analyze the expression profiles of different microRNAs during early cardiac development. By using whole mount in situ hybridization in developing chick embryos, with microRNA-specific LNA probes, we carried out a detailed study of miR-23b, miR-130a, miR-106a, and miR-100 expression during early stages of embryogenesis (HH3 to HH17). We also correlated those findings with putative microRNA target genes by means of mirWalk and TargetScan analyses. Our results demonstrate a dynamic expression pattern in cardiac precursor cells from the primitive streak to the cardiac looping stages for miR-23b, miR-130a, and miR-106a. Additionally, miR-100 is later detectable during cardiac looping stages (HH15-17). Interestingly, the sinus venosus/inflow tract was shown to be the most representative cardiac area for the convergent expression of the four microRNAs. Through in silico analysis we revealed that distinct Hox family members are predicted to be targeted by the above microRNAs. We also identified expression of several Hox genes in the sinus venosus at stages HH11 and HH15. In addition, by means of gain-of-function experiments both in cardiomyoblasts and sinus venosus explants, we demonstrated the modulation of the different Hox clusters, Hoxa, Hoxb, Hoxc, and Hoxd genes, by these microRNAs. Furthermore, we correlated the negative modulation of several Hox genes, such as Hoxa3, Hoxa4, Hoxa5, Hoxc6, or Hoxd4. Finally, we demonstrated through a dual luciferase assay that Hoxa1 is targeted by miR-130a and Hoxa4 is targeted by both miR-23b and miR-106a, supporting a possible role of these microRNAs in Hox gene modulation during differentiation and compartmentalization of the posterior structures of the developing venous pole of the heart.
Collapse
Affiliation(s)
- Carlos Garcia-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain.,Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Angel Dueñas
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain.,Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, Jaen, Spain.,Fundación Medina, Granada, Spain
| | - Virginio Garcia-Lopez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, Jaen, Spain.,Fundación Medina, Granada, Spain
| | - Virginio Garcia-Martinez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Carmen Lopez-Sanchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| |
Collapse
|
38
|
Common Arterial Trunk Associated with Functionally Univentricular Heart: Anatomical Study and Review of the Literature. J Cardiovasc Dev Dis 2021; 8:jcdd8120175. [PMID: 34940530 PMCID: PMC8705909 DOI: 10.3390/jcdd8120175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Common arterial trunk (CAT) is a rare congenital heart disease that is commonly included into the spectrum of conotruncal heart defects. CAT is rarely associated with functionally univentricular hearts, and only few cases have been described so far. Here, we describe the anatomical characteristics of CAT associated with a univentricular heart diagnosed in children and fetuses referred to our institution, and we completed the anatomical description of this rare condition through an extensive review of the literature. The complete cohort ultimately gathered 32 cases described in the literature completed by seven cases from our unit (seven fetuses and one child). Four types of univentricular hearts associated with CAT were observed: tricuspid atresia or hypoplastic right ventricle in 16 cases, mitral atresia or hypoplastic left ventricle in 12 cases, double-inlet left ventricle in 2 cases, and unbalanced atrioventricular septal defect in 9 cases. Our study questions the diagnosis of CAT as the exclusive consequence of an anomaly of the wedging process, following the convergence between the embryonic atrioventricular canal and the common outflow tract. We confirm that some forms of CAT can be considered to be due to an arrest of cardiac development at the stages preceding the convergence.
Collapse
|
39
|
Lindsey SE, Vignon-Clementel IE, Butcher JT. Assessing Early Cardiac Outflow Tract Adaptive Responses Through Combined Experimental-Computational Manipulations. Ann Biomed Eng 2021; 49:3227-3242. [PMID: 34117583 PMCID: PMC8664927 DOI: 10.1007/s10439-021-02802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Mechanical forces are essential for proper growth and remodeling of the primitive pharyngeal arch arteries (PAAs) into the great vessels of the heart. Despite general acknowledgement of a hemodynamic-malformation link, the direct correlation between hemodynamics and PAA morphogenesis remains poorly understood. The elusiveness is largely due to difficulty in performing isolated hemodynamic perturbations and quantifying changes in-vivo. Previous in-vivo arch artery occlusion/ablation experiments either did not isolate the effects of hemodynamics, did not analyze the results in a 3D context or did not consider the effects of varying degrees of occlusion. Here, we overcome these limitations by combining minimally invasive occlusion experiments in the avian embryo with 3D anatomical models of development and in-silico testing of experimental phenomenon. We detail morphological and hemodynamic changes 24 hours post vessel occlusion. 3D anatomical models showed that occlusion geometries had more circular cross-sectional areas and more elongated arches than their control counterparts. Computational fluid dynamics revealed a marked change in wall shear stress-morphology trends. Instantaneous (in-silico) occlusion models provided mechanistic insights into the dynamic vessel adaptation process, predicting pressure-area trends for a number of experimental occlusion arches. We follow the propagation of small defects in a single embryo Hamburger Hamilton (HH) Stage 18 embryo to a more serious defect in an HH29 embryo. Results demonstrate that hemodynamic perturbation of the presumptive aortic arch, through varying degrees of vessel occlusion, overrides natural growth mechanisms and prevents it from becoming the dominant arch of the aorta.
Collapse
Affiliation(s)
- Stephanie E Lindsey
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY, 14853-7202, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Irene E Vignon-Clementel
- Centre de Recherche Inria de Saclay-IDF, rue Honoré d'Estienne d'Orves, 91120, Palaiseau, France.
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY, 14853-7202, USA.
| |
Collapse
|
40
|
Matos-Nieves A, Manivannan S, Majumdar U, McBride KL, White P, Garg V. A Multi-Omics Approach Using a Mouse Model of Cardiac Malformations for Prioritization of Human Congenital Heart Disease Contributing Genes. Front Cardiovasc Med 2021; 8:683074. [PMID: 34504875 PMCID: PMC8421733 DOI: 10.3389/fcvm.2021.683074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Congenital heart disease (CHD) is the most common type of birth defect, affecting ~1% of all live births. Malformations of the cardiac outflow tract (OFT) account for ~30% of all CHD and include a range of CHDs from bicuspid aortic valve (BAV) to tetralogy of Fallot (TOF). We hypothesized that transcriptomic profiling of a mouse model of CHD would highlight disease-contributing genes implicated in congenital cardiac malformations in humans. To test this hypothesis, we utilized global transcriptional profiling differences from a mouse model of OFT malformations to prioritize damaging, de novo variants identified from exome sequencing datasets from published cohorts of CHD patients. Notch1 +/- ; Nos3 -/- mice display a spectrum of cardiac OFT malformations ranging from BAV, semilunar valve (SLV) stenosis to TOF. Global transcriptional profiling of the E13.5 Notch1 +/- ; Nos3 -/- mutant mouse OFTs and wildtype controls was performed by RNA sequencing (RNA-Seq). Analysis of the RNA-Seq dataset demonstrated genes belonging to the Hif1α, Tgf-β, Hippo, and Wnt signaling pathways were differentially expressed in the mutant OFT. Mouse to human comparative analysis was then performed to determine if patients with TOF and SLV stenosis display an increased burden of damaging, genetic variants in gene homologs that were dysregulated in Notch1 +/- ; Nos3 -/- OFT. We found an enrichment of de novo variants in the TOF population among the 1,352 significantly differentially expressed genes in Notch1 +/- ; Nos3 -/- mouse OFT but not the SLV population. This association was not significant when comparing only highly expressed genes in the murine OFT to de novo variants in the TOF population. These results suggest that transcriptomic datasets generated from the appropriate temporal, anatomic and cellular tissues from murine models of CHD may provide a novel approach for the prioritization of disease-contributing genes in patients with CHD.
Collapse
Affiliation(s)
- Adrianna Matos-Nieves
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sathiyanarayanan Manivannan
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kim L. McBride
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
| | - Peter White
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, Ohio State University, Columbus, OH, United States
| |
Collapse
|
41
|
Omer SO, Alhabshan FM, Jijeh AMZ, Caimbon NC, Enriquez CC, Männer J, Yelbuz TM. Is Transposition of the Great Arteries Associated With Shortening of the Intrapericardial Portions of the Great Arterial Trunks? An Echocardiographic Analysis on Newborn Infants With Simple Transposition of the Great Arteries to Explore an Animal Model-Based Hypothesis on Human Beings. J Am Heart Assoc 2021; 10:e019334. [PMID: 34278802 PMCID: PMC8475693 DOI: 10.1161/jaha.120.019334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
Background The pathogenesis of transposition of the great arteries (TGA) as a congenital heart defect of the outflow tract with discordant ventriculoarterial connections remains an enigma. TGA usually have parallel great arteries suggesting that deficient torsion of the embryonic arterial heart pole might cause discordant ventriculoarterial connections. It has been speculated that deficient elongation of the embryonic outflow tract might prevent its normal torsion resulting in TGA. The aim of our study was to clarify whether the intrapericardial portions of the great arteries in human patients with TGA might be indeed shorter than in normal hearts. Methods and Results Thirty-four newborns with simple TGA and 35 newborns with normal hearts were analyzed by using images of the outflow tract in their echocardiograms and the following defined lengths of the great arteries were measured: aortic length 1, (AoL-1) and aortic length 2 (AoL-2) = distance between left and right aortic valve level and origin of the brachiocephalic artery, respectively. Pulmonary trunk length 1 (PTL-1) and pulmonary trunk length 2 (PTL 2) = distance between left and right pulmonary valve level and origin of left and right pulmonary artery, respectively. All measurements of the AoL were significantly shorter in TGA compared to normal hearts (AoL-1: 1.6±0.2 versus 2.05±0.1; P<0.0001; AoL-2: 1.55±0.2 versus 2.13±0.1; P<0.0001). With regard to the pulmonary trunk (PT), PTL-1 and PTL-2 were found to be shorter and longer, respectively, in TGA compared with normal hearts, reflecting the differences in the spatial arrangement of the PT between the 2 groups as in TGA the PT is showing a mirror image of the normal anatomy. However, the overall length of the PT between the 2 groups did not differ. Conclusions Our data demonstrate that, compared with normal newborns, the ascending aorta is significantly shorter in newborns with TGA whereas the overall length of the PT does not differ between the 2 groups. This finding is in accord with the animal model-based hypothesis that TGA may result from a growth deficit at the arterial pole of the embryonic heart.
Collapse
Affiliation(s)
- Seham O. Omer
- Department of Cardiac SciencesKing Abdulaziz Cardiac CenterMinistry of National Guard Health AffairsRiyadhSaudi Arabia
- King Abdullah International Medical Research Center (KAIMRC)RiyadhSaudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS)RiyadhSaudi Arabia
| | - Fahad M. Alhabshan
- Department of Cardiac SciencesKing Abdulaziz Cardiac CenterMinistry of National Guard Health AffairsRiyadhSaudi Arabia
- King Abdullah International Medical Research Center (KAIMRC)RiyadhSaudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS)RiyadhSaudi Arabia
| | - Abdulraouf M. Z. Jijeh
- Department of Cardiac SciencesKing Abdulaziz Cardiac CenterMinistry of National Guard Health AffairsRiyadhSaudi Arabia
- King Abdullah International Medical Research Center (KAIMRC)RiyadhSaudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS)RiyadhSaudi Arabia
| | - Natalia C. Caimbon
- Department of Cardiac SciencesKing Abdulaziz Cardiac CenterMinistry of National Guard Health AffairsRiyadhSaudi Arabia
- King Abdullah International Medical Research Center (KAIMRC)RiyadhSaudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS)RiyadhSaudi Arabia
| | - Carmelita C. Enriquez
- Department of Cardiac SciencesKing Abdulaziz Cardiac CenterMinistry of National Guard Health AffairsRiyadhSaudi Arabia
- King Abdullah International Medical Research Center (KAIMRC)RiyadhSaudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS)RiyadhSaudi Arabia
| | - Jörg Männer
- Institute for Anatomy and EmbryologyUMGGeorg‐August‐University of GöttingenGöttingenGermany
| | - Talat Mesud Yelbuz
- Department of Cardiac SciencesKing Abdulaziz Cardiac CenterMinistry of National Guard Health AffairsRiyadhSaudi Arabia
- King Abdullah International Medical Research Center (KAIMRC)RiyadhSaudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU‐HS)RiyadhSaudi Arabia
| |
Collapse
|
42
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
43
|
Stone OA, Zhou B, Red-Horse K, Stainier DYR. Endothelial ontogeny and the establishment of vascular heterogeneity. Bioessays 2021; 43:e2100036. [PMID: 34145927 DOI: 10.1002/bies.202100036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
The establishment of distinct cellular identities was pivotal during the evolution of Metazoa, enabling the emergence of an array of specialized tissues with different functions. In most animals including vertebrates, cell specialization occurs in response to a combination of intrinsic (e.g., cellular ontogeny) and extrinsic (e.g., local environment) factors that drive the acquisition of unique characteristics at the single-cell level. The first functional organ system to form in vertebrates is the cardiovascular system, which is lined by a network of endothelial cells whose organ-specific characteristics have long been recognized. Recent genetic analyses at the single-cell level have revealed that heterogeneity exists not only at the organ level but also between neighboring endothelial cells. Thus, how endothelial heterogeneity is established has become a key question in vascular biology. Drawing upon evidence from multiple organ systems, here we will discuss the role that lineage history may play in establishing endothelial heterogeneity.
Collapse
Affiliation(s)
- Oliver A Stone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kristy Red-Horse
- Department of Biology, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
44
|
Gao Y, Pu J. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Front Cell Dev Biol 2021; 9:658088. [PMID: 34055788 PMCID: PMC8149736 DOI: 10.3389/fcell.2021.658088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are derived from human embryos (human embryonic stem cells) or reprogrammed from human somatic cells (human induced pluripotent stem cells). They can differentiate into cardiovascular cells, which have great potential as exogenous cell resources for restoring cardiac structure and function in patients with heart disease or heart failure. A variety of protocols have been developed to generate and expand cardiovascular cells derived from hPSCs in vitro. Precisely and spatiotemporally activating or inhibiting various pathways in hPSCs is required to obtain cardiovascular lineages with high differentiation efficiency. In this concise review, we summarize the protocols of differentiating hPSCs into cardiovascular cells, highlight their therapeutic application for treatment of cardiac diseases in large animal models, and discuss the challenges and limitations in the use of cardiac cells generated from hPSCs for a better clinical application of hPSC-based cardiac cell therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Pradegan N, Azzolina D, Gregori D, Randazzo G, Frasson S, Gerosa G. Residual root fate after aortic surgery in bicuspid aortic valve with right-to-left fusion: A comparative risk analysis. J Card Surg 2021; 36:2628-2635. [PMID: 33960500 PMCID: PMC8359844 DOI: 10.1111/jocs.15585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIM Although bicuspid aortic valve (BAV) anatomy might influence aortic aneurysm development, BAV-related root involvement still lacks standardized surgical management. We aimed to evaluate late clinical outcomes and risk factors for root dilation after proximal aortic replacement in patients with BAV and right-left fusion (RL-BAV). METHODS Clinical and echocardiographic data of all patients with intraoperative RL-BAV who underwent ascending aortic replacement with or without noncoronary sinus (NCS) replacement (Groups 1 and 2, respectively) between 1999 and 2017, were retrospectively revised. A multivariable analysis assessed hazard factors for root dilation during follow-up (FU). RESULTS Of 206 surgeries performed (M 81%; age: 57 ± 13 years, EuroSCORE II: 2.7 ± 1.9%), 79 (38%) required NCS replacement. One hundred fifty-seven patients (76%) underwent aortic valve replacement (with aortic regurgitation predominating in Group 1, p = .04). The preoperative aortic root was larger in patients requiring NCS replacement (43.3 ± 5.1 vs. 39.2 ± 4.8 mm, p < .001). At a median FU time of 7 years (interquartile range: 4-10), no residual root dissections occurred, and only two patients (belonging to Group 2) required redo root surgery. Preoperative mild aortic regurgitation and aortic root diameter >35 mm at discharge were risk factors for root dilation >40 mm at FU (p = .02). Aortic root did not dilate over time, irrespective of NCS replacement (p = .06). CONCLUSIONS Aortic root in patients with RL-BAV undergoing ascending aortic replacement (±NCS replacement) does not significantly dilate over time, even if patients with preoperative aortic regurgitation and postoperative root more than 35 mm might require more surveillance.
Collapse
Affiliation(s)
- Nicola Pradegan
- Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padova, Italy
| | - Danila Azzolina
- Biostatistics Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Dario Gregori
- Biostatistics Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gianmarco Randazzo
- Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padova, Italy
| | - Sara Frasson
- Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padova, Italy
| | - Gino Gerosa
- Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padova, Italy
| |
Collapse
|
46
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
47
|
Donadon M, Santoro MM. The origin and mechanisms of smooth muscle cell development in vertebrates. Development 2021; 148:148/7/dev197384. [PMID: 33789914 DOI: 10.1242/dev.197384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smooth muscle cells (SMCs) represent a major structural and functional component of many organs during embryonic development and adulthood. These cells are a crucial component of vertebrate structure and physiology, and an updated overview of the developmental and functional process of smooth muscle during organogenesis is desirable. Here, we describe the developmental origin of SMCs within different tissues by comparing their specification and differentiation with other organs, including the cardiovascular, respiratory and intestinal systems. We then discuss the instructive roles of smooth muscle in the development of such organs through signaling and mechanical feedback mechanisms. By understanding SMC development, we hope to advance therapeutic approaches related to tissue regeneration and other smooth muscle-related diseases.
Collapse
Affiliation(s)
- Michael Donadon
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| |
Collapse
|
48
|
Shen M, Quertermous T, Fischbein MP, Wu JC. Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations. Circ Res 2021; 128:670-686. [PMID: 33818124 PMCID: PMC10817206 DOI: 10.1161/circresaha.120.318049] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The developmental origin of vascular smooth muscle cells (VSMCs) has been increasingly recognized as a major determinant for regional susceptibility or resistance to vascular diseases. As a human material-based complement to animal models and human primary cultures, patient induced pluripotent stem cell iPSC-derived VSMCs have been leveraged to conduct basic research and develop therapeutic applications in vascular diseases. However, iPSC-VSMCs (induced pluripotent stem cell VSMCs) derived by most existing induction protocols are heterogeneous in developmental origins. In this review, we summarize signaling networks that govern in vivo cell fate decisions and in vitro derivation of distinct VSMC progenitors, as well as key regulators that terminally specify lineage-specific VSMCs. We then highlight the significance of leveraging patient-derived iPSC-VSMCs for vascular disease modeling, drug discovery, and vascular tissue engineering and discuss several obstacles that need to be circumvented to fully unleash the potential of induced pluripotent stem cells for precision vascular medicine.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | - Thomas Quertermous
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
49
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Houyel L, Cohen L, Burlot P, Heitzmann A, Bonnet D. Prenatal diagnosis of anomalous connection of the inferior caval vein to the left atrium associated with common arterial trunk. J Anat 2020; 238:1255-1258. [PMID: 33345320 PMCID: PMC8053582 DOI: 10.1111/joa.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 11/27/2022] Open
Abstract
Anomalous connection of the inferior caval vein to the left atrium is exceedingly rare, and has even been considered by some authors an anatomic and embryologic impossibility. This study demonstrates for the first time the existence of this rare malformation, diagnosed on prenatal echo, and confirmed on post-mortem examination in a 24 WG fetus, in association with a common arterial trunk.
Collapse
Affiliation(s)
- Lucile Houyel
- M3C-Necker Enfants malades, AP-HP, Paris, France.,Université de Paris, Paris, France
| | | | - Patrick Burlot
- Gynecology Obstetrics Department, Centre Hospitalier Sud-Essonne, Etampes, France
| | - Anne Heitzmann
- Anatomopathology Department, Centre Hospitalier Régional, Orléans, France
| | - Damien Bonnet
- M3C-Necker Enfants malades, AP-HP, Paris, France.,Université de Paris, Paris, France.,UMR-1163 INSERM, Institut IMAGINE, IcarP Cardiology, Paris, France
| |
Collapse
|