1
|
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol 2023; 95:120-139. [PMID: 37572731 PMCID: PMC10530624 DOI: 10.1016/j.semcancer.2023.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-β is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-β-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-β is a multifunctional cytokine; thus, the signaling by TGF-β can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-β can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-β and EMP in carcinoma progression, it is essential to understand how TGF-β enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-β-targeting therapies that eliminate cancer cell plasticity.
Collapse
Affiliation(s)
- Nick A Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Thiru Sabapathy
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Breanna R Demestichas
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
2
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
3
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
4
|
Wishart TFL, Lovicu FJ. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34730792 PMCID: PMC8572486 DOI: 10.1167/iovs.62.14.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods Semiquantitative real-time (RT)‐PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.
Collapse
Affiliation(s)
- Tayler F L Wishart
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Sükösd AK, Szabadfi K, Szabó-Meleg E, Gáspár B, Stodulka P, Sétáló G, Gábriel R, Nyitrai M, Biró Z, Ábrahám H. Surgical stress and cytoskeletal changes in lens epithelial cells following manual and femtosecond laser-assisted capsulotomy. Int J Ophthalmol 2020; 13:927-934. [PMID: 32566504 DOI: 10.18240/ijo.2020.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/16/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To study the effect of mechanical stress on the cytoskeleton in lens epithelial cells following conventional phacoemulsification surgery (CPS) and femtosecond laser-assisted cataract surgery (FLACS). METHODS The cytoskeleton of the epithelial cells of the anterior lens capsules (ALC) removed by CPS and FLACS was examined by immunohistochemistry. Expression of the intermediate filament, glial fibrillary acidic protein (GFAP), and glutamine synthetase (GS) immunoreactivity were detected. In order to map the actin network of cells, fluorescently labeled phalloidin was used. The samples were examined using confocal laser scanning microscopy. RESULTS GFAP expression was visible in a larger number of the epithelial cells after CPS compared to FLACS. In CPS sample's epithelial cells, GFAP immunoreactivity indicated robust morphological change. Regarding the actin filaments, the presence of tubular elements connecting epithelial cells, regular actin pattern and marked cortical network after CPS were found. Following FLACS, the actin cytoskeleton of the epithelial cells remained densely structured, and the tubular elements were undetectable, however, the above-mentioned regular actin pattern and the marked cortical network were visible. CONCLUSION The conventional removal of the ALC induces more robust changes of the cytoskeleton of the lens epithelial cells.
Collapse
Affiliation(s)
- Andrea Krisztina Sükösd
- Department of Ophthalmology, University of Pécs Medical School and Clinical Centre, Pécs 7623, Hungary
| | - Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs 7624, Hungary
| | - Edina Szabó-Meleg
- Department of Biophysics, University of Pécs Medical School and Clinical Centre, Pécs 7624, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
| | | | | | - György Sétáló
- János Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary.,Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs 7624, Hungary
| | - Róbert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs 7624, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, University of Pécs Medical School and Clinical Centre, Pécs 7624, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
| | - Zsolt Biró
- Department of Ophthalmology, University of Pécs Medical School and Clinical Centre, Pécs 7623, Hungary.,Optimum Laser Centre, Budapest 1124, Hungary
| | - Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs 7624, Hungary
| |
Collapse
|
6
|
Liu S, Hu C, Luo Y, Yao K. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract. Epigenomics 2020; 12:771-788. [PMID: 32516005 DOI: 10.2217/epi-2019-0254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To investigate the possible epigenetic pathogenesis of sporadic congenital cataract. Materials & methods: We conducted whole genome bisulfite sequencing on peripheral blood from sporadic binocular or monocular congenital cataract patients and cataract-free participants. Results: We found massive differentially methylated regions within the whole genomes between any two groups. Meanwhile, we identified five genes (ACTN4, ACTG1, TUBA1A, TUBA1C, TUBB4B) for the binocular and control groups and TUBA1A for the monocular and control groups as the core differentially methylated region-related genes. The proteins encoded by these core genes are involved in building cytoskeleton and intercellular junctions. Conclusion: Changes in the methylation levels of core genes may disturb the function of cytoskeleton and intercellular junctions, eventually leading to sporadic congenital cataract.
Collapse
Affiliation(s)
- Siyu Liu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Chenyang Hu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Yueqiu Luo
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Ke Yao
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| |
Collapse
|
7
|
AHR Signaling Dampens Inflammatory Signature in Neonatal Skin γδ T Cells. Int J Mol Sci 2020; 21:ijms21062249. [PMID: 32213963 PMCID: PMC7139545 DOI: 10.3390/ijms21062249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Aryl hydrocarbon receptor (AHR)-deficient mice do not support the expansion of dendritic epidermal T cells (DETC), a resident immune cell population in the murine epidermis, which immigrates from the fetal thymus to the skin around birth. Material and Methods In order to identify the gene expression changes underlying the DETC disappearance in AHR-deficient mice, we analyzed microarray RNA-profiles of DETC, sorted from the skin of two-week-old AHR-deficient mice and their heterozygous littermates. In vitro studies were done for verification, and IL-10, AHR repressor (AHRR), and c-Kit deficient mice analyzed for DETC frequency. Results We identified 434 annotated differentially expressed genes. Gene set enrichment analysis demonstrated that the expression of genes related to proliferation, ion homeostasis and morphology differed between the two mouse genotypes. Importantly, with 1767 pathways the cluster-group “inflammation” contained the majority of AHR-dependently regulated pathways. The most abundant cluster of differentially expressed genes was “inflammation.” DETC of AHR-deficient mice were inflammatory active and had altered calcium and F-actin levels. Extending the study to the AHRR, an enigmatic modulator of AHR-activity, we found approximately 50% less DETC in AHRR-deficient mice than in wild-type-littermates. Conclusion AHR-signaling in DETC dampens their inflammatory default potential and supports their homeostasis in the skin.
Collapse
|
8
|
Cheng C, Parreno J, Nowak RB, Biswas SK, Wang K, Hoshino M, Uesugi K, Yagi N, Moncaster JA, Lo WK, Pierscionek B, Fowler VM. Age-related changes in eye lens biomechanics, morphology, refractive index and transparency. Aging (Albany NY) 2019; 11:12497-12531. [PMID: 31844034 PMCID: PMC6949082 DOI: 10.18632/aging.102584] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 04/09/2023]
Abstract
Life-long eye lens function requires an appropriate gradient refractive index, biomechanical integrity and transparency. We conducted an extensive study of wild-type mouse lenses 1-30 months of age to define common age-related changes. Biomechanical testing and morphometrics revealed an increase in lens volume and stiffness with age. Lens capsule thickness and peripheral fiber cell widths increased between 2 to 4 months of age but not further, and thus, cannot account for significant age-dependent increases in lens stiffness after 4 months. In lenses from mice older than 12 months, we routinely observed cataracts due to changes in cell structure, with anterior cataracts due to incomplete suture closure and a cortical ring cataract corresponding to a zone of compaction in cortical lens fiber cells. Refractive index measurements showed a rapid growth in peak refractive index between 1 to 6 months of age, and the area of highest refractive index is correlated with increases in lens nucleus size with age. These data provide a comprehensive overview of age-related changes in murine lenses, including lens size, stiffness, nuclear fraction, refractive index, transparency, capsule thickness and cell structure. Our results suggest similarities between murine and primate lenses and provide a baseline for future lens aging studies.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justin Parreno
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roberta B. Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K. Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30303, USA
| | - Kehao Wang
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Juliet A. Moncaster
- Department of Radiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30303, USA
| | - Barbara Pierscionek
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Velia M. Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
9
|
Imaizumi T, Kurosaka D, Tanaka U, Sakai D, Fukuda K, Sanbe A. Topical administration of a ROCK inhibitor prevents anterior subcapsular cataract induced by UV-B irradiation. Exp Eye Res 2019; 181:145-149. [PMID: 30690025 DOI: 10.1016/j.exer.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
The deposition of extracellular matrix (ECM)-which is mainly composed of type I collagen-in anterior subcapsular cataracts (ASCs) during epithelial-to-mesenchymal transition (EMT) of lens epithelial cells (LECs) decreases visual function. Transforming growth factor (TGF)-β is a key factor in the induction of EMT in LECs. Although Rho kinase (ROCK) plays an important role in EMT induced by TGF-β, it is unknown whether ROCK inhibition affects type I collagen expression in TGF-β-stimulated LECs and ASC formation. This was investigated in the present study both in vitro using human lens epithelium (HLE)-B3 cells and in vivo using mice with ultraviolet radiation (UVR)-B-induced cataracts. We found that TGF-β2 increased type I collagen mRNA expression in HLE-B3 cells; this was inhibited in a dose-dependent manner by treatment with the ROCK inhibitor Y-27632. UVR-B exposure caused ASC formation in mice. A histopathological examination revealed that LECs in the anterior subcapsular area were flattened and multi-layered, and had a spindle shape in cross section. Immunohistochemical analysis revealed the presence of α-smooth muscle actin and type I collagen around these flattened LECs; these opacities were reduced by topical instillation of Y-27632. These findings suggest that suppression of TGF-β signaling in LECs by topical application of a ROCK inhibitor can prevent the formation of ASCs.
Collapse
Affiliation(s)
- Toshiyasu Imaizumi
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Daijiro Kurosaka
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan.
| | - Umi Tanaka
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Daisuke Sakai
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuhiro Fukuda
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Atsushi Sanbe
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Shiwa-gun, Japan
| |
Collapse
|
10
|
Kask K, Tikker L, Ruisu K, Lulla S, Oja EM, Meier R, Raid R, Velling T, Tõnissoo T, Pooga M. Targeted deletion of RIC8A in mouse neural precursor cells interferes with the development of the brain, eyes, and muscles. Dev Neurobiol 2018; 78:374-390. [PMID: 29380551 DOI: 10.1002/dneu.22578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/11/2022]
Abstract
Autosomal recessive disorders such as Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and the muscle-eye-brain disease are characterized by defects in the development of patient's brain, eyes, and skeletal muscles. These syndromes are accompanied by brain malformations like type II lissencephaly in the cerebral cortex with characteristic overmigrations of neurons through the breaches of the pial basement membrane. The signaling pathways activated by laminin receptors, dystroglycan and integrins, control the integrity of the basement membrane, and their malfunctioning may underlie the pathologies found in the rise of defects reminiscent of these syndromes. Similar defects in corticogenesis and neuromuscular disorders were found in mice when RIC8A was specifically removed from neural precursor cells. RIC8A regulates a subset of G-protein α subunits and in several model organisms, it has been reported to participate in the control of cell division, signaling, and migration. Here, we studied the role of RIC8A in the development of the brain, muscles, and eyes of the neural precursor-specific conditional Ric8a knockout mice. The absence of RIC8A severely affected the attachment and positioning of radial glial processes, Cajal-Retzius' cells, and the arachnoid trabeculae, and these mice displayed additional defects in the lens, skeletal muscles, and heart development. All the discovered defects might be linked to aberrancies in cell adhesion and migration, suggesting that RIC8A has a crucial role in the regulation of cell-extracellular matrix interactions and that its removal leads to the phenotype characteristic to type II lissencephaly-associated diseases. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 374-390, 2018.
Collapse
Affiliation(s)
- Keiu Kask
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Laura Tikker
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014, Helsinki, Finland
| | - Katrin Ruisu
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Sirje Lulla
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Eva-Maria Oja
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Riho Meier
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Raivo Raid
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Teet Velling
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia.,Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| |
Collapse
|
11
|
Collins TN, Mao Y, Li H, Bouaziz M, Hong A, Feng GS, Wang F, Quilliam LA, Chen L, Park T, Curran T, Zhang X. Crk proteins transduce FGF signaling to promote lens fiber cell elongation. eLife 2018; 7:32586. [PMID: 29360039 PMCID: PMC5818251 DOI: 10.7554/elife.32586] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
Specific cell shapes are fundamental to the organization and function of multicellular organisms. Fibroblast Growth Factor (FGF) signaling induces the elongation of lens fiber cells during vertebrate lens development. Nonetheless, exactly how this extracellular FGF signal is transmitted to the cytoskeletal network has previously not been determined. Here, we show that the Crk family of adaptor proteins, Crk and Crkl, are required for mouse lens morphogenesis but not differentiation. Genetic ablation and epistasis experiments demonstrated that Crk and Crkl play overlapping roles downstream of FGF signaling in order to regulate lens fiber cell elongation. Upon FGF stimulation, Crk proteins were found to interact with Frs2, Shp2 and Grb2. The loss of Crk proteins was partially compensated for by the activation of Ras and Rac signaling. These results reveal that Crk proteins are important partners of the Frs2/Shp2/Grb2 complex in mediating FGF signaling, specifically promoting cell shape changes. As an embryo develops, its cells divide multiple times to transform into the specialized cell types that form our tissues and organs. To carry out specific roles, cells need to be of a certain shape. For example, in mammals, the cells that make up the main portion of the eye lens, develop into a fiber-like shape to be perfectly aligned with each other. This enables them to transmit light to the retina at the rear end of the eye. To do so, the lens cells increase over 1000 times in length with the help of a group of proteins called the Fibroblast Growth Factor, or FGF for short. The FGF pathway includes a network of interacting proteins that transmit signals to molecules inside the lens cells to control how they specialize and grow. However, until now it was not clear how it does this. Here, Zhang et al. used mouse lens-cells grown in the laboratory to investigate how FGF signaling causes cells to change their structure. The experiments revealed two related proteins called Crk and Crkl that linked the FGF pathway with another signaling system. When these two proteins were removed from the lens cells, the lens cells were still able to specialize, but could no longer grow in length. This suggests that these two processes are independent of each other. Moreover, Crk and Crkl helped the cells to change shape by increasing the amount of another group of proteins called Ras, which are known to both help cells to specialize and to regulate their shape. Zhang et al. discovered that the amount of Ras proteins determined whether cells specialized or modified their shape by changing the organization of proteins in the cell. Millions of children are born with cataracts, a disease caused when lens cells fail to shape properly. A better knowledge of FGF signaling may help to understand how cataracts develop and inspire future treatments. Moreover, the pathways identified in this study could also apply to other organs and diseases in which FGF signaling is active.
Collapse
Affiliation(s)
- Tamica N Collins
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Yingyu Mao
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Hongge Li
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Michael Bouaziz
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Angela Hong
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Gen-Sheng Feng
- Department of Pathology, University of California San Diego, La Jolla, United States
| | - Fen Wang
- Center for Cancer Biology and Nutrition, Houston, United States
| | - Lawrence A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States
| | - Lin Chen
- Department of Rehabilitation Medicine, Third Military Medical University, Chongqing, China
| | - Taeju Park
- The Children's Research Institute, Children's Mercy Kansas City, Kansas City, United States
| | - Tom Curran
- The Children's Research Institute, Children's Mercy Kansas City, Kansas City, United States
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| |
Collapse
|
12
|
Selective stimulation of the JAK/STAT signaling pathway by silica nanoparticles in human endothelial cells. Toxicol In Vitro 2017; 42:308-318. [DOI: 10.1016/j.tiv.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/22/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023]
|
13
|
Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces. Colloids Surf B Biointerfaces 2017; 155:415-428. [DOI: 10.1016/j.colsurfb.2017.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 01/31/2023]
|
14
|
Audette DS, Scheiblin DA, Duncan MK. The molecular mechanisms underlying lens fiber elongation. Exp Eye Res 2016; 156:41-49. [PMID: 27015931 DOI: 10.1016/j.exer.2016.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022]
Abstract
Lens fiber cells are highly elongated cells with complex membrane morphologies that are critical for the transparency of the ocular lens. Investigations into the molecular mechanisms underlying lens fiber cell elongation were first reported in the 1960s, however, our understanding of the process is still poor nearly 50 years later. This review summarizes what is currently hypothesized about the regulation of lens fiber cell elongation along with the available experimental evidence, and how this information relates to what is known about the regulation of cell shape/elongation in other cell types, particularly neurons.
Collapse
Affiliation(s)
- Dylan S Audette
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David A Scheiblin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
15
|
Cheng C, Nowak RB, Fowler VM. The lens actin filament cytoskeleton: Diverse structures for complex functions. Exp Eye Res 2016; 156:58-71. [PMID: 26971460 DOI: 10.1016/j.exer.2016.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 01/05/2023]
Abstract
The eye lens is a transparent and avascular organ in the front of the eye that is responsible for focusing light onto the retina in order to transmit a clear image. A monolayer of epithelial cells covers the anterior hemisphere of the lens, and the bulk of the lens is made up of elongated and differentiated fiber cells. Lens fiber cells are very long and thin cells that are supported by sophisticated cytoskeletal networks, including actin filaments at cell junctions and the spectrin-actin network of the membrane skeleton. In this review, we highlight the proteins that regulate diverse actin filament networks in the lens and discuss how these actin cytoskeletal structures assemble and function in epithelial and fiber cells. We then discuss methods that have been used to study actin in the lens and unanswered questions that can be addressed with novel techniques.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells. Biomolecules 2016; 6:12. [PMID: 26784249 PMCID: PMC4808806 DOI: 10.3390/biom6010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering.
Collapse
|
17
|
Audette DS, Anand D, So T, Rubenstein TB, Lachke SA, Lovicu FJ, Duncan MK. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development 2015; 143:318-28. [PMID: 26657765 DOI: 10.1242/dev.127860] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/26/2015] [Indexed: 01/19/2023]
Abstract
Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF.
Collapse
Affiliation(s)
- Dylan S Audette
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Tammy So
- Discipline of Anatomy & Histology, Bosch Institute & Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia
| | - Troy B Rubenstein
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Frank J Lovicu
- Discipline of Anatomy & Histology, Bosch Institute & Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
18
|
Arrayed three-dimensional structures designed to induce and maintain a cell pattern by a topographical effect on cell behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:256-261. [DOI: 10.1016/j.msec.2015.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/21/2014] [Accepted: 01/06/2015] [Indexed: 11/17/2022]
|
19
|
Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development 2014; 141:4432-47. [PMID: 25406393 PMCID: PMC4302924 DOI: 10.1242/dev.107953] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ocular lens is a model system for understanding important aspects of embryonic development, such as cell specification and the spatiotemporally controlled formation of a three-dimensional structure. The lens, which is characterized by transparency, refraction and elasticity, is composed of a bulk mass of fiber cells attached to a sheet of lens epithelium. Although lens induction has been studied for over 100 years, recent findings have revealed a myriad of extracellular signaling pathways and gene regulatory networks, integrated and executed by the transcription factor Pax6, that are required for lens formation in vertebrates. This Review summarizes recent progress in the field, emphasizing the interplay between the diverse regulatory mechanisms employed to form lens progenitor and precursor cells and highlighting novel opportunities to fill gaps in our understanding of lens tissue morphogenesis.
Collapse
Affiliation(s)
- Aleš Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
20
|
Montjean R, Aoidi R, Desbois P, Rucci J, Trichet M, Salomon R, Rendu J, Fauré J, Lunardi J, Gacon G, Billuart P, Dorseuil O. OCRL-mutated fibroblasts from patients with Dent-2 disease exhibit INPP5B-independent phenotypic variability relatively to Lowe syndrome cells. Hum Mol Genet 2014; 24:994-1006. [PMID: 25305077 DOI: 10.1093/hmg/ddu514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OCRL mutations are associated with both Lowe syndrome and Dent-2 disease, two rare X-linked conditions. Lowe syndrome is an oculo-cerebro-renal disorder, whereas Dent-2 patients mainly present renal proximal tubulopathy. Loss of OCRL-1, a phosphoinositide-5-phosphatase, leads in Lowe patients' fibroblasts to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) accumulation, with defects in F-actin network, α-actinin distribution and ciliogenesis, whereas fibroblasts of Dent-2 patients are still uncharacterized. To search for mechanisms linked to clinical variability observed between these two OCRL mutation-associated pathologies, we compared dermal fibroblasts from independent patients, four affected by Dent-2 disease and six with Lowe syndrome. For the first time, we describe that Dent-2 fibroblasts with OCRL loss-of-function (LOF) mutations exhibit decrease in actin stress fibers, appearance of punctate α-actinin signals and alteration in primary cilia formation. Interestingly, we quantified these phenotypes as clearly intermediate between Lowe and control fibroblasts, thus suggesting that levels of these defects correlate with clinical variations observed between patients with OCRL mutations. In addition, we show that Lowe and Dent-2 fibroblasts display similar PI(4,5)P2 accumulation levels. Finally, we analyzed INPP5B, a paralogous gene already reported to exhibit functional redundancy with OCRL, and report neither differences in its expression at RNA or protein levels, nor specific allelic variations between fibroblasts of patients. Altogether, we describe here differential phenotypes between fibroblasts from Lowe and Dent-2 patients, both associated with OCRL LOF mutations, we exclude direct roles of PI(4,5)P2 and INPP5B in this phenotypic variability and we underline potential key alterations leading to ocular and neurological clinical features in Lowe syndrome.
Collapse
Affiliation(s)
- Rodrick Montjean
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Rifdat Aoidi
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Pierrette Desbois
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Julien Rucci
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Michaël Trichet
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Rémi Salomon
- Service de Néphrologie Pédiatrique, Hôpital Necker Enfants Malades, Paris, France and
| | - John Rendu
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Grenoble, Grenoble, France
| | - Julien Fauré
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Grenoble, Grenoble, France
| | - Joël Lunardi
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Grenoble, Grenoble, France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Pierre Billuart
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France
| | - Olivier Dorseuil
- INSERM U1016, Institut Cochin, Paris, France, CNRS UMR8104, Paris, France, Université Paris Descartes, Paris, France,
| |
Collapse
|
21
|
Hegde SM, Srivastava K, Tiwary E, Srivastava OP. Molecular mechanism of formation of cortical opacity in CRYAAN101D transgenic mice. Invest Ophthalmol Vis Sci 2014; 55:6398-408. [PMID: 25146988 DOI: 10.1167/iovs.14-14623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The CRYAAN101D transgenic mouse model expressing deamidated αA-crystallin (deamidation at N101 position to D) develops cortical cataract at the age of 7 to 9 months. The present study was carried out to explore the molecular mechanism that leads to the development of cortical opacity in CRYAAN101D lenses. METHODS RNA sequence analysis was carried out on 2- and 4-month-old αA-N101D and wild type (WT) lenses. To understand the biologic relevance and function of significantly altered genes, Ingenuity Pathway Analysis (IPA) was done. To elucidate terminal differentiation defects, immunohistochemical, and Western blot analyses were carried out. RESULTS RNA sequence and IPA data suggested that the genes belonging to gene expression, cellular assembly and organization, and cell cycle and apoptosis networks were altered in N101D lenses. In addition, the tight junction signaling and Rho A signaling were among the top three canonical pathways that were affected in N101D mutant. Immunohistochemical analysis identified a series of terminal differentiation defects in N101D lenses, specifically, increased proliferation and decreased differentiation of lens epithelial cells (LEC) and decreased denucleation of lens fiber cells (LFC). The expression of Rho A was reduced in different-aged N101D lenses, and, conversely, Cdc42 and Rac1 expressions were increased in the N101D mutants. Moreover, earlier in development, the expression of major membrane-bound molecular transporter Na,K-ATPase was drastically reduced in N101D lenses. CONCLUSIONS The results suggest that the terminal differentiation defects, specifically, increased proliferation and decreased denucleation are responsible for the development of lens opacity in N101D lenses.
Collapse
Affiliation(s)
- Shylaja M Hegde
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kiran Srivastava
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ekta Tiwary
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P Srivastava
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
22
|
Tripathi BK, Lowy DR, Zelenka PS. The Cdk5 activator P39 specifically links muskelin to myosin II and regulates stress fiber formation and actin organization in lens. Exp Cell Res 2014; 330:186-98. [PMID: 25128817 DOI: 10.1016/j.yexcr.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
Abstract
Cyclin dependent kinase 5 (Cdk5), a proline-directed serine/threonine kinase, requires p39 for its enzymatic activity, and is implicated in cytoskeletal organization and contraction in numerous cell types. The C-terminus of p39 binds muskelin, a multi-domain scaffolding protein known to affect cytoskeletal organization, but the mechanisms by which muskelin affects cytoskeletal organization remain unclear. The present study sought to determine whether p39 might serve as an adaptor protein that links muskelin to stress fibers and to investigate the possible biological relevance of such an interaction. Double immunoprecipitation showed that muskelin, p39, and myosin II are components of a single intracellular complex, and suppressing p39 abrogated the interaction between muskelin and the myosin subunits, demonstrating that p39 is required to link muskelin to myosin II. Muskelin is colocalized with myosin regulatory light chain (MRLC) and on stress fibers. The suppression of muskelin reduced Rho-GTP, MRLC phosphorylation, disrupted stress fiber organization, and promoted cell migration, all of which closely mimic the effect of Cdk5 inhibition. Moreover, suppressing muskelin and inhibiting Cdk5 together have no additional effect, indicating that muskelin plays an important role in Cdk5-dependent signaling. p39 is necessary and sufficient for Cdk5-dependent regulation of MRLC phosphorylation, as suppression of p39, but not p35, reduces MRLC phosphorylation. Together, these results demonstrate that p39 specifically links muskelin to myosin II and consequently, to stress fibers and reveal a novel role for muskelin in regulating myosin phosphorylation and cytoskeletal organization.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Building 37, Room 4112, Bethesda, MD 20892, USA; Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Building 37, Room 4112, Bethesda, MD 20892, USA
| | - Peggy S Zelenka
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Eur J Hum Genet 2014; 22:1290-7. [PMID: 24549050 DOI: 10.1038/ejhg.2014.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 01/17/2023] Open
Abstract
Genome-wide linkage analysis, followed by targeted deep sequencing, in a Danish multigeneration family with juvenile cataract revealed a region of chromosome 17 co-segregating with the disease trait. Affected individuals were heterozygous for two potentially protein-disrupting alleles in this region, in ACACA and UNC45B. As alterations of the UNC45B protein have been shown to affect eye development in model organisms, effort was focused on the heterozygous UNC45B missense mutation. UNC45B encodes a myosin-specific chaperone that, together with the general heat shock protein HSP90, is involved in myosin assembly. The mutation changes p.Arg805 to Trp in the UCS domain, an amino acid that is highly conserved from yeast to human. UNC45B is strongly expressed in the heart and skeletal muscle tissue, but here we show expression in human embryo eye and zebrafish lens. The zebrafish mutant steif, carrying an unc45b nonsense mutation, has smaller eyes than wild-type embryos and shows accumulation of nuclei in the lens. Injection of RNA encoding the human wild-type UNC45B protein into the steif homozygous embryo reduced the nuclei accumulation and injection of human mutant UNC45B cDNA in wild-type embryos resulted in development of a phenotype similar to the steif mutant. The p.Arg805Trp alteration in the mammalian UNC45B gene suggests that developmental cataract may be caused by a defect in non-muscle myosin assembly during maturation of the lens fiber cells.
Collapse
|
24
|
Menko AS, Bleaken BM, Walker JL. Regional-specific alterations in cell-cell junctions, cytoskeletal networks and myosin-mediated mechanical cues coordinate collectivity of movement of epithelial cells in response to injury. Exp Cell Res 2014; 322:133-48. [PMID: 24397950 DOI: 10.1016/j.yexcr.2013.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 01/27/2023]
Abstract
This study investigates how epithelial cells moving together function to coordinate their collective movement to repair a wound. Using a lens ex vivo mock cataract surgery model we show that region-specific reorganization of cell-cell junctions, cytoskeletal networks and myosin function along apical and basal domains of an epithelium mediates the process of collective migration. An apical junctional complex composed of N-cadherin/ZO-1/myosin II linked to a cortical actin cytoskeleton network maintains integrity of the tissue during the healing process. These cells' basal domains often preceded their apical domains in the direction of movement, where an atypical N-cadherin/ZO-1 junction, linked to an actin stress fiber network rich in phosphomyosin, was prominent in cryptic lamellipodia. These junctions joined the protruding forward-moving lamellipodia to the back end of the cell moving directly in front of it. These were the only junctions detected in cryptic lamellipodia of lens epithelia migrating in response to wounding that could transmit the protrusive forces that drive collective movement. Both integrity of the epithelium and ability to effectively heal the wound was found to depend on myosin mechanical cues.
Collapse
Affiliation(s)
- A S Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States; Wills Vision Research Center at Jefferson, Philadelphia, PA 19107, United States
| | - B M Bleaken
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - J L Walker
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States; Wills Vision Research Center at Jefferson, Philadelphia, PA 19107, United States.
| |
Collapse
|
25
|
Actin is required for cellular death. Acta Histochem 2013; 115:775-82. [PMID: 23683404 DOI: 10.1016/j.acthis.2013.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/17/2013] [Accepted: 04/04/2013] [Indexed: 01/26/2023]
Abstract
Actin is one of the most abundant cytoskeletal proteins, which takes part in many cellular processes. This review provides information on the history, forms and localization of actin and its role, in particular in cellular death processes. We discuss the relationships between reorganization of actin filaments and apoptosis, mitotic catastrophe and differentiation. Finally, we discuss the translocation and accumulation of actin in the nuclear area. Moreover, owing to the difficulties of F-actin localization by transmission electron microscopy (TEM), the phalloidin-based method of its detection using streptavidin-coated quantum dots is presented in this review.
Collapse
|
26
|
Leonard M, Zhang L, Bleaken BM, Menko AS. Distinct roles for N-Cadherin linked c-Src and fyn kinases in lens development. Dev Dyn 2013; 242:469-84. [PMID: 23361870 DOI: 10.1002/dvdy.23935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Src family tyrosine kinases (SFKs) are often coincidently expressed but few studies have dissected their individual functions in the same cell during development. Using the classical embryonic lens as our model, we investigated SFK signaling in the regulation of both differentiation initiation and morphogenesis, and the distinct functions of c-Src and Fyn in these processes. RESULTS Blocking SFK activity with the highly specific inhibitor PP1 induced initiation of the lens differentiation program but blocked lens fiber cell elongation and organization into mini lens-like structures called lentoids. These dichotomous roles for SFK signaling were discovered to reflect distinct functions of c-Src and Fyn and their differentiation-state-specific recruitment to and action at N-cadherin junctions. c-Src was highly associated with the nascent N-cadherin junctions of undifferentiated lens epithelial cells. Its siRNA knockdown promoted N-cadherin junctional maturation, blocked proliferation, and induced lens cell differentiation. In contrast, Fyn was recruited to mature N-cadherin junctions of differentiating lens cells and siRNA knockdown suppressed differentiation-specific gene expression and blocked morphogenesis. CONCLUSIONS Through inhibition of N-cadherin junction maturation, c-Src promotes lens epithelial cell proliferation and the maintenance of the lens epithelial cell undifferentiated state, while Fyn, signaling downstream of mature N-cadherin junctions, promotes lens fiber cell morphogenesis.
Collapse
Affiliation(s)
- Michelle Leonard
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
27
|
Hayes JM, Hartsock A, Clark BS, Napier HRL, Link BA, Gross JM. Integrin α5/fibronectin1 and focal adhesion kinase are required for lens fiber morphogenesis in zebrafish. Mol Biol Cell 2012; 23:4725-38. [PMID: 23097490 PMCID: PMC3521681 DOI: 10.1091/mbc.e12-09-0672] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/16/2012] [Indexed: 11/16/2022] Open
Abstract
Lens fiber formation and morphogenesis requires a precise orchestration of cell- extracellular matrix (ECM) and cell-cell adhesive changes in order for a lens epithelial cell to adopt a lens fiber fate, morphology, and migratory ability. The cell-ECM interactions that mediate these processes are largely unknown, and here we demonstrate that fibronectin1 (Fn1), an ECM component, and integrin α5, its cellular binding partner, are required in the zebrafish lens for fiber morphogenesis. Mutations compromising either of these proteins lead to cataracts, characterized by defects in fiber adhesion, elongation, and packing. Loss of integrin α5/Fn1 does not affect the fate or viability of lens epithelial cells, nor does it affect the expression of differentiation markers expressed in lens fibers, although nucleus degradation is compromised. Analysis of the intracellular mediators of integrin α5/Fn1 activity focal adhesion kinase (FAK) and integrin-linked kinase (ILK) reveals that FAK, but not ILK, is also required for lens fiber morphogenesis. These results support a model in which lens fiber cells use integrin α5 to migrate along a Fn-containing substrate on the apical side of the lens epithelium and on the posterior lens capsule, likely activating an intracellular signaling cascade mediated by FAK in order to orchestrate the cytoskeletal changes in lens fibers that facilitate elongation, migration, and compaction.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Fibronectins/genetics
- Fibronectins/metabolism
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Gene Expression Regulation, Developmental
- Gene Knockdown Techniques
- Immunohistochemistry
- In Situ Hybridization
- Integrin alpha5/genetics
- Integrin alpha5/metabolism
- Lens, Crystalline/embryology
- Lens, Crystalline/metabolism
- Lens, Crystalline/ultrastructure
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Microscopy, Electron
- Models, Genetic
- Morphogenesis/genetics
- Mutation
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Julie M. Hayes
- Section of Molecular Cell and Developmental Biology and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78722
| | - Andrea Hartsock
- Section of Molecular Cell and Developmental Biology and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78722
| | - Brian S. Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Hugh R. L. Napier
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Jeffrey M. Gross
- Section of Molecular Cell and Developmental Biology and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78722
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78722
| |
Collapse
|
28
|
D’Sa RA, Raj J, McMahon MAS, McDowell DA, Burke GA, Meenan BJ. Atmospheric pressure plasma induced grafting of poly(ethylene glycol) onto silicone elastomers for controlling biological response. J Colloid Interface Sci 2012; 375:193-202. [DOI: 10.1016/j.jcis.2012.02.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 11/28/2022]
|
29
|
Jin M, Berrout J, Chen L, O'Neil RG. Hypotonicity-induced TRPV4 function in renal collecting duct cells: modulation by progressive cross-talk with Ca2+-activated K+ channels. Cell Calcium 2011; 51:131-9. [PMID: 22204737 DOI: 10.1016/j.ceca.2011.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/11/2011] [Accepted: 11/29/2011] [Indexed: 12/16/2022]
Abstract
The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca(2+)-activated K(+) channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca(2+)-activated K(+) channels, the small conductance SK3 (K(Ca)2.3) channel and large conductance BKα channel (K(Ca)1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K(+) channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca(2+) influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca(2+) influx on activation of both K(+) channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca(2+) influx would first activate the highly Ca(2+)-sensitive SK3 channel which, in turn, would lead to enhanced Ca(2+) influx and activation of the less Ca(2+)-sensitive BK channel.
Collapse
Affiliation(s)
- Min Jin
- Dept. of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
30
|
Maddala R, Chauhan BK, Walker C, Zheng Y, Robinson ML, Lang RA, Rao PV. Rac1 GTPase-deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival. Dev Biol 2011; 360:30-43. [PMID: 21945075 DOI: 10.1016/j.ydbio.2011.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/05/2011] [Indexed: 11/26/2022]
Abstract
Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based cell-cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Maddala R, Skiba NP, Lalane R, Sherman DL, Brophy PJ, Rao PV. Periaxin is required for hexagonal geometry and membrane organization of mature lens fibers. Dev Biol 2011; 357:179-90. [PMID: 21745462 PMCID: PMC3164832 DOI: 10.1016/j.ydbio.2011.06.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 01/06/2023]
Abstract
Transparency of the ocular lens depends on symmetric packing and membrane organization of highly elongated hexagonal fiber cells. These cells possess an extensive, well-ordered cortical cytoskeleton to maintain cell shape and to anchor membrane components. Periaxin (Prx), a PDZ domain protein involved in myelin sheath stabilization, is also a component of adhaerens plaques in lens fiber cells. Here we show that Prx is expressed in lens fibers and exhibits maturation dependent redistribution, clustering discretely at the tricellular junctions in mature fiber cells. Prx exists in a macromolecular complex with proteins involved in membrane organization including ankyrin-B, spectrin, NrCAM, filensin, ezrin and desmoyokin. Importantly, Prx knockout mouse lenses were found to be softer and more easily deformed than normal lenses, revealing disruptions in fiber cell hexagonal packing, membrane skeleton and membrane stability. These observations suggest a key role for Prx in maturation, packing, and membrane organization of lens fiber cells. Hence, there may be functional parallels between the roles of Prx in membrane stabilization of the myelin sheath and the lens fiber cell.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Robert Lalane
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
| | - Diane L. Sherman
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Peter J. Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, NC. USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, NC. USA
| |
Collapse
|
32
|
Zhou L, Zhang Z, Zheng Y, Zhu Y, Wei Z, Xu H, Tang Q, Kong X, Hu L. SKAP2, a novel target of HSF4b, associates with NCK2/F-actin at membrane ruffles and regulates actin reorganization in lens cell. J Cell Mol Med 2011; 15:783-95. [PMID: 20219016 PMCID: PMC3922667 DOI: 10.1111/j.1582-4934.2010.01048.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In addition to roles in stress response, heat shock factors (HSFs) play crucial roles in differentiation and development. Heat shock transcription factor 4 (HSF4) deficiency leads to defect in lens epithelial cell (LEC) differentiation and cataract formation. However, the mechanism remains obscure. Here, we identified Src kinase-associated phosphoprotein 2 (SKAP2) as a downstream target of HSF4b and it was highly expressed at the anterior tip of lens elongating fibre cells in vivo. The HSF4-deficient lenses showed reduced SKAP2 expression and defects in actin reorganization. The disassembly of stress fibres and formation of cortical actin fibres are critical for the initiation of LEC differentiation. SKAP2 localized at actin-rich ruffles in human LECs (SRA01/04 cells) and knockdown SKAP2 using RNA interference impaired the disassembly of cellular stress fibres in response to fibroblast growth factor (FGF)-b. Overexpression of SKAP2, but not the N-terminal deletion mutant of SKAP2, induced the actin remodelling. We further found that SKAP2 interacted with the SH2 domain of non-catalytic region of tyrosine kinase adaptor protein 2 (NCK2) via its N-terminus. The complex of SKAP2-NCK2-F-actin accumulated at the leading edge of the lamellipodium, where FGF receptors and focal adhesion were also recruited. These results revealed an essential role for HSF4-mediated SKAP2 expression in the regulation of actin reorganization during lens differentiation, likely through a mechanism that SKAP2 anchors the complex of NCK2/focal adhesion to FGF receptors at the lamellipodium in lens epithelial cells.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc Lond B Biol Sci 2011; 366:1219-33. [PMID: 21402582 DOI: 10.1098/rstb.2010.0324] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The programmed removal of organelles from differentiating lens fibre cells contributes towards lens transparency through formation of an organelle-free zone (OFZ). Disruptions in OFZ formation are accompanied by the persistence of organelles in lens fibre cells and can contribute towards cataract. A great deal of work has gone into elucidating the nature of the mechanisms and signalling pathways involved. It is apparent that multiple, parallel and redundant pathways are involved in this process and that these pathways form interacting networks. Furthermore, it is possible that the pathways can functionally compensate for each other, for example in mouse knockout studies. This makes sense given the importance of lens clarity in an evolutionary context. Apoptosis signalling and proteolytic pathways have been implicated in both lens fibre cell differentiation and organelle loss, including the Bcl-2 and inhibitor of apoptosis families, tumour necrosis factors, p53 and its regulators (such as Mdm2) and proteolytic enzymes, including caspases, cathepsins, calpains and the ubiquitin-proteasome pathway. Ongoing approaches being used to dissect the molecular pathways involved, such as transgenics, lens-specific gene deletion and zebrafish mutants, are discussed here. Finally, some of the remaining unresolved issues and potential areas for future studies are highlighted.
Collapse
Affiliation(s)
- Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, Republic of Ireland.
| |
Collapse
|
34
|
Leonard M, Zhang L, Zhai N, Cader A, Chan Y, Nowak RB, Fowler VM, Menko AS. Modulation of N-cadherin junctions and their role as epicenters of differentiation-specific actin regulation in the developing lens. Dev Biol 2011; 349:363-77. [PMID: 20969840 PMCID: PMC3018542 DOI: 10.1016/j.ydbio.2010.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/05/2010] [Accepted: 10/09/2010] [Indexed: 12/01/2022]
Abstract
Extensive elongation of lens fiber cells is a central feature of lens morphogenesis. Our study investigates the role of N-cadherin junctions in this process in vivo. We investigate both the molecular players involved in N-cadherin junctional maturation and the subsequent function of these junctions as epicenters for the assembly of an actin cytoskeleton that drives morphogenesis. We present the first evidence of nascent cadherin junctions in vivo, and show that they are a prominent feature along lateral interfaces of undifferentiated lens epithelial cells. Maturation of these N-cadherin junctions, required for lens cell differentiation, preceded organization of a cortical actin cytoskeleton along the cells' lateral borders, but was linked to recruitment of α-catenin and dephosphorylation of N-cadherin-linked β-catenin. Biochemical analysis revealed differentiation-specific recruitment of actin regulators cortactin and Arp3 to maturing N-cadherin junctions of differentiating cells, linking N-cadherin junctional maturation with actin cytoskeletal assembly during fiber cell elongation. Blocking formation of mature N-cadherin junctions led to reduced association of α-catenin with N-cadherin, prevented organization of actin along lateral borders of differentiating lens fiber cells and blocked their elongation. These studies provide a molecular link between N-cadherin junctions and the organization of an actin cytoskeleton that governs lens fiber cell morphogenesis in vivo.
Collapse
Affiliation(s)
- Michelle Leonard
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
D'Sa RA, Burke GA, Meenan BJ. Lens epithelial cell response to atmospheric pressure plasma modified poly(methylmethacrylate) surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1703-1712. [PMID: 20195888 DOI: 10.1007/s10856-010-4030-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/08/2010] [Indexed: 05/28/2023]
Abstract
Selective control of cellular response to polymeric biomaterials is an important consideration for many ocular implant applications. In particular, there is often a need to have one surface of an ophthalmic implant capable of promoting cell attachment while the other needs to be resistant to this effect. In this study, an atmospheric pressure dielectric barrier discharge (DBD) has been used to modify the surface region of poly(methyl methacrylate) (PMMA), a well established ocular biomaterial, with the aim of promoting a controlled response to human lens epithelial cells (LEC) cultured thereon. The DBD plasma discharge environment has also been employed to chemically graft a layer of poly(ethylene glycol) methyl ether methacrylate (PEGMA) onto the PMMA and the response to LEC likewise determined. Two different molecular weights of PEGMA, namely 1000 and 2000 MW were used in these experiments. The LEC response to DBD treated polystyrene (PS) samples has also been examined as a positive control and to help to further elucidate the nature of the modified surfaces. The LEC adhered and proliferated readily on the DBD treated PMMA and PS surfaces when compared to the pristine polymer samples which showed little or no cell response. The PMMA and PS surfaces that had been DBD grafted with the PEGMA(1000) layer were found to have some adhered cells. However, on closer inspection, these cells were clearly on the verge of detaching. In the case of the PEGMA(2000) grafted surfaces no cells were observed indicating that the higher molecular weight PEGMA has been able to attain a surface conformation that is capable of resisting cell attachment in vitro.
Collapse
Affiliation(s)
- Raechelle A D'Sa
- Nanotechnology and Integrated Bio-Engineering Centre, School of Engineering, University of Ulster, Shore Road, Co Antrim, BT37 0QB, Newtownabbey, Northern Ireland
| | | | | |
Collapse
|
36
|
Pradhan S, Zhang C, Jia X, Carson DD, Witt R, Farach-Carson MC. Perlecan domain IV peptide stimulates salivary gland cell assembly in vitro. Tissue Eng Part A 2010; 15:3309-20. [PMID: 19382872 DOI: 10.1089/ten.tea.2008.0669] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treatment of xerostomia would benefit from development of a functional implantable artificial salivary gland. Salivary gland tissue from surgical patients was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Ductal and acinar cells were identified in tissue and cultured cells from dispersed tissue. High levels of laminin and perlecan/HSPG2 (heparan sulfate proteoglycan 2) were noted in basement membranes, and perlecan also was secreted and organized by cultured acinar populations, which formed lobular structures that mimicked intact glands when cultured on Matrigel or a bioactive peptide derived from domain IV of perlecan. On either matrix, large acini-like lobular structures grew and formed connections between the lobes. alpha-Amylase secretion was confirmed by staining and activity assay. Biomarkers, including tight junction protein E-cadherin and water channel protein aquaporin 5 found in tissue, were expressed in cultured acinar cells. Cells cultured on Matrigel or domain IV of perlecan peptide organized stress fibers and activated focal adhesion kinase. We report a novel technique to isolate acinar cells from human salivary gland and identify a human peptide sequence in perlecan that triggers differentiation of salivary gland cells into self-assembling acini-like structures that express essential biomarkers and which secrete alpha-amylase.
Collapse
Affiliation(s)
- Swati Pradhan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | | | | | | | | | |
Collapse
|
37
|
Nowak RB, Fischer RS, Zoltoski RK, Kuszak JR, Fowler VM. Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens. ACTA ACUST UNITED AC 2009; 186:915-28. [PMID: 19752024 PMCID: PMC2753162 DOI: 10.1083/jcb.200905065] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased gammaTM levels, loss of F-actin from membranes, and disrupted distribution of beta2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and gammaTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin-actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry.
Collapse
Affiliation(s)
- Roberta B Nowak
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
38
|
Walker J, Menko AS. Integrins in lens development and disease. Exp Eye Res 2009; 88:216-25. [PMID: 18671967 PMCID: PMC2698936 DOI: 10.1016/j.exer.2008.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 11/26/2022]
Abstract
Integrins are the major cell surface receptors for proteins in the extracellular matrix. These receptors form major cell signaling centers that are bidirectional, communicating messages between the cell and its environment. They are a large receptor family, with members well-known to regulate cellular processes essential to both development and disease. In this review we examine the literature regarding integrins in the lens. Here we cover integrin function in lens cell differentiation, in the development of the lens and in protection of the lens epithelial cell phenotype. In addition, we analyze the role of integrins in the progression of lens fibrotic diseases, focusing particularly on integrin regulation of TGFbeta signaling pathways in posterior capsule opacification (PCO) and anterior subcapsular cataract (ASC).
Collapse
Affiliation(s)
- Janice Walker
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
39
|
Qiao F, Gao CY, Tripathi BK, Zelenka PS. Distinct functions of Cdk5(Y15) phosphorylation and Cdk5 activity in stress fiber formation and organization. Exp Cell Res 2008; 314:3542-50. [PMID: 18838073 PMCID: PMC12060253 DOI: 10.1016/j.yexcr.2008.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/28/2008] [Accepted: 08/30/2008] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that Cdk5 promotes lens epithelial cell adhesion. Here we use a cell spreading assay to investigate the mechanism of this effect. As cells spread, forming matrix adhesions and stress fibers, Cdk5(Y15) phosphorylation and Cdk5 kinase activity increased. Cdk5(Y15) phosphorylation was inhibited by PP1, a Src family kinase inhibitor. To identify the PP1-sensitive kinase, we transfected cells with siRNA oligonucleotides for cSrc and related kinases. Only cSrc siRNA oligonucleotides inhibited Cdk5(Y15) phosphorylation. Cdk5(pY15) and its activator, p35, colocalized with actin in stress fibers. To examine Cdk5 function, we inhibited Cdk5 activity under conditions that also prevent phosphorylation at Y15: expression of kinase inactive mutations Cdk5(Y15F) and Cdk5(K33T), and siRNA suppression of Cdk5. Stress fiber formation was severely inhibited. To distinguish between a requirement for Cdk5 kinase activity and a possible adaptor role for Cdk5(pY15), we used two methods that inhibit kinase activity without inhibiting phosphorylation at Y15: pharmacological inhibition with olomoucine and expression of the kinase inactive mutation, Cdk5(D144N). Stress fiber organization was altered, but stress fiber formation was not blocked. These findings indicate that Cdk5(Y15) phosphorylation and Cdk5 activity have distinct functions required for stress fiber formation and organization, respectively.
Collapse
Affiliation(s)
- Fengyu Qiao
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0704
| | - Chun Y. Gao
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0704
| | - Brajendra K. Tripathi
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0704
| | - Peggy S. Zelenka
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0704
| |
Collapse
|
40
|
Rao PV. The pulling, pushing and fusing of lens fibers: a role for Rho GTPases. Cell Adh Migr 2008; 2:170-3. [PMID: 19262112 DOI: 10.4161/cam.2.3.6495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lens development and differentiation are intricate and complex processes characterized by distinct molecular and morphological changes. The growth of a transparent lens involves proliferation of the epithelial cells and their subsequent differentiation into secondary fiber cells. Prior to differentiation, epithelial cells at the lens equator exit from the cell cycle and elongate into long, ribbon-like cells. Fiber cell elongation takes place bidirectionally as fiber tips migrate both anteriorly and posteriorly along the apical surface of the epithelium and inner surface of the capsule, respectively. The differentiating fiber cells move inward from the periphery to the center of the lens on a continuous basis as the lens grows throughout life. Finally, when fiber cells reach the center or suture line, their basal and apical tips detach from the epithelium and capsule, respectively, and interlock with cells from the opposite direction of the lens and form the suture line. Further, symmetric packing of fiber cells and degradation of most of the cellular organelle during fiber cell terminal differentiation are crucial for lens transparency. These sequential events are presumed to depend on cytoskeletal dynamics and cell adhesive interactions; however, our knowledge of regulation of lens fiber cell cytosketal reorganization, cell adhesive interactions and mechanotransduction, and their role in lens morphogenesis and function is limited at present. Recent biochemical and molecular studies have targeted cytoskeletal signaling proteins, including Rho GTPases, Abl kinase interacting proteins, cell adhesion molecules, myosin II, Src kinase and phosphoinositide 3-kinase in the developing chicken and mouse lens and characterized components of the fiber cell basal membrane complex. These studies have begun to unravel the vital role of cytoskeletal proteins and their regulatory pathways in control of lens morphogenesis, fiber cell elongation, migration, differentiation, survival and mechanical properties.
Collapse
Affiliation(s)
- P Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| |
Collapse
|
41
|
Leonard M, Chan Y, Menko AS. Identification of a novel intermediate filament-linked N-cadherin/gamma-catenin complex involved in the establishment of the cytoarchitecture of differentiated lens fiber cells. Dev Biol 2008; 319:298-308. [PMID: 18514185 PMCID: PMC2518943 DOI: 10.1016/j.ydbio.2008.04.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/14/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Tissue morphogenesis and maintenance of complex tissue architecture requires a variety of cell-cell junctions. Typically, cells adhere to one another through cadherin junctions, both adherens and desmosomal junctions, strengthened by association with cytoskeletal networks during development. Both beta- and gamma-catenins are reported to link classical cadherins to the actin cytoskeleton, but only gamma-catenin binds to the desmosomal cadherins, which links them to intermediate filaments through its association with desmoplakin. Here we provide the first biochemical evidence that, in vivo, gamma-catenin also mediates interactions between classical cadherins and the intermediate filament cytoskeleton, linked through desmoplakin. In the developing lens, which has no desmosomes, we discovered that vimentin became linked to N-cadherin complexes in a differentiation-state specific manner. This newly identified junctional complex was tissue specific but not unique to the lens. To determine whether in this junction N-cadherin was linked to vimentin through gamma-catenin or beta-catenin we developed an innovative "double" immunoprecipitation technique. This approach made possible, for the first time, the separation of N-cadherin/gamma-catenin from N-cadherin/beta-catenin complexes and the identification of multiple members of each of these isolated protein complexes. The study revealed that vimentin was associated exclusively with N-cadherin/gamma-catenin junctions. Assembly of this novel class of cadherin junctions was coincident with establishment of the unique cytoarchitecture of lens fiber cells. In addition, gamma-catenin had a distinctive localization to the vertices of these hexagonally shaped differentiating lens fiber cells, a region devoid of actin; while beta-catenin co-localized with actin at lateral cell interfaces. We believe this novel vimentin-linked N-cadherin/gamma-catenin junction provides the tensile strength necessary to establish and maintain structural integrity in tissues that lack desmosomes.
Collapse
Affiliation(s)
- Michelle Leonard
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 571 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
42
|
Ramalingam A, Duhadaway JB, Sutanto-Ward E, Wang Y, Dinchuk J, Huang M, Donover PS, Boulden J, McNally LM, Soler AP, Muller AJ, Duncan MK, Prendergast GC. Bin3 deletion causes cataracts and increased susceptibility to lymphoma during aging. Cancer Res 2008; 68:1683-90. [PMID: 18339847 DOI: 10.1158/0008-5472.can-07-6072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bin3 encodes an evolutionarily conserved and ubiquitously expressed member of the BAR superfamily of curved membrane and GTPase-binding proteins, which includes the BAR, PCH/F-BAR, and I-BAR adapter proteins implicated in signal transduction and vesicular trafficking. In humans, Bin3 maps to chromosome 8p21.3, a region widely implicated in cancer suppression that is often deleted in non-Hodgkin's lymphomas and various epithelial tumors. Yeast studies have suggested roles for this gene in filamentous actin (F-actin) organization and cell division but its physiologic functions in mammals have not been investigated. Here we report that homozygous inactivation of Bin3 in the mouse causes cataracts and an increased susceptibility to lymphomas during aging. The cataract phenotype was marked by multiple morphologic defects in lens fibers, including the development of vacuoles in cortical fibers and a near total loss of F-actin in lens fiber cells but not epithelial cells. Through 1 year of age, no other phenotypes were apparent; however, by 18 months of age, Bin3(-/-) mice exhibited a significantly increased incidence of lymphoma. Bin3 loss did not affect normal cell proliferation, F-actin organization, or susceptibility to oncogenic transformation. In contrast, it increased the proliferation and invasive motility of cells transformed by SV40 large T antigen plus activated ras. Our findings establish functions for Bin3 in lens development and cancer suppression during aging. Further, they define Bin3 as a candidate for an unidentified tumor suppressor that exists at the human chromosome 8p21.3 locus.
Collapse
|
43
|
Reich A, Lehmann B, Meurer M, Muller DJ. Structural alterations provoked by narrow-band ultraviolet B in immortalized keratinocytes: assessment by atomic force microscopy. Exp Dermatol 2008; 16:1007-15. [PMID: 18031460 DOI: 10.1111/j.1600-0625.2007.00623.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We applied atomic force microscopy (AFM) to visualize ultrastructural changes of the keratinocyte morphology after narrow-band ultraviolet B (NB-UVB) irradiation. Immortalized human keratinocytes were cultured under standard conditions, irradiated with NB-UVB light at doses ranging from 50 to 800 mJ/cm2 and imaged by AFM mounted on an inverted optical microscope. It was observed, that NB-UVB irradiation provoked dose-dependent alterations of the keratinocyte morphology. While the surface of non-irradiated cells exhibited homogenously distributed crest-like shaped protrusions (height 0.16 +/- 0.05 microm), cells irradiated with a dose of 800 mJ/cm2 in addition showed round shaped protrusions (height 0.14 +/- 0.06 microm) distributed predominantly around the nucleus and bleb-like protrusions irregularly distributed on the cell surface (height 0.95 +/- 0.29 microm). These irradiated cells easily detached from the supporting glass surface, showed impaired contact with adjacent keratinocytes and significantly rearranged their cytoskeleton network. We hypothesize that these structural and functional alterations reflect ongoing apoptosis in UVB treated cells.
Collapse
Affiliation(s)
- Adam Reich
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | |
Collapse
|
44
|
Maddala R, Reneker LW, Pendurthi B, Rao PV. Rho GDP dissociation inhibitor-mediated disruption of Rho GTPase activity impairs lens fiber cell migration, elongation and survival. Dev Biol 2008; 315:217-31. [PMID: 18234179 PMCID: PMC2364637 DOI: 10.1016/j.ydbio.2007.12.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/06/2023]
Abstract
To explore the role of the Rho GTPases in lens morphogenesis, we overexpressed bovine Rho GDP dissociation inhibitor (Rho GDI alpha), which serves as a negative regulator of Rho, Rac and Cdc42 GTPase activity, in a lens-specific manner in transgenic mice. This was achieved using a chimeric promoter of delta-crystallin enhancer and alpha A-crystallin, which is active at embryonic day 12. Several individual transgenic (Tg) lines were obtained, and exhibited ocular specific phenotype comprised of microphthalmic eyes with lens opacity. The overexpression of bovine Rho GDI alpha disrupted membrane translocation of Rho, Rac and Cdc42 GTPases in Tg lenses. Transgenic lenses also revealed abnormalities in the migration pattern, elongation and organization of lens fibers. These changes appeared to be associated with impaired organization of the actin cytoskeleton and cell-cell adhesions. At E14.5, the size of the Rho GDI alpha Tg lenses was larger compared to wild type (WT) and the central lens epithelium and differentiating fibers exhibited an abnormal increase of bromo-deoxy-uridine incorporation. Postnatal Tg eyes, however, were much smaller in size compared to WT eyes, revealing increased apoptosis in the disrupted lens fibers. Taken together, these data demonstrate a critical role for Rho GTPase-dependent signaling pathways in processes underlying morphogenesis, fiber cell migration, elongation and survival in the developing lens.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
45
|
Vihtelic TS. Teleost lens development and degeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:341-73. [PMID: 18779061 DOI: 10.1016/s1937-6448(08)01006-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transparent properties of the lens and its ability to focus light onto the retina are critical for normal vision. Optical clarity of the lens is achieved and maintained by a unique, highly regulated integration of lens cell proliferation and differentiation that persists throughout life. Zebrafish is a powerful genetic model for studying vertebrate lens differentiation and growth because the structural organization of the lens and gene functions are largely conserved with mammals, including humans. However, some features of zebrafish lens developmental morphology and gene expression are different from those of mammals and other terrestrial vertebrates. For example, the presumptive zebrafish lens delaminates from the surface ectoderm to form a solid mass of cells, in which the primary fibers differentiate by elongating in circular fashion. Both mutational and candidate gene analyses have identified and characterized developmental gene functions of the lens in zebrafish. This chapter presents the recent morphological analysis of zebrafish lens formation. In addition, the roles of Pitx3, Foxe3, and the lens-specific protein Lengsin (LENS Glutamine SYNthetase-like) in lens development are analyzed. Selected zebrafish lens mutants defective in early developmental processes and the maintenance of lens transparency are also discussed.
Collapse
Affiliation(s)
- Thomas S Vihtelic
- Department of Biological Sciences and Center for Zebrafish Research, Galvin Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
46
|
Dahm R, Procter JE, Ireland ME, Lo WK, Mogensen MM, Quinlan RA, Prescott AR. Reorganization of centrosomal marker proteins coincides with epithelial cell differentiation in the vertebrate lens. Exp Eye Res 2007; 85:696-713. [PMID: 17888905 DOI: 10.1016/j.exer.2007.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/26/2007] [Accepted: 07/31/2007] [Indexed: 12/24/2022]
Abstract
The differentiation of epithelial cells in the vertebrate lens involves a series of changes that includes the degradation of all intracellular organelles and a dramatic elongation of the cells. The latter is accompanied by a substantial remodelling of the cytoskeleton and changes in the distribution of the actin, microtubule and intermediate filament cytoskeletons during lens cell differentiation have been well documented. There have, however, been no studies of microtubule organizing centres (MTOCs) and specifically centrosomes during lens cell differentiation. We have investigated the fate of the centrosomal MTOCs during cellular differentiation in the bovine lens using gamma-tubulin, ninein, centrin 2 and centrin 3 as markers. Our studies show that these markers oscillate between a clear centrosome-based association in epithelial cells and a defocused cluster in lens fibre cells. Our data further reveal a transient loss of signal for the typical centrosomal marker gamma-tubulin as the lens epithelial cells begin to differentiate into lens fibre cells. This marker apparently disappears in the most distal epithelial cells at the lens equator, only to reappear in early lens fibre cells. The changes in gamma-tubulin distribution are mirrored by the other centrosomal markers, centrins 2 and 3 and ninein that also show a similar transient loss of their signals and subsequent clustering at the apical ends of differentiating fibre cells. The transient loss of staining for these centrosomal markers in the most posterior epithelial cells is a distinctive feature that precedes lens cell elongation. The dramatic reorganization of MTOC markers coincides with gap junction reorganization as seen by the loss of connexin 43 (alpha1-connexin) in these lens epithelial cells suggesting that these events mark a significant change preceding subsequent cell elongation and differentiation into fibre cells.
Collapse
Affiliation(s)
- Ralf Dahm
- Department of Biochemistry, Medical Sciences Institute, University of Dundee, Dundee, DD1 4HN, UK.
| | | | | | | | | | | | | |
Collapse
|
47
|
Simirskii VN, Wang Y, Duncan MK. Conditional deletion of beta1-integrin from the developing lens leads to loss of the lens epithelial phenotype. Dev Biol 2007; 306:658-68. [PMID: 17493607 PMCID: PMC1950782 DOI: 10.1016/j.ydbio.2007.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
Beta1-integrins are cell surface receptors that participate in sensing the cell's external environment. We used the Cre-lox system to delete beta1-integrin in all lens cells as the lens vesicle transitions into the lens. Adult mice lacking beta1-integrin in the lens are microphthalmic due to apoptosis of the lens epithelium and neonatal disintegration of the lens fibers. The first morphological alterations in beta1-integrin null lenses are seen at 16.5 dpc when the epithelium becomes disorganized and begins to upregulate the fiber cell markers beta- and gamma-crystallins, the transcription factors cMaf and Prox1 and downregulate Pax6 levels demonstrating that beta1-integrin is essential to maintain the lens epithelial phenotype. Furthermore, beta1-integrin null lens epithelial cells upregulate the expression of alpha-smooth muscle actin and nuclear Smad4 and downregulate Smad6 suggesting that beta1-integrin may brake TGFbeta family signaling leading to epithelial-mesenchymal transitions in the lens. In contrast, beta1-integrin null lens epithelial cells show increased E-cadherin immunoreactivity which supports the proposed role of beta1-integrins in mediating complete EMT in response to TGFbeta family members. Thus, beta1-integrin is required to maintain the lens epithelial phenotype and block inappropriate activation of some aspects of the lens fiber cell differentiation program.
Collapse
Affiliation(s)
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
48
|
Maddala R, Skiba N, Vasantha Rao P. Lens fiber cell elongation and differentiation is associated with a robust increase in myosin light chain phosphorylation in the developing mouse. Differentiation 2007; 75:713-25. [PMID: 17459090 DOI: 10.1111/j.1432-0436.2007.00173.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myosin II, a molecular motor, plays a critical role in cell migration, cell shape changes, cell adhesion, and cytokinesis. To understand the role of myosin II in lens fiber cell elongation and differentiation, we determined the distribution pattern of nonmuscle myosin IIA, IIB, and phosphorylated regulatory myosin light chain-2 (phospho-MLC) in frozen sections of the developing mouse lens by immunofluorescence analysis. While myosin IIA was distributed uniformly throughout the differentiating lens, including the epithelium and fibers, myosin IIB was localized predominantly to the epithelium and the posterior tips of the lens fibers. In contrast, immunostaining with a di-phospho-MLC antibody localized intensely and precisely to the elongating and differentiating primary and secondary lens fibers, co-localizing with actin filaments. An in situ analysis of Rho GTPase activation revealed that Rho-GTP was distributed uniformly throughout the embryonic lens, including epithelium and fibers. Inhibition of myosin light chain kinase (MLCK) activity by ML-7 in organ cultured mouse lenses led to development of nuclear lens opacity in association with abnormal fiber cell organization. Taken together, these data reveal a distinct spatial distribution pattern of myosin II isoforms in the developing lens and a robust activation of MLC phosphorylation in the differentiating lens fibers. Moreover, the regulation of MLC phosphorylation by MLCK appears to be critical for crystallin organization and for maintenance of lens transparency and lens membrane function.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Box 3802, Erwin Road, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
49
|
Ledee DR, Tripathi BK, Zelenka PS. The CDK5 activator, p39, binds specifically to myosin essential light chain. Biochem Biophys Res Commun 2007; 354:1034-9. [PMID: 17276406 PMCID: PMC1808556 DOI: 10.1016/j.bbrc.2007.01.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 11/28/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) has been shown to regulate adhesion and migration of lens and corneal epithelial cells. To explore protein-protein interactions that may mediate these functions, we performed yeast two-hybrid screening on an embryonic rat lens library using Cdk5 and its regulators, p35 and p39 as baits. This screen identified an interaction between p39 and non-muscle myosin essential light chain (MLC(17)). GST pull-down experiments demonstrated that p39 binds directly to MLC(17) through a strong binding site in the N-terminal 109 amino acids of p39. Immunoprecipitation of proteins from Cos1 cells co-transfected with GFP-MLC(17) and HA-p39 confirmed that these proteins interact intracellularly. Immunofluorescence microscopy of co-transfected lens epithelial cells showed that GFP-MLC(17) and HA-p39 co-localize along cytoskeletal fibrils. Moreover, endogenous rat lens p39 co-immunoprecipitated with MLC(17) and myosin heavy chain II (MHC II), demonstrating that the interaction is physiological and serves to link p39 to the cytoskeleton.
Collapse
Affiliation(s)
| | | | - Peggy S. Zelenka
- §Address correspondence to: Peggy S. Zelenka, Ph.D, Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Building 7, Room 102, MSC 0704, Bethesda, Maryland, 20892 (USA), Phone: 301-496-7490, Fax: 301-435-7682, E-mail:
| |
Collapse
|
50
|
Rao PV, Maddala R. The role of the lens actin cytoskeleton in fiber cell elongation and differentiation. Semin Cell Dev Biol 2006; 17:698-711. [PMID: 17145190 PMCID: PMC1803076 DOI: 10.1016/j.semcdb.2006.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The vertebrate ocular lens is a fascinating and unique transparent tissue that grows continuously throughout life. During the process of differentiation into fiber cells, lens epithelial cells undergo dramatic morphological changes, membrane remodeling, polarization, transcriptional activation and elimination of cellular organelles including nuclei, concomitant with migration towards the lens interior. Most of these events are presumed to be influenced in large part, by dynamic reorganization of the cellular actin cytoskeleton and by intercellular and cell: extracellular matrix interactions. In light of recent and unprecedented advancement in our understanding of the mechanistic bases underlying regulation of actin cytoskeletal dynamics and the role of the actin cytoskeleton in cell function, this review attempts to summarize current knowledge regarding the role of the cellular actin cytoskeleton, in lens fiber cell elongation and differentiation, and regulation of actin cytoskeletal organization in the lens.
Collapse
Affiliation(s)
- P Vasantha Rao
- Departments of Ophthalmology, Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| | | |
Collapse
|