1
|
Liu J, Zhou T, Bao Y, Lin C, Chen Q, Dai Y, Zhang N, Pan W, Jin Q, Lu L, Zhao Q, Ling T, Wu L. Identification of senescence-related genes for potential therapeutic biomarkers of atrial fibrillation by bioinformatics, human histological validation, and molecular docking. Heliyon 2024; 10:e37366. [PMID: 39381104 PMCID: PMC11456832 DOI: 10.1016/j.heliyon.2024.e37366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Background Cellular senescence is pivotal in the occurrence and progression of atrial fibrillation (AF). This study aimed to identify senescence-related genes that could be potential therapeutic biomarkers for AF. Methods AF-related differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus dataset. Weighted gene co-expression network analysis (WGCNA) was used to analyze important modules and potential hub genes. Integrating senescence-related genes, potential biomarkers were identified. Their differential expression levels were then validated in human atrial tissue, HL-1 cells, and Angiotensin II-infused mice. Finally, molecular docking analysis was conducted to predict potential interactions between potential biomarkers and the senolytic drug Navitoclax. Results We identified seven genes common to AF-related DEGs and senescence-related genes. Three significant modules were selected from WGCNA analysis. Taken together, three senescence-related genes (ETS1, SP1, and WT1) were found to be significantly associated with AF. Protein-protein interaction network analysis revealed biological connections among the predicted target genes of ETS1, SP1, and WT1. Notably, ETS1, SP1, and WT1 exhibited significant differential expression in clinical samples as well as in vitro and in vivo models. Molecular docking revealed favorable binding affinity between senolytic Navitoclax and these potential biomarkers. Conclusions This study highlights ETS1, SP1, and WT1 as crucial senescence-related genes associated with AF, offering potential therapeutic targets, with supportive evidence of binding affinity with senolytic Navitoclax. These findings provide novel insights into AF pathogenesis from a senescence perspective.
Collapse
Affiliation(s)
- Jingmeng Liu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Taojie Zhou
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Changjian Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiujing Chen
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Dai
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenqi Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianyou Ling
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
2
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
3
|
Long X, Wei J, Fang Q, Yuan X, Du J. Single-cell RNA sequencing reveals the transcriptional heterogeneity of Tbx18-positive cardiac cells during heart development. Funct Integr Genomics 2024; 24:18. [PMID: 38265516 DOI: 10.1007/s10142-024-01290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
The T-box family transcription factor 18 (Tbx18) has been found to play a critical role in regulating the development of the mammalian heart during the primary stages of embryonic development while the cellular heterogeneity and landscape of Tbx18-positive (Tbx18+) cardiac cells remain incompletely characterized. Here, we analyzed prior published single-cell RNA sequencing (scRNA-seq) mouse heart data to explore the heterogeneity of Tbx18+ cardiac cell subpopulations and provide a comprehensive transcriptional landscape of Tbx18+ cardiac cells during their development. Bioinformatic analysis methods were utilized to identify the heterogeneity between cell groups. Based on the gene expression characteristics, Tbx18+ cardiac cells can be classified into a minimum of two distinct cell populations, namely fibroblast-like cells and cardiomyocytes. In terms of temporal heterogeneity, these cells exhibit three developmental stages, namely the MEM stage, ML_P0 stage, and P stage Tbx18+ cardiac cells. Furthermore, Tbx18+ cardiac cells encompass several cell types, including cardiac progenitor-like cells, cardiomyocytes, and epicardial/stromal cells, as determined by specific transcriptional regulatory networks. The scRNA-seq results revealed the involvement of extracellular matrix (ECM) signals and epicardial epithelial-to-mesenchymal transition (EMT) in the development of Tbx18+ cardiac cells. The utilization of a lineage-tracing model served to validate the crucial function of Tbx18 in the differentiation of cardiac cells. Consequently, these findings offer a comprehensive depiction of the cellular heterogeneity within Tbx18+ cardiac cells.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jiangjun Wei
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
4
|
Pickett CJ, Gruner HN, Davidson B. Lhx3/4 initiates a cardiopharyngeal-specific transcriptional program in response to widespread FGF signaling. PLoS Biol 2024; 22:e3002169. [PMID: 38271304 PMCID: PMC10810493 DOI: 10.1371/journal.pbio.3002169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Individual signaling pathways, such as fibroblast growth factors (FGFs), can regulate a plethora of inductive events. According to current paradigms, signal-dependent transcription factors (TFs), such as FGF/MapK-activated Ets family factors, partner with lineage-determining factors to achieve regulatory specificity. However, many aspects of this model have not been rigorously investigated. One key question relates to whether lineage-determining factors dictate lineage-specific responses to inductive signals or facilitate these responses in collaboration with other inputs. We utilize the chordate model Ciona robusta to investigate mechanisms generating lineage-specific induction. Previous studies in C. robusta have shown that cardiopharyngeal progenitor cells are specified through the combined activity of FGF-activated Ets1/2.b and an inferred ATTA-binding transcriptional cofactor. Here, we show that the homeobox TF Lhx3/4 serves as the lineage-determining TF that dictates cardiopharyngeal-specific transcription in response to pleiotropic FGF signaling. Targeted knockdown of Lhx3/4 leads to loss of cardiopharyngeal gene expression. Strikingly, ectopic expression of Lhx3/4 in a neuroectodermal lineage subject to FGF-dependent specification leads to ectopic cardiopharyngeal gene expression in this lineage. Furthermore, ectopic Lhx3/4 expression disrupts neural plate morphogenesis, generating aberrant cell behaviors associated with execution of incompatible morphogenetic programs. Based on these findings, we propose that combinatorial regulation by signal-dependent and lineage-determinant factors represents a generalizable, previously uncategorized regulatory subcircuit we term "cofactor-dependent induction." Integration of this subcircuit into theoretical models will facilitate accurate predictions regarding the impact of gene regulatory network rewiring on evolutionary diversification and disease ontogeny.
Collapse
Affiliation(s)
- C. J. Pickett
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Hannah N. Gruner
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| |
Collapse
|
5
|
Vail ME, Farnsworth RH, Hii L, Allen S, Arora S, Anderson RL, Dickins RA, Orimo A, Wu SZ, Swarbrick A, Scott AM, Janes PW. Inhibition of EphA3 Expression in Tumour Stromal Cells Suppresses Tumour Growth and Progression. Cancers (Basel) 2023; 15:4646. [PMID: 37760615 PMCID: PMC10527215 DOI: 10.3390/cancers15184646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mary E. Vail
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Rae H. Farnsworth
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Linda Hii
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Stacey Allen
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Sakshi Arora
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Robin L. Anderson
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Ross A. Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Akira Orimo
- Department of Pathology and Oncology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Sunny Z. Wu
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Alexander Swarbrick
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Peter W. Janes
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Murugan S, Cheng C. Roles of Eph-Ephrin Signaling in the Eye Lens Cataractogenesis, Biomechanics, and Homeostasis. Front Cell Dev Biol 2022; 10:852236. [PMID: 35295853 PMCID: PMC8918484 DOI: 10.3389/fcell.2022.852236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 01/26/2023] Open
Abstract
The eye lens is responsible for fine focusing of light onto the retina, and its function relies on tissue transparency and biomechanical properties. Recent studies have demonstrated the importance of Eph-ephrin signaling for the maintenance of life-long lens homeostasis. The binding of Eph receptor tyrosine kinases to ephrin ligands leads to a bidirectional signaling pathway that controls many cellular processes. In particular, dysfunction of the receptor EphA2 or the ligand ephrin-A5 lead to a variety of congenital and age-related cataracts, defined as any opacity in the lens, in human patients. In addition, a wealth of animal studies reveal the unique and overlapping functions of EphA2 and ephrin-A5 in lens cell shape, cell organization and patterning, and overall tissue optical and biomechanical properties. Significant differences in lens phenotypes of mouse models with disrupted EphA2 or ephrin-A5 signaling indicate that genetic modifiers likely affect cataract phenotypes and progression, suggesting a possible reason for the variability of human cataracts due to Eph-ephrin dysfunction. This review summarizes the roles of EphA2 and ephrin-A5 in the lens and suggests future avenues of study.
Collapse
|
7
|
Zhang J, Chen Y, Yan L, Zhang X, Zheng X, Qi J, Yang F, Li J. EphA3 deficiency in hypothalamus promotes high fat diet-induced obesity in mice. J Biomed Res 2022; 37:179-193. [PMID: 37013864 DOI: 10.7555/jbr.36.20220168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A3 (EphA3) is a member of the largest subfamily of tyrosine kinase receptors-Eph receptors. Previous studies have shown that EphA3 is associated with tissue development. Recently, we have found that the expression of EphA3 is elevated in the hypothalamus of mice with diet-induced obesity (DIO). However, the role of EphA3 in hypothalamic-controlled energy metabolism remains unclear. In the current study, we demonstrated that the deletion of EphA3 in the hypothalamus by CRISPR/Cas9-mediated gene editing promotes obesity in male mice with high-fat diet feeding rather than those with normal chow diet feeding. Moreover, the deletion of hypothalamic EphA3 promotes high-fat DIO by increasing food intake and reducing energy expenditure. Knockdown of EphA3 leads to smaller intracellular vesicles in GT1-7 cells. The current study reveals that hypothalamic EphA3 plays important roles in promoting DIO.
Collapse
Affiliation(s)
- Jubiao Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lihong Yan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoyan Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junxia Qi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fen Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| |
Collapse
|
8
|
EphA4 is highly expressed in the atria of heart and its deletion leads to atrial hypertrophy and electrocardiographic abnormalities in rats. Life Sci 2021; 278:119595. [PMID: 33974931 DOI: 10.1016/j.lfs.2021.119595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023]
Abstract
AIMS EphA4 is a member of the Eph receptor family, and expressed mainly in central nervous system (CNS), which is involved in CNS development and multiple diseases. Due to the variability in EphA4 expression, we wondered if EphA4 is expressed in other tissues, and what role does EphA4 play? MATERIALS AND METHODS We generated an EphA4 knockout (KO) rat line with red fluorescent marker protein encoded by the mCherry cassette inserted downstream of the EphA4 promoter as a reporter. Using this system, we observed high expression of EphA4 in the heart atria and in the brain. KEY FINDINGS EphaA4 KO rats (EphA4-/-) developed obvious atrial hypertrophy with an increased atria-to-heart weight ratio and atrial cardiomyocyte cross-sectional area at six months of age. EphA4-/- rats had reduced atrial end diastolic volume (EDV), atrial ejection fraction (EF) and left ventricular EF. They also exhibited increased amplitude of QRS complexes and QT intervals, with invisible p waves. RNA sequencing revealed that EphA4 KO altered the transcription of multiple genes involved in regulation of transcription and translation, ion binding, metabolism and cell adhesion. Deletion of EphA4 reduced IGF1 mRNA and protein expression, which is involved in cardiac remodeling. SIGNIFICANCE Our data demonstrated that EphA4 was highly expressed in the atria and its deletion caused atrial dysfunction. Our findings also suggested that the EphA4 KO rat could be a potential model for studies on atrial remodeling.
Collapse
|
9
|
London M, Gallo E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep 2020; 47:5523-5533. [PMID: 32621117 DOI: 10.1007/s11033-020-05571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. The loss of EphA3 regulation is correlated with various human malignancies, the most notable being cancer. This receptor is overexpressed and/or mutated in multiple tumors, and is also associated with poor prognosis and decreased survival in patients. Here we highlight the role of EphA3 in normal and malignant tissues that are specific to cancer; these include hematologic disorders, gastric cancer, glioblastoma multiforme, colorectal cancer, lung cancer, renal cell carcinoma, and prostate cancer. Moreover, various anticancer agents against EphA3 have been developed to either inhibit its kinase domain activity or to function as agonists. Thus, we examine the most potent small molecule drugs and mAb-based therapeutics against EphA3 that are currently in pre-clinical or clinical stages.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
10
|
Chen X, Lu B, Ma Q, Ji CD, Li JZ. EphA3 inhibits migration and invasion of esophageal cancer cells by activating the mesenchymal‑epithelial transition process. Int J Oncol 2018; 54:722-732. [PMID: 30483759 DOI: 10.3892/ijo.2018.4639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/02/2018] [Indexed: 11/06/2022] Open
Abstract
Eph receptor tyrosine kinases are critical for cell‑cell communication during normal and oncogenic development. Eph receptor A3 (EphA3) expression is associated with tumor promotion in certain types of cancer; however, it acts as a tumor suppressor in others. The expression levels of EphA3 and its effects on tumor progression in esophageal squamous cell carcinoma (ESCC) cell lines were determined using reverse transcription‑quantitative polymerase chain reaction analysis and a Transwell invasion assay. The present study demonstrated that EphA3 expression was decreased in ESCC tissues and cell lines. Treatment with the DNA methylation inhibitor 5‑aza‑2'‑deoxycytidine increased the mRNA expression levels of EphA3 in the ESCC cell lines KYSE510 and KYSE30. In addition, overexpression of EphA3 in KYSE450 and KYSE510 cells inhibited cell migration and invasion. EphA3 overexpression also decreased RhoA GTPase. Furthermore, EphA3 overexpression induced mesenchymal‑epithelial transition, as demonstrated by epithelial‑like morphological alterations, increased expression of epithelial proteins (E‑cadherin and the tight junction protein 1 zonula occludens‑1) and decreased expression of mesenchymal proteins (Vimentin, N‑cadherin and Snail). Conversely, silencing EphA3 in KYSE410 cells triggered epithelial‑mesenchymal transition, and promoted cell migration and invasion. These results suggested that EphA3 may serve a tumor‑suppressor role in ESCC.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Bin Lu
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qian Ma
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, P.R. China
| | - Cheng-Dong Ji
- Department of Scientific Research Management, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Jian-Zhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
11
|
Suksawat M, Techasen A, Namwat N, Boonsong T, Titapun A, Ungarreevittaya P, Yongvanit P, Loilome W. Inhibition of endothelial nitric oxide synthase in cholangiocarcinoma cell lines - a new strategy for therapy. FEBS Open Bio 2018; 8:513-522. [PMID: 29632805 PMCID: PMC5881549 DOI: 10.1002/2211-5463.12388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/14/2017] [Accepted: 01/01/2018] [Indexed: 12/18/2022] Open
Abstract
The isoform of nitric oxide synthase (NOS) found in endothelial cells (eNOS) plays a crucial role in vasodilation. We recently reported the activation of eNOS in cholangiocarcinoma (CCA) tissues and cell lines. Moreover, we also reported that the abundance of eNOS and phosphorylated eNOS (p-eNOS), as well as its upstream regulator proteins, is significantly associated with the metastatic status of CCA patients. However, the function of eNOS in CCA progression has not been addressed. Therefore, the present study aimed to investigate the function of eNOS involved in the migration and invasion ability of CCA cell lines. The results reveal that eNOS activation significantly increases migration and invasion ability of CCA cells via the up-regulation of phosphorylated vasodilator-stimulated protein (p-VASP). A combination treatment with recombinant human vascular endothelial growth factor C and eNOS inhibitor (Nω-nitro-l-arginine methyl ester hydrochloride) resulted in the down-regulation of p-VASP, as well as a decreased migration and invasion ability of the CCA cell line. Thus, this work suggests that eNOS can serve as an attractive target to inhibit the progression of CCA.
Collapse
Affiliation(s)
- Manida Suksawat
- Department of Biochemistry Faculty of Medicine Khon Kaen University Thailand.,Cholangiocarcinoma Research Institute Khon Kaen University Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute Khon Kaen University Thailand.,Faculty of Associated Medical Science Khon Kaen University Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP) Khon Kaen University Thailand
| | - Nisana Namwat
- Department of Biochemistry Faculty of Medicine Khon Kaen University Thailand.,Cholangiocarcinoma Research Institute Khon Kaen University Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP) Khon Kaen University Thailand
| | - Thianrut Boonsong
- Cholangiocarcinoma Screening and Care Program (CASCAP) Khon Kaen University Thailand.,Department of Surgery Faculty of Medicine Khon Kaen University Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute Khon Kaen University Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP) Khon Kaen University Thailand.,Department of Surgery Faculty of Medicine Khon Kaen University Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute Khon Kaen University Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP) Khon Kaen University Thailand.,Department of Pathology Faculty of Medicine Khon Kaen University Thailand
| | - Puangrat Yongvanit
- Cholangiocarcinoma Research Institute Khon Kaen University Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP) Khon Kaen University Thailand
| | - Watcharin Loilome
- Department of Biochemistry Faculty of Medicine Khon Kaen University Thailand.,Cholangiocarcinoma Research Institute Khon Kaen University Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP) Khon Kaen University Thailand
| |
Collapse
|
12
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
13
|
Suksawat M, Techasen A, Namwat N, Yongvanit P, Khuntikeo N, Titapun A, Koonmee S, Loilome W. Upregulation of endothelial nitric oxide synthase (eNOS) and its upstream regulators in Opisthorchis viverrini associated cholangiocarcinoma and its clinical significance. Parasitol Int 2017; 66:486-493. [DOI: 10.1016/j.parint.2016.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 04/04/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022]
|
14
|
Kardon G, Ackerman KG, McCulley DJ, Shen Y, Wynn J, Shang L, Bogenschutz E, Sun X, Chung WK. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10:955-970. [PMID: 28768736 PMCID: PMC5560060 DOI: 10.1242/dmm.028365] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Congenital diaphragmatic hernias (CDHs) and structural anomalies of the diaphragm are a common class of congenital birth defects that are associated with significant morbidity and mortality due to associated pulmonary hypoplasia, pulmonary hypertension and heart failure. In ∼30% of CDH patients, genomic analyses have identified a range of genetic defects, including chromosomal anomalies, copy number variants and sequence variants. The affected genes identified in CDH patients include transcription factors, such as GATA4, ZFPM2, NR2F2 and WT1, and signaling pathway components, including members of the retinoic acid pathway. Mutations in these genes affect diaphragm development and can have pleiotropic effects on pulmonary and cardiac development. New therapies, including fetal endoscopic tracheal occlusion and prenatal transplacental fetal treatments, aim to normalize lung development and pulmonary vascular tone to prevent and treat lung hypoplasia and pulmonary hypertension, respectively. Studies of the association between particular genetic mutations and clinical outcomes should allow us to better understand the origin of this birth defect and to improve our ability to predict and identify patients most likely to benefit from specialized treatment strategies.
Collapse
Affiliation(s)
- Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kate G Ackerman
- Departments of Pediatrics (Critical Care) and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J McCulley
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Linshan Shang
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric Bogenschutz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wendy K Chung
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
15
|
Nasri B, Inokuchi M, Ishikawa T, Uetake H, Takagi Y, Otsuki S, Kojima K, Kawano T. High expression of EphA3 (erythropoietin-producing hepatocellular A3) in gastric cancer is associated with metastasis and poor survival. BMC Clin Pathol 2017; 17:8. [PMID: 28465671 PMCID: PMC5408411 DOI: 10.1186/s12907-017-0047-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/20/2017] [Indexed: 12/29/2022] Open
Abstract
Background As the major subfamily of receptor tyrosine, erythropoietin-producing hepatocellular (Eph) receptor has been related to progression and prognosis in different types of tumors. However, the role and mechanism of EPHA3 in gastric cancer is still not well understood. Methods Specimen were collected from 202 patients who underwent gastric resection for gastric adenocarcinoma. The expression of EphA3 was studied using immunohistochemistry. We analyzed the clinicopathological factors and prognostic relevance of EphA3 expression in gastric cancer. Results High expression of EphA3 was associated with male predominance (p = 0.031), differentiated histology (p < 0.001), depth of tumor (p = 0.002), lymph node metastasis (p = 0.001), distant metastasis (p = 0.021), liver metastasis (p = 0.024), advanced stage (p < 0.001), and high HER2 expression (p = 0.017). Relapse-free survival (RFS) was significantly worse in patients with high expression of EphA3 than in those with low expression of EphA3 (p = 0.014). Multivariate analysis for RFS showed that depth of tumor [hazard ratio (HR) 9.333, 95% confidence interval (CI) 2.183–39.911, p = 0.003] and lymph node metastasis [hazard ratio (HR) 5.734, 95% confidence interval (CI) 2.349–13.997, p < 0.001] were independent prognostic factors. Conclusions These findings suggest that high expression EphA3 may participate in metastasis and worse survival.
Collapse
Affiliation(s)
| | - Mikito Inokuchi
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Toshiaki Ishikawa
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Uetake
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoko Takagi
- Department of Translational Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Sho Otsuki
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
16
|
Andretta E, Cartón-García F, Martínez-Barriocanal Á, de Marcondes PG, Jimenez-Flores LM, Macaya I, Bazzocco S, Bilic J, Rodrigues P, Nieto R, Landolfi S, Ramon y Cajal S, Schwartz S, Brown A, Dopeso H, Arango D. Investigation of the role of tyrosine kinase receptor EPHA3 in colorectal cancer. Sci Rep 2017; 7:41576. [PMID: 28169277 PMCID: PMC5294649 DOI: 10.1038/srep41576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2016] [Indexed: 12/23/2022] Open
Abstract
EPH signaling deregulation has been shown to be important for colorectal carcinogenesis and genome-wide sequencing efforts have identified EPHA3 as one of the most frequently mutated genes in these tumors. However, the role of EPHA3 in colorectal cancer has not been thoroughly investigated. We show here that ectopic expression of wild type EPHA3 in colon cancer cells did not affect their growth, motility/invasion or metastatic potential in vivo. Moreover, overexpression of mutant EPHA3 or deletion of the endogenous mutant EPHA3 in colon cancer cells did not affect their growth or motility. EPHA3 inactivation in mice did not initiate the tumorigenic process in their intestine, and had no effects on tumor size/multiplicity after tumor initiation either genetically or pharmacologically. In addition, immunohistochemical analysis of EPHA3 tumor levels did not reveal associations with survival or clinicopathological features of colorectal cancer patients. In conclusion, we show that EPHA3 does not play a major role in colorectal tumorigenesis. These results significantly contribute to our understanding of the role of EPH signaling during colorectal carcinogenesis, and highlighting the need for detailed functional studies to confirm the relevance of putative cancer driver genes identified in sequencing efforts of the cancer genome.
Collapse
Affiliation(s)
- Elena Andretta
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Fernando Cartón-García
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Priscila Guimarães de Marcondes
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Lizbeth M. Jimenez-Flores
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Irati Macaya
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Sarah Bazzocco
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Josipa Bilic
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Paulo Rodrigues
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Rocio Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | | | | | - Simo Schwartz
- Group of Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Arthur Brown
- Robarts Research Institute, London, Ontario, Canada
| | - Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| |
Collapse
|
17
|
Makris SL, Scott CS, Fox J, Knudsen TB, Hotchkiss AK, Arzuaga X, Euling SY, Powers CM, Jinot J, Hogan KA, Abbott BD, Hunter ES, Narotsky MG. A systematic evaluation of the potential effects of trichloroethylene exposure on cardiac development. Reprod Toxicol 2016; 65:321-358. [PMID: 27575429 PMCID: PMC9113522 DOI: 10.1016/j.reprotox.2016.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/27/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
The 2011 EPA trichloroethylene (TCE) IRIS assessment, used developmental cardiac defects from a controversial drinking water study in rats (Johnson et al. [51]), along with several other studies/endpoints to derive reference values. An updated literature search of TCE-related developmental cardiac defects was conducted. Study quality, strengths, and limitations were assessed. A putative adverse outcome pathway (AOP) construct was developed to explore key events for the most commonly observed cardiac dysmorphologies, particularly those involved with epithelial-mesenchymal transition (EMT) of endothelial origin (EndMT); several candidate pathways were identified. A hypothesis-driven weight-of-evidence analysis of epidemiological, toxicological, in vitro, in ovo, and mechanistic/AOP data concluded that TCE has the potential to cause cardiac defects in humans when exposure occurs at sufficient doses during a sensitive window of fetal development. The study by Johnson et al. [51] was reaffirmed as suitable for hazard characterization and reference value derivation, though acknowledging study limitations and uncertainties.
Collapse
|
18
|
HIRA Is Required for Heart Development and Directly Regulates Tnni2 and Tnnt3. PLoS One 2016; 11:e0161096. [PMID: 27518902 PMCID: PMC4982693 DOI: 10.1371/journal.pone.0161096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/31/2016] [Indexed: 01/04/2023] Open
Abstract
Chromatin remodelling is essential for cardiac development. Interestingly, the role of histone chaperones has not been investigated in this regard. HIRA is a member of the HUCA (HIRA/UBN1/CABIN1/ASF1a) complex that deposits the variant histone H3.3 on chromatin independently of replication. Lack of HIRA has general effects on chromatin and gene expression dynamics in embryonic stem cells and mouse oocytes. Here we describe the conditional ablation of Hira in the cardiogenic mesoderm of mice. We observed surface oedema, ventricular and atrial septal defects and embryonic lethality. We identified dysregulation of a subset of cardiac genes, notably upregulation of troponins Tnni2 and Tnnt3, involved in cardiac contractility and decreased expression of Epha3, a gene necessary for the fusion of the muscular ventricular septum and the atrioventricular cushions. We found that HIRA binds GAGA rich DNA loci in the embryonic heart, and in particular a previously described enhancer of Tnni2/Tnnt3 (TTe) bound by the transcription factor NKX2.5. HIRA-dependent H3.3 enrichment was observed at the TTe in embryonic stem cells (ESC) differentiated toward cardiomyocytes in vitro. Thus, we show here that HIRA has locus-specific effects on gene expression and that histone chaperone activity is vital for normal heart development, impinging on pathways regulated by an established cardiac transcription factor.
Collapse
|
19
|
EPHA3 regulates the multidrug resistance of small cell lung cancer via the PI3K/BMX/STAT3 signaling pathway. Tumour Biol 2016; 37:11959-11971. [PMID: 27101199 PMCID: PMC5080350 DOI: 10.1007/s13277-016-5048-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to the treatment of small cell lung cancer (SCLC). EPHA3 has been revealed to be the most frequently mutated Eph receptor gene in lung cancer with abnormal expression. Growing evidence indicates that the signaling proteins of EPHA3 downstream, including PI3K, BMX and STAT3, play crucial roles in tumorigenesis and cancer progression. To explore the possible role of EPHA3 in MDR, we assessed the influence of EPHA3 on chemoresistance, cell cycle, apoptosis, and tumor growth, as well as the relationship between EPHA3 and the expression of PI3K, BMX, and STAT3 in SCLC. We observed that overexpression of EPHA3 in SCLC cells decreased chemoresistance by increasing apoptosis and inducing G0/G1 arrest, accompanied by reduced phosphorylation of PI3K/BMX/STAT3 signaling pathway. Knockdown of EPHA3 expression generated a resistant phenotype of SCLC, as a result of decreased apoptosis and induced G2/M phase arrest. And re-expression of EPHA3 in these cells reversed the resistant phenotype. Meanwhile, increased phosphorylation of PI3K/BMX/STAT3 signaling pathway was observed in these cells with EPHA3 deficiency. Notably, both PI3K inhibitor (LY294002) and BMX inhibitor (LFM-A13) impaired the chemoresistance enhanced by EPHA3 deficiency in SCLC cell lines. Furthermore, EPHA3 inhibited growth of SCLC cells in vivo and was correlated with longer overall survival of SCLC patients. Thus, we first provide the evidences that EPHA3 is involved in regulating the MDR of SCLC via PI3K/BMX/STAT3 signaling and may be a new therapeutic target in SCLC.
Collapse
|
20
|
Lahtela J, Pradhan B, Närhi K, Hemmes A, Särkioja M, Kovanen PE, Brown A, Verschuren EW. The putative tumor suppressor gene EphA3 fails to demonstrate a crucial role in murine lung tumorigenesis or morphogenesis. Dis Model Mech 2015; 8:393-401. [PMID: 25713296 PMCID: PMC4381338 DOI: 10.1242/dmm.019257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/12/2015] [Indexed: 01/04/2023] Open
Abstract
Treatment of non-small cell lung cancer (NSCLC) is based on histological analysis and molecular profiling of targetable driver oncogenes. Therapeutic responses are further defined by the landscape of passenger mutations, or loss of tumor suppressor genes. We report here a thorough study to address the physiological role of the putative lung cancer tumor suppressor EPH receptor A3 (EPHA3), a gene that is frequently mutated in human lung adenocarcinomas. Our data shows that homozygous or heterozygous loss of EphA3 does not alter the progression of murine adenocarcinomas that result from Kras mutation or loss of Trp53, and we detected negligible postnatal expression of EphA3 in adult wild-type lungs. Yet, EphA3 was expressed in the distal mesenchyme of developing mouse lungs, neighboring the epithelial expression of its Efna1 ligand; this is consistent with the known roles of EPH receptors in embryonic development. However, the partial loss of EphA3 leads only to subtle changes in epithelial Nkx2-1, endothelial Cd31 and mesenchymal Fgf10 RNA expression levels, and no macroscopic phenotypic effects on lung epithelial branching, mesenchymal cell proliferation, or abundance and localization of CD31-positive endothelia. The lack of a discernible lung phenotype in EphA3-null mice might indicate lack of an overt role for EPHA3 in the murine lung, or imply functional redundancy between EPHA receptors. Our study shows how biological complexity can challenge in vivo functional validation of mutations identified in sequencing efforts, and provides an incentive for the design of knock-in or conditional models to assign the role of EPHA3 mutation during lung tumorigenesis.
Collapse
Affiliation(s)
- Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Barun Pradhan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Katja Närhi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Merja Särkioja
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Panu E Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki FI-00014, Finland
| | - Arthur Brown
- Spinal Cord Injury Team, Robarts Research Institute, University of Western Ontario, London, ON N6A 5K8, Canada
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
21
|
Vail ME, Murone C, Tan A, Hii L, Abebe D, Janes PW, Lee FT, Baer M, Palath V, Bebbington C, Yarranton G, Llerena C, Garic S, Abramson D, Cartwright G, Scott AM, Lackmann M. Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment. Cancer Res 2014; 74:4470-81. [PMID: 25125683 DOI: 10.1158/0008-5472.can-14-0218] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eph receptor tyrosine kinases are critical for cell-cell communication during normal and oncogenic tissue patterning and tumor growth. Somatic mutation profiles of several cancer genomes suggest EphA3 as a tumor suppressor, but its oncogenic expression pattern and role in tumorigenesis remain largely undefined. Here, we report unexpected EphA3 overexpression within the microenvironment of a range of human cancers and mouse tumor xenografts where its activation inhibits tumor growth. EphA3 is found on mouse bone marrow-derived cells with mesenchymal and myeloid phenotypes, and activation of EphA3(+)/CD90(+)/Sca1(+) mesenchymal/stromal cells with an EphA3 agonist leads to cell contraction, cell-cell segregation, and apoptosis. Treatment of mice with an agonistic α-EphA3 antibody inhibits tumor growth by severely disrupting the integrity and function of newly formed tumor stroma and microvasculature. Our data define EphA3 as a novel target for selective ablation of the tumor microenvironment and demonstrate the potential of EphA3 agonists for anticancer therapy.
Collapse
Affiliation(s)
- Mary E Vail
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.
| | - Carmel Murone
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | - April Tan
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Linda Hii
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Degu Abebe
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Fook-Thean Lee
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | - Mark Baer
- KaloBios Pharmaceuticals, Inc., South San Francisco, California
| | - Varghese Palath
- KaloBios Pharmaceuticals, Inc., South San Francisco, California
| | | | | | - Carmen Llerena
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Slavisa Garic
- Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - David Abramson
- Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Glenn Cartwright
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | - Andrew M Scott
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia. Faculty of Medicine, University of Melbourne, Victoria, Australia.
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.
| |
Collapse
|
22
|
Tomasevic N, Luehrsen K, Baer M, Palath V, Martinez D, Williams J, Yi C, Sujatha-Bhaskar S, Lanke R, Leung J, Ching W, Lee A, Bai L, Yarranton G, Bebbington C. A high affinity recombinant antibody to the human EphA3 receptor with enhanced ADCC activity. Growth Factors 2014; 32:223-35. [PMID: 25413948 DOI: 10.3109/08977194.2014.984808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
EphA3 is expressed in solid tumors and leukemias and is an attractive target for the therapy. We have generated a panel of Humaneered® antibodies to the ligand-binding domain using a Fab epitope-focused library that has the same specificity as monoclonal antibody mIIIA4. A high-affinity antibody was selected that competes with the mIIIA4 antibody for binding to EphA3 and has an improved affinity of ∼1 nM. In order to generate an antibody with potent cell-killing activity the variable regions were assembled with human IgG1k constant regions and expressed in a Chinese hamster ovary (CHO) cell line deficient in fucosyl transferase. Non-fucosylated antibodies have been reported to have enhanced binding affinity for the IgG receptor CD16a (FcγRIIIa). The affinity of the antibody for recombinant CD16a was enhanced approximately 10-fold. This resulted in enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity against EphA3-expressing leukemic cells, providing a potent antibody for the evaluation as a therapeutic agent.
Collapse
|
23
|
Al-Ejeh F, Offenhäuser C, Lim YC, Stringer BW, Day BW, Boyd AW. Eph family co-expression patterns define unique clusters predictive of cancer phenotype. Growth Factors 2014; 32:254-64. [PMID: 25410964 DOI: 10.3109/08977194.2014.984807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Eph genes are the largest sub-family of receptor tyrosine kinases; however, it is most likely the least understood and the arena for many conflicting reports. In this tribute to Prof. Martin Lackmann and Prof. Tony Pawson, we utilized The Cancer Genome Atlas resources to shed new light on the understanding of this family. We found that mutation and expression analysis define two clusters of co-expressed Eph family genes that relate to aggressive phenotypes across multiple cancer types. Analysis of signal transduction pathways using reverse-phase protein arrays revealed a network of interactions, which associates cluster-specific Eph genes with epithelial-mesenchymal transition, metabolism, DNA-damage repair and apoptosis. Our findings support the role of the Eph family in modulating cancer progression and reveal distinct patterns of Eph expression, which correlate with disease outcome. These observations provide further rationale for seeking cancer therapies, which target the Eph/ephrin system.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Brain Cancer Research Unit & Leukaemia Foundation Research Unit, QIMR Berghofer Medical Research Institute , Brisbane, Queensland , Australia
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Eph receptor tyrosine kinases control cell-cell interactions during normal and oncogenic development, and are implicated in a range of processes including angiogenesis, stem cell maintenance and metastasis. They are thus of great interest as targets for cancer therapy. EphA3, originally isolated from leukemic and melanoma cells, is presently one of the most promising therapeutic targets, with multiple tumor-promoting roles in a variety of cancer types. This review focuses on EphA3, its functions in controlling cellular behavior, both in normal and pathological development, and most particularly in cancer.
Collapse
Affiliation(s)
- Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University , Victoria , Australia and
| | | | | | | | | | | |
Collapse
|
25
|
To C, Farnsworth RH, Vail ME, Chheang C, Gargett CE, Murone C, Llerena C, Major AT, Scott AM, Janes PW, Lackmann M. Hypoxia-controlled EphA3 marks a human endometrium-derived multipotent mesenchymal stromal cell that supports vascular growth. PLoS One 2014; 9:e112106. [PMID: 25420155 PMCID: PMC4242616 DOI: 10.1371/journal.pone.0112106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF)-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs), but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.
Collapse
MESH Headings
- Adult
- Animals
- Blotting, Western
- Cell Hypoxia
- Cells, Cultured
- Endometrium/cytology
- Female
- Gene Expression
- Heterografts/blood supply
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Mesenchymal Stem Cell Transplantation/methods
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Fluorescence
- Multipotent Stem Cells/metabolism
- Multipotent Stem Cells/transplantation
- Neovascularization, Physiologic
- RNA Interference
- Receptor, EphA3/genetics
- Receptor, EphA3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transplantation, Heterologous
- Young Adult
Collapse
Affiliation(s)
- Catherine To
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Rae H. Farnsworth
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| | - Mary E. Vail
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Chanly Chheang
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | | | - Carmel Murone
- Ludwig Institute for Cancer Research, Olivia Newton-John Cancer & Wellness Centre, Melbourne, Victoria, Australia
| | - Carmen Llerena
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Andrew T. Major
- Department of Anatomy & Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Andrew M. Scott
- Ludwig Institute for Cancer Research, Olivia Newton-John Cancer & Wellness Centre, Melbourne, Victoria, Australia
| | - Peter W. Janes
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Martin Lackmann
- Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptor tyrosine kinase family plays important roles in developmental processes, adult tissue homeostasis, and various diseases. Interaction with Eph receptor-interacting protein (ephrin) ligands on the surface of neighboring cells triggers Eph receptor kinase-dependent signaling. The ephrins can also transmit signals, leading to bidirectional cell contact-dependent communication. Moreover, Eph receptors and ephrins can function independently of each other through interplay with other signaling systems. Given their involvement in many pathological conditions ranging from neurological disorders to cancer and viral infections, Eph receptors and ephrins are increasingly recognized as attractive therapeutic targets, and various strategies are being explored to modulate their expression and function. Eph receptor/ephrin upregulation in cancer cells, the angiogenic vasculature, and injured or diseased tissues also offer opportunities for Eph/ephrin-based targeted drug delivery and imaging. Thus, despite the challenges presented by the complex biology of the Eph receptor/ephrin system, exciting possibilities exist for therapies exploiting these molecules.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037; ,
| | | |
Collapse
|
27
|
Cissé M, Checler F. Eph receptors: new players in Alzheimer's disease pathogenesis. Neurobiol Dis 2014; 73:137-49. [PMID: 25193466 DOI: 10.1016/j.nbd.2014.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is devastating and leads to permanent losses of memory and other cognitive functions. Although recent genetic evidences strongly argue for a causative role of Aβ in AD onset and progression (Jonsson et al., 2012), its role in AD etiology remains a matter of debate. However, even if not the sole culprit or pathological trigger, genetic and anatomical evidences in conjunction with numerous pharmacological studies, suggest that Aβ peptides, at least contribute to the disease. How Aβ contributes to memory loss remains largely unknown. Soluble Aβ species referred to as Aβ oligomers have been shown to be neurotoxic and induce network failure and cognitive deficits in animal models of the disease. In recent years, several proteins were described as potential Aβ oligomers receptors, amongst which are the receptor tyrosine kinases of Eph family. These receptors together with their natural ligands referred to as ephrins have been involved in a plethora of physiological and pathological processes, including embryonic neurogenesis, learning and memory, diabetes, cancers and anxiety. Here we review recent discoveries on Eph receptors-mediated protection against Aβ oligomers neurotoxicity as well as their potential as therapeutic targets in AD pathogenesis.
Collapse
Affiliation(s)
- Moustapha Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| |
Collapse
|
28
|
Eph receptors as therapeutic targets in glioblastoma. Br J Cancer 2014; 111:1255-61. [PMID: 25144626 PMCID: PMC4183860 DOI: 10.1038/bjc.2014.73] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/20/2022] Open
Abstract
The dismal outlook for patients with the most aggressive and common form of adult brain cancer, glioblastoma (GBM), motivates a search for new therapeutic strategies and targets for this aggressive disease. Here we review the findings to date on the role of Eph family receptor tyrosine kinases and their ephrin ligands in brain cancer. Expression of the Eph family of cell surface proteins is generally downregulated to very low levels in normal adult tissues making them particularly attractive for directed therapeutic targeting. Recent Eph targeting studies in pre-clinical models of GBM have been very encouraging and may provide an avenue to treat these highly refractory aggressive tumours.
Collapse
|
29
|
Agrawal P, Wang M, Kim S, Lewis AE, Bush JO. Embryonic expression of EphA receptor genes in mice supports their candidacy for involvement in cleft lip and palate. Dev Dyn 2014; 243:1470-6. [PMID: 25073978 DOI: 10.1002/dvdy.24170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Eph receptors, comprising the A- and B-subfamilies, are the largest family of receptor tyrosine kinases in the mammalian genome, and their function is critical for morphogenesis in a variety of contexts. Whereas signaling through B-type Ephs has been demonstrated to play a role in cleft lip and palate (CL/P), the involvement of A-type Ephs has not been examined in this context notwithstanding a recent genome-wide association study that identified the EPHA3 locus as a candidate for non-syndromic CL/P. RESULTS Here, we present a systematic analysis of the gene expression patterns for the nine EphA receptors at progressive stages of mouse development and find that EphA3, EphA4, and EphA7 exhibit restricted overlapping patterns of expression during palate development. We find that homozygous mutation of EphA3 or compound homozygous mutation of EphA3 and EphA4 in mice does not result in defective midfacial development, supporting the possibility of redundant function with EphA7. We also document previously undescribed expression patterns in other tissues of the craniofacial complex including the lacrimal duct and salivary glands. CONCLUSIONS Together, these results are consistent with the hypothesis that mutations in EPHA family genes may cause CL/P and also suggest that functional redundancy between family members may be at play.
Collapse
Affiliation(s)
- Puja Agrawal
- Department of Cell and Tissue Biology, Program in Craniofacial and Mesenchymal Biology and Institute for Human Genetics, University of California, San Francisco, California; Department of Molecular and Cell Biology, University of California, Berkeley, California
| | | | | | | | | |
Collapse
|
30
|
White PS, Xie HM, Werner P, Glessner J, Latney B, Hakonarson H, Goldmuntz E. Analysis of chromosomal structural variation in patients with congenital left-sided cardiac lesions. ACTA ACUST UNITED AC 2014; 100:951-64. [DOI: 10.1002/bdra.23279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter S. White
- The Center for Biomedical Informatics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pediatrics; Perelman School of Medicine, University of Pennsylvania; Philadelphia Pennsylvania
| | - Hongbo M. Xie
- The Center for Biomedical Informatics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Petra Werner
- The Division of Cardiology; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Joseph Glessner
- The Center for Applied Genomics, Department of Pediatrics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Brande Latney
- The Division of Cardiology; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Hakon Hakonarson
- Department of Pediatrics; Perelman School of Medicine, University of Pennsylvania; Philadelphia Pennsylvania
- The Center for Applied Genomics, Department of Pediatrics; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Elizabeth Goldmuntz
- Department of Pediatrics; Perelman School of Medicine, University of Pennsylvania; Philadelphia Pennsylvania
- The Division of Cardiology; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| |
Collapse
|
31
|
Keane N, Freeman C, Swords R, Giles FJ. EPHA3 as a novel therapeutic target in the hematological malignancies. Expert Rev Hematol 2014; 5:325-40. [DOI: 10.1586/ehm.12.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
|
33
|
Inagawa M, Nakajima K, Makino T, Ogawa S, Kojima M, Ito S, Ikenishi A, Hayashi T, Schwartz RJ, Nakamura K, Obayashi T, Tachibana M, Shinkai Y, Maeda K, Miyagawa-Tomita S, Takeuchi T. Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis. Mech Dev 2013; 130:519-31. [DOI: 10.1016/j.mod.2013.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022]
|
34
|
Day BW, Stringer BW, Al-Ejeh F, Ting MJ, Wilson J, Ensbey KS, Jamieson PR, Bruce ZC, Lim YC, Offenhäuser C, Charmsaz S, Cooper LT, Ellacott JK, Harding A, Leveque L, Inglis P, Allan S, Walker DG, Lackmann M, Osborne G, Khanna KK, Reynolds BA, Lickliter JD, Boyd AW. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 2013; 23:238-48. [PMID: 23410976 DOI: 10.1016/j.ccr.2013.01.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 03/21/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022]
Abstract
Significant endeavor has been applied to identify functional therapeutic targets in glioblastoma (GBM) to halt the growth of this aggressive cancer. We show that the receptor tyrosine kinase EphA3 is frequently overexpressed in GBM and, in particular, in the most aggressive mesenchymal subtype. Importantly, EphA3 is highly expressed on the tumor-initiating cell population in glioma and appears critically involved in maintaining tumor cells in a less differentiated state by modulating mitogen-activated protein kinase signaling. EphA3 knockdown or depletion of EphA3-positive tumor cells reduced tumorigenic potential to a degree comparable to treatment with a therapeutic radiolabelled EphA3-specific monoclonal antibody. These results identify EphA3 as a functional, targetable receptor in GBM.
Collapse
Affiliation(s)
- Bryan W Day
- Brain Cancer Research Unit and Leukaemia Foundation Research Unit, Queensland Institute of Medical Research, Brisbane 4006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lahtela J, Corson LB, Hemmes A, Brauer MJ, Koopal S, Lee J, Hunsaker TL, Jackson PK, Verschuren EW. A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3. Cell Cycle 2013; 12:625-34. [PMID: 23324396 PMCID: PMC3594263 DOI: 10.4161/cc.23515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Activation of a cellular senescence program is a common response to prolonged oncogene activation or tumor suppressor loss, providing a physiological mechanism for tumor suppression in premalignant cells. The link between senescence and tumor suppression supports the hypothesis that a loss-of-function screen measuring bona fide senescence marker activation should identify candidate tumor suppressors. Using a high-content siRNA screening assay for cell morphology and proliferation measures, we identify 12 senescence-regulating kinases and determine their senescence marker signatures, including elevation of senescence-associated β-galactosidase, DNA damage and p53 or p16INK4a expression. Consistent with our hypothesis, SNP array CGH data supports loss of gene copy number of five senescence-suppressing genes across multiple tumor samples. One such candidate is the EPHA3 receptor tyrosine kinase, a gene commonly mutated in human cancer. We demonstrate that selected intracellular EPHA3 tumor-associated point mutations decrease receptor expression level and/or receptor tyrosine kinase (RTK) activity. Our study therefore describes a new strategy to mine for novel candidate tumor suppressors and provides compelling evidence that EPHA3 mutations may promote tumorigenesis only when key senescence-inducing pathways have been inactivated.
Collapse
Affiliation(s)
- Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rodriguez S, Huynh-Do U. Phosphatase and tensin homolog regulates stability and activity of EphB1 receptor. FASEB J 2012; 27:632-44. [PMID: 23118026 DOI: 10.1096/fj.12-215582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deregulation of receptor tyrosine kinases (RTKs) is linked to a broad range of cancers, stressing the necessity of studying their regulatory pathways. We and others demonstrated previously that c-Cbl is necessary for the lysosomal degradation of erythropoietin-producing hepatocellular B1 (EphB1) carcinoma and epidermal growth factor receptor (EGFR) RTKs. Moreover, the tumor suppressor phosphatase and tensin homolog (PTEN) was shown to modulate c-Cbl-dependent EGFR degradation. We therefore investigated the involvement of PTEN in EphB1 signaling and degradation. We used PTEN mutants, PTEN, and NHERF1 small interfering RNA in CHO-EphB1 and SW480 cells endogenously expressing EphB1 to delineate EphB1-PTEN interactions. PTEN was constitutively associated with c-Cbl, protecting it from degradation. EphB1 stimulation triggered ∼50% serine-threonine PTEN dephosphorylation and PTEN-Cbl complex disruption, a process requiring PTEN protein phosphatase activity. Both proteins independently translocated to EphB1, with PTEN in association with the scaffold protein NHERF1. Biologically, PTEN lipid phosphatase activity impairs EphB1-dependent cell adhesion and chemotaxis. This study demonstrates for the first time in mammalian cells that the Eph receptor and PTEN associate and influence their signaling. Moreover, it contributes to the emerging concept that PTEN regulates expression of RTKs through modulation of their degradation. Finally, it reveals a new role for PTEN protein phosphatase activity involved in this process.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- Division of Nephrology and Hypertension and Department of Clinical Research, Inselspital, University of Bern Medical School, Bern, Switzerland
| | | |
Collapse
|
37
|
Siegel DH, Shieh JTC, Kwon EK, Baselga E, Blei F, Cordisco M, Dobyns WB, Duffy KJ, Garzon MC, Gibbs DL, Grimmer JF, Hayflick SJ, Krol AL, Kwok PY, Lorier R, Matter A, McWeeney S, Metry D, Mitchell S, Pope E, Santoro JL, Stevenson DA, Bayrak-Toydemir P, Wilmot B, Worthey EA, Frieden IJ, Drolet BA, Broeckel U. Copy number variation analysis in 98 individuals with PHACE syndrome. J Invest Dermatol 2012; 133:677-684. [PMID: 23096700 PMCID: PMC3971866 DOI: 10.1038/jid.2012.367] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PHACE syndrome is the association of large segmental facial hemangiomas and congenital anomalies, such as posterior fossa malformations, cerebral arterial anomalies, coarctation of the aorta, eye anomalies, and sternal defects. To date, the reported cases of PHACE syndrome have been sporadic, suggesting that PHACE may have a complex pathogenesis. We report here genomic copy number variation (CNV) analysis of 98 individuals with PHACE syndrome as a first step in deciphering a potential genetic basis of PHACE syndrome. A total of 3,772 CNVs (2,507 duplications and 1,265 deletions) were detected in 98 individuals with PHACE syndrome. CNVs were then eliminated if they failed to meet established criteria for quality, spanned centromeres, or did not contain genes. CNVs were defined as "rare" if not documented in the database of genomic variants. Ten rare CNVs were discovered (size range: 134-406 kb), located at 1q32.1, 1q43, 3q26.32-3q26.33, 3p11.1, 7q33, 10q24.32, 12q24.13, 17q11.2, 18p11.31, and Xq28. There were no rare CNV events that occurred in more than one subject. Therefore, further study is needed to determine the significance of these CNVs in the pathogenesis of PHACE syndrome.
Collapse
Affiliation(s)
- Dawn H Siegel
- Departments of Dermatology and Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Joseph T C Shieh
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Eun-Kyung Kwon
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Eulalia Baselga
- Department of Dermatology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Francine Blei
- Department of Hematology and Oncology, Vascular Birthmark Institute of New York, New York, New York, USA
| | - Maria Cordisco
- Department of Dermatology, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, Washington, USA
| | - Kelly J Duffy
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria C Garzon
- Departments of Dermatology and Pediatrics, Columbia University, Columbia, New York, USA
| | - David L Gibbs
- Department of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Johannes F Grimmer
- Departments of Surgery and Otolaryngology, University of Utah, Salt Lake City, Utah, USA
| | - Susan J Hayflick
- Departments of Molecular and Medical Genetics, Pediatrics, and Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alfons L Krol
- Departments of Dermatology and Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Pui-Yan Kwok
- Department of Cardiovascular Research, University of California, San Francisco, San Francisco, California, USA
| | - Rachel Lorier
- Department of Human and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andrea Matter
- Department of Human and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shannon McWeeney
- Department of Biostatistics, Oregon Health & Science University, Portland, Oregon, USA
| | - Denise Metry
- Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Sheri Mitchell
- ARUP Clinical & Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Elena Pope
- Departments of Pediatrics and Dermatology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer L Santoro
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David A Stevenson
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | | | - Beth Wilmot
- Department of Biostatistics, Oregon Health & Science University, Portland, Oregon, USA
| | - Elizabeth A Worthey
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ilona J Frieden
- Departments of Dermatology and Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Beth A Drolet
- Departments of Dermatology and Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ulrich Broeckel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
38
|
Pai YJ, Abdullah N, Mohd.-Zin S, Mohammed RS, Rolo A, Greene ND, Abdul-Aziz NM, Copp AJ. Epithelial fusion during neural tube morphogenesis. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2012; 94:817-23. [PMID: 22945349 PMCID: PMC3629791 DOI: 10.1002/bdra.23072] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022]
Abstract
Adhesion and fusion of epithelial sheets marks the completion of many morphogenetic events during embryogenesis. Neural tube closure involves an epithelial fusion sequence in which the apposing neural folds adhere initially via cellular protrusions, proceed to a more stable union, and subsequently undergo remodeling of the epithelial structures to yield a separate neural tube roof plate and overlying nonneural ectoderm. Cellular protrusions comprise lamellipodia and filopodia, and studies in several different systems emphasize the critical role of RhoGTPases in their regulation. How epithelia establish initial adhesion is poorly understood but, in neurulation, may involve interactions between EphA receptors and their ephrinA ligands. Epithelial remodeling is spatially and temporally correlated with apoptosis in the dorsal neural tube midline, but experimental inhibition of this cell death does not prevent fusion and remodeling. A variety of molecular signaling systems have been implicated in the late events of morphogenesis, but genetic redundancy, for example among the integrins and laminins, makes identification of the critical players challenging. An improved understanding of epithelial fusion can provide insights into normal developmental processes and may also indicate the mode of origin of clinically important birth defects.
Collapse
Affiliation(s)
- Yun-Jin Pai
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - N.L. Abdullah
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - S.W. Mohd.-Zin
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - R. S. Mohammed
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ana Rolo
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Nicholas D.E. Greene
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Noraishah M. Abdul-Aziz
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Andrew J. Copp
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
39
|
Chen J. Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res 2012; 114:1-20. [PMID: 22588054 DOI: 10.1016/b978-0-12-386503-8.00001-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent years, a growing body of evidence has indicated that signaling molecules previously implicated in axon guidance are important regulators of multistep tumorigenesis and progression. Eph receptors and ephrins belong to this special class of molecules that play important roles in both axon guidance and cancer. Tremendous progress has been made in the past few years in both understanding the role of Eph receptors and ephrins in cancer and designing therapeutic strategies for cancer therapy. This review will focus on new advances in elucidating the contribution of Eph/ephrin molecules to key processes in tumor initiation and metastatic progression, including cancer cell proliferation, invasion and metastasis, and tumor angiogenesis.
Collapse
Affiliation(s)
- Jin Chen
- VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
40
|
Abstract
Tissue fusion events during embryonic development are crucial for the correct formation and function of many organs and tissues, including the heart, neural tube, eyes, face and body wall. During tissue fusion, two opposing tissue components approach one another and integrate to form a continuous tissue; disruption of this process leads to a variety of human birth defects. Genetic studies, together with recent advances in the ability to culture developing tissues, have greatly enriched our knowledge of the mechanisms involved in tissue fusion. This review aims to bring together what is currently known about tissue fusion in several developing mammalian organs and highlights some of the questions that remain to be addressed.
Collapse
Affiliation(s)
- Heather J Ray
- HHMI, Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA
| | | |
Collapse
|
41
|
Nievergall E, Lackmann M, Janes PW. Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell Mol Life Sci 2012; 69:1813-42. [PMID: 22204021 PMCID: PMC11114713 DOI: 10.1007/s00018-011-0900-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/06/2011] [Accepted: 11/28/2011] [Indexed: 01/23/2023]
Abstract
Numerous studies attest to essential roles for Eph receptors and their ephrin ligands in controlling cell positioning and tissue patterning during normal and oncogenic development. These studies suggest multiple, sometimes contradictory, functions of Eph-ephrin signalling, which under different conditions can promote either spreading and cell-cell adhesion or cytoskeletal collapse, cell rounding, de-adhesion and cell-cell segregation. A principle determinant of the balance between these two opposing responses is the degree of receptor/ligand clustering and activation. This equilibrium is likely altered in cancers and modulated by somatic mutations of key Eph family members that have emerged as candidate cancer markers in recent profiling studies. In addition, cross-talk amongst Ephs and with other signalling pathways significantly modulates cell-cell adhesion, both between and within Eph- and ephrin-expressing cell populations. This review summarises our current understanding of how Eph receptors control cell adhesion and morphology, and presents examples demonstrating the importance of these events in normal development and cancer.
Collapse
Affiliation(s)
- Eva Nievergall
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
- Present Address: Haematology Department, SA Pathology, Frome Road, Adelaide, SA 5000 Australia
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| | - Peter W. Janes
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| |
Collapse
|
42
|
Genet G, Guilbeau-Frugier C, Honton B, Dague E, Schneider MD, Coatrieux C, Calise D, Cardin C, Nieto C, Payré B, Dubroca C, Marck P, Heymes C, Dubrac A, Arvanitis D, Despas F, Altié MF, Seguelas MH, Delisle MB, Davy A, Sénard JM, Pathak A, Galés C. Ephrin-B1 Is a Novel Specific Component of the Lateral Membrane of the Cardiomyocyte and Is Essential for the Stability of Cardiac Tissue Architecture Cohesion. Circ Res 2012; 110:688-700. [DOI: 10.1161/circresaha.111.262451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rationale:
Cardiac tissue cohesion relying on highly ordered cardiomyocytes (CM) interactions is critical because most cardiomyopathies are associated with tissue remodeling and architecture alterations.
Objective:
Eph/ephrin system constitutes a ubiquitous system coordinating cellular communications which recently emerged as a major regulator in adult organs. We examined if eph/ephrin could participate in cardiac tissue cyto-organization.
Methods and Results:
We reported the expression of cardiac ephrin-B1 in both endothelial cells and for the first time in CMs where ephrin-B1 localized specifically at the lateral membrane. Ephrin-B1 knock-out (KO) mice progressively developed cardiac tissue disorganization with loss of adult CM rod-shape and sarcomeric and intercalated disk structural disorganization confirmed in CM-specific ephrin-B1 KO mice. CMs lateral membrane exhibited abnormal structure by electron microscopy and notably increased stiffness by atomic force microscopy. In wild-type CMs, ephrin-B1 interacted with claudin-5/ZO-1 complex at the lateral membrane, whereas the complex disappeared in KO/CM-specific ephrin-B1 KO mice. Ephrin-B1 deficiency resulted in decreased mRNA expression of CM basement membrane components and disorganized fibrillar collagen matrix, independently of classical integrin/dystroglycan system. KO/CM-specific ephrin-B1 KO mice exhibited increased left ventricle diameter and delayed atrioventricular conduction. Under pressure overload stress, KO mice were prone to death and exhibited striking tissue disorganization. Finally, failing CMs displayed downregulated ephrin-B1/claudin-5 gene expression linearly related to the ejection fraction.
Conclusions:
Ephrin-B1 is necessary for cardiac tissue architecture cohesion by stabilizing the adult CM morphology through regulation of its lateral membrane. Because decreased ephrin-B1 is associated with molecular/functional cardiac defects, it could represent a new actor in the transition toward heart failure.
Collapse
Affiliation(s)
- Gaël Genet
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Céline Guilbeau-Frugier
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Benjamin Honton
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Etienne Dague
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Michael D. Schneider
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Christelle Coatrieux
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Denis Calise
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Christelle Cardin
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Cécile Nieto
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Bruno Payré
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Caroline Dubroca
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Pauline Marck
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Christophe Heymes
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Alexandre Dubrac
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Dina Arvanitis
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Fabien Despas
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Marie-Françoise Altié
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Marie-Hélène Seguelas
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Marie-Bernadette Delisle
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Alice Davy
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Jean-Michel Sénard
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Atul Pathak
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Céline Galés
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| |
Collapse
|
43
|
Lisabeth EM, Fernandez C, Pasquale EB. Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms. Biochemistry 2012; 51:1464-75. [PMID: 22242939 DOI: 10.1021/bi2014079] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Eph receptor tyrosine kinases make up an important family of signal transduction molecules that control many cellular processes, including cell adhesion and movement, cell shape, and cell growth. All of these are important aspects of cancer progression, but the relationship between Eph receptors and cancer is complex and not fully understood. Genetic screens of tumor specimens from cancer patients have revealed somatic mutations in many Eph receptors. The most highly mutated Eph receptor is EphA3, but its functional role in cancer is currently not well established. Here we show that many EphA3 mutations identified in lung, colorectal, and hepatocellular cancers, melanoma, and glioblastoma impair kinase activity or ephrin ligand binding and/or decrease the level of receptor cell surface localization. These results suggest that EphA3 has ephrin- and kinase-dependent tumor suppressing activities, which are disrupted by somatic cancer mutations.
Collapse
Affiliation(s)
- Erika M Lisabeth
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
44
|
Cheng C, Gong X. Diverse roles of Eph/ephrin signaling in the mouse lens. PLoS One 2011; 6:e28147. [PMID: 22140528 PMCID: PMC3226676 DOI: 10.1371/journal.pone.0028147] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/02/2011] [Indexed: 12/17/2022] Open
Abstract
Recent genetic studies show that the Eph/ephrin bidirectional signaling pathway is associated with both congenital and age-related cataracts in mice and humans. We have investigated the molecular mechanisms of cataractogenesis and the roles of ephrin-A5 and EphA2 in the lens. Ephrin-A5 knockout (-/-) mice often display anterior polar cataracts while EphA2(-/-) lenses show very mild cortical or nuclear cataracts at weaning age. The anterior polar cataract of ephrin-A5(-/-) lenses is correlated with multilayers of aberrant cells that express alpha smooth muscle actin, a marker for mesenchymal cells. Only select fiber cells are altered in ephrin-A5(-/-) lenses. Moreover, the disruption of membrane-associated β-catenin and E-cadherin junctions is observed in ephrin-A5(-/-) lens central epithelial cells. In contrast, EphA2(-/-) lenses display normal monolayer epithelium while disorganization is apparent in all lens fiber cells. Immunostaining of ephrin-A5 proteins, highly expressed in lens epithelial cells, were not colocalized with EphA2 proteins, mainly expressed in lens fiber cells. Besides the previously reported function of ephrin-A5 in lens fiber cells, this work suggests that ephrin-A5 regulates β-catenin signaling and E-cadherin to prevent lens anterior epithelial cells from undergoing the epithelial-to-mesenchymal transition while EphA2 is essential for controlling the organization of lens fiber cells through an unknown mechanism. Ephrin-A5 and EphA2 likely interacting with other members of Eph/ephrin family to play diverse functions in lens epithelial cells and/or fiber cells.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, University of California, Berkeley, California, United States of America
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
The Role of PTEN in Tumor Angiogenesis. JOURNAL OF ONCOLOGY 2011; 2012:141236. [PMID: 21904550 PMCID: PMC3167192 DOI: 10.1155/2012/141236] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/01/2011] [Indexed: 01/08/2023]
Abstract
During the past 20 years, the phosphatase and tensin homolog PTEN has been shown to be involved in major physiological processes, and its mutation or loss is often associated with tumor formation. In addition PTEN regulates angiogenesis not only through its antagonizing effect on the PI3 kinase pathway mainly, but also through some phosphatase-independent functions. In this paper we delineate the role of this powerful tumor suppressor in tumor angiogenesis and dissect the underlying molecular mechanisms. Furthermore, it appears that, in a number of cancers, the PTEN status determines the response to chemotherapy, highlighting the need to monitor PTEN expression and to develop PTEN-targeted therapies.
Collapse
|
46
|
DeLaughter DM, Saint-Jean L, Baldwin HS, Barnett JV. What chick and mouse models have taught us about the role of the endocardium in congenital heart disease. ACTA ACUST UNITED AC 2011; 91:511-25. [PMID: 21538818 DOI: 10.1002/bdra.20809] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/08/2011] [Accepted: 02/17/2011] [Indexed: 12/16/2022]
Abstract
Specific cell and tissue interactions drive the formation and function of the vertebrate cardiovascular system. Although much attention has been focused on the muscular components of the developing heart, the endocardium plays a key role in the formation of a functioning heart. Endocardial cells exhibit heterogeneity that allows them to participate in events such as the formation of the valves, septation of the outflow tract, and trabeculation. Here we review, the contributions of the endocardium to cardiovascular development and outline useful approaches developed in the chick and mouse that have revealed endocardial cell heterogeneity, the signaling molecules that direct endocardial cell behavior, and how these insights have contributed to our understanding of cardiovascular development and disease.
Collapse
Affiliation(s)
- Daniel M DeLaughter
- Departments of Cell & Developmental Biology, Vanderbilt University Medical Center, 2220 Pierce Ave., Nashville, TN 37232-6600, USA
| | | | | | | |
Collapse
|
47
|
Perkins EJ, Chipman JK, Edwards S, Habib T, Falciani F, Taylor R, Van Aggelen G, Vulpe C, Antczak P, Loguinov A. Reverse engineering adverse outcome pathways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:22-38. [PMID: 20963852 DOI: 10.1002/etc.374] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The toxicological effects of many stressors are mediated through unknown, or incompletely characterized, mechanisms of action. The application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) can be used to overcome these limitations. This approach was used to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows (FHM, Pimephales promelas). Gene expression changes in FHM ovaries in response to seven different chemicals, over different times, doses, and in vivo versus in vitro conditions, were captured in a large data set of 868 arrays. Potential AOPs of the antiandrogen flutamide were examined using two mutual information-based methods to infer gene regulatory networks and potential AOPs. Representative networks from these studies were used to predict network paths from stressor to adverse outcome as candidate AOPs. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment, thus leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biological processes, biomarkers, or alternative endpoints that can be used to monitor an AOP. Finally, the unique challenges facing the application of this approach in ecotoxicology were identified and a road map for the utilization of these tools presented.
Collapse
Affiliation(s)
- Edward J Perkins
- U.S. Army Engineering Research and Development Center, Vicksburg, Mississippi, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Frieden LA, Townsend TA, Vaught DB, Delaughter DM, Hwang Y, Barnett JV, Chen J. Regulation of heart valve morphogenesis by Eph receptor ligand, ephrin-A1. Dev Dyn 2010; 239:3226-34. [PMID: 20960543 DOI: 10.1002/dvdy.22458] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2010] [Indexed: 02/03/2023] Open
Abstract
Disease or malformation of heart valves is one of the leading causes of morbidity and mortality in both children and adults. These congenital anomalies can remain undetected until cardiac function is compromised, making it important to understand the underlying nature of these disorders. Here we show that ephrin-A1, a ligand for class A Eph receptor tyrosine kinases, regulates cardiac valve formation. Exogenous ephrin-A1-Fc or overexpression of ephrin-A1 in the heart inhibits epithelial-to-mesenchymal transformation (EMT) in chick atrioventricular cushion explants. In contrast, overexpression of wild-type EphA3 receptor promotes EMT via a kinase-dependent mechanism. To analyze ephrin-A1 in vivo, we generated an ephrin-A1 knockout mouse through gene targeting. Ephrin-A1 null animals are viable but exhibit impaired cardiac function. Loss of ephrin-A1 results in thickened aortic and mitral valves in newborn and adult animals. Analysis of early embryonic hearts revealed increased cellularity in outflow tract endocardial cushions and elevated mesenchymal marker expression, suggesting that excessive numbers of cells undergo EMT. Taken together, these data indicate that ephrin-A1 regulates cardiac valve development, making ephrin-A1-deficient mice a novel model for congenital heart defects.
Collapse
Affiliation(s)
- Leslie A Frieden
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Yi J, Chen M, Wu X, Yang X, Xu T, Zhuang Y, Han M, Xu R. Endothelial SUR-8 acts in an ERK-independent pathway during atrioventricular cushion development. Dev Dyn 2010; 239:2005-13. [PMID: 20549726 PMCID: PMC3138404 DOI: 10.1002/dvdy.22343] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SUR-8, a conserved leucine-rich repeats protein, was first identified as a positive regulator of Ras pathway in Caenorhabditis elegans. Biochemical studies indicated that SUR-8 interacts with Ras and Raf, leading to the elevated ERK activity. However, the physiological role of SUR-8 during mammalian development remains unclear. Here we found that germline deletion of SUR-8 in mice resulted in early embryonic lethality. Inactivated SUR-8 specifically in mouse endothelial cells (ECs) revealed that SUR-8 is essential for embryonic heart development. SUR-8 deficiency in ECs resulted in late embryonic lethality, and the mutant mice displayed multiple cardiac defects. The reduced endothelial-mesenchymal transformation (EMT) and the reduced mesenchyme proliferation phase were observed in the atrioventricular canal (AVC) within the mutant hearts, leading to the formation of hypoplastic endocardial cushions. However, ERK activation did not appear to be affected in mutant ECs, suggesting that SUR-8 may act in an ERK-independent pathway to regulate AVC development. Developmental Dynamics 239:2005–2013, 2010 © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jing Yi
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Davis TL, Walker JR, Allali-Hassani A, Parker SA, Turk BE, Dhe-Paganon S. Structural recognition of an optimized substrate for the ephrin family of receptor tyrosine kinases. FEBS J 2009; 276:4395-404. [PMID: 19678838 DOI: 10.1111/j.1742-4658.2009.07147.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ephrin receptor tyrosine kinase A3 (EphA3, EC 2.7.10.1) is a member of a unique branch of the kinome in which downstream signaling occurs in both ligand- and receptor-expressing cells. Consequently, the ephrins and ephrin receptor tyrosine kinases often mediate processes involving cell-cell contact, including cellular adhesion or repulsion, developmental remodeling and neuronal mapping. The receptor is also frequently overexpressed in invasive cancers, including breast, small-cell lung and gastrointestinal cancers. However, little is known about direct substrates of EphA3 kinase and no chemical probes are available. Using a library approach, we found a short peptide sequence that is a good substrate for EphA3 and is suitable for co-crystallization studies. Complex structures show multiple contacts between kinase and substrates; in particular, two residues undergo conformational changes and by mutation are found to be important for substrate binding and turnover. In addition, a difference in catalytic efficiency between EPH kinase family members is observed. These results provide insight into the mechanism of substrate binding to these developmentally integral enzymes.
Collapse
Affiliation(s)
- Tara L Davis
- Structural Genomics Consortium, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|