1
|
Burnicka-Turek O, Trampel KA, Laforest B, Broman MT, Yang XH, Khan Z, Rytkin E, Li B, Schaffer E, Gadek M, Shen KM, Efimov IR, Moskowitz IP. Coordinated Tbx3/Tbx5 transcriptional control of the adult ventricular conduction system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.29.610377. [PMID: 39257760 PMCID: PMC11383707 DOI: 10.1101/2024.08.29.610377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The cardiac conduction system (CCS) orchestrates the electrical impulses that enable coordinated contraction of the cardiac chambers. The T-box transcription factors TBX3 and TBX5 are required for cardiac conduction system development and associated with overlapping and distinct human cardiac conduction system diseases. We evaluated the coordinated role of Tbx3 and Tbx5 in the murine ventricular conduction system (VCS). We engineered a compound Tbx3:Tbx5 conditional knockout allele for both genes located in cis on mouse chromosome 5. Conditional deletion of both T-box transcriptional factors in the ventricular conduction system, using the VCS-specific MinK:Cre, caused loss of VCS function and molecular identity. Combined Tbx3 and Tbx5 deficiency in the adult VCS led to conduction defects, including prolonged PR and QRS intervals and elevated susceptibility to ventricular tachycardia. These electrophysiological defects occurred prior to detectable alterations in cardiac contractility or histologic morphology, indicative of a primary conduction system defect. Tbx3:Tbx5 double knockout VCS cardiomyocytes revealed a transcriptional shift towards non-CCS-specialized working myocardium, indicating a change to their cellular identity. Furthermore, optical mapping revealed a loss of VCS-specific conduction system propagation. Collectively, these findings indicate that Tbx3 and Tbx5 coordinate to control VCS molecular fate and function, with implications for understanding cardiac conduction disorders in humans.
Collapse
Affiliation(s)
- Ozanna Burnicka-Turek
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Katy A. Trampel
- Departments of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Brigitte Laforest
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Michael T. Broman
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, IL, 60637, USA
| | - Xinan H. Yang
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Zoheb Khan
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Eric Rytkin
- Departments of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Binjie Li
- Departments of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Ella Schaffer
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Margaret Gadek
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Kaitlyn M. Shen
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Igor R. Efimov
- Departments of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Ivan P. Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Dong A, Yoshizumi M, Kokubo H. Odz4 upregulates SAN-specific genes to promote differentiation into cardiac pacemaker-like cells. FEBS Lett 2025; 599:299-315. [PMID: 39462648 PMCID: PMC11808419 DOI: 10.1002/1873-3468.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Cardiac arrhythmias stemming from abnormal sinoatrial node (SAN) function can lead to sudden death. Developing a biological pacemaker device for treating sick sinus syndrome (SSS) could offer a potential cure. Understanding SAN differentiation is crucial, yet its regulatory mechanism remains unclear. We reanalyzed published RNA-seq data and identified Odz4 as a SAN-specific candidate. In situ hybridization revealed Odz4 expression in the cardiac crescent and throughout the cardiac conduction system (CCS). To assess the role of Odz4 in CCS differentiation, we utilized a Tet-Off inducible system for its intracellular domain (ICD). Embryonic bodies (EBs) exogenously expressing Odz4-ICD exhibited an increased propensity to develop into pacemaker-like cells with enhanced automaticity and upregulated expression of SAN-specific genes. CellChat and GO analyses unveiled SAN-specific enrichment of ligand-receptor sets, especially Ptn-Ncl, and extracellular matrix components in the group exogenously expressing Odz4-ICD. Our findings underscore the significance of Odz4 in SAN development and offer fresh insights into biological pacemaker establishment.
Collapse
Affiliation(s)
- Anqi Dong
- Department of Physiology and BiophysicsHiroshima UniversityJapan
| | - Masao Yoshizumi
- Department of Physiology and BiophysicsHiroshima UniversityJapan
| | - Hiroki Kokubo
- Department of Physiology and BiophysicsHiroshima UniversityJapan
- Department of Physical TherapyTohto UniversityChibaJapan
| |
Collapse
|
3
|
Grant ZL, Kuang S, Zhang S, Horrillo AJ, Rao KS, Kameswaran V, Joubran C, Lau PK, Dong K, Yang B, Bartosik WM, Zemke NR, Ren B, Kathiriya IS, Pollard KS, Bruneau BG. Dose-dependent sensitivity of human 3D chromatin to a heart disease-linked transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632202. [PMID: 39829922 PMCID: PMC11741296 DOI: 10.1101/2025.01.09.632202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)-linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced TBX5 dosage in a human model of CHD, with variations in response across individual cells. Regions normally bound by TBX5 are especially sensitive, while co-occupancy with CTCF partially protects TBX5-bound TAD boundaries and loop anchors. These results highlight the importance of lineage-restricted TF dosage in cell-type specific 3D chromatin dynamics, suggesting a new mechanism for TF-dependent disease.
Collapse
Affiliation(s)
| | | | - Shu Zhang
- Gladstone Institutes; San Francisco, CA, USA
- Bioinformatics Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | - Abraham J. Horrillo
- Gladstone Institutes; San Francisco, CA, USA
- TETRAD Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | | | | | | | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Irfan S. Kathiriya
- Gladstone Institutes; San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institutes; San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Benoit G. Bruneau
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
4
|
Abassah-Oppong S, Zoia M, Mannion BJ, Rouco R, Tissières V, Spurrell CH, Roland V, Darbellay F, Itum A, Gamart J, Festa-Daroux TA, Sullivan CS, Kosicki M, Rodríguez-Carballo E, Fukuda-Yuzawa Y, Hunter RD, Novak CS, Plajzer-Frick I, Tran S, Akiyama JA, Dickel DE, Lopez-Rios J, Barozzi I, Andrey G, Visel A, Pennacchio LA, Cobb J, Osterwalder M. A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival. Nat Commun 2024; 15:8793. [PMID: 39389973 PMCID: PMC11467299 DOI: 10.1038/s41467-024-53009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Approximately a quarter of the human genome consists of gene deserts, large regions devoid of genes often located adjacent to developmental genes and thought to contribute to their regulation. However, defining the regulatory functions embedded within these deserts is challenging due to their large size. Here, we explore the cis-regulatory architecture of a gene desert flanking the Shox2 gene, which encodes a transcription factor indispensable for proximal limb, craniofacial, and cardiac pacemaker development. We identify the gene desert as a regulatory hub containing more than 15 distinct enhancers recapitulating anatomical subdomains of Shox2 expression. Ablation of the gene desert leads to embryonic lethality due to Shox2 depletion in the cardiac sinus venosus, caused in part by the loss of a specific distal enhancer. The gene desert is also required for stylopod morphogenesis, mediated via distributed proximal limb enhancers. In summary, our study establishes a multi-layered role of the Shox2 gene desert in orchestrating pleiotropic developmental expression through modular arrangement and coordinated dynamics of tissue-specific enhancers.
Collapse
Affiliation(s)
- Samuel Abassah-Oppong
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Biological Sciences, Fort Hays State University, Hays, KS, 67601, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Raquel Rouco
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Tissières
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Virginia Roland
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Itum
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Julie Gamart
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Tabitha A Festa-Daroux
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Carly S Sullivan
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eddie Rodríguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- School of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Guillaume Andrey
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
5
|
Lee C, Xu S, Samad T, Goodyer WR, Raissadati A, Heinrich P, Wu SM. The cardiac conduction system: History, development, and disease. Curr Top Dev Biol 2024; 156:157-200. [PMID: 38556422 DOI: 10.1016/bs.ctdb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.
Collapse
Affiliation(s)
- Carissa Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sidra Xu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tahmina Samad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - William R Goodyer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alireza Raissadati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
6
|
Peña-Martínez EG, Pomales-Matos DA, Rivera-Madera A, Messon-Bird JL, Medina-Feliciano JG, Sanabria-Alberto L, Barreiro-Rosario AC, Rivera-Del Valle J, Rodríguez-Ríos JM, Rodríguez-Martínez JA. Prioritizing cardiovascular disease-associated variants altering NKX2-5 and TBX5 binding through an integrative computational approach. J Biol Chem 2023; 299:105423. [PMID: 37926287 PMCID: PMC10750078 DOI: 10.1016/j.jbc.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are heavily influenced by genetic factors. Genome-wide association studies have mapped >90% of CVD-associated variants within the noncoding genome, which can alter the function of regulatory proteins, such as transcription factors (TFs). However, due to the overwhelming number of single-nucleotide polymorphisms (SNPs) (>500,000) in genome-wide association studies, prioritizing variants for in vitro analysis remains challenging. In this work, we implemented a computational approach that considers support vector machine (SVM)-based TF binding site classification and cardiac expression quantitative trait loci (eQTL) analysis to identify and prioritize potential CVD-causing SNPs. We identified 1535 CVD-associated SNPs within TF footprints and putative cardiac enhancers plus 14,218 variants in linkage disequilibrium with genotype-dependent gene expression in cardiac tissues. Using ChIP-seq data from two cardiac TFs (NKX2-5 and TBX5) in human-induced pluripotent stem cell-derived cardiomyocytes, we trained a large-scale gapped k-mer SVM model to identify CVD-associated SNPs that altered NKX2-5 and TBX5 binding. The model was tested by scoring human heart TF genomic footprints within putative enhancers and measuring in vitro binding through electrophoretic mobility shift assay. Five variants predicted to alter NKX2-5 (rs59310144, rs6715570, and rs61872084) and TBX5 (rs7612445 and rs7790964) binding were prioritized for in vitro validation based on the magnitude of the predicted change in binding and are in cardiac tissue eQTLs. All five variants altered NKX2-5 and TBX5 DNA binding. We present a bioinformatic approach that considers tissue-specific eQTL analysis and SVM-based TF binding site classification to prioritize CVD-associated variants for in vitro analysis.
Collapse
Affiliation(s)
- Edwin G Peña-Martínez
- Department of Biology, University of Puerto Rico Río Piedras Campus, San Juan, Puerto Rico
| | - Diego A Pomales-Matos
- Department of Biology, University of Puerto Rico Río Piedras Campus, San Juan, Puerto Rico
| | | | - Jean L Messon-Bird
- Department of Biology, University of Puerto Rico Río Piedras Campus, San Juan, Puerto Rico
| | | | | | | | | | | | | |
Collapse
|
7
|
Peña-Martínez EG, Pomales-Matos DA, Rivera-Madera A, Messon-Bird JL, Medina-Feliciano JG, Sanabria-Alberto L, Barreiro-Rosario AC, Rodriguez-Rios JM, Rodríguez-Martínez JA. Prioritizing Cardiovascular Disease-Associated Variants Altering NKX2-5 Binding through an Integrative Computational Approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.01.23294951. [PMID: 37693486 PMCID: PMC10491373 DOI: 10.1101/2023.09.01.23294951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are heavily influenced by genetic factors. Genome-wide association studies (GWAS) have mapped > 90% of CVD-associated variants within the non-coding genome, which can alter the function of regulatory proteins, like transcription factors (TFs). However, due to the overwhelming number of GWAS single nucleotide polymorphisms (SNPs) (>500,000), prioritizing variants for in vitro analysis remains challenging. In this work, we implemented a computational approach that considers support vector machine (SVM)-based TF binding site classification and cardiac expression quantitative trait loci (eQTL) analysis to identify and prioritize potential CVD-causing SNPs. We identified 1,535 CVD-associated SNPs that occur within human heart footprints/enhancers and 9,309 variants in linkage disequilibrium (LD) with differential gene expression profiles in cardiac tissue. Using hiPSC-CM ChIP-seq data from NKX2-5 and TBX5, two cardiac TFs essential for proper heart development, we trained a large-scale gapped k-mer SVM (LS-GKM-SVM) predictive model that can identify binding sites altered by CVD-associated SNPs. The computational predictive model was tested by scoring human heart footprints and enhancers in vitro through electrophoretic mobility shift assay (EMSA). Three variants (rs59310144, rs6715570, and rs61872084) were prioritized for in vitro validation based on their eQTL in cardiac tissue and LS-GKM-SVM prediction to alter NKX2-5 DNA binding. All three variants altered NKX2-5 DNA binding. In summary, we present a bioinformatic approach that considers tissue-specific eQTL analysis and SVM-based TF binding site classification to prioritize CVD-associated variants for in vitro experimental analysis.
Collapse
|
8
|
Karimi T, Pan Z, Potaman VN, Alt EU. Conversion of Unmodified Stem Cells to Pacemaker Cells by Overexpression of Key Developmental Genes. Cells 2023; 12:1381. [PMID: 37408215 PMCID: PMC10216671 DOI: 10.3390/cells12101381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Arrhythmias of the heart are currently treated by implanting electronic pacemakers and defibrillators. Unmodified adipose tissue-derived stem cells (ASCs) have the potential to differentiate into all three germ layers but have not yet been tested for the generation of pacemaker and Purkinje cells. We investigated if-based on overexpression of dominant conduction cell-specific genes in ASCs-biological pacemaker cells could be induced. Here we show that by overexpression of certain genes that are active during the natural development of the conduction system, the differentiation of ASCs to pacemaker and Purkinje-like cells is feasible. Our study revealed that the most effective procedure consisted of short-term upregulation of gene combinations SHOX2-TBX5-HCN2, and to a lesser extent SHOX2-TBX3-HCN2. Single-gene expression protocols were ineffective. Future clinical implantation of such pacemaker and Purkinje cells, derived from unmodified ASCs of the same patient, could open up new horizons for the treatment of arrythmias.
Collapse
Affiliation(s)
- Tahereh Karimi
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
| | - Zhizhong Pan
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vladimir N. Potaman
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
| | - Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- Isar Klinikum Munich, Sonnenstr 24-26, 80331 Munich, Germany
| |
Collapse
|
9
|
Mfarej MG, Hyland CA, Sanchez AC, Falk MM, Iovine MK, Skibbens RV. Cohesin: an emerging master regulator at the heart of cardiac development. Mol Biol Cell 2023; 34:rs2. [PMID: 36947206 PMCID: PMC10162415 DOI: 10.1091/mbc.e22-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Caitlin A. Hyland
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
10
|
Sweat ME, Cao Y, Zhang X, Burnicka-Turek O, Perez-Cervantes C, Akerberg BN, Ma Q, Wakimoto H, Gorham JM, Song MK, Trembley MA, Wang P, Lu F, Gianeselli M, Prondzynski M, Bortolin RH, Seidman JG, Seidman CE, Moskowitz IP, Pu WT. Tbx5 maintains atrial identity by regulating an atrial enhancer network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537535. [PMID: 37131696 PMCID: PMC10153240 DOI: 10.1101/2023.04.21.537535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding how the atrial and ventricular chambers of the heart maintain their distinct identity is a prerequisite for treating chamber-specific diseases. Here, we selectively inactivated the transcription factor Tbx5 in the atrial working myocardium of the neonatal mouse heart to show that it is required to maintain atrial identity. Atrial Tbx5 inactivation downregulated highly chamber specific genes such as Myl7 and Nppa , and conversely, increased the expression of ventricular identity genes including Myl2 . Using combined single nucleus transcriptome and open chromatin profiling, we assessed genomic accessibility changes underlying the altered atrial identity expression program, identifying 1846 genomic loci with greater accessibility in control atrial cardiomyocytes compared to KO aCMs. 69% of the control-enriched ATAC regions were bound by TBX5, demonstrating a role for TBX5 in maintaining atrial genomic accessibility. These regions were associated with genes that had higher expression in control aCMs compared to KO aCMs, suggesting they act as TBX5-dependent enhancers. We tested this hypothesis by analyzing enhancer chromatin looping using HiChIP and found 510 chromatin loops that were sensitive to TBX5 dosage. Of the loops enriched in control aCMs, 73.7% contained anchors in control-enriched ATAC regions. Together, these data demonstrate a genomic role for TBX5 in maintaining the atrial gene expression program by binding to atrial enhancers and preserving tissue-specific chromatin architecture of atrial enhancers.
Collapse
|
11
|
Lang Y, Zheng Y, Qi B, Zheng W, Zhao C, Zhai H, Wang G, Luo Z, Li T. Case report: Novel TBX5-related pathogenic mechanism of Holt-Oram syndrome. Front Genet 2023; 14:1063202. [PMID: 36936432 PMCID: PMC10014717 DOI: 10.3389/fgene.2023.1063202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction: Holt-Oram syndrome (HOS) is a rare genetic disorder characterized by upper limb abnormalities, congenital heart defects, and/or conduction abnormalities. Sequence alteration of T-box transcription factor 5 (TBX5) is correlated with the incidence of HOS. Case description: We present the case of a 24-year-old female with upper limb alterations (congenital dysplasia in the wrist and elbow joints) and an anomalous left main trunk arising from the right coronary sinus. The patient inherited a base T (reference C) at rs883079 from her mother and base C (reference T) at rs10850326 from her father, both of which belong to the 3'-untranslated region (UTR) of the TBX5 gene; no alterations in TBX5 expression or single-nucleotide polymorphisms (SNPs) in other exon areas were found. We explored the effects of TBX5 on cardiomyocytes using the HL-1 cell line and TBX5-knockdown cells. Discussion: Quantitative polymerase chain reaction analysis demonstrated that TEKT2, TEKT4, and SPTB expression decreased after TBX5 knockdown, while chromatin immunoprecipitation analysis further revealed that TBX5 binds to the TEKT2, TEKT4, and SPTB promoter regions to promote gene transcription. Our findings support a novel TBX5-related pathogenic mechanism in HOS.
Collapse
Affiliation(s)
- Yuheng Lang
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yue Zheng
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Bingcai Qi
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Weifeng Zheng
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Chengxiu Zhao
- Department of Anesthesiology, Handan First Hospital, Handan, China
| | - Hu Zhai
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Gang Wang
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Zhiqiang Luo
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Tong Li
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
12
|
Henry S, Kokity L, Pirity MK. Polycomb protein RYBP activates transcription factor Plagl1 during in vitro cardiac differentiation of mouse embryonic stem cells. Open Biol 2023; 13:220305. [PMID: 36751888 PMCID: PMC9905990 DOI: 10.1098/rsob.220305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
RING1 and YY1 binding protein (RYBP) is primarily known to function as a repressor being a core component of the non-canonical polycomb repressive complexes 1 (ncPRC1s). However, several ncPRC1-independent functions of RYBP have also been described. We previously reported that RYBP is essential for mouse embryonic development and that Rybp null mutant embryonic stem cells cannot form contractile cardiomyocytes (CMCs) in vitro. We also showed that PLAGL1, a cardiac transcription factor, which is often mutated in congenital heart diseases (CHDs), is not expressed in Rybp-null mutant CMCs. However, the underlying mechanism of how RYBP regulates Plagl1 expression was not revealed. Here, we demonstrate that RYBP cooperated with NKX2-5 to transcriptionally activate the P1 and P3 promoters of the Plagl1 gene and that this activation is ncPRC1-independent. We also show that two non-coding RNAs residing in the Plagl1 locus can also regulate the Plagl1 promoters. Finally, PLAGL1 was able to activate Tnnt2, a gene important for contractility of CMCs in transfected HEK293 cells. Our study shows that the activation of Plagl1 by RYBP is important for sarcomere development and contractility, and suggests that RYBP, via its regulatory functions, may contribute to the development of CHDs.
Collapse
Affiliation(s)
- Surya Henry
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Lilla Kokity
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Melinda Katalin Pirity
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| |
Collapse
|
13
|
Bosada FM, van Duijvenboden K, Giovou AE, Rivaud MR, Uhm JS, Verkerk AO, Boukens BJ, Christoffels VM. An atrial fibrillation-associated regulatory region modulates cardiac Tbx5 levels and arrhythmia susceptibility. eLife 2023; 12:80317. [PMID: 36715501 PMCID: PMC9928424 DOI: 10.7554/elife.80317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Heart development and rhythm control are highly Tbx5 dosage-sensitive. TBX5 haploinsufficiency causes congenital conduction disorders, whereas increased expression levels of TBX5 in human heart samples has been associated with atrial fibrillation (AF). We deleted the conserved mouse orthologues of two independent AF-associated genomic regions in the Tbx5 locus, one intronic (RE(int)) and one downstream (RE(down)) of Tbx5. In both lines, we observed a modest (30%) increase of Tbx5 in the postnatal atria. To gain insight into the effects of slight dosage increase in vivo, we investigated the atrial transcriptional, epigenetic and electrophysiological properties of both lines. Increased atrial Tbx5 expression was associated with induction of genes involved in development, ion transport and conduction, with increased susceptibility to atrial arrhythmias, and increased action potential duration of atrial cardiomyocytes. We identified an AF-associated variant in the human RE(int) that increases its transcriptional activity. Expression of the AF-associated transcription factor Prrx1 was induced in Tbx5RE(int)KO cardiomyocytes. We found that some of the transcriptional and functional changes in the atria caused by increased Tbx5 expression were normalized when reducing cardiac Prrx1 expression in Tbx5RE(int)KO mice, indicating an interaction between these two AF genes. We conclude that modest increases in expression of dose-dependent transcription factors, caused by common regulatory variants, significantly impact on the cardiac gene regulatory network and disease susceptibility.
Collapse
Affiliation(s)
- Fernanda M Bosada
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Alexandra E Giovou
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Mathilde R Rivaud
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Cardiology, Severance Hospital, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Physiology, University of Maastricht, Cardiovascular Research Institute Maastricht, Maastricht University Medical CenterMaastrichtNetherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
14
|
Farraha M, Rao R, Igoor S, Le TYL, Barry MA, Davey C, Kok C, Chong JJ, Kizana E. Recombinant Adeno-Associated Viral Vector-Mediated Gene Transfer of hTBX18 Generates Pacemaker Cells from Ventricular Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23169230. [PMID: 36012498 PMCID: PMC9408910 DOI: 10.3390/ijms23169230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Sinoatrial node dysfunction can manifest as bradycardia, leading to symptoms of syncope and sudden cardiac death. Electronic pacemakers are the current standard of care but are limited due to a lack of biological chronotropic control, cost of revision surgeries, and risk of lead- and device-related complications. We therefore aimed to develop a biological alternative to electronic devices by using a clinically relevant gene therapy vector to demonstrate conversion of cardiomyocytes into sinoatrial node-like cells in an in vitro context. Neonatal rat ventricular myocytes were transduced with recombinant adeno-associated virus vector 6 encoding either hTBX18 or green fluorescent protein and maintained for 3 weeks. At the endpoint, qPCR, Western blot analysis and immunocytochemistry were used to assess for reprogramming into pacemaker cells. Cell morphology and Arclight action potentials were imaged via confocal microscopy. Compared to GFP, hTBX18-transduced cells showed that hTBX18, HCN4 and Cx45 were upregulated. Cx43 was significantly downregulated, while sarcomeric α-actinin remained unchanged. Cardiomyocytes transduced with hTBX18 acquired the tapering morphology of native pacemaker cells, as compared to the block-like, striated appearance of ventricular cardiomyocytes. Analysis of the action potentials showed phase 4 depolarization and a significant decrease in the APD50 of the hTBX18-transduced cells. We have demonstrated that rAAV-hTBX18 gene transfer to ventricular myocytes results in morphological, molecular, physiological, and functional changes, recapitulating the pacemaker phenotype in an in vitro setting. The generation of these induced pacemaker-like cells using a clinically relevant vector opens new prospects for biological pacemaker development.
Collapse
Affiliation(s)
- Melad Farraha
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Renuka Rao
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Sindhu Igoor
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Thi Y. L. Le
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Michael A. Barry
- Department of Cardiology, Westmead Hospital, Sydney 2145, Australia
| | - Christopher Davey
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
- School of Physics, the University of Sydney, Sydney 2006, Australia
| | - Cindy Kok
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
| | - James J.H. Chong
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
- Department of Cardiology, Westmead Hospital, Sydney 2145, Australia
| | - Eddy Kizana
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia
- Centre for Heart Research, the Westmead Institute for Medical Research, Sydney 2145, Australia
- Department of Cardiology, Westmead Hospital, Sydney 2145, Australia
- Correspondence:
| |
Collapse
|
15
|
Yin L, Wang FY, Zhang W, Wang X, Tang YH, Wang T, Chen YT, Huang CX. RA signaling pathway combined with Wnt signaling pathway regulates human-induced pluripotent stem cells (hiPSCs) differentiation to sinus node-like cells. Stem Cell Res Ther 2022; 13:324. [PMID: 35851424 PMCID: PMC9290266 DOI: 10.1186/s13287-022-03006-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The source of SAN is debated among researchers. Many studies have shown that RA and Wnt signaling are involved in heart development. In this study, we investigated the role of retinoic acid (RA) and Wnt signaling in the induction of sinus node-like cells. METHODS The experimental samples were divided into four groups: control group (CHIR = 0), CHIR = 3, RA + CHIR = 0 andRA + CHIR = 3. After 20 days of differentiation, Western blot, RT-qPCR, immunofluorescence and flow cytometry were performed to identify sinus node-like cells. Finally, whole-cell patch clamp technique was used to record pacing funny current and action potential (AP) in four groups. RESULTS The best intervention method used in our experiment was RA = 0.25 µmol/L D5-D9 + CHIR = 3 µmol/L D5-D7. Results showed that CHIR can increase the expression of ISL-1 and TBX3, while RA mainly elevated Shox2. Immunofluorescence assay and flow cytometry further illustrated that combining RA with CHIR can induce sinus node-like cells (CTNT+Shox2+Nkx2.5-). Moreover, CHIR might reduce the frequency of cell beats, but in conjunction with RA could partly compensate for this side effect. Whole cell patch clamps were able to record funny current and the typical sinus node AP in the experimental group, which did not appear in the control group. CONCLUSIONS Combining RA with Wnt signaling within a specific period can induce sinus node-like cells.
Collapse
Affiliation(s)
- Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Feng-yuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yan-hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yu-ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Cong-xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| |
Collapse
|
16
|
Rao KS, Kameswaran V, Bruneau BG. Modeling congenital heart disease: lessons from mice, hPSC-based models, and organoids. Genes Dev 2022; 36:652-663. [PMID: 35835508 PMCID: PMC9296004 DOI: 10.1101/gad.349678.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital heart defects (CHDs) are among the most common birth defects, but their etiology has long been mysterious. In recent decades, the development of a variety of experimental models has led to a greater understanding of the molecular basis of CHDs. In this review, we contrast mouse models of CHD, which maintain the anatomical arrangement of the heart, and human cellular models of CHD, which are more likely to capture human-specific biology but lack anatomical structure. We also discuss the recent development of cardiac organoids, which are a promising step toward more anatomically informative human models of CHD.
Collapse
Affiliation(s)
- Kavitha S Rao
- Gladstone Institutes, San Francisco, California 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California 94158, USA
| | - Vasumathi Kameswaran
- Gladstone Institutes, San Francisco, California 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California 94158, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, California 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, California 94158, USA
- Department of Pediatrics and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
17
|
Robbe ZL, Shi W, Wasson LK, Scialdone AP, Wilczewski CM, Sheng X, Hepperla AJ, Akerberg BN, Pu WT, Cristea IM, Davis IJ, Conlon FL. CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart. Genes Dev 2022; 36:468-482. [PMID: 35450884 PMCID: PMC9067406 DOI: 10.1101/gad.349154.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/31/2022] [Indexed: 12/23/2022]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is one of the central chromatin remodeling complexes that mediates gene repression. NuRD is essential for numerous developmental events, including heart development. Clinical and genetic studies have provided direct evidence for the role of chromodomain helicase DNA-binding protein 4 (CHD4), the catalytic component of NuRD, in congenital heart disease (CHD), including atrial and ventricular septal defects. Furthermore, it has been demonstrated that CHD4 is essential for mammalian cardiomyocyte formation and function. A key unresolved question is how CHD4/NuRD is localized to specific cardiac target genes, as neither CHD4 nor NuRD can directly bind DNA. Here, we coupled a bioinformatics-based approach with mass spectrometry analyses to demonstrate that CHD4 interacts with the core cardiac transcription factors GATA4, NKX2-5, and TBX5 during embryonic heart development. Using transcriptomics and genome-wide occupancy data, we characterized the genomic landscape of GATA4, NKX2-5, and TBX5 repression and defined the direct cardiac gene targets of the GATA4-CHD4, NKX2-5-CHD4, and TBX5-CHD4 complexes. These data were used to identify putative cis-regulatory elements controlled by these complexes. We genetically interrogated two of these silencers in vivo: Acta1 and Myh11 We show that deletion of these silencers leads to inappropriate skeletal and smooth muscle gene misexpression, respectively, in the embryonic heart. These results delineate how CHD4/NuRD is localized to specific cardiac loci and explicates how mutations in the broadly expressed CHD4 protein lead to cardiac-specific disease states.
Collapse
Affiliation(s)
- Zachary L Robbe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei Shi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lauren K Wasson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Angel P Scialdone
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Caralynn M Wilczewski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Frank L Conlon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
18
|
Gonzalez-Teran B, Pittman M, Felix F, Thomas R, Richmond-Buccola D, Hüttenhain R, Choudhary K, Moroni E, Costa MW, Huang Y, Padmanabhan A, Alexanian M, Lee CY, Maven BEJ, Samse-Knapp K, Morton SU, McGregor M, Gifford CA, Seidman JG, Seidman CE, Gelb BD, Colombo G, Conklin BR, Black BL, Bruneau BG, Krogan NJ, Pollard KS, Srivastava D. Transcription factor protein interactomes reveal genetic determinants in heart disease. Cell 2022; 185:794-814.e30. [PMID: 35182466 PMCID: PMC8923057 DOI: 10.1016/j.cell.2022.01.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023]
Abstract
Congenital heart disease (CHD) is present in 1% of live births, yet identification of causal mutations remains challenging. We hypothesized that genetic determinants for CHDs may lie in the protein interactomes of transcription factors whose mutations cause CHDs. Defining the interactomes of two transcription factors haplo-insufficient in CHD, GATA4 and TBX5, within human cardiac progenitors, and integrating the results with nearly 9,000 exomes from proband-parent trios revealed an enrichment of de novo missense variants associated with CHD within the interactomes. Scoring variants of interactome members based on residue, gene, and proband features identified likely CHD-causing genes, including the epigenetic reader GLYR1. GLYR1 and GATA4 widely co-occupied and co-activated cardiac developmental genes, and the identified GLYR1 missense variant disrupted interaction with GATA4, impairing in vitro and in vivo function in mice. This integrative proteomic and genetic approach provides a framework for prioritizing and interrogating genetic variants in heart disease.
Collapse
Affiliation(s)
- Barbara Gonzalez-Teran
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Maureen Pittman
- Gladstone Institutes, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Franco Felix
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Desmond Richmond-Buccola
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | | | | | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael Alexanian
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Clara Youngna Lee
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Bonnie E J Maven
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Kaitlen Samse-Knapp
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Sarah U Morton
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael McGregor
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA; Division of Cardiology, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Division of Cardiology, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
van Ouwerkerk AF, Bosada FM, van Duijvenboden K, Houweling AC, Scholman KT, Wakker V, Allaart CP, Uhm JS, Mathijssen IB, Baartscheer T, Postma AV, Barnett P, Verkerk AO, Boukens BJ, Christoffels VM. Patient-specific TBX5-G125R Variant Induces Profound Transcriptional Deregulation and Atrial Dysfunction. Circulation 2022; 145:606-619. [PMID: 35113653 PMCID: PMC8860223 DOI: 10.1161/circulationaha.121.054347] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The pathogenic missense variant p.G125R in TBX5 causes Holt-Oram syndrome (HOS; hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. Methods: We analyzed electrocardiograms (ECGs) of an extended family pedigree of HOS patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiological analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single nuclei and tissue RNA sequencing) and epigenetic profiling (ATAC-sequencing, H3K27ac CUT&RUN-sequencing). Results: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in HOS patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared to controls. Transcriptional profiling of atria revealed most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and non-coding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R sensitive putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA binding motifs of members of the SP- and KLF families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, altered transcriptional regulation and changed cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. Conclusions: Our data reveal how a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.
Collapse
Affiliation(s)
- Antoinette F van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Aix-Marseille University, INSERM, TAGC, U1090, Marseille, France
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge B Mathijssen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ton Baartscheer
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Wang D, Dong X, Xiong Y, Li Z, Xie Y, Liang S, Huang T. Identification of a novel TBX5 c.755 + 1 G > A variant and related pathogenesis in a family with Holt-Oram syndrome. Am J Med Genet A 2022; 188:58-70. [PMID: 34490705 PMCID: PMC9290998 DOI: 10.1002/ajmg.a.62488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/03/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
The proband with congenital heart disease and abnormal thumb was clinically diagnosed as Holt-Oram syndrome (HOS). A novel variant, T-box transcription factor 5 (TBX5) c.755 + 1 G > A, was identified in the proband via whole exome sequencing and validated using Sanger sequencing. Pedigree analysis and clinical examinations revealed three/seven individuals over three generations within the family, with features suggestive of HOS. Deep amplicon sequencing confirmed that the allele frequencies of the novel variant in the proband (III-1), her brother (III-2), and her mother (II-2) were 50%, 48.3%, and 38.1%, respectively, indicating that III-1 and III-2 harbored heterozygous variants, while II-2 harbored mosaic heterozygous variants. The minigene splicing assay showed that the novel variant affected the normal splicing of exon 7, resulting in the production of abnormal TBX5 transcripts. Reverse transcription-quantitative polymerase chain reaction and western blot analyses revealed that the novel variant upregulated TBX5 expression at the transcriptional and translational levels. Nuclear localization assay demonstrated impaired nuclear localization of the mutant TBX5. Cell viability assay revealed the inhibition of cell activity by the mutant TBX5. Our findings indicate that the novel variant was potentially induced HOS, probably by causing aberrant splicing, reducing the enrichment of nuclear TBX5 protein, and inhibiting cellular proliferation.
Collapse
Affiliation(s)
- De‐Gang Wang
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou, China
- Prenatal Diagnosis Center, Boai Hospital of Zhongshan, Zhongshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xing‐Sheng Dong
- Prenatal Diagnosis CenterBoai Hospital of ZhongshanZhongshanChina
| | - Yi Xiong
- Prenatal Diagnosis CenterBoai Hospital of ZhongshanZhongshanChina
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| | - Zhi‐Ming Li
- Prenatal Diagnosis CenterBoai Hospital of ZhongshanZhongshanChina
| | - Ying‐Jun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong ProvinceThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shu‐Hua Liang
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| | - Tian‐Hua Huang
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou, China
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu, China
| |
Collapse
|
21
|
Soltani L, Mahdavi AH. Role of Signaling Pathways during Cardiomyocyte Differentiation of Mesenchymal Stem Cells. Cardiology 2021; 147:216-224. [PMID: 34864735 DOI: 10.1159/000521313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 11/25/2021] [Indexed: 11/19/2022]
Abstract
Multipotent stem cells, including mesenchymal stem cells (MSCs), represent a promising source to be used by regenerative medicine. They are capable of performing myogenic, chondrogenic, osteogenic and adipogenic differentiation. Also, MSCs are characterized by the expression of multiple surface antigens, but none of them appears to be particularly expressed on MSCs. Moreover, the prospect of monitoring and controlling MSC differentiation is a scientifically crucial regulatory and clinical requirement. Different transcription factors and signaling pathways are involved in cardiomyocyte differentiation. Due to the paucity of studies exclusively focused on cardiomyocyte differentiation of MSCs, present study aims at describing the roles of various signaling pathways (FGF, TGF, Wnt, Notch, etc.) in cardiomyocytes differentiation of MSCs. Understanding the signaling pathways that control the commitment and differentiation of cardiomyocyte cells not only will expand our basic understanding of molecular mechanisms of heart development, but also will enable us to develop therapeutic means of intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture and Engineering, Razi University, Kermanshah, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
22
|
Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021; 118:94-106. [PMID: 34144893 PMCID: PMC8968240 DOI: 10.1016/j.semcdb.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.
Collapse
|
23
|
Hypoplastic left heart syndrome (HLHS): molecular pathogenesis and emerging drug targets for cardiac repair and regeneration. Expert Opin Ther Targets 2021; 25:621-632. [PMID: 34488532 DOI: 10.1080/14728222.2021.1978069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Hypoplastic left heart syndrome (HLHS) is a severe developmental defect characterized by the underdevelopment of the left ventricle along with aortic and valvular defects. Multiple palliative surgeries are required for survival. Emerging studies have identified potential mechanisms for the disease onset, including genetic and hemodynamic causes. Genetic variants associated with HLHS include transcription factors, chromatin remodelers, structural proteins, and signaling proteins necessary for normal heart development. Nonetheless, current therapies are being tested clinically and have shown promising results at improving cardiac function in patients who have undergone palliative surgeries. AREAS COVERED We searched PubMed and clinicaltrials.gov to review most of the mechanistic research and clinical trials involving HLHS. This review discusses the anatomy and pathology of HLHS hearts. We highlight some of the identified genetic variants that underly the molecular pathogenesis of HLHS. Additionally, we discuss some of the emerging therapies and their limitations for HLHS. EXPERT OPINION While HLHS etiology is largely obscure, palliative therapies remain the most viable option for the patients. It is necessary to generate animal and stem cell models to understand the underlying genetic causes directly leading to HLHS and facilitate the use of gene-based therapies to improve cardiac development and regeneration.
Collapse
|
24
|
Gao R, Ren J. Zebrafish Models in Therapeutic Research of Cardiac Conduction Disease. Front Cell Dev Biol 2021; 9:731402. [PMID: 34422842 PMCID: PMC8371477 DOI: 10.3389/fcell.2021.731402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Malfunction in the cardiac conduction system (CCS) due to congenital anomalies or diseases can cause cardiac conduction disease (CCD), which results in disturbances in cardiac rhythm, leading to syncope and even sudden cardiac death. Insights into development of the CCS components, including pacemaker cardiomyocytes (CMs), atrioventricular node (AVN) and the ventricular conduction system (VCS), can shed light on the pathological and molecular mechanisms underlying CCD, provide approaches for generating human pluripotent stem cell (hPSC)-derived CCS cells, and thus improve therapeutic treatment for such a potentially life-threatening disorder of the heart. However, the cellular and molecular mechanisms controlling CCS development remain elusive. The zebrafish has become a valuable vertebrate model to investigate early development of CCS components because of its unique features such as external fertilization, embryonic optical transparency and the ability to survive even with severe cardiovascular defects during development. In this review, we highlight how the zebrafish has been utilized to dissect the cellular and molecular mechanisms of CCS development, and how the evolutionarily conserved developmental mechanisms discovered in zebrafish could be applied to directing the creation of hPSC-derived CCS cells, therefore providing potential therapeutic strategies that may contribute to better treatment for CCD patients.
Collapse
Affiliation(s)
- Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Rathjens FS, Blenkle A, Iyer LM, Renger A, Syeda F, Noack C, Jungmann A, Dewenter M, Toischer K, El-Armouche A, Müller OJ, Fabritz L, Zimmermann WH, Zelarayan LC, Zafeiriou MP. Preclinical evidence for the therapeutic value of TBX5 normalization in arrhythmia control. Cardiovasc Res 2021; 117:1908-1922. [PMID: 32777030 PMCID: PMC8262635 DOI: 10.1093/cvr/cvaa239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 06/26/2020] [Accepted: 07/29/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS Arrhythmias and sudden cardiac death (SCD) occur commonly in patients with heart failure. We found T-box 5 (TBX5) dysregulated in ventricular myocardium from heart failure patients and thus we hypothesized that TBX5 reduction contributes to arrhythmia development in these patients. To understand the underlying mechanisms, we aimed to reveal the ventricular TBX5-dependent transcriptional network and further test the therapeutic potential of TBX5 level normalization in mice with documented arrhythmias. METHODS AND RESULTS We used a mouse model of TBX5 conditional deletion in ventricular cardiomyocytes. Ventricular (v) TBX5 loss in mice resulted in mild cardiac dysfunction and arrhythmias and was associated with a high mortality rate (60%) due to SCD. Upon angiotensin stimulation, vTbx5KO mice showed exacerbated cardiac remodelling and dysfunction suggesting a cardioprotective role of TBX5. RNA-sequencing of a ventricular-specific TBX5KO mouse and TBX5 chromatin immunoprecipitation was used to dissect TBX5 transcriptional network in cardiac ventricular tissue. Overall, we identified 47 transcripts expressed under the control of TBX5, which may have contributed to the fatal arrhythmias in vTbx5KO mice. These included transcripts encoding for proteins implicated in cardiac conduction and contraction (Gja1, Kcnj5, Kcng2, Cacna1g, Chrm2), in cytoskeleton organization (Fstl4, Pdlim4, Emilin2, Cmya5), and cardiac protection upon stress (Fhl2, Gpr22, Fgf16). Interestingly, after TBX5 loss and arrhythmia development in vTbx5KO mice, TBX5 protein-level normalization by systemic adeno-associated-virus (AAV) 9 application, re-established TBX5-dependent transcriptome. Consequently, cardiac dysfunction was ameliorated and the propensity of arrhythmia occurrence was reduced. CONCLUSIONS This study uncovers a novel cardioprotective role of TBX5 in the adult heart and provides preclinical evidence for the therapeutic value of TBX5 protein normalization in the control of arrhythmia.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Chromatin Immunoprecipitation Sequencing
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Disease Models, Animal
- Gene Expression Profiling
- Genetic Therapy
- Heart Rate
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/therapy
- Isolated Heart Preparation
- Mice, Inbred C57BL
- Mice, Knockout
- RNA-Seq
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Transcription, Genetic
- Transcriptome
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
Collapse
Affiliation(s)
- Franziska S Rathjens
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Alica Blenkle
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Anke Renger
- Institut für Erziehungswissenschaften, Humboldt University, Berlin, Germany
| | - Fahima Syeda
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Claudia Noack
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Andreas Jungmann
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Disease), partner site Heidelberg/Mannheim, Germany
| | - Matthias Dewenter
- DZHK (German Center for Cardiovascular Disease), partner site Heidelberg/Mannheim, Germany
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center, Goettingen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Technology-Dresden, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
- Division of Rhythmology, Department of Cardiovascular Medicine, Hospital of the University of Münster, Münster, Germany
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Germany
| | - Laura C Zelarayan
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Maria-Patapia Zafeiriou
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Germany
| |
Collapse
|
26
|
Zhang C, Li Y, Cao J, Yu B, Zhang K, Li K, Xu X, Guo Z, Liang Y, Yang X, Yang Z, Sun Y, Kaartinen V, Ding K, Wang J. Hedgehog signalling controls sinoatrial node development and atrioventricular cushion formation. Open Biol 2021; 11:210020. [PMID: 34062094 PMCID: PMC8169207 DOI: 10.1098/rsob.210020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Smoothened is a key receptor of the hedgehog pathway, but the roles of Smoothened in cardiac development remain incompletely understood. In this study, we found that the conditional knockout of Smoothened from the mesoderm impaired the development of the venous pole of the heart and resulted in hypoplasia of the atrium/inflow tract (IFT) and a low heart rate. The blockage of Smoothened led to reduced expression of genes critical for sinoatrial node (SAN) development in the IFT. In a cardiac cell culture model, we identified a Gli2–Tbx5–Hcn4 pathway that controls SAN development. In the mutant embryos, the endocardial-to-mesenchymal transition (EndMT) in the atrioventricular cushion failed, and Bmp signalling was downregulated. The addition of Bmp2 rescued the EndMT in mutant explant cultures. Furthermore, we analysed Gli2+ scRNAseq and Tbx5−/− RNAseq data and explored the potential genes downstream of hedgehog signalling in posterior second heart field derivatives. In conclusion, our study reveals that Smoothened-mediated hedgehog signalling controls posterior cardiac progenitor commitment, which suggests that the mutation of Smoothened might be involved in the aetiology of congenital heart diseases related to the cardiac conduction system and heart valves.
Collapse
Affiliation(s)
- Chaohui Zhang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yuxin Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Jiaheng Cao
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Beibei Yu
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Kaiyue Zhang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Ke Li
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xinhui Xu
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yinming Liang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, People's Republic of China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, People's Republic of China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Keyue Ding
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou 450003, People's Republic of China
| | - Jikui Wang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan Province, People's Republic of China
| |
Collapse
|
27
|
Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development. J Cardiovasc Dev Dis 2021; 8:jcdd8050056. [PMID: 34068962 PMCID: PMC8156480 DOI: 10.3390/jcdd8050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular development is a complex process that starts with the formation of symmetrically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcriptional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA-mRNA expression profiles. Over-expression analyses demonstrated that a given microRNA can distinctly regulate the same T-box family member in distinct cardiac regions and within distinct temporal frameworks, supporting the notion of indirect regulatory mechanisms, and dual luciferase assays on Tbx2, Tbx3 and Tbx5 3' UTR further supported this notion. Overall, our data demonstrated a highly dynamic microRNA and T-box family members expression during cardiogenesis and supported the notion that such microRNAs indirectly regulate the T-box family members in a tissue- and time-dependent manner.
Collapse
|
28
|
Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. Int J Mol Sci 2021; 22:ijms22063288. [PMID: 33807107 PMCID: PMC8004589 DOI: 10.3390/ijms22063288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
During the postnatal period, mammalian cardiomyocytes undergo numerous maturational changes associated with increased cardiac function and output, including hypertrophic growth, cell cycle exit, sarcomeric protein isoform switching, and mitochondrial maturation. These changes come at the expense of loss of regenerative capacity of the heart, contributing to heart failure after cardiac injury in adults. While most studies focus on the transcriptional regulation of embryonic or adult cardiomyocytes, the transcriptional changes that occur during the postnatal period are relatively unknown. In this review, we focus on the transcriptional regulators responsible for these aspects of cardiomyocyte maturation during the postnatal period in mammals. By specifically highlighting this transitional period, we draw attention to critical processes in cardiomyocyte maturation with potential therapeutic implications in cardiovascular disease.
Collapse
|
29
|
Kathiriya IS, Rao KS, Iacono G, Devine WP, Blair AP, Hota SK, Lai MH, Garay BI, Thomas R, Gong HZ, Wasson LK, Goyal P, Sukonnik T, Hu KM, Akgun GA, Bernard LD, Akerberg BN, Gu F, Li K, Speir ML, Haeussler M, Pu WT, Stuart JM, Seidman CE, Seidman JG, Heyn H, Bruneau BG. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Dev Cell 2021; 56:292-309.e9. [PMID: 33321106 PMCID: PMC7878434 DOI: 10.1016/j.devcel.2020.11.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023]
Abstract
Haploinsufficiency of transcriptional regulators causes human congenital heart disease (CHD); however, the underlying CHD gene regulatory network (GRN) imbalances are unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor, TBX5, in individual cells during cardiomyocyte differentiation from human induced pluripotent stem cells (iPSCs). We discovered highly sensitive dysregulation of TBX5-dependent pathways-including lineage decisions and genes associated with heart development, cardiomyocyte function, and CHD genetics-in discrete subpopulations of cardiomyocytes. Spatial transcriptomic mapping revealed chamber-restricted expression for many TBX5-sensitive transcripts. GRN analysis indicated that cardiac network stability, including vulnerable CHD-linked nodes, is sensitive to TBX5 dosage. A GRN-predicted genetic interaction between Tbx5 and Mef2c, manifesting as ventricular septation defects, was validated in mice. These results demonstrate exquisite and diverse sensitivity to TBX5 dosage in heterogeneous subsets of iPSC-derived cardiomyocytes and predicts candidate GRNs for human CHDs, with implications for quantitative transcriptional regulation in disease.
Collapse
Affiliation(s)
- Irfan S Kathiriya
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.
| | - Kavitha S Rao
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Giovanni Iacono
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - W Patrick Devine
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Andrew P Blair
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Swetansu K Hota
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Michael H Lai
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Bayardo I Garay
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | | | - Henry Z Gong
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Lauren K Wasson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Piyush Goyal
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Tatyana Sukonnik
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Kevin M Hu
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Gunes A Akgun
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Laure D Bernard
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kai Li
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthew L Speir
- Genomics Institute, University of California, Santa Cruz, CA 95064, USA
| | | | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02115, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Universitat Pompeu Fabra, 08028 Barcelona, Spain
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Iacobas S, Amuzescu B, Iacobas DA. Transcriptomic uniqueness and commonality of the ion channels and transporters in the four heart chambers. Sci Rep 2021; 11:2743. [PMID: 33531573 PMCID: PMC7854717 DOI: 10.1038/s41598-021-82383-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profiled with Agilent microarrays to identify the differences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantified 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited differential expression between the atrium and the ventricle, while 5.8% of genes were differently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber differences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantified binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side.
Collapse
Affiliation(s)
- Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Bogdan Amuzescu
- Department Biophysics and Physiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA. .,DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
31
|
van Eif VW, Protze S, Bosada FM, Yuan X, Sinha T, van Duijvenboden K, Ernault AC, Mohan RA, Wakker V, de Gier-de Vries C, Hooijkaas IB, Wilson MD, Verkerk AO, Bakkers J, Boukens BJ, Black BL, Scott IC, Christoffels VM. Genome-Wide Analysis Identifies an Essential Human TBX3 Pacemaker Enhancer. Circ Res 2020; 127:1522-1535. [PMID: 33040635 PMCID: PMC8153223 DOI: 10.1161/circresaha.120.317054] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RATIONALE The development and function of the pacemaker cardiomyocytes of the sinoatrial node (SAN), the leading pacemaker of the heart, are tightly controlled by a conserved network of transcription factors, including TBX3 (T-box transcription factor 3), ISL1 (ISL LIM homeobox 1), and SHOX2 (short stature homeobox 2). Yet, the regulatory DNA elements (REs) controlling target gene expression in the SAN pacemaker cells have remained undefined. OBJECTIVE Identification of the regulatory landscape of human SAN-like pacemaker cells and functional assessment of SAN-specific REs potentially involved in pacemaker cell gene regulation. METHODS AND RESULTS We performed Assay for Transposase-Accessible Chromatin using sequencing on human pluripotent stem cell-derived SAN-like pacemaker cells and ventricle-like cells and identified thousands of putative REs specific for either human cell type. We validated pacemaker cell-specific elements in the SHOX2 and TBX3 loci. CRISPR-mediated homozygous deletion of the mouse ortholog of a noncoding region with candidate pacemaker-specific REs in the SHOX2 locus resulted in selective loss of Shox2 expression from the developing SAN and embryonic lethality. Putative pacemaker-specific REs were identified up to 1 Mbp upstream of TBX3 in a region close to MED13L harboring variants associated with heart rate recovery after exercise. The orthologous region was deleted in mice, which resulted in selective loss of expression of Tbx3 from the SAN and (cardiac) ganglia and in neonatal lethality. Expression of Tbx3 was maintained in other tissues including the atrioventricular conduction system, lungs, and liver. Heterozygous adult mice showed increased SAN recovery times after pacing. The human REs harboring the associated variants robustly drove expression in the SAN of transgenic mouse embryos. CONCLUSIONS We provided a genome-wide collection of candidate human pacemaker-specific REs, including the loci of SHOX2, TBX3, and ISL1, and identified a link between human genetic variants influencing heart rate recovery after exercise and a variant RE with highly conserved function, driving SAN expression of TBX3.
Collapse
Affiliation(s)
- Vincent W.W. van Eif
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Xuefei Yuan
- The Hospital for Sick Children; and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Tanvi Sinha
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Auriane C. Ernault
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Aix-Marseille Université, INSERM, MMG - U1251, Marseille, France
| | - Rajiv A. Mohan
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingeborg B. Hooijkaas
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael D. Wilson
- The Hospital for Sick Children; and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Bastiaan J. Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Brian L. Black
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Ian C. Scott
- The Hospital for Sick Children; and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
Mohan RA, Bosada FM, van Weerd JH, van Duijvenboden K, Wang J, Mommersteeg MTM, Hooijkaas IB, Wakker V, de Gier-de Vries C, Coronel R, Boink GJJ, Bakkers J, Barnett P, Boukens BJ, Christoffels VM. T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. Proc Natl Acad Sci U S A 2020; 117:18617-18626. [PMID: 32675240 PMCID: PMC7414162 DOI: 10.1073/pnas.1919379117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Genome-wide association studies have identified noncoding variants near TBX3 that are associated with PR interval and QRS duration, suggesting that subtle changes in TBX3 expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous Tbx3 mutant (Tbx3+/-) mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice. The atrioventricular node size was unaffected. Transcriptomic analysis of atrioventricular nodes isolated by laser capture microdissection revealed hundreds of deregulated genes in Tbx3+/- mutants. Notably, Tbx3+/- atrioventricular nodes showed increased expression of working myocardial gene programs (mitochondrial and metabolic processes, muscle contractility) and reduced expression of pacemaker gene programs (neuronal, Wnt signaling, calcium/ion channel activity). By integrating chromatin accessibility profiles (ATAC sequencing) of atrioventricular tissue and other epigenetic data, we identified Tbx3-dependent atrioventricular regulatory DNA elements (REs) on a genome-wide scale. We used transgenic reporter assays to determine the functionality of candidate REs near Ryr2, an up-regulated chamber-enriched gene, and in Cacna1g, a down-regulated conduction system-specific gene. Using genome editing to delete candidate REs, we showed that a strong intronic bipartite RE selectively governs Cacna1g expression in the conduction system in vivo. Our data provide insights into the multifactorial Tbx3-dependent transcriptional network that regulates the structure and function of the cardiac conduction system, which may underlie the differences in PR duration and QRS interval between individuals carrying variants in the TBX3 locus.
Collapse
Affiliation(s)
- Rajiv A Mohan
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan H van Weerd
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jianan Wang
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ingeborg B Hooijkaas
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bas J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
34
|
Guzzolino E, Pellegrino M, Ahuja N, Garrity D, D'Aurizio R, Groth M, Baumgart M, Hatcher CJ, Mercatanti A, Evangelista M, Ippolito C, Tognoni E, Fukuda R, Lionetti V, Pellegrini M, Cremisi F, Pitto L. miR-182-5p is an evolutionarily conserved Tbx5 effector that impacts cardiac development and electrical activity in zebrafish. Cell Mol Life Sci 2020; 77:3215-3229. [PMID: 31686119 PMCID: PMC11104936 DOI: 10.1007/s00018-019-03343-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
To dissect the TBX5 regulatory circuit, we focused on microRNAs (miRNAs) that collectively contribute to make TBX5 a pivotal cardiac regulator. We profiled miRNAs in hearts isolated from wild-type, CRE, Tbx5lox/+and Tbx5del/+ mice using a Next Generation Sequencing (NGS) approach. TBX5 deficiency in cardiomyocytes increased the expression of the miR-183 cluster family that is controlled by Kruppel-like factor 4, a transcription factor repressed by TBX5. MiR-182-5p, the most highly expressed miRNA of this family, was functionally analyzed in zebrafish. Transient overexpression of miR-182-5p affected heart morphology, calcium handling and the onset of arrhythmias as detected by ECG tracings. Accordingly, several calcium channel proteins identified as putative miR-182-5p targets were downregulated in miR-182-5p overexpressing hearts. In stable zebrafish transgenic lines, we demonstrated that selective miRNA-182-5p upregulation contributes to arrhythmias. Moreover, cardiac-specific down-regulation of miR-182-5p rescued cardiac defects in a zebrafish model of Holt-Oram syndrome. In conclusion, miR-182-5p exerts an evolutionarily conserved role as a TBX5 effector in the onset of cardiac propensity for arrhythmia, and constitutes a relevant target for mediating the relationship between TBX5, arrhythmia and heart development.
Collapse
Affiliation(s)
- Elena Guzzolino
- Institute of Clinical Physiology, National Research Council, IFC via Moruzzi 1, 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Neha Ahuja
- Department of Biology, Colorado State University (CSU), Fort Collins, CO, USA
| | - Deborah Garrity
- Department of Biology, Colorado State University (CSU), Fort Collins, CO, USA
| | | | - Marco Groth
- The Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Mario Baumgart
- The Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Cathy J Hatcher
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Alberto Mercatanti
- Institute of Clinical Physiology, National Research Council, IFC via Moruzzi 1, 56124, Pisa, Italy
| | - Monica Evangelista
- Institute of Clinical Physiology, National Research Council, IFC via Moruzzi 1, 56124, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | | | - Ryuichi Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- UOS Anesthesiology, Fondazione Toscana "G.Monasterio", Pisa, Italy
| | | | | | - Letizia Pitto
- Institute of Clinical Physiology, National Research Council, IFC via Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
35
|
Zhao H, Huang C. Conversion of human cardiac progenitor cells using reprogramming factors into heterogeneous cardiac pacemaker-like cells. J Mol Cell Cardiol 2020; 141:53. [PMID: 32209329 DOI: 10.1016/j.yjmcc.2020.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Hongyi Zhao
- Department of cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Congxin Huang
- Department of cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China..
| |
Collapse
|
36
|
Wang S, Zhang J, He X, Zhang Y, Chen J, Su Q, Pang S, Zhang S, Cui Y, Yan B. Identification and functional analysis of genetic variants in TBX5 gene promoter in patients with acute myocardial infarction. BMC Cardiovasc Disord 2019; 19:265. [PMID: 31775637 PMCID: PMC6880377 DOI: 10.1186/s12872-019-1237-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background Coronary artery disease (CAD), including acute myocardial infarction (AMI), is a common complex disease. Although a great number of genetic loci and variants for CAD have been identified, genetic causes and underlying mechanisms remain largely unclear. Epidemiological studies have revealed that CAD incidence is strikingly higher in patients with congenital heart disease than that in normal population. T-box transcription factors play critical roles in embryonic development. In particular, TBX5 as a dosage-sensitive regulator is required for cardiac development and function. Thus, dysregulated TBX5 gene expression may be involved in CAD development. Methods TBX5 gene promoter was genetically and functionally analysed in large groups of AMI patients (n = 432) and ethnic-matched healthy controls (n = 448). Results Six novel heterozygous DNA sequence variants (DSVs) in the TBX5 gene promoter (g.4100A > G, g.4194G > A, g.4260 T > C, g.4367C > A, g.4581A > G and g.5004G > T) were found in AMI patients, but in none of controls. These DSVs significantly changed the activity of TBX5 gene promoter in cultured cells (P < 0.05). Furthermore, three of the DSVs (g.4100A > G, g.4260 T > C and g.4581A > G) evidently modified the binding sites of unknown transcription factors. Conclusions The DSVs identified in AMI patients may alter TBX5 gene promoter activity and change TBX5 level, contributing to AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Jie Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Xiaohui He
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Yexin Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Jing Chen
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Qiang Su
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China
| | - Shufang Zhang
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China.
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China. .,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China. .,Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
37
|
Abstract
The rate and rhythm of heart muscle contractions are coordinated by the cardiac conduction system (CCS), a generic term for a collection of different specialized muscular tissues within the heart. The CCS components initiate the electrical impulse at the sinoatrial node, propagate it from atria to ventricles via the atrioventricular node and bundle branches, and distribute it to the ventricular muscle mass via the Purkinje fibre network. The CCS thereby controls the rate and rhythm of alternating contractions of the atria and ventricles. CCS function is well conserved across vertebrates from fish to mammals, although particular specialized aspects of CCS function are found only in endotherms (mammals and birds). The development and homeostasis of the CCS involves transcriptional and regulatory networks that act in an embryonic-stage-dependent, tissue-dependent, and dose-dependent manner. This Review describes emerging data from animal studies, stem cell models, and genome-wide association studies that have provided novel insights into the transcriptional networks underlying CCS formation and function. How these insights can be applied to develop disease models and therapies is also discussed.
Collapse
|
38
|
Singh BN, Gong W, Das S, Theisen JWM, Sierra-Pagan JE, Yannopoulos D, Skie E, Shah P, Garry MG, Garry DJ. Etv2 transcriptionally regulates Yes1 and promotes cell proliferation during embryogenesis. Sci Rep 2019; 9:9736. [PMID: 31278282 PMCID: PMC6611806 DOI: 10.1038/s41598-019-45841-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Etv2, an Ets-transcription factor, governs the specification of the earliest hemato-endothelial progenitors during embryogenesis. While the transcriptional networks during hemato-endothelial development have been well described, the mechanistic details are incompletely defined. In the present study, we described a new role for Etv2 as a regulator of cellular proliferation via Yes1 in mesodermal lineages. Analysis of an Etv2-ChIPseq dataset revealed significant enrichment of Etv2 peaks in the upstream regions of cell cycle regulatory genes relative to non-cell cycle genes. Our bulk-RNAseq analysis using the doxycycline-inducible Etv2 ES/EB system showed increased levels of cell cycle genes including E2f4 and Ccne1 as early as 6 h following Etv2 induction. Further, EdU-incorporation studies demonstrated that the induction of Etv2 resulted in a ~2.5-fold increase in cellular proliferation, supporting a proliferative role for Etv2 during differentiation. Next, we identified Yes1 as the top-ranked candidate that was expressed in Etv2-EYFP+ cells at E7.75 and E8.25 using single cell RNA-seq analysis. Doxycycline-mediated induction of Etv2 led to an increase in Yes1 transcripts in a dose-dependent fashion. In contrast, the level of Yes1 was reduced in Etv2 null embryoid bodies. Using bioinformatics algorithms, biochemical, and molecular biology techniques, we show that Etv2 binds to the promoter region of Yes1 and functions as a direct upstream transcriptional regulator of Yes1 during embryogenesis. These studies enhance our understanding of the mechanisms whereby Etv2 governs mesodermal fate decisions early during embryogenesis.
Collapse
Affiliation(s)
- Bhairab N Singh
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wuming Gong
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua W M Theisen
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Javier E Sierra-Pagan
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Demetris Yannopoulos
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erik Skie
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pruthvi Shah
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary G Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA. .,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
39
|
Bhakta M, Padanad MS, Harris JP, Lubczyk C, Amatruda JF, Munshi NV. pouC Regulates Expression of bmp4 During Atrioventricular Canal Formation in Zebrafish. Dev Dyn 2018; 248:173-188. [PMID: 30444277 DOI: 10.1002/dvdy.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Many human gene mutations have been linked to congenital heart disease (CHD), yet CHD remains a major health issue worldwide due in part to an incomplete understanding of the molecular basis for cardiac malformation. RESULTS Here we identify the orthologous mouse Pou6f1 and zebrafish pouC as POU homeodomain transcription factors enriched in the developing heart. We find that pouC is a multi-functional transcriptional regulator containing separable activation, repression, protein-protein interaction, and DNA binding domains. Using zebrafish heart development as a model system, we demonstrate that pouC knockdown impairs cardiac morphogenesis and affects cardiovascular function. We also find that levels of pouC expression must be fine-tuned to enable proper heart formation. At the cellular level, we demonstrate that pouC knockdown disrupts atrioventricular canal (AVC) cardiomyocyte maintenance, although chamber myocyte specification remains intact. Mechanistically, we show that pouC binds a bmp4 intronic regulatory element to mediate transcriptional activation. CONCLUSIONS Taken together, our study establishes pouC as a novel transcriptional input into the regulatory hierarchy that drives AVC morphogenesis in zebrafish. We anticipate that these findings will inform future efforts to explore functional conservation in mammals and potential association with atrioventricular septal defects in humans. Developmental Dynamics 248:173-188, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minoti Bhakta
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Mahesh S Padanad
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - John P Harris
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - Christina Lubczyk
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas
| | - James F Amatruda
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Nikhil V Munshi
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas.,Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
40
|
Firulli BA, Toolan KP, Harkin J, Millar H, Pineda S, Firulli AB. The HAND1 frameshift A126FS mutation does not cause hypoplastic left heart syndrome in mice. Cardiovasc Res 2018; 113:1732-1742. [PMID: 29016838 DOI: 10.1093/cvr/cvx166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
Aims To test if a human Hand1 frame shift mutation identified in human samples is causative of hypoplastic left heart syndrome (HLHS). Methods and results HLHS is a poorly understood single ventricle congenital heart defect that affects two to three infants in every 10 000 live births. The aetiologies of HLHS are largely unknown. The basic helix-loop-helix transcription factor HAND1 is required for normal heart development. Interrogation of HAND1 sequence from fixed HLHS tissues identified a somatic frame-shift mutation at Alanine 126 (NP_004812.1 p.Ala126Profs13X defined as Hand1A126fs). Hand1A126fs creates a truncated HAND1 protein that predictively functions as dominant negative. To determine if this mutation is causative of HLHS, we engineered a conditional Hand1A126fs mouse allele. Activation of this allele with Nkx2.5Cre results in E14.5 lethality accompanied by cardiac outflow tract and intraventricular septum abnormalities. Using αMHC-Cre or Mef2CAHF-Cre to activate Hand1A126fs results in reduced phenotype and limited viability. Left ventricles of Hand1A126FS mutant mice are not hypoplastic. Conclusions Somatically acquired Hand1A126FS mutation is not causative of HLHS. Hand1A126FS mutation does exhibit embryonic lethal cardiac defects that reflect a dominant negative function supporting the critical role of Hand1 in cardiogenesis.
Collapse
Affiliation(s)
- Beth A Firulli
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Kevin P Toolan
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Jade Harkin
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Hannah Millar
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Santiago Pineda
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
41
|
Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation. J Mol Med (Berl) 2018; 96:601-610. [DOI: 10.1007/s00109-018-1647-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
|
42
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
43
|
Growth and Morphogenesis during Early Heart Development in Amniotes. J Cardiovasc Dev Dis 2017; 4:jcdd4040020. [PMID: 29367549 PMCID: PMC5753121 DOI: 10.3390/jcdd4040020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022] Open
Abstract
In this review, we will focus on the growth and morphogenesis of the developing heart, an aspect of cardiovascular development to which Antoon Moorman and colleagues have extensively contributed. Over the last decades, genetic studies and characterization of regionally regulated gene programs have provided abundant novel insights into heart development essential to understand the basis of congenital heart disease. Heart morphogenesis, however, is inherently a complex and dynamic three-dimensional process and we are far from understanding its cellular basis. Here, we discuss recent advances in studying heart morphogenesis and regionalization under the light of the pioneering work of Moorman and colleagues, which allowed the reinterpretation of regional gene expression patterns under a new morphogenetic framework. Two aspects of early heart formation will be discussed in particular: (1) the initial formation of the heart tube and (2) the formation of the cardiac chambers by the ballooning process. Finally, we emphasize that in addition to analyses based on fixed samples, new approaches including clonal analysis, single-cell sequencing, live-imaging and quantitative analysis of the data generated will likely lead to novel insights in understanding early heart tube regionalization and morphogenesis in the near future.
Collapse
|
44
|
Kerr KF, Avery CL, Lin HJ, Raffield LM, Zhang QS, Browning BL, Browning SR, Conomos MP, Gogarten SM, Laurie CC, Sofer T, Thornton TA, Hohensee C, Jackson RD, Kooperberg C, Li Y, Méndez-Giráldez R, Perez MV, Peters U, Reiner AP, Zhang ZM, Yao J, Sotoodehnia N, Taylor KD, Guo X, Lange LA, Soliman EZ, Wilson JG, Rotter JI, Heckbert SR, Jain D, Whitsel EA. Genome-wide association study of heart rate and its variability in Hispanic/Latino cohorts. Heart Rhythm 2017; 14:1675-1684. [PMID: 28610988 PMCID: PMC5671896 DOI: 10.1016/j.hrthm.2017.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although time-domain measures of heart rate variability (HRV) are used to estimate cardiac autonomic tone and disease risk in multiethnic populations, the genetic epidemiology of HRV in Hispanics/Latinos has not been characterized. OBJECTIVE The purpose of this study was to conduct a genome-wide association study of heart rate (HR) and its variability in the Hispanic Community Health Study/Study of Latinos, Multi-Ethnic Study of Atherosclerosis, and Women's Health Initiative Hispanic SNP-Health Association Resource project (n = 13,767). METHODS We estimated HR (bpm), standard deviation of normal-to-normal interbeat intervals (SDNN, ms), and root mean squared difference in successive, normal-to-normal interbeat intervals (RMSSD, ms) from resting, standard 12-lead ECGs. We estimated associations between each phenotype and 17 million genotyped or imputed single nucleotide polymorphisms (SNPs), accounting for relatedness and adjusting for age, sex, study site, and ancestry. Cohort-specific estimates were combined using fixed-effects, inverse-variance meta-analysis. We investigated replication for select SNPs exceeding genome-wide (P <5 × 10-8) or suggestive (P <10-6) significance thresholds. RESULTS Two genome-wide significant SNPs replicated in a European ancestry cohort, 1 one for RMSSD (rs4963772; chromosome 12) and another for SDNN (rs12982903; chromosome 19). A suggestive SNP for HR (rs236352; chromosome 6) replicated in an African-American cohort. Functional annotation of replicated SNPs in cardiac and neuronal tissues identified potentially causal variants and mechanisms. CONCLUSION This first genome-wide association study of HRV and HR in Hispanics/Latinos underscores the potential for even modestly sized samples of non-European ancestry to inform the genetic epidemiology of complex traits.
Collapse
Affiliation(s)
- Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, Washington.
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Qian S Zhang
- Department of Biostatistics, University of Washington, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Brian L Browning
- Department of Medicine, University of Washington, Seattle, Washington
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, Washington
| | | | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Chancellor Hohensee
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Raúl Méndez-Giráldez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Marco V Perez
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Stanford University, Palo Alto, California
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Zhu-Ming Zhang
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Nona Sotoodehnia
- Department of Epidemiology, University of Washington, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington; Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Leslie A Lange
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, North Carolina
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington; Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
45
|
Gene Expression Networks in the Murine Pulmonary Myocardium Provide Insight into the Pathobiology of Atrial Fibrillation. G3-GENES GENOMES GENETICS 2017; 7:2999-3017. [PMID: 28720711 PMCID: PMC5592927 DOI: 10.1534/g3.117.044651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pulmonary myocardium is a muscular coat surrounding the pulmonary and caval veins. Although its definitive physiological function is unknown, it may have a pathological role as the source of ectopic beats initiating atrial fibrillation. How the pulmonary myocardium gains pacemaker function is not clearly defined, although recent evidence indicates that changed transcriptional gene expression networks are at fault. The gene expression profile of this distinct cell type in situ was examined to investigate underlying molecular events that might contribute to atrial fibrillation. Via systems genetics, a whole-lung transcriptome data set from the BXD recombinant inbred mouse resource was analyzed, uncovering a pulmonary cardiomyocyte gene network of 24 transcripts, coordinately regulated by chromosome 1 and 2 loci. Promoter enrichment analysis and interrogation of publicly available ChIP-seq data suggested that transcription of this gene network may be regulated by the concerted activity of NKX2-5, serum response factor, myocyte enhancer factor 2, and also, at a post-transcriptional level, by RNA binding protein motif 20. Gene ontology terms indicate that this gene network overlaps with molecular markers of the stressed heart. Therefore, we propose that perturbed regulation of this gene network might lead to altered calcium handling, myocyte growth, and contractile force contributing to the aberrant electrophysiological properties observed in atrial fibrillation. We reveal novel molecular interactions and pathways representing possible therapeutic targets for atrial fibrillation. In addition, we highlight the utility of recombinant inbred mouse resources in detecting and characterizing gene expression networks of relatively small populations of cells that have a pathological significance.
Collapse
|
46
|
Wang F, Liu D, Zhang RR, Yu LW, Zhao JY, Yang XY, Jiang SS, Ma D, Qiao B, Zhang F, Jin L, Gui YH, Wang HY. A TBX5 3'UTR variant increases the risk of congenital heart disease in the Han Chinese population. Cell Discov 2017; 3:17026. [PMID: 28761722 PMCID: PMC5527299 DOI: 10.1038/celldisc.2017.26] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
TBX5 is a vital transcription factor involved in cardiac development in a dosage-dependent manner. But little is known about the potential association of TBX5 3′ untranslated region (UTR) variations with congenital cardiac malformations. This study aimed to investigate the relationship between TBX5 3′UTR variants and risk for congenital heart disease (CHD) susceptibility in two Han Chinese populations, and to reveal its molecular mechanism. The relationship between TBX5 3′UTR variants and CHD susceptibility was examined in 1 177 CHD patients and 990 healthy controls in two independent case–control studies. Variant rs6489956 C>T was found to be associated with increased CHD susceptibility in both cohorts. The combined CHD risk for the CT and TT genotype carriers was 1.83 times higher than that of CC genotype, while the risk for CT or TT genotype was 1.94 times and 2.31 times higher than that of CC carriers, respectively. Quantitative real-time PCR and western blot analysis showed that T allele carriers exhibited reduced TBX5 mRNA and protein levels in CHDs tissues. Compared with C allele, T allele showed increased binding affinity to miR-9 and miR-30a in both luciferase assays and surface plasmon resonance analysis. Functional analysis confirmed that miR-9 and miR-30a downregulated TBX5 expression at the transcriptional and translational levels, respectively. The assays in zebrafish model were in support of the interaction of miR-9/30a and TBX5 3′UTR (C and T allele). We concluded that TBX5 3′UTR variant rs6489956 increased susceptibility of CHD in the Han Chinese population because it changes the binding affinity of two target miRNAs that specifically mediate TBX5 expression.
Collapse
Affiliation(s)
- Feng Wang
- Children's Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| | - Ran-Ran Zhang
- Children's Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Li-Wei Yu
- Children's Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Jian-Yuan Zhao
- The State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xue-Yan Yang
- The State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Song-Shan Jiang
- The State Key laboratory for Biocontrol and MOE Key Laboratory of Gene Engineering, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Duan Ma
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Qiao
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, Jinan, China
| | - Feng Zhang
- The Obstetrics & Gynecology Hospital, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Li Jin
- The State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yong-Hao Gui
- Children's Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Hong-Yan Wang
- The Obstetrics & Gynecology Hospital, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction & Development, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Chen HX, Zhang X, Hou HT, Wang J, Yang Q, Wang XL, He GW. Identification of a novel and functional mutation in the TBX5 gene in a patient by screening from 354 patients with isolated ventricular septal defect. Eur J Med Genet 2017; 60:385-390. [PMID: 28434921 DOI: 10.1016/j.ejmg.2017.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/23/2017] [Accepted: 04/17/2017] [Indexed: 11/16/2022]
Abstract
Ventricular septal defect (VSD) is the most frequently occurring congenital heart disease in newborns. A number of genetic studies have linked TBX5 mutations to cardiac abnormalities. We aimed to identify potential pathogenic mutations in TBX5 and to provide insights into the etiology of sporadic and isolated VSD. Case-control mutational and functional analyses were performed in 354 sporadic patients with isolated VSD and 341 controls. All the coding exons and intron-exon boundaries of TBX5 were first sequenced in a group of VSD patients and controls. Sanger sequencing with high-resolution melting (HRM) curve analysis in new patients and controls was then used to detect TBX5 mutation and frequency. Luciferase activities were measured to identify transcriptional regulation of TBX5 to MYH6 and ANF promoter. A novel heterozygous missense mutations c.40C > A (p.Pro14Thr) was identified in TBX5 gene exon-2, resulting proline to threonine substitution. TBX5 containing mutation reduced transcriptional activities of the MYH6 promoter but enhanced transcriptional activities of the ANF promoter, compared with the wild type. This novel heterozygous missense mutation in TBX5 gene exon-2 that causes significant changes of the activity of TBX5 is therefore highly possible to be the cause of the defect in the VSD patients.
Collapse
Affiliation(s)
- Huan-Xin Chen
- Department of Cardiovascular Surgery and Center for Basic Science Research, TEDA International Cardiovascular Hospital, Tianjin & The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China
| | - Xi Zhang
- Department of Cardiovascular Surgery and Center for Basic Science Research, TEDA International Cardiovascular Hospital, Tianjin & The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China
| | - Hai-Tao Hou
- Department of Cardiovascular Surgery and Center for Basic Science Research, TEDA International Cardiovascular Hospital, Tianjin & The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Cardiovascular Surgery and Center for Basic Science Research, TEDA International Cardiovascular Hospital, Tianjin & The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China
| | - Qin Yang
- Department of Cardiovascular Surgery and Center for Basic Science Research, TEDA International Cardiovascular Hospital, Tianjin & The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China; Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiu-Li Wang
- Department of Cardiovascular Surgery and Center for Basic Science Research, TEDA International Cardiovascular Hospital, Tianjin & The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery and Center for Basic Science Research, TEDA International Cardiovascular Hospital, Tianjin & The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Hangzhou, China; Department of Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
48
|
Abstract
The generation and propagation of the cardiac impulse is the central function of the cardiac conduction system (CCS). Impulse initiation occurs in nodal tissues that have high levels of automaticity, but slow conduction properties. Rapid impulse propagation is a feature of the ventricular conduction system, which is essential for synchronized contraction of the ventricular chambers. When functioning properly, the CCS produces ~2.4 billion heartbeats during a human lifetime and orchestrates the flow of cardiac impulses, designed to maximize cardiac output. Abnormal impulse initiation or propagation can result in brady- and tachy-arrhythmias, producing an array of symptoms, including syncope, heart failure or sudden cardiac death. Underlying the functional diversity of the CCS are gene regulatory networks that direct cell fate towards a nodal or a fast conduction gene program. In this review, we will discuss our current understanding of the transcriptional networks that dictate the components of the CCS, the growth factor-dependent signaling pathways that orchestrate some of these transcriptional hierarchies and the effect of aberrant transcription factor expression on mammalian conduction disease.
Collapse
|
49
|
Darwich R, Li W, Yamak A, Komati H, Andelfinger G, Sun K, Nemer M. KLF13 is a genetic modifier of the Holt-Oram syndrome gene TBX5. Hum Mol Genet 2017; 26:942-954. [PMID: 28164238 DOI: 10.1093/hmg/ddx009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/03/2017] [Indexed: 01/04/2023] Open
Abstract
TBX5, a member of the T-box family of transcription factors, is a dosage sensitive regulator of heart development. Mutations in TBX5 are responsible for Holt-Oram Syndrome, an autosomal dominant disease with variable and partially penetrant cardiac defects suggestive of the existence of genetic and environmental modifiers. KLF13, a member of the Krüppel-like family of zinc finger proteins is co-expressed with TBX5 in several cardiac cells including atrial cardiomyocytes and cells of the interatrial septum. We report that KLF13 interacts physically and functionally with TBX5 to synergistically activate transcription of cardiac genes. We show that TBX5 contacts KLF13 via its T-domain and find that several disease-causing mutations therein have decreased KLF13 interaction. Whereas Klf13 heterozygote mice have no detectable cardiac defects, loss of a Klf13 allele in Tbx5 heterozygote mice significantly increases the penetrance of TBX5-dependent cardiac abnormalities including atrial, atrial-ventricular and ventricular septal defects. The results reveal for the first time combinatorial interaction between a T-box protein and a KLF family member and its importance for heart and possibly other organ development. The data also suggest that, in human, KLF13 may be a genetic modifier of the Holt-Oram Syndrome gene TBX5.
Collapse
Affiliation(s)
- Rami Darwich
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Wenjuan Li
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada.,Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Abir Yamak
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Hiba Komati
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Gregor Andelfinger
- Sainte Justine Hospital, Cardiovascular Genetics, Montréal, Quebec, H3T 1C5, Canada
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada
| |
Collapse
|
50
|
Burkhard S, van Eif V, Garric L, Christoffels VM, Bakkers J. On the Evolution of the Cardiac Pacemaker. J Cardiovasc Dev Dis 2017; 4:jcdd4020004. [PMID: 29367536 PMCID: PMC5715705 DOI: 10.3390/jcdd4020004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 01/26/2023] Open
Abstract
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function.
Collapse
Affiliation(s)
- Silja Burkhard
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent van Eif
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Laurence Garric
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent M Christoffels
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|