1
|
Aran S, Golmohammadi MG, Sagha M, Ghaedi K. Aging restricts the initial neural patterning potential of developing neural stem and progenitor cells in the adult brain. Front Aging Neurosci 2025; 16:1498308. [PMID: 39916688 PMCID: PMC11798963 DOI: 10.3389/fnagi.2024.1498308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction Neurosphere culture is widely used to expand neural stem and progenitor cells (NSPCs) of the nervous system. Understanding the identity of NSPCs, such as the principals involved in spatiotemporal patterning, will improve our chances of using NSPCs for neurodevelopmental and brain repair studies with the ability to direct NSPCs toward distinct fates. Some reports indicate that aging can affect the nature of NSPCs over time. Therefore, in this study, we aimed to investigate how the initial neural patterning of developing NSPCs changes over time. Methods In this research, evidence of changing neural patterning potential in the nervous system over time was presented. Thus, the embryonic and adult-derived NSPCs for cardinal characteristics were analyzed, and then, the expression of candidate genes related to neural patterning using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was evaluated at various stages of embryonic (E14 and E18), neonatal, and adult brains. Finally, it was assessed the effect of cell attachment and passage on the initial neural patterning of NSPCs. Results The analysis of gene expression revealed that although temporal patterning is maintained in vitro, it shows a decrease over time. Embryonic NSPCs exhibited the highest potential for retaining regional identity than neonatal and adult NSPCs. Additionally, it was found that culture conditions, such as cell passaging and attachment status, could affect the initial neural patterning potential, resulting in a decrease over time. Conclusion Our study demonstrates that patterning potential decreases over time and aging imposes restrictions on preliminary neural patterning. These results emphasize the significance of patterning in the nervous system and the close relationship between patterning and fate determination, raising questions about the application of aged NSPCs in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Saeideh Aran
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Ghasem Golmohammadi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Sun B, Cheng X, Wu Q. The Endometrial Stem/Progenitor Cells and Their Niches. Stem Cell Rev Rep 2024; 20:1273-1284. [PMID: 38635126 DOI: 10.1007/s12015-024-10725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Endometrial stem/progenitor cells are a type of stem cells with the ability to self-renew and differentiate into multiple cell types. They exist in the endometrium and form niches with their neighbor cells and extracellular matrix. The interaction between endometrial stem/progenitor cells and niches plays an important role in maintaining, repairing, and regenerating the endometrial structure and function. This review will discuss the characteristics and functions of endometrial stem/progenitor cells and their niches, the mechanisms of their interaction, and their roles in endometrial regeneration and diseases. Finally, the prospects for their applications will also be explored.
Collapse
Affiliation(s)
- Baolan Sun
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, China.
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiang Wu
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
3
|
Douyère M, Gong C, Richard M, Pellegrini-Moïse N, Daouk J, Pierson J, Chastagner P, Boura C. NRP1 inhibition modulates radiosensitivity of medulloblastoma by targeting cancer stem cells. Cancer Cell Int 2022; 22:377. [PMID: 36457009 PMCID: PMC9714111 DOI: 10.1186/s12935-022-02796-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common pediatric malignant brain tumor. Despite current therapies, the morbidity and recurrent risk remains significant. Neuropilin-1 receptor (NRP1) has been implicated in the tumor progression of MB. Our recent study showed that NRP1 inhibition stimulated MB stem cells differentiation. Consequently, we hypothesized that targeting NRP1 in medulloblastoma could improve current treatments. METHODS NRP1 inhibition with a novel peptidomimetic agent, MR438, was evaluated with radiotherapy (RT) in MB models (DAOY, D283-Med and D341-Med) in vitro on cancer stem-like cells as well as in vivo on heterotopic and orthotopic xenografts. RESULTS We show that NRP1 inhibition by MR438 radiosensitizes MB stem-like cells in vitro. In heterotopic DAOY models, MR438 improves RT efficacy as measured by tumor growth and mouse survival. In addition, clonogenic assays after tumor dissociation showed a significant reduction in cancer stem cells with the combination treatment. In the same way, a benefit of the combined therapy was observed in the orthotopic model only for a low cumulative irradiation dose of 10 Gy but not for 20 Gy. CONCLUSIONS Finally, our results demonstrated that targeting NRP1 with MR438 could be a potential new strategy and could limit MB progression by decreasing the stem cell number while reducing the radiation dose.
Collapse
Affiliation(s)
- Manon Douyère
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France
| | - Caifeng Gong
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France ,grid.506261.60000 0001 0706 7839Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Can-Cer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Bei-Jing, 100021 China
| | - Mylène Richard
- Université de Lorraine, CNRS, L2CM, UMR 7053, Campus Science, 54500 Vandœuvre-Lès-Nancy, France
| | - Nadia Pellegrini-Moïse
- Université de Lorraine, CNRS, L2CM, UMR 7053, Campus Science, 54500 Vandœuvre-Lès-Nancy, France
| | - Joël Daouk
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France
| | - Julien Pierson
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France
| | - Pascal Chastagner
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France ,grid.410527.50000 0004 1765 1301Service d’Onco-Hématologie Pédiatrique, CHRU-Nancy, 54000 Nancy, France
| | - Cédric Boura
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France
| |
Collapse
|
4
|
Tondepu C, Karumbaiah L. Glycomaterials to Investigate the Functional Role of Aberrant Glycosylation in Glioblastoma. Adv Healthc Mater 2022; 11:e2101956. [PMID: 34878733 PMCID: PMC9048137 DOI: 10.1002/adhm.202101956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a stage IV astrocytoma that carries a dismal survival rate of ≈10 months postdiagnosis and treatment. The highly invasive capacity of GBM and its ability to escape therapeutic challenges are key factors contributing to the poor overall survival rate. While current treatments aim to target the cancer cell itself, they fail to consider the significant role that the GBM tumor microenvironment (TME) plays in promoting tumor progression and therapeutic resistance. The GBM tumor glycocalyx and glycan-rich extracellular matrix (ECM), which are important constituents of the TME have received little attention as therapeutic targets. A wide array of aberrantly modified glycans in the GBM TME mediate tumor growth, invasion, therapeutic resistance, and immunosuppression. Here, an overview of the landscape of aberrant glycan modifications in GBM is provided, and the design and utility of 3D glycomaterials are discussed as a tool to evaluate glycan-mediated GBM progression and therapeutic efficacy. The development of alternative strategies to target glycans in the TME can potentially unveil broader mechanisms of restricting tumor growth and enhancing the efficacy of tumor-targeting therapeutics.
Collapse
Affiliation(s)
- Chaitanya Tondepu
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
- Division of Neuroscience, Biomedical & Translational Sciences Institute, University of Georgia, Athens, GA, 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
Innes JA, Lowe AS, Fonseca R, Aley N, El-Hassan T, Constantinou M, Lau J, Eddaoudi A, Marino S, Brandner S. Phenotyping clonal populations of glioma stem cell reveals a high degree of plasticity in response to changes of microenvironment. J Transl Med 2022; 102:172-184. [PMID: 34782726 PMCID: PMC8784315 DOI: 10.1038/s41374-021-00695-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
The phenotype of glioma-initiating cells (GIC) is modulated by cell-intrinsic and cell-extrinsic factors. Phenotypic heterogeneity and plasticity of GIC is an important limitation to therapeutic approaches targeting cancer stem cells. Plasticity also presents a challenge to the identification, isolation, and propagation of purified cancer stem cells. Here we use a barcode labelling approach of GIC to generate clonal populations over a number of passages, in combination with phenotyping using the established stem cell markers CD133, CD15, CD44, and A2B5. Using two cell lines derived from isocitrate dehydrogenase (IDH)-wildtype glioblastoma, we identify a remarkable heterogeneity of the phenotypes between the cell lines. During passaging, clonal expansion manifests as the emergence of a limited number of barcoded clones and a decrease in the overall number of clones. Dual-labelled GIC are capable of forming traceable clonal populations which emerge after as few as two passages from mixed cultures and through analyses of similarity of relative proportions of 16 surface markers we were able to pinpoint the fate of such populations. By generating tumour organoids we observed a remarkable persistence of dominant clones but also a significant plasticity of stemness marker expression. Our study presents an experimental approach to simultaneously barcode and phenotype glioma-initiating cells to assess their functional properties, for example to screen newly established GIC for tumour-specific therapeutic vulnerabilities.
Collapse
Affiliation(s)
- James A Innes
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Andrew S Lowe
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Raquel Fonseca
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Natasha Aley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Tedani El-Hassan
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Myrianni Constantinou
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, E1 2AT, UK
| | - Joanne Lau
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Ayad Eddaoudi
- Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, E1 2AT, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
6
|
Targeting Protein Kinase C in Glioblastoma Treatment. Biomedicines 2021; 9:biomedicines9040381. [PMID: 33916593 PMCID: PMC8067000 DOI: 10.3390/biomedicines9040381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associated with a poor prognosis. Despite the use of combined treatment approaches, recurrence is almost inevitable and survival longer than 14 or 15 months after diagnosis is low. It is therefore necessary to identify new therapeutic targets to fight GBM progression and recurrence. Some publications have pointed out the role of glioma stem cells (GSCs) as the origin of GBM. These cells, with characteristics of neural stem cells (NSC) present in physiological neurogenic niches, have been proposed as being responsible for the high resistance of GBM to current treatments such as temozolomide (TMZ). The protein Kinase C (PKC) family members play an essential role in transducing signals related with cell cycle entrance, differentiation and apoptosis in NSC and participate in distinct signaling cascades that determine NSC and GSC dynamics. Thus, PKC could be a suitable druggable target to treat recurrent GBM. Clinical trials have tested the efficacy of PKCβ inhibitors, and preclinical studies have focused on other PKC isozymes. Here, we discuss the idea that other PKC isozymes may also be involved in GBM progression and that the development of a new generation of effective drugs should consider the balance between the activation of different PKC subtypes.
Collapse
|
7
|
Vieira de Castro J, S. Gonçalves C, P. Martins E, Miranda-Lorenzo I, T. Cerqueira M, Longatto-Filho A, A. Pinto A, L. Reis R, Sousa N, Heeschen C, M. Costa B. Intracellular Autofluorescence as a New Biomarker for Cancer Stem Cells in Glioblastoma. Cancers (Basel) 2021; 13:828. [PMID: 33669350 PMCID: PMC7920313 DOI: 10.3390/cancers13040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
The identification of cancer stem cells (CSCs), which are implicated in tumor initiation, progression, therapy resistance, and relapse, is of great biological and clinical relevance. In glioblastoma (GBM), this is still a challenge, as no single marker is able to universally identify populations of GBM cancer stem cells (GSCs). Indeed, there is still controversy on whether biomarker-expressing cells fulfill the functional criteria of bona fide GSCs, despite being widely used. Here, we describe a novel subpopulation of autofluorescent (Fluo+) cells in GBM that bear all the functional characteristics of GSCs, including higher capacity to grow as neurospheres, long-term self-renewal ability, increased expression of stem cell markers, and enhanced in vivo tumorigenicity. Mechanistically, the autofluorescent phenotype is largely due to the intracellular accumulation of riboflavin, mediated by the ABC transporter ABCG2. In summary, our work identifies an intrinsic cellular autofluorescent phenotype enriched in GBM cells with functional stem cells features that can be used as a novel, simple and reliable biomarker to target these highly malignant tumors, with implications for GBM biological and clinical research.
Collapse
Affiliation(s)
- Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Irene Miranda-Lorenzo
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (I.M.-L.); (C.H.)
| | - Mariana T. Cerqueira
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
- Medical Laboratory of Medical Investigation (LIM) 14, Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil
| | - Afonso A. Pinto
- Department of Neurosurgery, Hospital de Braga, 4710-243 Braga, Portugal;
| | - Rui L. Reis
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (I.M.-L.); (C.H.)
- Center for Single-Cell Omics & State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| |
Collapse
|
8
|
Gómez-Oliva R, Domínguez-García S, Carrascal L, Abalos-Martínez J, Pardillo-Díaz R, Verástegui C, Castro C, Nunez-Abades P, Geribaldi-Doldán N. Evolution of Experimental Models in the Study of Glioblastoma: Toward Finding Efficient Treatments. Front Oncol 2021; 10:614295. [PMID: 33585240 PMCID: PMC7878535 DOI: 10.3389/fonc.2020.614295] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common form of brain tumor characterized by its resistance to conventional therapies, including temozolomide, the most widely used chemotherapeutic agent in the treatment of GBM. Within the tumor, the presence of glioma stem cells (GSC) seems to be the reason for drug resistance. The discovery of GSC has boosted the search for new experimental models to study GBM, which allow the development of new GBM treatments targeting these cells. In here, we describe different strategies currently in use to study GBM. Initial GBM investigations were focused in the development of xenograft assays. Thereafter, techniques advanced to dissociate tumor cells into single-cell suspensions, which generate aggregates referred to as neurospheres, thus facilitating their selective expansion. Concomitantly, the finding of genes involved in the initiation and progression of GBM tumors, led to the generation of mice models for the GBM. The latest advances have been the use of GBM organoids or 3D-bioprinted mini-brains. 3D bio-printing mimics tissue cytoarchitecture by combining different types of cells interacting with each other and with extracellular matrix components. These in vivo models faithfully replicate human diseases in which the effect of new drugs can easily be tested. Based on recent data from human glioblastoma, this review critically evaluates the different experimental models used in the study of GB, including cell cultures, mouse models, brain organoids, and 3D bioprinting focusing in the advantages and disadvantages of each approach to understand the mechanisms involved in the progression and treatment response of this devastating disease.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | - Ricardo Pardillo-Díaz
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Cristina Verástegui
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
9
|
Sytnyk V, Leshchyns'ka I, Schachner M. Neural glycomics: the sweet side of nervous system functions. Cell Mol Life Sci 2021; 78:93-116. [PMID: 32613283 PMCID: PMC11071817 DOI: 10.1007/s00018-020-03578-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The success of investigations on the structure and function of the genome (genomics) has been paralleled by an equally awesome progress in the analysis of protein structure and function (proteomics). We propose that the investigation of carbohydrate structures that go beyond a cell's metabolism is a rapidly developing frontier in our expanding knowledge on the structure and function of carbohydrates (glycomics). No other functional system appears to be suited as well as the nervous system to study the functions of glycans, which had been originally characterized outside the nervous system. In this review, we describe the multiple studies on the functions of LewisX, the human natural killer cell antigen-1 (HNK-1), as well as oligomannosidic and sialic (neuraminic) acids. We attempt to show the sophistication of these structures in ontogenetic development, synaptic function and plasticity, and recovery from trauma, with a view on neurodegeneration and possibilities to ameliorate deterioration. In view of clinical applications, we emphasize the need for glycomimetic small organic compounds which surpass the usefulness of natural glycans in that they are metabolically more stable, more parsimonious to synthesize or isolate, and more advantageous for therapy, since many of them pass the blood brain barrier and are drug-approved for treatments other than those in the nervous system, thus allowing a more ready access for application in neurological diseases. We describe the isolation of such mimetic compounds using not only Western NIH, but also traditional Chinese medical libraries. With this review, we hope to deepen the interests in this exciting field.
Collapse
Affiliation(s)
- Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, 515041, Guangdong, China
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
10
|
Wongtrakul-Kish K, Herbert BR, Packer NH. Bisecting GlcNAc Protein N-Glycosylation Is Characteristic of Human Adipogenesis. J Proteome Res 2020; 20:1313-1327. [PMID: 33383989 DOI: 10.1021/acs.jproteome.0c00702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human adipose tissue contains a major source of adipose-derived stem cells (ADSCs) that have the ability to differentiate into various cell types: in vitro, ADSCs can differentiate into mesenchymal lineages including adipocytes, while in vivo, ADSCs become mature adipocytes. Protein glycosylation has been shown to change in stem cell differentiation, and while ADSCs have been acknowledged for their therapeutic potential, little is known about protein glycosylation during human ADSC adipogenic differentiation. In the present study, the global membrane protein glycosylation of native adipocytes was compared to ADSCs from the same individuals as a model of in vivo adipogenesis. For in vitro adipogenesis, ADSCs were adipogenically differentiated in cell culture using an optimized, large-scale differentiation procedure. The membrane glycome of the differentiated ADSCs (dADSCs) was compared with mature adipocytes and the progenitor ADSCs. A total of 137 glycan structures were characterized across the three cell types using PGC-LC coupled with negative-ion electrospray ionization mass spectrometry (ESI-MS)/MS. Significantly higher levels of bisecting GlcNAc-type N-glycans were detected in mature adipocytes (32.1% of total glycans) and in in vitro dADSC progeny (1.9% of total glycans) compared to ADSCs. This was further correlated by the mRNA expression of the MGAT3 gene responsible for the enzymatic synthesis of this structural type. The bisecting GlcNAc structures were found on the majority of human native adipocyte membrane proteins, suggesting an important role in human adipocyte biology. Core fucosylation was also significantly increased during in vivo adipogenesis but did not correlate with an increase in Fut8 gene transcript. Unexpectedly, low abundance structures carrying rare β-linked Gal-Gal termini were also detected. Overall, the N-glycan profiles of the in vitro differentiated progeny did not reflect native adipocytes, and the results show that bisecting GlcNAc structures are a characteristic feature of human adipocyte membrane protein N-glycosylation. Raw MS files are available on GlycoPOST (ID: GPST000153 https://glycopost.glycosmos.org/).
Collapse
Affiliation(s)
- Katherine Wongtrakul-Kish
- Biomolecular Discovery Research Centre, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.,ARC Centre for Nanoscale BioPhotonics, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Benjamin R Herbert
- Biomolecular Discovery Research Centre, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle H Packer
- Biomolecular Discovery Research Centre, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.,ARC Centre for Nanoscale BioPhotonics, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Kelly A, O'Malley A, Redha M, O'Keeffe GW, Barry DS. The distribution of the proteoglycan FORSE-1 in the developing mouse central nervous system. J Anat 2018; 234:216-226. [PMID: 30474148 DOI: 10.1111/joa.12907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 01/30/2023] Open
Abstract
Glycosylation is a major post-translational modification in which a carbohydrate known as a glycan is enzymatically attached to target proteins which regulate protein folding and stability. Glycans are strongly expressed in the developing nervous system where they play multiple roles during development. The importance of these glycan epitopes in neural development is highlighted by a group of conditions known as congenital disorders of glycosylation which lead to psychomotor difficulties, mental retardation, lissencephaly, microencephaly and epilepsy. One of these glycan epitopes, known as Lewis X, is recognised by the FORSE-1 antibody and is regionally expressed in the developing nervous system. In this study, we report the regional and temporal expression patterns of FORSE-1 immunolabelling during the periods of neurogenesis, gliogenesis and axonogenesis in developing mouse nervous system. We demonstrate the localisation of FORSE-1 on subsets of neuroepithelial cells and radial glial cells, and in compartments corresponding to axon tract formation. These spatial, temporal and regional expression patterns are suggestive of roles in the determination of different cell lineages and in the patterning of white matter during development, and help provide insights into the neuroanatomical regions affected by congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Albert Kelly
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling O'Malley
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohammad Redha
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Denis S Barry
- Department of Anatomy, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Theis T, Johal AS, Kabat M, Basak S, Schachner M. Enhanced Neuronal Survival and Neurite Outgrowth Triggered by Novel Small Organic Compounds Mimicking the LewisX Glycan. Mol Neurobiol 2018; 55:8203-8215. [PMID: 29520715 PMCID: PMC6314473 DOI: 10.1007/s12035-018-0953-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/05/2018] [Indexed: 02/05/2023]
Abstract
Glycosylation fine-tunes signal transduction of adhesion molecules during neural development and supports synaptic plasticity and repair after injury in the adult nervous system. One abundantly expressed neural glycan is LewisX (LeX). Although it is known that its expression starts at the formation of the neural tube during the second embryonic week in the mouse and peaks during the first postnatal week, its functional relevance is only rudimentarily understood. To gain better insights into the functions of this glycan, we identified small organic compounds that mimic structurally and functionally this glycan glycosidically linked to several neural adhesion molecules. Mimetic compounds were identified by competitive enzyme-linked immunosorbent assay (ELISA) using the LeX-specific monoclonal antibodies L5 and SSEA-1 for screening a library of small organic molecules. In this assay, antibody binding to substrate-coated LeX glycomimetic peptide is measured in the presence of compounds, allowing identification of molecules that inhibit antibody binding and thereby mimic LeX. Gossypol, orlistat, ursolic acid, folic acid, and tosufloxacin inhibited antibody binding in a concentration-dependent manner. With the aim to functionally characterize the molecular consequences of the compounds' actions, we here present evidence that, at nM concentrations, the mimetic compounds enhance neurite outgrowth and promote neuronal survival of cultured mouse cerebellar granule cells via, notably, distinct signal transduction pathways. These findings raise hopes that these LeX mimetics will be powerful tools for further studying the functions of LeX and its effects in acute and chronic nervous system disease models. It is worth mentioning in this context that the LeX compounds investigated in the present study have been clinically approved for different therapies.
Collapse
Affiliation(s)
- Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Anmol Singh Johal
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Maciej Kabat
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Sayantani Basak
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
- Developmental Sciences-Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080-4990, USA
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| |
Collapse
|
13
|
Bai QR, Dong L, Hao Y, Chen X, Shen Q. Metabolic glycan labeling-assisted discovery of cell-surface markers for primary neural stem and progenitor cells. Chem Commun (Camb) 2018; 54:5486-5489. [PMID: 29756626 DOI: 10.1039/c8cc01535j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A chemical approach was developed for identifying cell-surface markers for primary neural stem cells (NSCs). Using an in vitro coculture system of primary NSCs combined with metabolic labeling of sialoglycans with bioorthogonal functional groups, we selectively enriched and identified a list of cell-surface sialoglycoproteins that were more abundantly expressed in neural stem and progenitor cells.
Collapse
Affiliation(s)
- Qing-Ran Bai
- PTN Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
14
|
Sardar MYR, Krishnamurthy VR, Park S, Mandhapati AR, Wever WJ, Park D, Cummings RD, Chaikof EL. Synthesis of Lewis X-O-Core-1 threonine: A building block for O-linked Lewis X glycopeptides. Carbohydr Res 2017; 452:47-53. [PMID: 29065342 PMCID: PMC5682196 DOI: 10.1016/j.carres.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
Abstract
LewisX (LeX) is a branched trisaccharide Galβ1→4(Fucα1→3)GlcNAc that is expressed on many cell surface glycoproteins and plays critical roles in innate and adaptive immune responses. However, efficient synthesis of glycopeptides bearing LeX remains a major limitation for structure-function studies of the LeX determinant. Here we report a total synthesis of a LeX pentasaccharide 1 using a regioselective 1-benzenesulfinyl piperidine/triflic anhydride promoted [3 + 2] glycosylation. The presence of an Fmoc-threonine amino acid facilitates incorporation of the pentasaccharide in solid phase peptide synthesis, providing a route to diverse O-linked LeX glycopeptides. The described approach is broadly applicable to the synthesis of a variety of complex glycopeptides containing O-linked LeX or sialyl LewisX (sLeX).
Collapse
Affiliation(s)
- Mohammed Y R Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Venkata R Krishnamurthy
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Walter J Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Dayoung Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
CD60b: Enriching Neural Stem/Progenitor Cells from Rat Development into Adulthood. Stem Cells Int 2017; 2017:5759490. [PMID: 29270199 PMCID: PMC5705879 DOI: 10.1155/2017/5759490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
CD60b antigens are highly expressed during development in the rat nervous system, while in the adult their expression is restricted to a few regions, including the subventricular zone (SVZ) around the lateral ventricles—a neurogenic niche in the adult brain. For this reason, we investigated whether the expression of C60b is associated with neural stem/progenitor cells in the SVZ, from development into adulthood. We performed in vitro and in vivo analyses of CD60b expression at different stages and identified the presence of these antigens in neural stem/progenitor cells. We also observed that CD60b could be used to purify and enrich a population of neurosphere-forming cells from the developing and adult brain. We showed that CD60b antigens (mainly corresponding to ganglioside 9-O-acetyl GD3, a well-known molecule expressed during central nervous system development and mainly associated with neuronal migration) are also present in less mature cells and could be used to identify and isolate neural stem/progenitor cells during development and in the adult brain. A better understanding of molecules associated with neurogenesis may contribute not only to improve the knowledge about the physiology of the mammalian central nervous system, but also to find new treatments for regenerating tissue after disease or brain injury.
Collapse
|
16
|
Luque-Molina I, Khatri P, Schmidt-Edelkraut U, Simeonova IK, Hölzl-Wenig G, Mandl C, Ciccolini F. Bone Morphogenetic Protein Promotes Lewis X Stage-Specific Embryonic Antigen 1 Expression Thereby Interfering with Neural Precursor and Stem Cell Proliferation. Stem Cells 2017; 35:2417-2429. [PMID: 28869691 DOI: 10.1002/stem.2701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 01/17/2023]
Abstract
The glycoprotein Prominin-1 and the carbohydrate Lewis X stage-specific embryonic antigen 1 (LeX-SSEA1) both have been extensively used as cell surface markers to purify neural stem cells (NSCs). While Prominin-1 labels a specialized membrane region in NSCs and ependymal cells, the specificity of LeX-SSEA1 expression and its biological significance are still unknown. To address these issues, we have here monitored the expression of the carbohydrate in neonatal and adult NSCs and in their progeny. Our results show that the percentage of immunopositive cells and the levels of LeX-SSEA1 immunoreactivity both increase with postnatal age across all stages of the neural lineage. This is associated with decreased proliferation in precursors including NSCs, which accumulate the carbohydrate at the cell surface while remaining quiescent. Exposure of precursors to bone morphogenetic protein (BMP) increases LEX-SSEA1 expression, which promotes cell cycle withdrawal by a mechanism involving LeX-SSEA1-mediated interaction at the cell surface. Conversely, interference with either BMP signaling or with LeX-SSEA1 promotes proliferation to a similar degree. Thus, in the postnatal germinal niche, the expression of LeX-SSEA1 increases with age and exposure to BMP signaling, thereby downregulating the proliferation of subependymal zone precursors including NSCs. Stem Cells 2017;35:2417-2429.
Collapse
Affiliation(s)
- Inma Luque-Molina
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Priti Khatri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Udo Schmidt-Edelkraut
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Ina K Simeonova
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Claudi Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Temporal Profiling of Astrocyte Precursors Reveals Parallel Roles for Asef during Development and after Injury. J Neurosci 2017; 36:11904-11917. [PMID: 27881777 DOI: 10.1523/jneurosci.1658-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 12/21/2022] Open
Abstract
Lineage development is a stepwise process, governed by stage-specific regulatory factors and associated markers. Astrocytes are one of the principle cell types in the CNS and the stages associated with their development remain very poorly defined. To identify these stages, we performed gene-expression profiling on astrocyte precursor populations in the spinal cord, identifying distinct patterns of gene induction during their development that are strongly correlated with human astrocytes. Validation studies identified a new cohort of astrocyte-associated genes during development and demonstrated their expression in reactive astrocytes in human white matter injury (WMI). Functional studies on one of these genes revealed that mice lacking Asef exhibited impaired astrocyte differentiation during development and repair after WMI, coupled with compromised blood-brain barrier integrity in the adult CNS. These studies have identified distinct stages of astrocyte lineage development associated with human WMI and, together with our functional analysis of Asef, highlight the parallels between astrocyte development and their reactive counterparts associated with injury. SIGNIFICANCE STATEMENT Astrocytes play a central role in CNS function and associated diseases. Yet the mechanisms that control their development remain poorly defined. Using the developing mouse spinal cord as a model system, we identify molecular changes that occur in developing astrocytes. These molecular signatures are strongly correlated with human astrocyte expression profiles and validation in mouse spinal cord identifies a host of new genes associated with the astrocyte lineage. These genes are present in reactive astrocytes in human white matter injury, and functional studies reveal that one of these genes, Asef, contributes to reactive astrocyte responses after injury. These studies identify distinct stages of astrocyte lineage development and highlight the parallels between astrocyte development and their reactive counterparts associated with injury.
Collapse
|
18
|
Seidmann L, Kamyshanskiy Y, Martin SZ, Fruth A, Roth W. Immaturity for gestational age of microvasculature and placental barrier in term placentas with high weight. Eur J Obstet Gynecol Reprod Biol 2017. [PMID: 28624691 DOI: 10.1016/j.ejogrb.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Villous immaturity for gestational age is a multifactorial developmental deviation associated with unexpected placental insufficiency, fetal hypoxia and term fetal death. In our previous work we have shown that immature CD15+/CD31+/CD34+ endothelial cells were an important indicator of placental villous immaturity and chronic insufficiency. The aim of this study was to perform a comparative analysis of CD15-marked immaturity in the vessel walls between normal and pathological term placentas of clinically and structurally heterogenous groups with normal, low and high weight. STUDY DESIGN 165 clinically normal and pathological placentas of gestational age 39-42 with normal weight (25-75 percentile), low weight (<10 percentile) and high weight (>90 percentile) were structurally and immunohistochemically analyzed. Excluded were placentas with a severe form of placental insufficiency associated with intrauterine fetal death, low APGAR-score, genetic and chromosomal diseases or placental inflammations. The distribution patterns of CD15, CD31 and CD34 were assessed separately in the macrovasculature, microvasculature and placental barrier (PB) - associated capillaries. RESULTS All placental groups with normal weight, low weight and high weight include normal, accelerated villous maturation or villous immaturity independent of their weight. However, a significant increase of immature CD15+/CD31+/CD34+ endothelial cells was detected in microvasculature and PB -associated capillaries in high weight-placentas (63.5%/52.2%), compared to those of normal weight (13.8%/8.2%) and low weight (16.1%/17.8%). The distribution of macrovascular immature CD15+/CD31+/CD34+ endothelial cells did not show such marked differences. CONCLUSION We have identified the immaturity of microvasculature and PB -associated capillaries with a pathological persistency of immature CD15+/CD31+/CD34+ endothelial cells and a reduction of terminally differentiated CD15-/CD31+/CD34+ endothelial cells in a structurally and clinically heterogeneous group of high weight-placentas. We assume that immaturity of placental vessels are part of prenatal adaptational processes that can be recruited in different emergency situations and may provide potential targets of therapeutic correction of placental growth and chronic insufficiency. We therefore recommend the use of CD15-based immunophenotyping as a method to identify latent unfavorable conditions of fetal development in the intrauterine life and individual risk of disease in the postnatal period.
Collapse
Affiliation(s)
- L Seidmann
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.
| | - Y Kamyshanskiy
- Institute of Pathology, Karaganda State Medical University, Kazakhstan
| | - S Z Martin
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - A Fruth
- Department of Obstetrics and Gynecology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - W Roth
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
19
|
Son MJ, Ryu JS, Kim JY, Kwon Y, Chung KS, Mun SJ, Cho YS. Upregulation of mitochondrial NAD + levels impairs the clonogenicity of SSEA1 + glioblastoma tumor-initiating cells. Exp Mol Med 2017; 49:e344. [PMID: 28604662 PMCID: PMC5519015 DOI: 10.1038/emm.2017.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD+) metabolism. However, the functional role of NAD+ metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD+ levels affect the characteristics of glioma-driven SSEA1+ TICs, including clonogenic growth potential. An increase in the mitochondrial NAD+ levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD+ levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors.
Collapse
Affiliation(s)
- Myung Jin Son
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jae-Sung Ryu
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jae Yun Kim
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Youjeong Kwon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Kyung-Sook Chung
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seon Ju Mun
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yee Sook Cho
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Korea
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
20
|
Kandasamy M, Roll L, Langenstroth D, Brüstle O, Faissner A. Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs). Cell Tissue Res 2017; 368:531-549. [DOI: 10.1007/s00441-017-2594-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
|
21
|
Mu X, Ren L, Yan H, Zhang X, Xu T, Wei A, Jiang J. Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro. J Diabetes Investig 2017; 8:34-43. [PMID: 27240324 PMCID: PMC5217909 DOI: 10.1111/jdi.12544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/19/2016] [Accepted: 05/02/2016] [Indexed: 01/14/2023] Open
Abstract
AIMS/INTRODUCTION To investigate the ability of human amniotic fluid stem cells (hAFSCs) to differentiate into insulin-producing cells. MATERIALS AND METHODS hAFSCs were induced to differentiate into pancreatic cells by a multistep protocol. The expressions of pancreas-related genes and proteins, including pancreatic and duodenal homeobox-1, insulin, and glucose transporter 2, were detected by polymerase chain reaction and immunofluorescence. Insulin secreted from differentiated cells was tested by enzyme-linked immunosorbent assay. RESULTS hAFSCs were successfully isolated from amniotic fluid that expressed the pluripotent markers of embryonic stem cells, such as Oct3/4, and mesenchymal stem cells, such as integrin β-1 and ecto-5'-nucleotidase. Here, we first obtained the hAFSCs that expressed pluripotent marker stage-specific embryonic antigen 1. Real-time polymerase chain reaction analysis showed that pancreatic and duodenal homeobox-1, paired box gene 4 and paired box gene 6 were expressed in the early phase of induction, and then stably expressed in the differentiated cells. The pancreas-related genes, such as insulin, glucokinase, glucose transporter 2 and Nkx6.1, were expressed in the differentiated cells. Immunofluorescence showed that these differentiated cells co-expressed insulin, C-peptide, and pancreatic and duodenal homeobox-1. Insulin was released in response to glucose stimulation in a manner similar to that of adult human islets. CONCLUSIONS The present study showed that hAFSCs, under selective culture conditions, could differentiate into islet-like insulin-producing cells, which might be used as a potential source for transplantation in patients with type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Xu‐Peng Mu
- Department of Central LaboratoryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Li‐Qun Ren
- College of PharmacyJilin UniversityChangchunChina
| | - Hao‐Wei Yan
- College of PharmacyJilin UniversityChangchunChina
| | | | - Tian‐Min Xu
- The Second Affiliated Hospital of Jilin UniversityChangchunChina
| | - An‐Hui Wei
- College of PharmacyJilin UniversityChangchunChina
| | - Jin‐Lan Jiang
- Department of Central LaboratoryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
22
|
Narayanan G, Yu YH, Tham M, Gan HT, Ramasamy S, Sankaran S, Hariharan S, Ahmed S. Enumeration of Neural Stem Cells Using Clonal Assays. J Vis Exp 2016. [PMID: 27768074 PMCID: PMC5092163 DOI: 10.3791/54456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neural stem cells (NSCs) have the ability to self-renew and generate the three major neural lineages — astrocytes, neurons and oligodendrocytes. NSCs and neural progenitors (NPs) are commonly cultured in vitro as neurospheres. This protocol describes in detail how to determine the NSC frequency in a given cell population under clonal conditions. The protocol begins with the seeding of the cells at a density that allows for the generation of clonal neurospheres. The neurospheres are then transferred to chambered coverslips and differentiated under clonal conditions in conditioned medium, which maximizes the differentiation potential of the neurospheres. Finally, the NSC frequency is calculated based on neurosphere formation and multipotency capabilities. Utilities of this protocol include the evaluation of candidate NSC markers, purification of NSCs, and the ability to distinguish NSCs from NPs. This method takes 13 days to perform, which is much shorter than current methods to enumerate NSC frequency.
Collapse
Affiliation(s)
- Gunaseelan Narayanan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR);
| | - Yuan Hong Yu
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Muly Tham
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Hui Theng Gan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Shvetha Sankaran
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Srivats Hariharan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Sohail Ahmed
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| |
Collapse
|
23
|
Aleksandrova MA, Poltavtseva RA, Marei MV, Sukhikh GT. Analysis of Neural Stem Cells from Human Cortical Brain Structures In Vitro. Bull Exp Biol Med 2016; 161:197-208. [PMID: 27279101 DOI: 10.1007/s10517-016-3375-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/12/2022]
Abstract
Comparative immunohistochemical analysis of the neocortex from human fetuses showed that neural stem and progenitor cells are present in the brain throughout the gestation period, at least from week 8 through 26. At the same time, neural stem cells from the first and second trimester fetuses differed by the distribution, morphology, growth, and quantity. Immunocytochemical analysis of neural stem cells derived from fetuses at different gestation terms and cultured under different conditions showed their differentiation capacity. Detailed analysis of neural stem cell populations derived from fetuses on gestation weeks 8-9, 18-20, and 26 expressing Lex/SSEA1 was performed.
Collapse
Affiliation(s)
- M A Aleksandrova
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - R A Poltavtseva
- V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - M V Marei
- V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G T Sukhikh
- V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
24
|
Safina D, Schlitt F, Romeo R, Pflanzner T, Pietrzik CU, Narayanaswami V, Edenhofer F, Faissner A. Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation. Glia 2016; 64:1363-80. [PMID: 27258849 DOI: 10.1002/glia.23009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
The LDL family of receptors and its member low-density lipoprotein receptor-related protein 1 (LRP1) have classically been associated with a modulation of lipoprotein metabolism. Current studies, however, indicate diverse functions for this receptor in various aspects of cellular activities, including cell proliferation, migration, differentiation, and survival. LRP1 is essential for normal neuronal function in the adult CNS, whereas the role of LRP1 in development remained unclear. Previously, we have observed an upregulation of LewisX (LeX) glycosylated LRP1 in the stem cells of the developing cortex and demonstrated its importance for oligodendrocyte differentiation. In the current study, we show that LeX-glycosylated LRP1 is also expressed in the stem cell compartment of the developing spinal cord and has broader functions in the developing CNS. We have investigated the basic properties of LRP1 conditional knockout on the neural stem/progenitor cells (NSPCs) from the cortex and the spinal cord, created by means of Cre-loxp-mediated recombination in vitro. The functional status of LRP1-deficient cells has been studied using proliferation, differentiation, and apoptosis assays. LRP1 deficient NSPCs from both CNS regions demonstrated altered differentiation profiles. Their differentiation capacity toward oligodendrocyte progenitor cells (OPCs), mature oligodendrocytes and neurons was reduced. In contrast, astrocyte differentiation was promoted. Moreover, LRP1 deletion had a negative effect on NSPCs proliferation and survival. Our observations suggest that LRP1 facilitates NSPCs differentiation via interaction with apolipoprotein E (ApoE). Upon ApoE4 stimulation wild type NSPCs generated more oligodendrocytes, but LRP1 knockout cells showed no response. The effect of ApoE seems to be independent of cholesterol uptake, but is rather mediated by downstream MAPK and Akt activation. GLIA 2016 GLIA 2016;64:1363-1380.
Collapse
Affiliation(s)
- Dina Safina
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, D-44780, Germany
| | - Frederik Schlitt
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany
| | - Ramona Romeo
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany
| | - Thorsten Pflanzner
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, D-55099, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, D-55099, Germany
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, 90840
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University Wuerzburg, Koellikerstraße 6, Wuerzburg, D-97070, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany
| |
Collapse
|
25
|
Reinhard J, Brösicke N, Theocharidis U, Faissner A. The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol 2016; 81:174-183. [PMID: 27157088 DOI: 10.1016/j.biocel.2016.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
Numerous studies demonstrated that neural stem cells and cancer stem cells (NSCs/CSCs) share several overlapping characteristics such as self-renewal, multipotency and a comparable molecular repertoire. In addition to the intrinsic cellular properties, NSCs/CSCs favor a similar environment to acquire and maintain their characteristics. In the present review, we highlight the shared properties of NSCs and CSCs in regard to their extracellular microenvironment called the NSC/CSC niche. Moreover, we point out that extracellular matrix (ECM) molecules and their complementary receptors influence the behavior of NSCs/CSCs as well as brain tumor progression. Here, we focus on the expression profile and functional importance of the ECM glycoprotein tenascin-C, the chondroitin sulfate proteoglycan DSD-1-PG/phosphacan but also on other important glycoprotein/proteoglycan constituents. Within this review, we specifically concentrate on glioblastoma multiforme (GBM). GBM is the most common malignant brain tumor in adults and is associated with poor prognosis despite intense and aggressive surgical and therapeutic treatment. Recent studies indicate that GBM onset is driven by a subpopulation of CSCs that display self-renewal and recapitulate tumor heterogeneity. Based on the CSC hypothesis the cancer arises just from a small subpopulation of self-sustaining cancer cells with the exclusive ability to self-renew and maintain the tumor. Besides the fundamental stem cell properties of self-renewal and multipotency, GBM stem cells share further molecular characteristics with NSCs, which we would like to review in this article.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nicole Brösicke
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Ursula Theocharidis
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
26
|
Park YG, Lee SE, Kim EY, Hyun H, Shin MY, Son YJ, Kim SY, Park SP. Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro. Dev Reprod 2016; 19:119-26. [PMID: 27004268 PMCID: PMC4801015 DOI: 10.12717/dr.2015.19.3.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suitable feeder cell layer is important for culture of embryonic stem (ES) cells. In this study, we investigated the effect of two kinds of the feeder cell, MEF cells and STO cells, layer to mouse ES (mES) cell culture for maintenance of stemness. We compare the colony formations, alkaline phosphatase (AP) activities, expression of pluripotency marker genes and proteins of D3 cell colonies cultured on MEF feeder cell layer (D3/MEF) or STO cell layers (D3/STO) compared to feeder free condition (D3/-) as a control group. Although there were no differences to colony formations and AP activities, interestingly, the transcripts level of pluripotency marker genes, Pou5f1 and Nanog were highly expressed in D3/MEF (79 and 93) than D3/STO (61and 77) or D3/- (65 and 81). Also, pluripotency marker proteins, NANOG and SOX-2, were more synthesized in D3/MEF (72.8±7.69 and 81.2±3.56) than D3/STO (32.0±4.30 and 56.0±4.90) or D3/- (55.0±4.64 and 62.0±6.20). These results suggest that MEF feeder cell layer is more suitable to mES cell culture.
Collapse
Affiliation(s)
- Yun-Gwi Park
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Seung-Eun Lee
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea; Mirae Cell Bio, Seoul 05066, Korea
| | - Hyuk Hyun
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Min-Young Shin
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Yeo-Jin Son
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Su-Young Kim
- Dept. of Preventive Medicine, College of Medicine, Jeju National University, Jeju 63243, Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea; Mirae Cell Bio, Seoul 05066, Korea
| |
Collapse
|
27
|
Singh AR, Joshi S, Zulcic M, Alcaraz M, Garlich JR, Morales GA, Cho YJ, Bao L, Levy ML, Newbury R, Malicki D, Messer K, Crawford J, Durden DL. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS One 2016; 11:e0150836. [PMID: 26938241 PMCID: PMC4777592 DOI: 10.1371/journal.pone.0150836] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Sonic hedgehog (SHH) medulloblastoma (MB) subtype is driven by a proliferative CD15+ tumor propagating cell (TPC), also considered in the literature as a putative cancer stem cell (CSC). Despite considerable research, much of the biology of this TPC remains unknown. We report evidence that phosphatase and tensin homolog (PTEN) and phosphoinositide 3-kinase (PI-3K) play a crucial role in the propagation, survival and potential response to therapy in this CD15+ CSC/TPC-driven malignant disease. Using the ND2-SmoA1 transgenic mouse model for MB, mouse genetics and patient-derived xenografts (PDXs), we demonstrate that the CD15+TPCs are 1) obligately required for SmoA1Tg-driven tumorigenicity 2) regulated by PTEN and PI-3K signaling 3) selectively sensitive to the cytotoxic effects of pan PI-3K inhibitors in vitro and in vivo but resistant to chemotherapy 4) in the SmoA1Tg mouse model are genomically similar to the SHH human MB subgroup. The results provide the first evidence that PTEN plays a role in MB TPC signaling and biology and that PI-3K inhibitors target and suppress the survival and proliferation of cells within the mouse and human CD15+ cancer stem cell compartment. In contrast, CD15+ TPCs are resistant to cisplatinum, temozolomide and the SHH inhibitor, NVP-LDE-225, agents currently used in treatment of medulloblastoma. These studies validate the therapeutic efficacy of pan PI-3K inhibitors in the treatment of CD15+ TPC dependent medulloblastoma and suggest a sequential combination of PI-3K inhibitors and chemotherapy will have augmented efficacy in the treatment of this disease.
Collapse
Affiliation(s)
- Alok R. Singh
- Department of Pediatrics, Moores Cancer Center, UC San Diego Health System, La Jolla, CA, United States of America
| | - Shweta Joshi
- Department of Pediatrics, Moores Cancer Center, UC San Diego Health System, La Jolla, CA, United States of America
| | - Muamera Zulcic
- Department of Pediatrics, Moores Cancer Center, UC San Diego Health System, La Jolla, CA, United States of America
| | - Michael Alcaraz
- Department of Pediatrics, Moores Cancer Center, UC San Diego Health System, La Jolla, CA, United States of America
| | | | | | - Yoon J. Cho
- Departments of Neurology and Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Lei Bao
- Biostatistics Department, Moores Cancer Center, UC San Diego Health System, La Jolla, CA, United States of America
| | - Michael L. Levy
- Department of Neurosurgery, UCSD Rady Children’s Hospital, La Jolla, CA, United States of America
| | - Robert Newbury
- Department of Pathology, UCSD Rady Children’s Hospital, La Jolla, CA, United States of America
| | - Denise Malicki
- Department of Pathology, UCSD Rady Children’s Hospital, La Jolla, CA, United States of America
| | - Karen Messer
- Biostatistics Department, Moores Cancer Center, UC San Diego Health System, La Jolla, CA, United States of America
| | - John Crawford
- Department of Neurosciences Division of Child Neurology, UCSD Rady Children’s Hospital, La Jolla, CA, United States of America
| | - Donald L. Durden
- Department of Pediatrics, Moores Cancer Center, UC San Diego Health System, La Jolla, CA, United States of America
- Division of Pediatric Hematology-Oncology, UCSD Rady Children’s Hospital, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
28
|
Seidmann L, Anspach L, Roth W. The embryo-placental CD15-positive "vasculogenic zones" as a source of propranolol-sensitive pediatric vascular tumors. Placenta 2016; 38:93-9. [PMID: 26907387 DOI: 10.1016/j.placenta.2015.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Propranolol-induced involution is a unique biological feature of some pediatric vascular tumors, for instance infantile hemangioma (IH), cerebral cavernoma or chorioangioma. Currently, the cellular origin of these distinct tumors is unclear. In this study, we tested the hypothesis that propranolol-responsive vascular tumors are derived from common vessel-forming CD15 + progenitor cells which occur in early gestation. The aim of this study was to identify the tumor-relevant CD15 + progenitors at the early stages of embryo-placental development. MATERIALS AND METHODS Human embryo-placental units of 4-8 weeks gestation and pediatric vascular tumors were tested for expression of the tumor-relevant markers CD15, CD31 and CD34. RESULTS Placental vessel-forming progenitors were characterized by immunostaining for CD15, CD31, and CD34. In embryonic tissue, a discontinuous CD15+/CD31+/CD34 + progenitors was detected in immature vessels of the skin, neural tube, spinal and cerebral meninges. Similarly, vessels in IH and chorioangioma exhibited a co-expression of CD15, CD31, and CD34. In contrast, the majority of embryonic vessels presented a CD31+/CD34+, but CD15-negative immunophenotypic pattern. DISCUSSION Our results suggest the existence of a CD15+ "vasculogenic zones" in the embryo-placental unit as well as in IH and chorioangioma. A site-specific correlation between normal embryo-placental and tumoral vessel-forming CD15 + progenitors was demonstrated. CONCLUSION Hence, site- and stage-specific CD15 + progenitors of vascular wall could be considered as propronalol-sensitive targets and source of pre- and postnatal vascular tumors. We propose, that the CD15+ "vasculogenic zones" are a site-specific reserve of multi-lineage progenitors that could be recruited in pre- and postnatal emergency situations.
Collapse
Affiliation(s)
- L Seidmann
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.
| | - L Anspach
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - W Roth
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
29
|
Immunophenotype of mouse cerebral hemispheres-derived neural precursor cells. Neurosci Lett 2016; 611:33-9. [DOI: 10.1016/j.neulet.2015.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 01/19/2023]
|
30
|
Ye J, Ge J, Zhang X, Cheng L, Zhang Z, He S, Wang Y, Lin H, Yang W, Liu J, Zhao Y, Deng H. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res 2015; 26:34-45. [PMID: 26704449 DOI: 10.1038/cr.2015.142] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/19/2022] Open
Abstract
Recently, we reported a chemical approach to generate pluripotent stem cells from mouse fibroblasts. However, whether chemically induced pluripotent stem cells (CiPSCs) can be derived from other cell types remains to be demonstrated. Here, using lineage tracing, we first verify the generation of CiPSCs from fibroblasts. Next, we demonstrate that neural stem cells (NSCs) from the ectoderm and small intestinal epithelial cells (IECs) from the endoderm can be chemically reprogrammed into pluripotent stem cells. CiPSCs derived from NSCs and IECs resemble mouse embryonic stem cells in proliferation rate, global gene expression profile, epigenetic status, self-renewal and differentiation capacity, and germline transmission competency. Interestingly, the pluripotency gene Sall4 is expressed at the initial stage in the chemical reprogramming process from different cell types, and the same core small molecules are required for the reprogramming, suggesting conservation in the molecular mechanism underlying chemical reprogramming from these diverse cell types. Our analysis also shows that the use of these small molecules should be fine-tuned to meet the requirement of reprogramming from different cell types. Together, these findings demonstrate that full chemical reprogramming approach can be applied in cells of different tissue origins and suggest that chemical reprogramming is a promising strategy with the potential to be extended to more initial types.
Collapse
Affiliation(s)
- Junqing Ye
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian Ge
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xu Zhang
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Cheng
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhengyuan Zhang
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shan He
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuping Wang
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hua Lin
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Weifeng Yang
- BeijingVitalstar Biotechnology Co., Ltd., Beijing 100012, China
| | - Junfang Liu
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yang Zhao
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Hongkui Deng
- Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Kalkan R. Glioblastoma Stem Cells as a New Therapeutic Target for Glioblastoma. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2015; 9:95-103. [PMID: 26617463 PMCID: PMC4651416 DOI: 10.4137/cmo.s30271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
Abstract
Primary and secondary glioblastomas (GBMs) are two distinct diseases. The genetic and epigenetic background of these tumors is highly variable. The treatment procedure for these tumors is often unsuccessful because of the cellular heterogeneity and intrinsic ability of the tumor cells to invade healthy tissues. The fatal outcome of these tumors promotes researchers to find out new markers associated with the prognosis and treatment planning. In this communication, the role of glioblastoma stem cells in tumor progression and the malignant behavior of GBMs are summarized with attention to the signaling pathways and molecular regulators that are involved in maintaining the glioblastoma stem cell phenotype. A better understanding of these stem cell-like cells is necessary for designing new effective treatments and developing novel molecular strategies to target glioblastoma stem cells. We discuss hypoxia as a new therapeutic target for GBM. We focus on the inhibition of signaling pathways, which are associated with the hypoxia-mediated maintenance of glioblastoma stem cells, and the knockdown of hypoxia-inducible factors, which could be identified as attractive molecular target approaches for GBM therapeutics.
Collapse
Affiliation(s)
- Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Turkish Republic of Northern Cyprus
| |
Collapse
|
32
|
Yu YH, Narayanan G, Sankaran S, Ramasamy S, Chan SY, Lin S, Chen J, Yang H, Srivats H, Ahmed S. Purification, Visualization, and Molecular Signature of Neural Stem Cells. Stem Cells Dev 2015; 25:189-201. [PMID: 26464067 PMCID: PMC4770853 DOI: 10.1089/scd.2015.0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1 as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs. Using time-lapse microscopy, we are able to follow NSCs forming neurospheres, allowing their visualization. Finally, using single-cell polymerase chain reaction (PCR), we determine the molecular signature of NSCs. The single-cell PCR data suggest that along with the Notch and Shh pathways, the Hippo pathway plays an important role in NSC activity.
Collapse
Affiliation(s)
- Yuan Hong Yu
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Gunaseelan Narayanan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shvetha Sankaran
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Srinivas Ramasamy
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shi Yu Chan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shuping Lin
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Jinmiao Chen
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Henry Yang
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Hariharan Srivats
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Sohail Ahmed
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| |
Collapse
|
33
|
Shoemaker LD, Kornblum HI. Neural Stem Cells (NSCs) and Proteomics. Mol Cell Proteomics 2015; 15:344-54. [PMID: 26494823 PMCID: PMC4739658 DOI: 10.1074/mcp.o115.052704] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 01/09/2023] Open
Abstract
Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function.
Collapse
Affiliation(s)
- Lorelei D Shoemaker
- From the ‡Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University, 300 Pasteur Drive, Stanford, CA 94305
| | - Harley I Kornblum
- §NPI-Semel Institute for Neuroscience & Human Behavior, Departments of Psychiatry and Biobehavioral Sciences, and of Molecular and Medical Pharmacology, The Molecular Biology Institute, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los, Angeles, CA 90095
| |
Collapse
|
34
|
Kenney-Herbert E, Al-Mayhani T, Piccirillo SGM, Fowler J, Spiteri I, Jones P, Watts C. CD15 Expression Does Not Identify a Phenotypically or Genetically Distinct Glioblastoma Population. Stem Cells Transl Med 2015; 4:822-31. [PMID: 26019225 DOI: 10.5966/sctm.2014-0047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 02/23/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED : Recent research has focused on the hypothesis that the growth and regeneration of glioblastoma (GB) is sustained by a subpopulation of self-renewing stem-like cells. This has led to the prediction that molecular markers for cancer stem cells in GB may provide a treatment target. One candidate marker is CD15: we wanted to determine if CD15 represented a credible stem cell marker in GB. We first demonstrated that CD15-positive (CD15+) cells were less proliferative than their CD15-negative (CD15-) counterparts in 10 patient GB tumors. Next we compared the proliferative activity of CD15+ and CD15- cells in vitro using tumor-initiating primary GB cell lines (TICs) and found no difference in proliferative behavior. Furthermore, TICs sorted for CD15+ and CD15- were not significantly different cytogenetically or in terms of gene expression profile. Sorted single CD15+ and CD15- cells were equally capable of reconstituting a heterogeneous population containing both CD15+ and CD15- cells over time, and both CD15+ and CD15- cells were able to generate tumors in vivo. No difference was found in the phenotypic or genomic behavior of CD15+ cells compared with CD15- cells from the same patient. Moreover, we found that in vitro, cells were able to interconvert between the CD15+ and CD15- states. Our data challenge the utility of CD15 as a cancer stem cell marker. SIGNIFICANCE The data from this study contribute to the ongoing debate about the role of cancer stem cells in gliomagenesis. Results showed that CD15, a marker previously thought to be a cancer stem-like marker in glioblastoma, could not isolate a phenotypically or genetically distinct population. Moreover, isolated CD15-positive and -negative cells were able to generate mixed populations of glioblastoma cells in vitro.
Collapse
Affiliation(s)
- Emma Kenney-Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Talal Al-Mayhani
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Sara G M Piccirillo
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Joanna Fowler
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Inmaculada Spiteri
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Philip Jones
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| | - Colin Watts
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom; MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom; The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
35
|
Johnson MB, Wang PP, Atabay KD, Murphy EA, Doan RN, Hecht JL, Walsh CA. Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat Neurosci 2015; 18:637-46. [PMID: 25734491 DOI: 10.1038/nn.3980] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The human cerebral cortex depends for its normal development and size on a precisely controlled balance between self-renewal and differentiation of diverse neural progenitor cells. Specialized progenitors that are common in humans but virtually absent in rodents, called outer radial glia (ORG), have been suggested to be crucial to the evolutionary expansion of the human cortex. We combined progenitor subtype-specific sorting with transcriptome-wide RNA sequencing to identify genes enriched in human ORG, which included targets of the transcription factor neurogenin and previously uncharacterized, evolutionarily dynamic long noncoding RNAs. Activating the neurogenin pathway in ferret progenitors promoted delamination and outward migration. Finally, single-cell transcriptional profiling in human, ferret and mouse revealed more cells coexpressing proneural neurogenin targets in human than in other species, suggesting greater neuronal lineage commitment and differentiation of self-renewing progenitors. Thus, we find that the abundance of human ORG is paralleled by increased transcriptional heterogeneity of cortical progenitors.
Collapse
Affiliation(s)
- Matthew B Johnson
- 1] Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA. [3] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Peter P Wang
- 1] Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA. [3] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kutay D Atabay
- 1] Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA. [3] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Elisabeth A Murphy
- 1] Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA. [3] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ryan N Doan
- 1] Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA. [3] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jonathan L Hecht
- 1] Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA. [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher A Walsh
- 1] Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA. [3] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA. [4] Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA. [5] Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA. [6] Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Rowlands D, Sugahara K, Kwok JCF. Glycosaminoglycans and glycomimetics in the central nervous system. Molecules 2015; 20:3527-48. [PMID: 25706756 PMCID: PMC6272379 DOI: 10.3390/molecules20033527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 01/05/2023] Open
Abstract
With recent advances in the construction of synthetic glycans, selective targeting of the extracellular matrix (ECM) as a potential treatment for a wide range of diseases has become increasingly popular. The use of compounds that mimic the structure or bioactive function of carbohydrate structures has been termed glycomimetics. These compounds are mostly synthetic glycans or glycan-binding constructs which manipulate cellular interactions. Glycosaminoglycans (GAGs) are major components of the ECM and exist as a diverse array of differentially sulphated disaccharide units. In the central nervous system (CNS), they are expressed by both neurons and glia and are crucial for brain development and brain homeostasis. The inherent diversity of GAGs make them an essential biological tool for regulating a complex range of cellular processes such as plasticity, cell interactions and inflammation. They are also involved in the pathologies of various neurological disorders, such as glial scar formation and psychiatric illnesses. It is this diversity of functions and potential for selective interventions which makes GAGs a tempting target. In this review, we shall describe the molecular make-up of GAGs and their incorporation into the ECM of the CNS. We shall highlight the different glycomimetic strategies that are currently being used in the nervous system. Finally, we shall discuss some possible targets in neurological disorders that may be addressed using glycomimetics.
Collapse
Affiliation(s)
- Dáire Rowlands
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.
| |
Collapse
|
37
|
Lemjabbar-Alaoui H, McKinney A, Yang YW, Tran VM, Phillips JJ. Glycosylation alterations in lung and brain cancer. Adv Cancer Res 2015; 126:305-44. [PMID: 25727152 DOI: 10.1016/bs.acr.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in glycosylation are common in cancer and are thought to contribute to disease. Lung cancer and primary malignant brain cancer, most commonly glioblastoma, are genetically heterogeneous diseases with extremely poor prognoses. In this review, we summarize the data demonstrating that glycosylation is altered in lung and brain cancer. We then use specific examples to highlight the diverse roles of glycosylation in these two deadly diseases and illustrate shared mechanisms of oncogenesis. In addition to alterations in glycoconjugate biosynthesis, we also discuss mechanisms of postsynthetic glycan modification in cancer. We suggest that alterations in glycosylation in lung and brain cancer provide novel tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Andrew McKinney
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Vy M Tran
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA.
| |
Collapse
|
38
|
Weber M, Apostolova G, Widera D, Mittelbronn M, Dechant G, Kaltschmidt B, Rohrer H. Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest-Derived Peripheral Stem Cells. Stem Cells 2015; 33:574-88. [DOI: 10.1002/stem.1880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Marlen Weber
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology; Frankfurt Germany
| | - Galina Apostolova
- Innsbruck Medical University, Institute for Neuroscience; Innsbruck Austria
| | - Darius Widera
- Institute of Cell Biology, University of Bielefeld; Bielefeld Germany
| | | | - Georg Dechant
- Innsbruck Medical University, Institute for Neuroscience; Innsbruck Austria
| | - Barbara Kaltschmidt
- Institute of Cell Biology, University of Bielefeld; Bielefeld Germany
- Molecular Neurobiology; University of Bielefeld; Bielefeld Germany
| | - Hermann Rohrer
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology; Frankfurt Germany
| |
Collapse
|
39
|
Menon V, Thomas R, Ghale AR, Reinhard C, Pruszak J. Flow cytometry protocols for surface and intracellular antigen analyses of neural cell types. J Vis Exp 2014:52241. [PMID: 25549236 PMCID: PMC4396953 DOI: 10.3791/52241] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Flow cytometry has been extensively used to define cell populations in immunology, hematology and oncology. Here, we provide a detailed description of protocols for flow cytometric analysis of the cluster of differentiation (CD) surface antigens and intracellular antigens in neural cell types. Our step-by-step description of the methodological procedures include: the harvesting of neural in vitro cultures, an optional carboxyfluorescein succinimidyl ester (CFSE)-labeling step, followed by surface antigen staining with conjugated CD antibodies (e.g., CD24, CD54), and subsequent intracellar antigen detection via primary/secondary antibodies or fluorescently labeled Fab fragments (Zenon labeling). The video demonstrates the most critical steps. Moreover, principles of experimental planning, the inclusion of critical controls, and fundamentals of flow cytometric analysis (identification of target population and exclusion of debris; gating strategy; compensation for spectral overlap) are briefly explained in order to enable neurobiologists with limited prior knowledge or specific training in flow cytometry to assess its utility and to better exploit this powerful methodology.
Collapse
Affiliation(s)
- Vishal Menon
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg
| | - Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg; Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg
| | - Arun R Ghale
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg; School of Life Sciences, Keele University
| | - Christina Reinhard
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg
| | - Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg; Center for Biological Signaling Studies (BIOSS), University of Freiburg;
| |
Collapse
|
40
|
Glaser T, de Oliveira SLB, Cheffer A, Beco R, Martins P, Fornazari M, Lameu C, Junior HMC, Coutinho-Silva R, Ulrich H. Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS One 2014; 9:e96281. [PMID: 24798220 PMCID: PMC4010452 DOI: 10.1371/journal.pone.0096281] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/04/2014] [Indexed: 12/31/2022] Open
Abstract
Background Novel developmental functions have been attributed to the P2X7 receptor (P2X7R) including proliferation stimulation and neural differentiation. Mouse embryonic stem cells (ESC), induced with retinoic acid to neural differentiation, closely assemble processes occurring during neuroectodermal development of the early embryo. Principal Findings P2X7R expression together with the pluripotency marker Oct-4 was highest in undifferentiated ESC. In undifferentiated cells, the P2X7R agonist Bz-ATP accelerated cell cycle entry, which was blocked by the specific P2X7R inhibitor KN-62. ESC induced to neural differentiation with retinoic acid, reduced Oct-4 and P2X7R expression. P2X7R receptor-promoted intracellular calcium fluxes were obtained at lower Bz-ATP ligand concentrations in undifferentiated and in neural-differentiated cells compared to other studies. The presence of KN-62 led to increased number of cells expressing SSEA-1, Dcx and β3-tubulin, as well as the number of SSEA-1 and β3-tubulin-double-positive cells confirming that onset of neuroectodermal differentiation and neuronal fate determination depends on suppression of P2X7R activity. Moreover, an increase in the number of Ki-67 positive cells in conditions of P2X7R inhibition indicates rescue of progenitors into the cell cycle, augmenting the number of neuroblasts and consequently neurogenesis. Conclusions In embryonic cells, P2X7R expression and activity is upregulated, maintaining proliferation, while upon induction to neural differentiation P2X7 receptor expression and activity needs to be suppressed.
Collapse
Affiliation(s)
- Talita Glaser
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | | | - Arquimedes Cheffer
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Renata Beco
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Patrícia Martins
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Maynara Fornazari
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Claudiana Lameu
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Helio Miranda Costa Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
41
|
Glycolipid and Glycoprotein Expression During Neural Development. ADVANCES IN NEUROBIOLOGY 2014; 9:185-222. [DOI: 10.1007/978-1-4939-1154-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Kumar A, Torii T, Ishino Y, Muraoka D, Yoshimura T, Togayachi A, Narimatsu H, Ikenaka K, Hitoshi S. The Lewis X-related α1,3-fucosyltransferase, Fut10, is required for the maintenance of stem cell populations. J Biol Chem 2013; 288:28859-68. [PMID: 23986452 DOI: 10.1074/jbc.m113.469403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lewis X (Le(X), Galβ1-4(Fucα1-3)GlcNAc) is a carbohydrate epitope that is present at the nonreducing terminus of sugar chains of glycoproteins and glycolipids, and is abundantly expressed in several stem cell populations. Le(X) antigen can be used in conjunction with fluorescence-activated cell sorting to isolate neurosphere-forming neural stem cells (NSCs) from embryonic mouse brains. However, its function in the maintenance and differentiation of stem cells remains largely unknown. In this study, we examined mice deficient for fucosyltransferase 9 (Fut9), which is thought to synthesize most, if not all, of the Le(X) moieties in the brain. We found that the number of NSCs was increased in the brain of Fut9(-/-) embryos, suggesting that Fut9-synthesized Le(X) is dispensable for the maintenance of NSCs. Another α1,3-fucosyltransferase gene, fucosyltransferase 10 (Fut10), is expressed in the ventricular zone of the embryonic brain. Overexpression of Fut10 enhanced the self-renewal of NSCs. Conversely, suppression of Fut10 expression induced the differentiation of NSCs and embryonic stem cells. In addition, knockdown of Fut10 expression in the cortical ventricular zone of the embryonic brain by in utero electroporation of Fut10-miRNAs impaired the radial migration of neural precursor cells. Our data suggest that Fut10 is involved in a unique α1,3-fucosyltransferase activity with stringent substrate specificity, and that this activity is required to maintain stem cells in an undifferentiated state.
Collapse
Affiliation(s)
- Akhilesh Kumar
- From the Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, and
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vukovic J, Bedin AS, Bartlett PF, Osborne GW. A Novel Fluorescent Reporter CDy1 Enriches for Neural Stem Cells Derived from the Murine Brain. Stem Cells Dev 2013; 22:2341-5. [DOI: 10.1089/scd.2012.0660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jana Vukovic
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Anne-Sophie Bedin
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Perry F. Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Geoffrey W. Osborne
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
44
|
CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncol 2013; 49:787-95. [DOI: 10.1016/j.oraloncology.2013.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 12/31/2022]
|
45
|
Schneider L, Pellegatta S, Favaro R, Pisati F, Roncaglia P, Testa G, Nicolis SK, Finocchiaro G, d'Adda di Fagagna F. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT. Stem Cell Reports 2013; 1:123-38. [PMID: 24052948 PMCID: PMC3757751 DOI: 10.1016/j.stemcr.2013.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/17/2023] Open
Abstract
The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.
Collapse
Affiliation(s)
- Leonid Schneider
- IFOM Foundation-The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tingling JD, Bake S, Holgate R, Rawlings J, Nagsuk PP, Chandrasekharan J, Schneider SL, Miranda RC. CD24 expression identifies teratogen-sensitive fetal neural stem cell subpopulations: evidence from developmental ethanol exposure and orthotopic cell transfer models. PLoS One 2013; 8:e69560. [PMID: 23894503 PMCID: PMC3718834 DOI: 10.1371/journal.pone.0069560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/10/2013] [Indexed: 11/18/2022] Open
Abstract
Background Ethanol is a potent teratogen. Its adverse neural effects are partly mediated by disrupting fetal neurogenesis. The teratogenic process is poorly understood, and vulnerable neurogenic stages have not been identified. Identifying these is a prerequisite for therapeutic interventions to mitigate effects of teratogen exposures. Methods We used flow cytometry and qRT-PCR to screen fetal mouse-derived neurosphere cultures for ethanol-sensitive neural stem cell (NSC) subpopulations, to study NSC renewal and differentiation. The identity of vulnerable NSC populations was validated in vivo, using a maternal ethanol exposure model. Finally, the effect of ethanol exposure on the ability of vulnerable NSC subpopulations to integrate into the fetal neurogenic environment was assessed following ultrasound guided, adoptive transfer. Results Ethanol decreased NSC mRNAs for c-kit, Musashi-1and GFAP. The CD24+ NSC population, specifically the CD24+CD15+ double-positive subpopulation, was selectively decreased by ethanol. Maternal ethanol exposure also resulted in decreased fetal forebrain CD24 expression. Ethanol pre-exposed CD24+ cells exhibited increased proliferation, and deficits in cell-autonomous and cue-directed neuronal differentiation, and following orthotopic transplantation into naïve fetuses, were unable to integrate into neurogenic niches. CD24depleted cells retained neurosphere regeneration capacity, but following ethanol exposure, generated increased numbers of CD24+ cells relative to controls. Conclusions Neuronal lineage committed CD24+ cells exhibit specific vulnerability, and ethanol exposure persistently impairs this population’s cell-autonomous differentiation capacity. CD24+ cells may additionally serve as quorum sensors within neurogenic niches; their loss, leading to compensatory NSC activation, perhaps depleting renewal capacity. These data collectively advance a mechanistic hypothesis for teratogenesis leading to microencephaly.
Collapse
Affiliation(s)
- Joseph D. Tingling
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Shameena Bake
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Rhonda Holgate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Jeremy Rawlings
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Phillips P. Nagsuk
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Jayashree Chandrasekharan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Sarah L. Schneider
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Rajesh C. Miranda
- Department of Neuroscience & Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Women’s Health in Neuroscience Program, Texas A&M Health Science Center, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Valentijn AJ, Palial K, Al-Lamee H, Tempest N, Drury J, Von Zglinicki T, Saretzki G, Murray P, Gargett CE, Hapangama DK. SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum Reprod 2013; 28:2695-708. [PMID: 23847113 DOI: 10.1093/humrep/det285] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Can the basal epithelial compartment of the human endometrium be defined by specific markers? SUMMARY ANSWER Human endometrial epithelial cells from the basalis express nuclear SOX9 and the cell-surface marker SSEA-1, with some cells expressing nuclear β-catenin. In vitro, primary endometrial epithelial cells enriched for SSEA-1+ show some features expected of the basalis epithelium. WHAT IS KNOWN ALREADY The endometrial glands of the functionalis regenerate from the basalis gland stumps following menstruation. Endometriosis is thought to originate from abnormal dislocation of the basalis endometrium. In the highly regenerative intestinal epithelium, SOX9 and nuclear β-catenin are more highly expressed in the intestinal crypt, the stem/progenitor cell region. STUDY DESIGN, SIZE, DURATION A large prospective observational study analysing full-thickness human endometrial hysterectomy samples from 115 premenopausal women, 15 post-menopausal women and ectopic endometriotic lesions from 20 women with endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS Full-thickness endometrium from hysterectomy tissues was analysed by immunohistochemistry for SSEA-1, SOX9 and β-catenin. Primary human endometrial epithelial cells from short-term cultures were sorted into SSEA1+/- fractions with a cell sorter or magnetic beads and analysed for markers of differentiation and pluripotency and telomere lengths (TLs) using qPCR, telomerase activity [telomere repeat amplification protocol (TRAP)] and growth in 3D culture. MAIN RESULTS AND THE ROLE OF CHANCE Similar to the intestinal crypt epithelium, human endometrial basal glandular epithelial cells expressed nuclear SOX9 and contained a rare subpopulation of cells with nuclear β-catenin suggestive of an activated Wnt pathway. The embryonic stem cell-surface marker, SSEA-1, also marked the human endometrial basal glandular epithelial cells, and isolated SSEA-1(+) epithelial cells grown in monolayer showed significantly higher expression of telomerase activity, longer mean TLs, lower expression of genes for steroid receptors and produced a significantly higher number of endometrial gland-like spheroids in 3D culture compared with SSEA-1(-) epithelial cells (P = 0.009). Cells in ectopic endometriosis lesions also expressed SSEA-1 and nuclear SOX9, suggesting that the basalis contributes to ectopic lesion formation in endometriosis following retrograde menstruation. LIMITATIONS, REASONS FOR CAUTION This is a descriptive study with only short-term culture of the primary human epithelial cells in vitro. WIDER IMPLICATIONS OF THE FINDINGS The surface marker SSEA1 enriches for an endometrial epithelial cell subpopulation from the basalis. Since the functional endometrium originates from these cells, it is now possible to study basalis epithelium for stem/progenitor cell activity to extend our current understanding of endometrial biology in health and diseases. STUDY FUNDING/COMPETING INTEREST(S) The work included in this manuscript was funded by Wellbeing of Women project grant RG1073 (D.K.H. and C.G.). We also acknowledge the support by National Health and Medical Research Council, RD Wright Career Development Award 465121 and Senior Research Fellowship 1042298, and the Victorian Government's Operation Infrastructure Support Program to C.G. and MRC G0601333 to T.V.Z. All authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- A J Valentijn
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool Women's Hospital, Crown Street, Liverpool, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chaubey S, Wolfe JH. Transplantation of CD15-enriched murine neural stem cells increases total engraftment and shifts differentiation toward the oligodendrocyte lineage. Stem Cells Transl Med 2013; 2:444-54. [PMID: 23681951 PMCID: PMC3673756 DOI: 10.5966/sctm.2012-0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/01/2013] [Indexed: 01/08/2023] Open
Abstract
Neural stem cell (NSC) transplantation is a promising therapeutic approach for neurological diseases. However, only a limited number of cells can be transplanted into the brain, resulting in relatively low levels of engraftment. This study investigated the potential of using a cell surface marker to enrich a primary NSC population to increase stable engraftment in the recipient brain. NSCs were enriched from the neonatal mouse forebrain using anti-CD15 (Lewis X antigen, or SSEA-1) in a "gentle" fluorescence-activated cell sorting protocol, which yielded >98% CD15-positive cells. The CD15-positive cells differentiated into neurons, astrocytes, and oligodendrocytes in vitro, after withdrawal of growth factors, demonstrating multipotentiality. CD15-positive cells were expanded in vitro and injected bilaterally into the ventricles of neonatal mice. Cells from enriched and unenriched donor populations were found throughout the neuraxis, in both neurogenic and non-neurogenic regions. Total engraftment was similar at 7 days postinjection, but by 28 days postinjection, after brain organogenesis was complete, the survival of donor cells was significantly increased in CD15-enriched grafts over the unenriched cell grafts. The engrafted cells were heterogeneous in morphology and differentiated into all three neural lineages. Furthermore, in the CD15-enriched grafts, there was a significant shift toward differentiation into oligodendrocytes. This strategy may allow better delivery of therapeutic cells to the developing central nervous system and may be particularly useful for treating diseases involving white matter lesions.
Collapse
Affiliation(s)
- Sushma Chaubey
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John H. Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Differential Expression of Micro-Heterogeneous LewisX-Type Glycans in the Stem Cell Compartment of the Developing Mouse Spinal Cord. Neurochem Res 2013; 38:1285-94. [DOI: 10.1007/s11064-013-1048-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022]
|
50
|
Hennen E, Safina D, Haussmann U, Wörsdörfer P, Edenhofer F, Poetsch A, Faissner A. A LewisX glycoprotein screen identifies the low density lipoprotein receptor-related protein 1 (LRP1) as a modulator of oligodendrogenesis in mice. J Biol Chem 2013; 288:16538-16545. [PMID: 23615909 DOI: 10.1074/jbc.m112.419812] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the developing and adult CNS multipotent neural stem cells reside in distinct niches. Specific carbohydrates and glycoproteins are expressed in these niche microenvironments which are important regulators of stem cell maintenance and differentiation fate. LewisX (LeX), also known as stage-specific embryonic antigen-1 or CD15, is a defined carbohydrate moiety expressed in niche microenvironments of the developing and adult CNS. LeX-glycans are involved in stem cell proliferation, migration, and stemness. A few LeX carrier proteins are known, but a systematic analysis of the targets of LeX glycosylation in vivo has not been performed so far. Using LeX glycosylation as a biomarker we aimed to discover new glycoproteins with a potential functional relevance for CNS development. By immunoaffinity chromatography we enriched LeX glycoproteins from embryonic and postnatal mouse brains and used one-dimensional nLC-ESI-MS/MS for their identification. We could validate phosphacan, tenascin-C, and L1-CAM as major LeX carrier proteins present in vivo. Furthermore, we identified LRP1, a member of the LDL receptor family, as a new LeX carrier protein expressed by mouse neural stem cells. Surprisingly, little is known about LRP1 function for neural stem cells. Thus, we generated Lrp1 knock-out neural stem cells by Cre-mediated recombination and investigated their properties. Here, we provide first evidence that LRP1 is necessary for the differentiation of neural stem cells toward oligodendrocytes. However, this function is independent of LeX glycosylation.
Collapse
Affiliation(s)
- Eva Hennen
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany
| | - Dina Safina
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany
| | - Ute Haussmann
- Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Philipp Wörsdörfer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn-Life and Brain Center, D-53105 Bonn, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn-Life and Brain Center, D-53105 Bonn, Germany
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Andreas Faissner
- Departments of Cell Morphology and Molecular Neurobiology, D-44780 Bochum, Germany.
| |
Collapse
|