1
|
Escamilla-Vega E, Seton LWG, Kyomen S, Murillo-Rincón AP, Petersen J, Tautz D, Kaucká M. Evolution of the essential gene MN1 during the macroevolutionary transition toward patterning the vertebrate hindbrain. Proc Natl Acad Sci U S A 2025; 122:e2416061122. [PMID: 40424121 DOI: 10.1073/pnas.2416061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/27/2025] [Indexed: 05/29/2025] Open
Abstract
The tight link between brain and skull formation is a fundamental aspect of vertebrate evolution and embryogenesis. Their developmental synchronization is essential for structural and functional integration. The brain and skull shape coevolution is evident along the vertebrate phylogeny; however, the genetic basis underlying their close evolutionary and developmental relationship remains little explored. Here, we reveal the evolution and function of the MN1 gene that was previously found to be associated with significant shape variation in the mouse skull and the formation of cranial bones. We show that the vertebrate MN1 gene evolved from an ancestral deuterostome sequence. In vertebrates, the MN1 gene structure, synteny, and spatiotemporal expression pattern are remarkably conserved, indicating that the gene carries out a core function. Using a newly generated mouse knock-out model, we demonstrate in vivo that Mn1 integrated into an ancient molecular machinery and controls the expression of the Cyp26 genes in the developing hindbrain, thereby tuning the retinoic acid levels and patterning of the developing central nervous system. This study thus showcases the emergence of a novel gene function from an ancestral sequence and its role in generating a macroevolutionary innovation. The data expand our knowledge of brain and skull codevelopment and coevolution and highlight the role of this regulatory loop in craniofacial human syndromes.
Collapse
Affiliation(s)
| | - Louk W G Seton
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Stella Kyomen
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | | | - Julian Petersen
- Department of Orthodontics, University Leipzig Medical Center, Leipzig 04103, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
2
|
Beyens A, Van De Voorde S, Guerreiro Santano Ramos Da Silva M, De Meulemeester S, Devriendt K, Goeteyn M, Janssens S, Kooy RF, Rosseel T, Symoens S, Hes FJ, Keymolen K, Dimitrov B, Callewaert B. Unexpected High Prevalence of Focal Facial Dermal Dysplasia (FFDD) Type IV Is Linked to a Founder Effect in the Belgian Population. Clin Genet 2025; 107:579-581. [PMID: 39828664 DOI: 10.1111/cge.14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Focal facial dermal dysplasia (FFDD) type IV is a rare inherited facial defect caused by biallelic variants in CYP26C1. This study reports two novel Belgian FFDD type IV cases, both homozygous for a recurrent CYP26C1 frameshift variant, with a common 700 kb haplotype, indicating a founder effect.
Collapse
Affiliation(s)
- Aude Beyens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Stefanie Van De Voorde
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Reproduction and Genetics, Center for Medical Genetics, Brussels, Belgium
| | | | | | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Marleen Goeteyn
- Department of Dermatology, AZ Sint-Jan Brugge, Bruges, Belgium
| | - Sandra Janssens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Toon Rosseel
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Frederik Jan Hes
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Reproduction and Genetics, Center for Medical Genetics, Brussels, Belgium
| | - Kathelijn Keymolen
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Reproduction and Genetics, Center for Medical Genetics, Brussels, Belgium
| | - Boyan Dimitrov
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Reproduction and Genetics, Center for Medical Genetics, Brussels, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Parker LE, Papanicolaou KN, Zalesak-Kravec S, Weinberger EM, Kane MA, Foster DB. Retinoic acid signaling and metabolism in heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H792-H813. [PMID: 39933792 DOI: 10.1152/ajpheart.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Nearly 70 years after studies first showed that the offspring of vitamin A (retinol, ROL)-deficient rats exhibit structural cardiac defects and over 20 years since the role of vitamin A's potent bioactive metabolite hormone, all-trans retinoic acid (ATRA), was elucidated in embryonic cardiac development, the role of the vitamin A metabolites, or retinoids, in adult heart physiology and heart and vascular disease, remains poorly understood. Studies have shown that low serum levels of retinoic acid correlate with higher all-cause and cardiovascular mortality, though the relationship between circulating retinol and ATRA levels, cardiac tissue ATRA levels, and intracellular cardiac ATRA signaling in the context of heart and vascular disease has only begun to be addressed. We have recently shown that patients with idiopathic dilated cardiomyopathy show a nearly 40% decline of in situ cardiac ATRA levels, despite adequate local stores of retinol. Moreover, we and others have shown that the administration of ATRA forestalls the development of heart failure (HF) in rodent models. In this review, we summarize key facets of retinoid metabolism and signaling and discuss mechanisms by which impaired ATRA signaling contributes to several HF hallmarks including hypertrophy, contractile dysfunction, poor calcium handling, redox imbalance, and fibrosis. We highlight unresolved issues in cardiac ATRA metabolism whose pursuit will help refine therapeutic strategies aimed at restoring ATRA homeostasis.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Eva M Weinberger
- School of Medicine, Imperial College London, London, United Kingdom
| | - Maureen A Kane
- School of Pharmacy, University of Maryland, Baltimore, Maryland, United States
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Koo HY, Oh JH, Durán Alonso MB, Hernández IL, González-Vallinas M, Alonso MT, Tena JJ, Gil-Gálvez A, Giraldez F, Bok J, Schimmang T. Analysis of Meis2 knockout mice reveals Sonic hedgehog-mediated patterning of the cochlear duct. Dev Dyn 2025; 254:365-372. [PMID: 39351969 DOI: 10.1002/dvdy.747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The mechanisms underlying the formation of complex structures such as during the outgrowth of the cochlear duct are still poorly understood. RESULTS We have analyzed the morphological and molecular changes associated with cochlear development in mouse mutants for the transcription factor Meis2, which show defective coiling of the cochlea. These morphological abnormalities were accompanied by the formation of ectopic and extra rows of sensory hair cells. Gene profiling of otic vesicles from Meis2 mutants revealed a dysregulation of genes that are potentially involved in Sonic hedgehog (Shh)-mediated patterning of the cochlear duct. Like in Shh mutants, Meis2 defective mice showed a loss of genes that are expressed in the apical part of the cochlear duct. CONCLUSIONS Taken together, these data reveal that the loss of Meis2 leads to a phenotype that resembles Shh mutants, suggesting that Meis2 is instrumental for cochlear Shh signaling. The modulation of the same subset of genes provides an interesting insight into which Shh responsive genes are essential for outgrowth and patterning of the cochlear duct.
Collapse
Affiliation(s)
- Hei Yeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hwan Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - María Beatriz Durán Alonso
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Iris López Hernández
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Margarita González-Vallinas
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - María Teresa Alonso
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Pablo de Olavide, Sevilla, Spain
| | - Alejandro Gil-Gálvez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Pablo de Olavide, Sevilla, Spain
| | - Fernando Giraldez
- Dept. Medicine and Life Sciences (MELIS) CEXS, Universitat Pompeu Fabra, María de Maeztu Unit of Excellence, Parc de Recerca Biomédica de Barcelona (PRBB), Barcelona, Spain
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Thomas Schimmang
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
5
|
Gattoni G, Keitley D, Sawle A, Benito-Gutiérrez E. An ancient apical patterning system sets the position of the forebrain in chordates. SCIENCE ADVANCES 2025; 11:eadq4731. [PMID: 39854450 PMCID: PMC11758999 DOI: 10.1126/sciadv.adq4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates. Using functional approaches, we show Wnt signaling regulating this co-expression module in amphioxus, like the aGRN in echinoderms, and that its overactivation suppresses forebrain identity. This suggests a previously undescribed role for Wnt signaling in amphioxus in determining the position of the forebrain. We propose this Wnt-regulated gene co-expression module as a possible mechanism by which the brain set antero-dorsally early in chordate evolution.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ashley Sawle
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | | |
Collapse
|
6
|
Isoherranen N, Wen YW. The interplay between retinoic acid binding proteins and retinoic acid degrading enzymes in modulating retinoic acid concentrations. Curr Top Dev Biol 2024; 161:167-200. [PMID: 39870433 DOI: 10.1016/bs.ctdb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells. As a consequence, free atRA concentrations in cells are expected to be exceedingly low. As such mechanisms must exist that allow sufficiently high atRA concentrations to occur for binding to retinoic acid receptor (RARs) and for RAR mediated signaling. Kinetic simulations suggest that cellular retinoic acid binding proteins (CRABPs) provide a cytosolic reservoir for atRA to allow high enough cytosolic concentrations that enable RAR signaling. Yet, the different CRABP family members CRABP1 and CRABP2 may serve different functions in this context. CRABP1 may reside in the cytosol as a member of a cytosolic signalosome and CRABP2 may bind atRA in the cytosol and localize to the nucleus. Both CRABPs appear to interact with the atRA-degrading cytochrome P450 (CYP) family 26 enzymes in the endoplasmic reticulum. These interactions, together with the expression levels of the CRABPs and CYP26s, likely modulate cellular atRA concentration gradients and tissue atRA concentrations in a tightly coordinated manner. This review provides a summary of the current knowledge of atRA distribution, metabolism and protein binding and how these characteristics may alter tissue atRA concentrations.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington.
| | - Yue Winnie Wen
- Department of Pharmaceutics, School of Pharmacy, University of Washington
| |
Collapse
|
7
|
Nakamura M, Sandell LL. Multiple roles for retinoid signaling in craniofacial development. Curr Top Dev Biol 2024; 161:33-57. [PMID: 39870438 DOI: 10.1016/bs.ctdb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Retinoic acid (RA) signaling plays multiple essential roles in development of the head and face. Animal models with mutations in genes involved in RA signaling have enabled understanding of craniofacial morphogenic processes that are regulated by the retinoid pathway. During craniofacial morphogenesis RA signaling is active in spatially restricted domains defined by the expression of genes involved in RA production and RA breakdown. The spatial distribution of RA signaling changes with progressive development, corresponding to a multiplicity of craniofacial developmental processes that are regulated by RA. One important role of RA signaling occurs in the hindbrain. There RA contributes to specification of the anterior-posterior (AP) axis of the developing CNS and to the neural crest cells (NCC) which form the bones and nerves of the face and pharyngeal region. In the optic vesicles and frontonasal process RA orchestrates development of the midface, eyes, and nasal airway. Additional roles for RA in craniofacial development include regulation of submandibular salivary gland development and maintaining patency in the sutures of the cranial vault.
Collapse
Affiliation(s)
- Masahiro Nakamura
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States.
| |
Collapse
|
8
|
Sakamuru S, Ma D, Pierro JD, Baker NC, Kleinstreuer N, Cali JJ, Knudsen TB, Xia M. Development and validation of CYP26A1 inhibition assay for high-throughput screening. Biotechnol J 2024; 19:e2300659. [PMID: 38863121 PMCID: PMC11338008 DOI: 10.1002/biot.202300659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
All-trans retinoic acid (atRA) is an endogenous ligand of the retinoic acid receptors, which heterodimerize with retinoid X receptors. AtRA is generated in tissues from vitamin A (retinol) metabolism to form a paracrine signal and is locally degraded by cytochrome P450 family 26 (CYP26) enzymes. The CYP26 family consists of three subtypes: A1, B1, and C1, which are differentially expressed during development. This study aims to develop and validate a high throughput screening assay to identify CYP26A1 inhibitors in a cell-free system using a luminescent P450-Glo assay technology. The assay performed well with a signal to background ratio of 25.7, a coefficient of variation of 8.9%, and a Z-factor of 0.7. To validate the assay, we tested a subset of 39 compounds that included known CYP26 inhibitors and retinoids, as well as positive and negative control compounds selected from the literature and/or the ToxCast/Tox21 portfolio. Known CYP26A1 inhibitors were confirmed, and predicted CYP26A1 inhibitors, such as chlorothalonil, prochloraz, and SSR126768, were identified, demonstrating the reliability and robustness of the assay. Given the general importance of atRA as a morphogenetic signal and the localized expression of Cyp26a1 in embryonic tissues, a validated CYP26A1 assay has important implications for evaluating the potential developmental toxicity of chemicals.
Collapse
Affiliation(s)
- Srilatha Sakamuru
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Dongping Ma
- Promega Corporation, Madison, Wisconsin, USA
| | - Jocylin D. Pierro
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
9
|
Seto Y, Ogihara R, Takizawa K, Eiraku M. In vitro induction of patterned branchial arch-like aggregate from human pluripotent stem cells. Nat Commun 2024; 15:1351. [PMID: 38355589 PMCID: PMC10867012 DOI: 10.1038/s41467-024-45285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Early patterning of neural crest cells (NCCs) in the craniofacial primordium is important for subsequent development of proper craniofacial structures. However, because of the complexity of the environment of developing tissues, surveying the early specification and patterning of NCCs is difficult. In this study, we develop a simplified in vitro 3D model using human pluripotent stem cells to analyze the early stages of facial development. In this model, cranial NCC-like cells spontaneously differentiate from neural plate border-like cells into maxillary arch-like mesenchyme after a long-term culture. Upon the addition of EDN1 and BMP4, these aggregates are converted into a mandibular arch-like state. Furthermore, temporary treatment with EDN1 and BMP4 induces the formation of spatially separated domains expressing mandibular and maxillary arch markers within a single aggregate. These results suggest that this in vitro model is useful for determining the mechanisms underlying cell fate specification and patterning during early facial development.
Collapse
Affiliation(s)
- Yusuke Seto
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Ryoma Ogihara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Kaori Takizawa
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Hamazaki N, Yang W, Kubo C, Qiu C, Martin BK, Garge RK, Regalado SG, Nichols E, Lee C, Daza RM, Srivatsan S, Shendure J. Induction and in silico staging of human gastruloids with neural tube, segmented somites & advanced cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579769. [PMID: 38405970 PMCID: PMC10888963 DOI: 10.1101/2024.02.10.579769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Embryonic organoids are emerging as powerful models for studying early mammalian development. For example, stem cell-derived 'gastruloids' form elongating structures containing all three germ layers1-4. However, although elongated, human gastruloids do not morphologically resemble post-implantation embryos. Here we show that a specific, discontinuous regimen of retinoic acid (RA) robustly induces human gastruloids with embryo-like morphological structures, including a neural tube and segmented somites. Single cell RNA-seq (sc-RNA-seq) further reveals that these human 'RA-gastruloids' contain more advanced cell types than conventional gastruloids, including neural crest cells, renal progenitor cells, skeletal muscle cells, and, rarely, neural progenitor cells. We apply a new approach to computationally stage human RA-gastruloids relative to somite-resolved mouse embryos, early human embryos and other gastruloid models, and find that the developmental stage of human RA-gastruloids is comparable to that of E9.5 mouse embryos, although some cell types show greater or lesser progression. We chemically perturb WNT and BMP signaling in human RA-gastruloids and find that these signaling pathways regulate somite patterning and neural tube length, respectively, while genetic perturbation of the transcription factors PAX3 and TBX6 markedly compromises the formation of neural crest and somites/renal cells, respectively. Human RA-gastruloids complement other embryonic organoids in serving as a simple, robust and screenable model for decoding early human embryogenesis.
Collapse
Affiliation(s)
- Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Connor Kubo
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riddhiman K. Garge
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Samuel G. Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, 98195, USA
| | - Eva Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M. Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Koshy AM, Mendoza-Parra MA. Retinoids: Mechanisms of Action in Neuronal Cell Fate Acquisition. Life (Basel) 2023; 13:2279. [PMID: 38137880 PMCID: PMC10744663 DOI: 10.3390/life13122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Neuronal differentiation has been shown to be directed by retinoid action during embryo development and has been exploited in various in vitro cell differentiation systems. In this review, we summarize the role of retinoids through the activation of their specific retinoic acid nuclear receptors during embryo development and also in a variety of in vitro strategies for neuronal differentiation, including recent efforts in driving cell specialization towards a range of neuronal subtypes and glial cells. Finally, we highlight the role of retinoic acid in recent protocols recapitulating nervous tissue complexity (cerebral organoids). Overall, we expect that this effort might pave the way for exploring the usage of specific synthetic retinoids for directing complex nervous tissue differentiation.
Collapse
Affiliation(s)
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d’Essonne, University Paris-Saclay, 91057 Évry, France;
| |
Collapse
|
12
|
Lee LMY, Leung YC, Shum ASW. Hyperglycemia alters retinoic acid catabolism in embryos exposed to a maternal diabetic milieu. PLoS One 2023; 18:e0287253. [PMID: 37616226 PMCID: PMC10449132 DOI: 10.1371/journal.pone.0287253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 08/26/2023] Open
Abstract
Pregestational diabetes is highly associated with increased risk of birth defects. We previously reported that the expression of Cyp26a1, the major catabolizing enzyme for controlling retinoic acid (RA) homeostasis, is significantly down-regulated in embryos of diabetic mice, thereby increasing the embryo's susceptibility to malformations caused by RA dysregulation. However, the underlying mechanism for the down-regulation of Cyp26a1 remains unclear. This study aimed to investigate whether elevated maternal blood glucose in the diabetic milieu is a critical factor for the altered Cyp26a1 expression. Streptozotozin-induced diabetic pregnant mice were treated with phlorizin (PHZ) to reduce blood glucose concentrations via induction of renal glucosuria. Embryonic Cyp26a1 expression level, RA catabolic activity and susceptibility to various RA-induced abnormalities were examined. To test the dose-dependent effect of glucose on Cyp26a1 level, early head-fold stage rat embryos of normal pregnancy were cultured in vitro with varying concentrations of D-glucose, followed by quantification of Cyp26a1 transcripts. We found that Cyp26a1 expression, which was down-regulated in diabetic pregnancy, could be normalized under reduced maternal blood glucose level, concomitant with an increase in RA catabolic activity in embryonic tissues. Such normalization could successfully reduce the susceptibility to different RA-induced malformations including caudal regression, cleft palate and renal malformations. The expression level of Cyp26a1 in the embryo was inversely correlated with D-glucose concentrations. Diabetic patients suffer from retinopathy, dermopathy, male infertility and increased cancer risk. Coincidentally, RA dysregulation is also associated with these health problems. Our results provided evidence that elevated glucose can down-regulate Cyp26a1 expression level and disturb RA homeostasis, shedding light on the possibility of affecting the health of diabetic patients via a similar mechanism.
Collapse
Affiliation(s)
- Leo Man Yuen Lee
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yun-chung Leung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Alisa Sau Wun Shum
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
13
|
Hinojosa MG, Johansson Y, Cediel-Ulloa A, Ivanova E, Gabring N, Gliga A, Forsby A. Evaluation of mRNA markers in differentiating human SH-SY5Y cells for estimation of developmental neurotoxicity. Neurotoxicology 2023; 97:65-77. [PMID: 37210002 DOI: 10.1016/j.neuro.2023.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Current guidelines for developmental neurotoxicity (DNT) evaluation are based on animal models. These have limitations so more relevant, efficient and robust approaches for DNT assessment are needed. We have used the human SH-SY5Y neuroblastoma cell model to evaluate a panel of 93 mRNA markers that are frequent in Neuronal diseases and functional annotations and also differentially expressed during retinoic acid-induced differentiation in the cell model. Rotenone, valproic acid (VPA), acrylamide (ACR) and methylmercury chloride (MeHg) were used as DNT positive compounds. Tolbutamide, D-mannitol and clofibrate were used as DNT negative compounds. To determine concentrations for exposure for gene expression analysis, we developed a pipeline for neurite outgrowth assessment by live-cell imaging. In addition, cell viability was measured by the resazurin assay. Gene expression was analyzed by RT-qPCR after 6 days of exposure during differentiation to concentrations of the DNT positive compounds that affected neurite outgrowth, but with no or minimal effect on cell viability. Methylmercury affected cell viability at lower concentrations than neurite outgrowth, hence the cells were exposed with the highest non-cytotoxic concentration. Rotenone (7.3nM) induced 32 differentially expressed genes (DEGs), ACR (70µM) 8 DEGs, and VPA (75µM) 16 DEGs. No individual genes were significantly dysregulated by all 3 DNT positive compounds (p<0.05), but 9 genes were differentially expressed by 2 of them. Methylmercury (0.8nM) was used to validate the 9 DEGs. The expression of SEMA5A (encoding semaphorin 5A) and CHRNA7 (encoding nicotinic acetylcholine receptor subunit α7) was downregulated by all 4 DNT positive compounds. None of the DNT negative compounds dysregulated any of the 9 DEGs in common for the DNT positive compounds. We suggest that SEMA5A or CHRNA7 should be further evaluated as biomarkers for DNT studies in vitro since they also are involved in neurodevelopmental adverse outcomes in humans.
Collapse
Affiliation(s)
- M G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Y Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - A Cediel-Ulloa
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, 752 36, Uppsala, Sweden
| | - E Ivanova
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - N Gabring
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - A Gliga
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| | - A Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
14
|
Xu Y, Zhang T, Zhou Q, Hu M, Qi Y, Xue Y, Nie Y, Wang L, Bao Z, Shi W. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat Cell Biol 2023; 25:604-615. [PMID: 36928764 DOI: 10.1038/s41556-023-01108-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
The early window of human embryogenesis is largely a black box for developmental biologists. Here we probed the cellular diversity of 4-6 week human embryos when essentially all organs are just laid out. On the basis of over 180,000 single-cell transcriptomes, we generated a comprehensive atlas of 313 clusters in 18 developmental systems, which were annotated with a collection of ontology and markers from 157 publications. Together with spatial transcriptome on embryonic sections, we characterized the molecule and spatial architecture of previously unappreciated cell types. Combined with data from other vertebrates, the rich information shed light on spatial patterning of axes, systemic temporal regulation of developmental progression and potential human-specific regulation. Our study provides a compendium of early progenitor cells of human organs, which can serve as the root of lineage analysis in organogenesis.
Collapse
Affiliation(s)
- Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Tengjiao Zhang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qin Zhou
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Mengzhu Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yao Qi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yifang Xue
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Yuxiao Nie
- School of Pharmacy, Fudan University, Shanghai, China
| | - Lihui Wang
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| | - Weiyang Shi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
15
|
Feng G, Sun Y. The Polycomb group gene rnf2 is essential for central and enteric neural system development in zebrafish. Front Neurosci 2022; 16:960149. [PMID: 36117635 PMCID: PMC9475114 DOI: 10.3389/fnins.2022.960149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The development of central nervous system (CNS) and enteric nervous system (ENS) is under precise and strict control in vertebrates. Whether and how the Polycomb repressive complex 1 (PRC1) is involved in it remain unclear. To investigate the role of PRC1 in the nervous system development, using CRISPR/Cas9 technology, we have generated mutant zebrafish lines for the rnf2 gene which encodes Ring1b, the enzymatic component of the PRC1 complex. We show that rnf2 loss of function leads to abnormal migration and differentiation of neural crest and neural precursor cells. rnf2 mutant embryos exhibit aganglionosis, in which the hindgut is devoid of neurons. In particular, the formation of 5-HT serotonin neurons and myelinating glial cells is defective. Furthermore, ectopic expression of ENS marker genes is observed in forebrain of rnf2 mutant embryos. These findings suggest that the rnf2 gene plays an important role in the migration and differentiation of neural precursor cells, and its absence leads to abnormal development of ENS and CNS in zebrafish.
Collapse
Affiliation(s)
- Gang Feng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Gang Feng,
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yuhua Sun,
| |
Collapse
|
16
|
Bi G, Liang J, Bian Y, Shan G, Besskaya V, Wang Q, Zhan C. The immunomodulatory role of all-trans retinoic acid in tumor microenvironment. Clin Exp Med 2022:10.1007/s10238-022-00860-x. [PMID: 35829844 DOI: 10.1007/s10238-022-00860-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/19/2022]
Abstract
Retinoids are essential nutrients for human beings. Among them, all-trans retinoic acid (ATRA), considered one of the most active metabolites, plays important roles in multiple biological processes. ATRA regulates the transcription of target genes by interacting with nuclear receptors bonded to retinoic acid response elements (RAREs). Besides its differentiation-inducing effect in the treatment of acute promyelocytic leukemia and some solid tumor types, its immunoregulatory role in tumor microenvironment (TME) has attracted considerable attention. ATRA not only substantially abrogates the immunosuppressive effect of tumor-infiltrating myeloid-derived suppressor cells but also activates the anti-tumor effect of CD8 + T cells. Notably, the combination of ATRA with other therapeutic approaches, including immune checkpoint inhibitors (ICIs), tumor vaccines, and chemotherapy, has been extensively investigated in a variety of tumor models and clinical trials. In this review, we summarize the current understanding of the role of ATRA in cancer immunology and immunotherapy, dissect the underlying mechanisms of ATRA-mediated activation or differentiation of different types of immune cells, and explore the potential clinical significance of ATRA-based cancer therapy.
Collapse
Affiliation(s)
- Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Valeria Besskaya
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
17
|
Alekseenko Z, Dias JM, Adler AF, Kozhevnikova M, van Lunteren JA, Nolbrant S, Jeggari A, Vasylovska S, Yoshitake T, Kehr J, Carlén M, Alexeyenko A, Parmar M, Ericson J. Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery. Nat Commun 2022; 13:3046. [PMID: 35650213 PMCID: PMC9160024 DOI: 10.1038/s41467-022-30777-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Stem cell therapies for Parkinson's disease (PD) have entered first-in-human clinical trials using a set of technically related methods to produce mesencephalic dopamine (mDA) neurons from human pluripotent stem cells (hPSCs). Here, we outline an approach for high-yield derivation of mDA neurons that principally differs from alternative technologies by utilizing retinoic acid (RA) signaling, instead of WNT and FGF8 signaling, to specify mesencephalic fate. Unlike most morphogen signals, where precise concentration determines cell fate, it is the duration of RA exposure that is the key-parameter for mesencephalic specification. This concentration-insensitive patterning approach provides robustness and reduces the need for protocol-adjustments between hPSC-lines. RA-specified progenitors promptly differentiate into functional mDA neurons in vitro, and successfully engraft and relieve motor deficits after transplantation in a rat PD model. Our study provides a potential alternative route for cell therapy and disease modelling that due to its robustness could be particularly expedient when use of autologous- or immunologically matched cells is considered.
Collapse
Affiliation(s)
- Zhanna Alekseenko
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - José M Dias
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Andrew F Adler
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Mariya Kozhevnikova
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | | | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Ashwini Jeggari
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Svitlana Vasylovska
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
- Pronexus Analytical AB, Bromma, Sweden
| | - Marie Carlén
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- Department of Neuroscience, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
- Science for Life Laboratory, 171 21, Solna, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 221 84, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
18
|
Cediel-Ulloa A, Lupu DL, Johansson Y, Hinojosa M, Özel F, Rüegg J. Impact of endocrine disrupting chemicals on neurodevelopment: the need for better testing strategies for endocrine disruption-induced developmental neurotoxicity. Expert Rev Endocrinol Metab 2022; 17:131-141. [PMID: 35255767 DOI: 10.1080/17446651.2022.2044788] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Brain development is highly dependent on hormonal regulation. Exposure to chemicals disrupting endocrine signaling has been associated with neurodevelopmental impairment. This raises concern about exposure to the suspected thousands of endocrine disruptors, and has resulted in efforts to improve regulation of these chemicals. Yet, the causal links between endocrine disruption and developmental neurotoxicity, which would be required for regulatory action, are still largely missing. AREAS COVERED In this review, we illustrate the importance of two endocrine systems, thyroid hormone and retinoic acid pathways, for neurodevelopment. We place special emphasis on TH and RA synthesis, metabolism, and how endocrine disrupting chemicals known or suspected to affect these systems are associated with developmental neurotoxicity. EXPERT OPINION While it is clear that neurodevelopment is dependent on proper hormonal functioning, and evidence is increasing for developmental neurotoxicity induced by endocrine disrupting chemicals, this is not grasped by current chemical testing. Thus, there is an urgent need to develop test methods detecting endocrine disruption in the context of neurodevelopment. Key to this development is further mechanistic insights on the involvement of endocrine signaling in neurodevelopment as well as increased support to develop and validate new test methods for the regulatory context.
Collapse
Affiliation(s)
| | | | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Maria Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Fatih Özel
- Department of Organismal Biology, Uppsala University, Sweden
- Centre for Women's Mental Health during the Reproductive Lifespan - Womher, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
19
|
Dickinson AJG, Turner SD, Wahl S, Kennedy AE, Wyatt BH, Howton DA. E-liquids and vanillin flavoring disrupts retinoic acid signaling and causes craniofacial defects in Xenopus embryos. Dev Biol 2022; 481:14-29. [PMID: 34543654 PMCID: PMC8665092 DOI: 10.1016/j.ydbio.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/03/2023]
Abstract
Environmental teratogens such as smoking are known risk factors for developmental disorders such as cleft palate. While smoking rates have declined, a new type of smoking, called vaping is on the rise. Vaping is the use of e-cigarettes to vaporize and inhale an e-liquid containing nicotine and food-like flavors. There is the potential that, like smoking, vaping could also pose a danger to the developing human. Rather than waiting for epidemiological and mammalian studies, we have turned to an aquatic developmental model, Xenopus laevis, to more quickly assess whether e-liquids contain teratogens that could lead to craniofacial malformations. Xenopus, like zebrafish, has the benefit of being a well-established developmental model and has also been effective in predicting whether a chemical could be a teratogen. We have determined that embryonic exposure to dessert flavored e-liquids can cause craniofacial abnormalities, including an orofacial cleft in Xenopus. To better understand the underlying mechanisms contributing to these defects, transcriptomic analysis of the facial tissues of embryos exposed to a representative dessert flavored e-liquid vapor extract was performed. Analysis of differentially expressed genes in these embryos revealed several genes associated with retinoic acid metabolism or the signaling pathway. Consistently, retinoic acid receptor inhibition phenocopied the craniofacial defects as those embryos exposed to the vapor extract of the e-liquid. Such malformations also correlated with a group of common differentially expressed genes, two of which are associated with midface birth defects in humans. Further, e-liquid exposure sensitized embryos to forming craniofacial malformations when they already had depressed retinoic acid signaling. Moreover, 13-cis-retinoic acid treatment could significantly reduce the e-liquid induced malformation in the midface. Such results suggest the possibility of an interaction between retinoic acid signaling and e-liquid exposure. One of the most popular and concentrated flavoring chemicals in dessert flavored e-liquids is vanillin. Xenopus embryos exposed to this chemical closely resembled embryos exposed to dessert-like e-liquids and a retinoic acid receptor antagonist. In summary, we determined that e-liquid chemicals, in particular vanillin, can cause craniofacial defects potentially by dysregulating retinoic acid signaling. This work warrants the evaluation of vanillin and other such flavoring additives in e-liquids on mammalian development.
Collapse
Affiliation(s)
| | - Stephen D Turner
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA; Signature Science LLC, Charlottesville, VA, USA
| | - Stacey Wahl
- Research and Education Department, Tompkins-McCaw Library for the Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Allyson E Kennedy
- Directorate for Computer and Information Science and Engineering, National Science Foundation, Alexandria, VA, USA
| | - Brent H Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Deborah A Howton
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
Ji WH, Li DD, Wei DP, Gu AQ, Yang Y, Peng JP. Cytochrome P450 26A1 Modulates the Polarization of Uterine Macrophages During the Peri-Implantation Period. Front Immunol 2021; 12:763067. [PMID: 34712245 PMCID: PMC8546204 DOI: 10.3389/fimmu.2021.763067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/27/2021] [Indexed: 02/02/2023] Open
Abstract
Uterine M1/M2 macrophages activation states undergo dynamic changes throughout pregnancy, and inappropriate macrophages polarization can cause adverse pregnancy outcomes, especially during the peri-implantation period. Our previous studies have confirmed that Cytochrome P450 26A1 (CYP26A1) can affect embryo implantation by regulating uterine NK cells and DCs. The aim of this study was to investigate whether CYP26A1 regulates the polarization of uterine macrophages in early pregnancy. Here, we observed that Cyp26a1 was significantly upregulated in M1 as compared with M2 of uterine macrophages, Raw264.7 and iBMDM. Knockdown of CYP26A1 in mice uterine significantly decreased the number of embryo implantation sites and the proportion of CD45+F4/80+CD206− M1-like uterine macrophages. Primary uterine macrophages treated with anti-CYP26A1 antibody expressed significantly lower levels of M1 markers Nos2, Il1b, Il6 and Tnf-a. In CYP26A1 knockout Raw264.7 cells, the protein levels of M1 markers TNF-α, IL-6 and CD86 were significantly decreased as compared with the wild type cells. Moreover, CYP26A1 deficiency decreased the ability to produce nitric oxide and increased the phagocytosis capacity of Raw264.7 cells under M1 stimulation state. The re-introduction of CYP26A1 partially reversed the polarization levels of M1 in CYP26A1 knockout Raw264.7 cells. CYP26A1 may regulate the polarization of uterine macrophages to M1 through Stap1 and Slc7a2. In summary, these results indicate that CYP26A1 plays a significant role in macrophage polarization, and knockdown of CYP26A1 can cause insufficient M1 polarization during the peri-implantation period, which has adverse effects on blastocyst implantation.
Collapse
Affiliation(s)
- Wen-Heng Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Ping Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ai-Qin Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Pian Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Turkyilmaz A, Kurnaz E, Cayir A. First Report of a de novo 10q23.31q23.33 Microdeletion: Obesity, Intellectual Disability and Microcephaly. Mol Syndromol 2021; 12:258-262. [PMID: 34421505 DOI: 10.1159/000515400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Intellectual disability (ID) is characterized by limited or insufficient development of mental abilities, including intellectual functioning impairments, such as learning and understanding cause-effect relationships. Some cases have ID as the only finding and are called isolated cases. Conversely, cases accompanied by facial dysmorphism, microcephaly, autism spectrum disorder, epilepsy, obesity, and congenital anomalies are called syndromic developmental delay (DD)/ID. Isolated and syndromic DD/ID cases show extreme genetic heterogeneity. Genetic etiology can be detected in approximately 40% of the cases, whereas chromosomal abnormalities are observed in 25%. Obesity is a multifactorial disease in which both genetic and environmental factors play important roles. The role of heredity in obesity has been reported to be between 40 and 70%. Array-based comparative genomic hybridization (array-CGH) can detect CNVs in the whole genome at a higher resolution than conventional cytogenetic methods. Array-CGH is currently recommended as the first-tier genetic test for ID cases worldwide. In the present study, we aimed to evaluate clinical, radiological, and genetic analyses of a 12-year and 4-month-old girl with microcephaly, ID, and obesity. In the array-CGH analysis, a 3.1-Mb deletion, arr[GRGh37] 10q23.31g23.33 (92745793_95937944)×1 was detected, and this alteration was evaluated to be pathogenic. We consider that haploinsufficiency of the candidate genes (GPR120, KIF11, EXOC6, CYP26A1, CYP26C1, and LGI1) in the deletion region may explain microcephaly, ID, obesity, seizures, and ophthalmological findings in our patient. The investigation of 10q23.31q23.33 microdeletion in cases with syndromic obesity may contribute to molecular genetic diagnosis.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Erdal Kurnaz
- Department of Pediatric Endocrinology, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease Training and Research Hospital, Ankara, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology, Erzurum City Hospital, Erzurum, Turkey
| |
Collapse
|
22
|
Trut LN, Kharlamova AV, Pilipenko AS, Herbeck YE. The Fox Domestication Experiment and Dog Evolution: A View Based on Modern Molecular, Genetic, and Archaeological Data. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
An adverse outcome pathway on the disruption of retinoic acid metabolism leading to developmental craniofacial defects. Toxicology 2021; 458:152843. [PMID: 34186166 DOI: 10.1016/j.tox.2021.152843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Adverse outcome pathway (AOP) is a conceptual framework that links a molecular initiating event (MIE) via intermediate key events (KEs) with adverse effects (adverse outcomes, AO) relevant for risk assessment, through defined KE relationships (KERs). The aim of the present work is to describe a linear AOP, supported by experimental data, for skeletal craniofacial defects as the AO. This AO was selected in view of its relative high incidence in humans and the suspected relation to chemical exposure. We focused on inhibition of CYP26, a retinoic acid (RA) metabolizing enzyme, as MIE, based on robust previously published data. Conazoles were selected as representative stressors. Intermediate KEs are RA disbalance, aberrant HOX gene expression, disrupted specification, migration, and differentiation of neural crest cells, and branchial arch dysmorphology. We described the biological basis of the postulated events and conducted weight of evidence (WoE) assessments. The biological plausibility and the overall empirical evidence were assessed as high and moderate, respectively, the latter taking into consideration the moderate evidence for concordance of dose-response and temporal relationships. Finally, the essentiality assessment of the KEs, considered as high, supported the robustness of the presented AOP. This AOP, which appears of relevance to humans, thus contributes to mechanistic underpinning of selected test methods, thereby supporting their application in integrated new approach test methodologies and strategies and application in a regulatory context.
Collapse
|
24
|
Dubey A, Yu J, Liu T, Kane MA, Saint-Jeannet JP. Retinoic acid production, regulation and containment through Zic1, Pitx2c and Cyp26c1 control cranial placode specification. Development 2021; 148:dev193227. [PMID: 33531433 PMCID: PMC7903997 DOI: 10.1242/dev.193227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
All paired sensory organs arise from a common precursor domain called the pre-placodal region (PPR). In Xenopus, Zic1 non-cell autonomously regulates PPR formation by activating retinoic acid (RA) production. Here, we have identified two Zic1 targets, the RA catabolizing enzyme Cyp26c1 and the transcription factor Pitx2c, expressed in the vicinity of the PPR as being crucially required for maintaining low RA levels in a spatially restricted, PPR-adjacent domain. Morpholino- or CRISPR/Cas9-mediated Cyp26c1 knockdown abrogated PPR gene expression, yielding defective cranial placodes. Direct measurement of RA levels revealed that this is mediated by a mechanism involving excess RA accumulation. Furthermore, we show that pitx2c is activated by RA and required for Cyp26c1 expression in a domain-specific manner through induction of FGF8. We propose that Zic1 anteriorly establishes a program of RA containment and regulation through activation of Cyp26c1 and Pitx2c that cooperates to promote PPR specification in a spatially restricted domain.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tian Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
25
|
Knudsen TB, Pierro JD, Baker NC. Retinoid signaling in skeletal development: Scoping the system for predictive toxicology. Reprod Toxicol 2021; 99:109-130. [PMID: 33202217 PMCID: PMC11451096 DOI: 10.1016/j.reprotox.2020.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
All-trans retinoic acid (ATRA), the biologically active form of vitamin A, is instrumental in regulating the patterning and specification of the vertebrate embryo. Various animal models demonstrate adverse developmental phenotypes following experimental retinoid depletion or excess during pregnancy. Windows of vulnerability for altered skeletal patterning coincide with early specification of the body plan (gastrulation) and regional specification of precursor cell populations forming the facial skeleton (cranial neural crest), vertebral column (somites), and limbs (lateral plate mesoderm) during organogenesis. A common theme in physiological roles of ATRA signaling is mutual antagonism with FGF signaling. Consequences of genetic errors or environmental disruption of retinoid signaling include stage- and region-specific homeotic transformations to severe deficiencies for various skeletal elements. This review derives from an annex in Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97) to support recommendations regarding assay development for the retinoid system and the use of resulting data in a regulatory context for developmental and reproductive toxicity (DART) testing.
Collapse
Affiliation(s)
- Thomas B Knudsen
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Jocylin D Pierro
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Nancy C Baker
- Leidos, Contractor to CCTE, Research Triangle Park, NC, 27711, United States.
| |
Collapse
|
26
|
Gbx2 Is Required for the Migration and Survival of a Subpopulation of Trigeminal Cranial Neural Crest Cells. J Dev Biol 2020; 8:jdb8040033. [PMID: 33322598 PMCID: PMC7768483 DOI: 10.3390/jdb8040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022] Open
Abstract
The development of key structures within the mature vertebrate hindbrain requires the migration of neural crest (NC) cells and motor neurons to their appropriate target sites. Functional analyses in multiple species have revealed a requirement for the transcription factor gastrulation-brain-homeobox 2 (Gbx2) in NC cell migration and positioning of motor neurons in the developing hindbrain. In addition, loss of Gbx2 function studies in mutant mouse embryos, Gbx2neo, demonstrate a requirement for Gbx2 for the development of NC-derived sensory neurons and axons constituting the mandibular branch of the trigeminal nerve (CNV). Our recent GBX2 target gene identification study identified multiple genes required for the migration and survival of NC cells (e.g., Robo1, Slit3, Nrp1). In this report, we performed loss-of-function analyses using Gbx2neo mutant embryos, to improve our understanding of the molecular and genetic mechanisms regulated by Gbx2 during anterior hindbrain and CNV development. Analysis of Tbx20 expression in the hindbrain of Gbx2neo homozygotes revealed a severely truncated rhombomere (r)2. Our data also provide evidence demonstrating a requirement for Gbx2 in the temporal regulation of Krox20 expression in r3. Lastly, we show that Gbx2 is required for the expression of Nrp1 in a subpopulation of trigeminal NC cells, and correct migration and survival of cranial NC cells that populate the trigeminal ganglion. Taken together, these findings provide additional insight into molecular and genetic mechanisms regulated by Gbx2 that underlie NC migration, trigeminal ganglion assembly, and, more broadly, anterior hindbrain development.
Collapse
|
27
|
Guo P, Ji Z, Jiang H, Huang X, Wang C, Pan B. Identification of a novel CYP26A1 mutation in a Chinese family with congenital microtia. Int J Pediatr Otorhinolaryngol 2020; 139:110488. [PMID: 33197841 DOI: 10.1016/j.ijporl.2020.110488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Microtia is defined as a congenital malformation characterized by a small, abnormally shaped auricle, with atresia or stenosis of the auditory canal. This study investigated a mutation of the cytochrome P450, family 26, subfamily A, polypeptide 1(CYP26A1) gene, which is considered important in craniofacial development, in a family affected with microtia. METHODS Whole-exome sequencing (WES) was performed on the proband and his family members to identify disease-associated variants. Computational predictions of the altered protein were analyzed using several bioinformatics tools. The wild-type (WT) and mutant forms of CYP26A1 cDNA were transfected into human embryonic kidney cells, and the mRNA and protein levels were compared using quantitative polymerase chain reaction (qPCR) and Western blot analyses. RESULTS In this two-generation family, the proband and his mother were diagnosed with unilateral microtia. Unilateral microtia and ipsilateral accessory ear were observed in one of the twins, who were sisters of the proband. The father and the other twin showed no abnormal clinical features. A heterozygous mutation of a C to T in the CYP26A1 gene, which leads to truncation of the CYP26A1 protein, was identified in this family. The nonsense mutation cosegregated with patients and was absent in normal members of the family. The prediction software indicated that it was a possibly pathogenic mutation. The structure of the protein varied significantly between the WT and mutant proteins. Functional analysis showed that this mutation caused a significant decrease in both the mRNA and protein levels. CONCLUSIONS Our findings suggest that this mutation of CYP26A1 may be a pathogenic factor leading to the phenotypes of microtia and accessory ear in this family. Further studies are needed to prove the function of this mutation and to explore the possible mechanism by which this variant is involved in the occurrence of microtia.
Collapse
Affiliation(s)
- Peipei Guo
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China.
| | - Zhonglei Ji
- Affiliated Hospital of Weifang Medical University, Shandong, 261031, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China
| | - Xin Huang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China
| | - Changchen Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100032, China.
| |
Collapse
|
28
|
Kukreja S, Udaykumar N, Yogesh B, Sen J. Retinoic acid signaling regulates proliferation and lamina formation in the developing chick optic tectum. Dev Biol 2020; 467:95-107. [PMID: 32919944 DOI: 10.1016/j.ydbio.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 01/05/2023]
Abstract
The retinotectal system has been extensively studied for investigating the mechanism(s) for topographic map formation. The optic tectum, which is composed of multiple laminae, is the major retino recipient structure in the developing avian brain. Laminar development of the tectum results from cell proliferation, differentiation and migration, coordinated in strict temporal and spatial patterns. However, the molecular mechanisms that orchestrate these complex developmental events, have not been fully elucidated. In this study, we have identified the presence of differential retinoic acid (RA) signaling along the rostro-caudal and dorsoventral axis of the tectum. We show for the first time that loss of RA signaling in the anterior optic tectum, leads to an increase in cell proliferation and gross changes in the morphology manifested as defects in lamination. Detailed analysis points to delayed migration of cells as the plausible cause for the defects in lamina formation. Thus, we conclude that in the optic tectum, RA signaling is involved in maintaining cell proliferation and in regulating the formation of the tectal laminae.
Collapse
Affiliation(s)
- Shweta Kukreja
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Present address: Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA
| | - Niveda Udaykumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Baba Yogesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Present address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
29
|
Mandibulofacial Dysostosis Attributed to a Recessive Mutation of CYP26C1 in Hereford Cattle. Genes (Basel) 2020; 11:genes11111246. [PMID: 33105751 PMCID: PMC7690606 DOI: 10.3390/genes11111246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
In spring 2020, six Hereford calves presented with congenital facial deformities attributed to a condition we termed mandibulofacial dysostosis (MD). Affected calves shared hallmark features of a variably shortened and/or asymmetric lower mandible and bilateral skin tags present 2–10 cm caudal to the commissure of the lips. Pedigree analysis revealed a single common ancestor shared by the sire and dam of each affected calf. Whole-genome sequencing (WGS) of 20 animals led to the discovery of a variant (Chr26 g. 14404993T>C) in Exon 3 of CYP26C1 associated with MD. This missense mutation (p.L188P), is located in an α helix of the protein, which the identified amino acid substitution is predicted to break. The implication of this mutation was further validated through genotyping 2 additional affected calves, 760 other Herefords, and by evaluation of available WGS data from over 2500 other individuals. Only the affected individuals were homozygous for the variant and all heterozygotes had at least one pedigree tie to the suspect founder. CYP26C1 plays a vital role in tissue-specific regulation of retinoic acid (RA) during embryonic development. Dysregulation of RA can result in teratogenesis by altering the endothelin-1 signaling pathway affecting the expression of Dlx genes, critical to mandibulofacial development. We postulate that this recessive missense mutation in CYP26C1 impacts the catalytic activity of the encoded enzyme, leading to excess RA resulting in the observed MD phenotype.
Collapse
|
30
|
Bernheim S, Meilhac SM. Mesoderm patterning by a dynamic gradient of retinoic acid signalling. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190556. [PMID: 32829679 PMCID: PMC7482219 DOI: 10.1098/rstb.2019.0556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Retinoic acid (RA), derived from vitamin A, is a major teratogen, clinically recognized in 1983. Identification of its natural presence in the embryo and dissection of its molecular mechanism of action became possible in the animal model with the advent of molecular biology, starting with the cloning of its nuclear receptor. In normal development, the dose of RA is tightly controlled to regulate organ formation. Its production depends on enzymes, which have a dynamic expression profile during embryonic development. As a small molecule, it diffuses rapidly and acts as a morphogen. Here, we review advances in deciphering how endogenously produced RA provides positional information to cells. We compare three mesodermal tissues, the limb, the somites and the heart, and discuss how RA signalling regulates antero-posterior and left-right patterning. A common principle is the establishment of its spatio-temporal dynamics by positive and negative feedback mechanisms and by antagonistic signalling by FGF. However, the response is cell-specific, pointing to the existence of cofactors and effectors, which are as yet incompletely characterized. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France
- INSERM UMR1163, 75015 Paris, France
- Université de Paris, Paris, France
| | - Sigolène M. Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France
- INSERM UMR1163, 75015 Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
31
|
He Z, Brazovskaja A, Ebert S, Camp JG, Treutlein B. CSS: cluster similarity spectrum integration of single-cell genomics data. Genome Biol 2020; 21:224. [PMID: 32867824 PMCID: PMC7460789 DOI: 10.1186/s13059-020-02147-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 01/24/2023] Open
Abstract
It is a major challenge to integrate single-cell sequencing data across experiments, conditions, batches, time points, and other technical considerations. New computational methods are required that can integrate samples while simultaneously preserving biological information. Here, we propose an unsupervised reference-free data representation, cluster similarity spectrum (CSS), where each cell is represented by its similarities to clusters independently identified across samples. We show that CSS can be used to assess cellular heterogeneity and enable reconstruction of differentiation trajectories from cerebral organoid and other single-cell transcriptomic data, and to integrate data across experimental conditions and human individuals.
Collapse
Affiliation(s)
- Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | | | - Sebastian Ebert
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
32
|
Abstract
As the first organ to form and function in all vertebrates, the heart is crucial to development. Tightly-regulated levels of retinoic acid (RA) are critical for the establishment of the regulatory networks that drive normal cardiac development. Thus, the heart is an ideal organ to investigate RA signaling, with much work remaining to be done in this area. Herein, we highlight the role of RA signaling in vertebrate heart development and provide an overview of the field's inception, its current state, and in what directions it might progress so that it may yield fruitful insight for therapeutic applications within the domain of regenerative medicine.
Collapse
|
33
|
Metruccio F, Palazzolo L, Di Renzo F, Battistoni M, Menegola E, Eberini I, Moretto A. Development of an adverse outcome pathway for cranio-facial malformations: A contribution from in silico simulations and in vitro data. Food Chem Toxicol 2020; 140:111303. [PMID: 32251704 DOI: 10.1016/j.fct.2020.111303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
Mixtures of substances sharing the same molecular initiating event (MIE) are supposed to induce additive effects. The proposed MIE for azole fungicides is CYP26 inhibition with retinoic acid (RA) local increase, triggering key events leading to craniofacial defects. Valproic acid (VPA) is supposed to imbalance RA-regulated gene expression trough histone deacetylases (HDACs) inhibition. The aim was to evaluate effects of molecules sharing the same MIE (azoles) and of such having (hypothetically) different MIEs but which are eventually involved in the same adverse outcome pathway (AOP). An in silico approach (molecular docking) investigated the suggested MIEs. Teratogenicity was evaluated in vitro (WEC). Abnormalities were modelled by PROAST software. The common target was the branchial apparatus. In silico results confirmed azole-related CYP26 inhibition and a weak general VPA inhibition on the tested HDACs. Unexpectedly, VPA showed also a weak, but not marginal, capability to enter the CYP 26A1 and CYP 26C1 catalytic sites, suggesting a possible role of VPA in decreasing RA catabolism, acting as an additional MIE. Our findings suggest a new more complex picture. Consequently two different AOPs, leading to the same AO, can be described. VPA MIEs (HDAC and CYP26 inhibition) impinge on the two converging AOPs.
Collapse
Affiliation(s)
| | - Luca Palazzolo
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| | - Francesca Di Renzo
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria 26- 20133, Milan, Italy.
| | - Maria Battistoni
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| | - Elena Menegola
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria 26- 20133, Milan, Italy.
| | - Ivano Eberini
- Università degli Studi di Milano, Department of Pharmacological and Biomolecular Sciences & DSRC, via Balzaretti 9- 20133, Milan, Italy.
| | - Angelo Moretto
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| |
Collapse
|
34
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
35
|
Maguire M, Larsen MC, Vezina CM, Quadro L, Kim YK, Tanumihardjo SA, Jefcoate CR. Cyp1b1 directs Srebp-mediated cholesterol and retinoid synthesis in perinatal liver; Association with retinoic acid activity during fetal development. PLoS One 2020; 15:e0228436. [PMID: 32027669 PMCID: PMC7004353 DOI: 10.1371/journal.pone.0228436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cytochrome P450 1b1 (Cyp1b1) deletion and dietary retinol deficiency during pregnancy (GVAD) affect perinatal liver functions regulated by Srebp. Cyp1b1 is not expressed in perinatal liver but appears in the E9.5 embryo, close to sites of retinoic acid (RA) signaling. Hypothesis Parallel effects of Cyp1b1 and retinol on postnatal Srebp derive from effects in the developing liver or systemic signaling. Approach Cluster postnatal increases in hepatic genes in relation to effects of GVAD or Cyp1b1 deletion. Sort expression changes in relation to genes regulated by Srebp1 and Srebp2.Test these treatments on embryos at E9.5, examining changes at the site of liver initiation. Use in situ hybridization to resolve effects on mRNA distributions of Aldh1a2 and Cyp26a1 (RA homeostasis); Hoxb1 and Pax6 (RA targets). Assess mice lacking Lrat and Rbp4 (DKO mice) that severely limits retinol supply to embryos. Results At birth, GVAD and Cyp1b1 deletion stimulate gene markers of hepatic stellate cell (HSC) activation but also suppress Hamp. These treatments then selectively prevent the postnatal onset of genes that synthesize cholesterol (Hmgcr, Sqle) and fatty acids (Fasn, Scd1), but also direct cholesterol transport (Ldlr, Pcsk9, Stard4) and retinoid synthesis (Aldh1a1, Rdh11). Extensive support by Cyp1b1 is implicated, but with distinct GVAD interventions for Srebp1 and Srebp2. At E9.5, Cyp1b1 is expressed in the septum transversum mesenchyme (STM) with β-carotene oxygenase (Bco1) that generates retinaldehyde. STM provides progenitors for the HSC and supports liver expansion. GVAD and Cyp1b1-/- do not affect RA-dependent Hoxb1 and Pax6. In DKO embryos, RA-dependent Cyp26a1 is lost but Hoxb1 is sustained with Cyp1b1 at multiple sites. Conclusion Cyp1b1-/- suppresses genes supported by Srebp. GVAD effects distinguish Srebp1 and Srebp2 mediation. Srebp regulation overlaps appreciably in cholesterol and retinoid homeostasis. Bco1/Cyp1b1 partnership in the STM may contribute to this later liver regulation.
Collapse
Affiliation(s)
- Meghan Maguire
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | | | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI
| | - Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey
| | - Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey
| | | | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
- * E-mail:
| |
Collapse
|
36
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
37
|
Thompson B, Katsanis N, Apostolopoulos N, Thompson DC, Nebert DW, Vasiliou V. Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Hum Genomics 2019; 13:61. [PMID: 31796115 PMCID: PMC6892198 DOI: 10.1186/s40246-019-0248-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA) is a potent morphogen required for embryonic development. RA is formed in a multistep process from vitamin A (retinol); RA acts in a paracrine fashion to shape the developing eye and is essential for normal optic vesicle and anterior segment formation. Perturbation in RA-signaling can result in severe ocular developmental diseases—including microphthalmia, anophthalmia, and coloboma. RA-signaling is also essential for embryonic development and life, as indicated by the significant consequences of mutations in genes involved in RA-signaling. The requirement of RA-signaling for normal development is further supported by the manifestation of severe pathologies in animal models of RA deficiency—such as ventral lens rotation, failure of optic cup formation, and embryonic and postnatal lethality. In this review, we summarize RA-signaling, recent advances in our understanding of this pathway in eye development, and the requirement of RA-signaling for embryonic development (e.g., organogenesis and limb bud development) and life.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - Nicholas Katsanis
- Stanley Manne Research Institute, Lurie Children's Hospital, Chicago, IL, 60611, USA.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA.
| |
Collapse
|
38
|
Isoherranen N, Zhong G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol Ther 2019; 204:107400. [PMID: 31419517 PMCID: PMC6881548 DOI: 10.1016/j.pharmthera.2019.107400] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
The Cytochrome P450 (CYP) family 26 enzymes contribute to retinoic acid (RA) metabolism and homeostasis in humans, mammals and other chordates. The three CYP26 family enzymes, CYP26A1, CYP26B1 and CYP26C1 have all been shown to metabolize all-trans-retinoic acid (atRA) it's 9-cisRA and 13-cisRA isomers and primary metabolites 4-OH-RA and 4-oxo-RA with high efficiency. While no crystal structures of CYP26 enzymes are available, the binding of various ligands has been extensively explored via homology modeling. All three CYP26 enzymes are inducible by treatment with atRA in various prenatal and postnatal tissues and cell types. However, current literature shows that in addition to regulation by atRA, CYP26 enzyme expression is also regulated by other endogenous processes and inflammatory cytokines. In humans and in animal models the expression patterns of CYP26 enzymes have been shown to be tissue and cell type specific, and the expression of the CYP26 enzymes is believed to regulate the formation of critical atRA concentration gradients in various tissue types. Yet, very little data exists on direct disease associations of altered CYP26 expression or activity. Nevertheless, data is emerging describing a variety of human genetic variations in the CYP26 enzymes that are associated with different pathologies. Interestingly, some of these genetic variants result in increased activity of the CYP26 enzymes potentially leading to complex gene-environment interactions due to variability in dietary intake of retinoids. This review highlights the current knowledge of structure-function of CYP26 enzymes and focuses on their role in human retinoid metabolism in different tissues.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
40
|
Yousefi Taemeh S, Mahdavi Shahri N, Lari R, Bahrami AR, Dehghani H. Meiotic initiation in chicken germ cells is regulated by Cyp26b1 and mesonephros. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:269-278. [PMID: 31580014 DOI: 10.1002/jez.b.22904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/22/2019] [Accepted: 09/07/2019] [Indexed: 01/04/2023]
Abstract
Our knowledge of mechanisms involved in the meiosis of chicken germ cells is very limited. In mammalian fetal ovaries, the onset of meiosis is dependent on retinoic acid and subsequent upregulation of the Stra8 gene. To clarify the mechanism of meiotic initiation in chicken germ cells, we investigated the role of Cyp26b1, a retinoic acid-degrading enzyme. The Cyp26b1-inhibitor, ketoconazole was used to treat the ex vivo-cultured stage 36 gonads/mesonephroi. Then, the progression of meiosis was studied by histological and immunohistochemical analysis and the level of the transcript for Stra8 was evaluated by a quantitative reverse transcription-polymerase chain reaction in individual ketoconazole-treated gonads after 6 days in culture. The results revealed that meiosis was induced in both testes and right ovary upon inhibition of Cyp26b1 in the ex vivo-cultured gonads, despite downregulation of Stra8 messenger RNA in the treated gonads. Also, meiosis was observed only when mesonephros was cultured alongside the left ovary. These findings demonstrate that in chicken, Stra8 is not the only factor for the entrance into meiosis, and Cyp26b1 and mesonephros play critical regulatory roles for the sex-specific timing of meiotic initiation in birds.
Collapse
Affiliation(s)
- Sara Yousefi Taemeh
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Naser Mahdavi Shahri
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Roya Lari
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
41
|
Battistoni M, Di Renzo F, Menegola E, Bois FY. Quantitative AOP based teratogenicity prediction for mixtures of azole fungicides. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Choi SA, An JH, Lee SH, Lee GH, Yang HJ, Jeong PS, Cha JJ, Lee S, Park YH, Song BS, Sim BW, Kim YH, Kim JS, Jin YB, Huh JW, Lee SR, Lee JH, Kim SU. Comparative Evaluation of Hormones and Hormone-Like Molecule in Lineage Specification of Human Induced Pluripotent Stem Cells. Int J Stem Cells 2019; 12:240-250. [PMID: 31242719 PMCID: PMC6657937 DOI: 10.15283/ijsc18137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/10/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives Proficient differentiation of human pluripotent stem cells (hPSCs) into specific lineages is required for applications in regenerative medicine. A growing amount of evidences had implicated hormones and hormone-like molecules as critical regulators of proliferation and lineage specification during in vivo development. Therefore, a deeper understanding of the hormones and hormone-like molecules involved in cell fate decisions is critical for efficient and controlled differentiation of hPSCs into specific lineages. Thus, we functionally and quantitatively compared the effects of diverse hormones (estradiol 17-β (E2), progesterone (P4), and dexamethasone (DM)) and a hormone-like molecule (retinoic acid (RA)) on the regulation of hematopoietic and neural lineage specification. Methods and Results We used 10 nM E2, 3 µM P4, 10 nM DM, and 10 nM RA based on their functional in vivo developmental potential. The sex hormone E2 enhanced functional activity of hematopoietic progenitors compared to P4 and DM, whereas RA impaired hematopoietic differentiation. In addition, E2 increased CD34+CD45+ cells with progenitor functions, even in the CD43- population, a well-known hemogenic marker. RA exhibited lineage-biased potential, preferentially committing hPSCs toward the neural lineage while restricting the hematopoietic fate decision. Conclusions Our findings reveal unique cell fate potentials of E2 and RA treatment and provide valuable differentiation information that is essential for hPSC applications.
Collapse
Affiliation(s)
- Seon-A Choi
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Ju-Hyun An
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Seung Hwan Lee
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Geun-Hui Lee
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Jae-Jin Cha
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Sanghoon Lee
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Young-Hyun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Ji-Su Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.,Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Yeung Bae Jin
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Jae-Won Huh
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jong-Hee Lee
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
43
|
Nedelec B, Rozet JM, Fares Taie L. Genetic architecture of retinoic-acid signaling-associated ocular developmental defects. Hum Genet 2019; 138:937-955. [DOI: 10.1007/s00439-019-02052-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
|
44
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
45
|
Williams AL, Bohnsack BL. What's retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development. Genesis 2019; 57:e23308. [PMID: 31157952 DOI: 10.1002/dvg.23308] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential morphogen signaling molecule and major regulator of embryonic development. The dysregulation of RA levels during embryogenesis has been associated with numerous congenital anomalies, including craniofacial, auditory, and ocular defects. These anomalies result from disruptions in the cranial neural crest, a vertebrate-specific transient population of stem cells that contribute to the formation of diverse cell lineages and embryonic structures during development. In this review, we summarize our current knowledge of the RA-mediated regulation of cranial neural crest induction at the edge of the neural tube and the migration of these cells into the craniofacial region. Further, we discuss the role of RA in the regulation of cranial neural crest cells found within the frontonasal process, periocular mesenchyme, and pharyngeal arches, which eventually form the bones and connective tissues of the head and neck and contribute to structures in the anterior segment of the eye. We then review our understanding of the mechanisms underlying congenital craniofacial and ocular diseases caused by either the genetic or toxic disruption of RA signaling. Finally, we discuss the role of RA in maintaining neural crest-derived structures in postembryonic tissues and the implications of these studies in creating new treatments for degenerative craniofacial and ocular diseases.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
46
|
Perl E, Waxman JS. Reiterative Mechanisms of Retinoic Acid Signaling during Vertebrate Heart Development. J Dev Biol 2019; 7:jdb7020011. [PMID: 31151214 PMCID: PMC6631158 DOI: 10.3390/jdb7020011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023] Open
Abstract
Tightly-regulated levels of retinoic acid (RA) are critical for promoting normal vertebrate development. The extensive history of research on RA has shown that its proper regulation is essential for cardiac progenitor specification and organogenesis. Here, we discuss the roles of RA signaling and its establishment of networks that drive both early and later steps of normal vertebrate heart development. We focus on studies that highlight the drastic effects alternative levels of RA have on early cardiomyocyte (CM) specification and cardiac chamber morphogenesis, consequences of improper RA synthesis and degradation, and known effectors downstream of RA. We conclude with the implications of these findings to our understanding of cardiac regeneration and the etiologies of congenital heart defects.
Collapse
Affiliation(s)
- Eliyahu Perl
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Joshua S Waxman
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
47
|
Velte EK, Niedenberger BA, Serra ND, Singh A, Roa-DeLaCruz L, Hermann BP, Geyer CB. Differential RA responsiveness directs formation of functionally distinct spermatogonial populations at the initiation of spermatogenesis in the mouse. Development 2019; 146:dev.173088. [PMID: 31023878 DOI: 10.1242/dev.173088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
In the mammalian testis, sustained spermatogenesis relies on spermatogonial stem cells (SSCs); their progeny either remain as stem cells (self-renewal) or proliferate and differentiate to enter meiosis in response to retinoic acid (RA). Here, we sought to uncover elusive mechanisms regulating a key switch fundamental to spermatogonial fate: the capacity of spermatogonia to respond to RA. Using the developing mouse testis as a model, we found that spermatogonia and precursor prospermatogonia exhibit a heterogeneous capacity to respond to RA with at least two underlying causes. First, progenitor spermatogonia are prevented from responding to RA by catabolic activity of cytochrome P450 family 26 enzymes. Second, a smaller subset of undifferentiated spermatogonia enriched for SSCs exhibit catabolism-independent RA insensitivity. Moreover, for the first time, we observed that precursor prospermatogonia are heterogeneous and comprise subpopulations that exhibit the same differential RA responsiveness found in neonatal spermatogonia. We propose a novel model by which mammalian prospermatogonial and spermatogonial fates are regulated by their intrinsic capacity to respond (or not) to the differentiation signal provided by RA before, and concurrent with, the initiation of spermatogenesis.
Collapse
Affiliation(s)
- Ellen K Velte
- Departments of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Bryan A Niedenberger
- Departments of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Nicholas D Serra
- Departments of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Anukriti Singh
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lorena Roa-DeLaCruz
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Christopher B Geyer
- Departments of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA .,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
48
|
Sonic Hedgehog Signaling Is Required for Cyp26 Expression during Embryonic Development. Int J Mol Sci 2019; 20:ijms20092275. [PMID: 31072004 PMCID: PMC6540044 DOI: 10.3390/ijms20092275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Deciphering how signaling pathways interact during development is necessary for understanding the etiopathogenesis of congenital malformations and disease. In several embryonic structures, components of the Hedgehog and retinoic acid pathways, two potent players in development and disease are expressed and operate in the same or adjacent tissues and cells. Yet whether and, if so, how these pathways interact during organogenesis is, to a large extent, unclear. Using genetic and experimental approaches in the mouse, we show that during development of ontogenetically different organs, including the tail, genital tubercle, and secondary palate, Sonic hedgehog (SHH) loss-of-function causes anomalies phenocopying those induced by enhanced retinoic acid signaling and that SHH is required to prevent supraphysiological activation of retinoic signaling through maintenance and reinforcement of expression of the Cyp26 genes. Furthermore, in other tissues and organs, disruptions of the Hedgehog or the retinoic acid pathways during development generate similar phenotypes. These findings reveal that rigidly calibrated Hedgehog and retinoic acid activities are required for normal organogenesis and tissue patterning.
Collapse
|
49
|
Parekh PA, Garcia TX, Waheeb R, Jain V, Gandhi P, Meistrich ML, Shetty G, Hofmann MC. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation. FASEB J 2019; 33:8423-8435. [PMID: 30991836 DOI: 10.1096/fj.201802361r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cytochrome P450 family 26 subfamily B member 1 (CYP26B1) regulates the concentration of all-trans retinoic acid (RA) and plays a key role in germ cell differentiation by controlling local distribution of RA. The mechanisms regulating Cyp26b1 expression in postnatal Sertoli cells, the main components of the stem cell niche, are so far unknown. During gonad development, expression of Cyp26b1 is maintained by Steroidogenic Factor 1 (SF-1) and Sex-Determining Region Y Box-9 (SOX9), which ensure that RA is degraded and germ cell differentiation is blocked. Here, we show that the NOTCH target Hairy/Enhancer-of-Split Related with YRPW Motif 1 (HEY1), a transcriptional repressor, regulates germ cell differentiation via direct binding to the Cyp26b1 promoter and thus inhibits its expression in Sertoli cells. Further, using in vivo germ cell ablation, we demonstrate that undifferentiated type A spermatogonia are the cells that activate NOTCH signaling in Sertoli cells through their expression of the NOTCH ligand JAGGED-1 (JAG1) at stage VIII of the seminiferous epithelium cycle, therefore mediating germ cell differentiation by a ligand concentration-dependent process. These data therefore provide more insights into the mechanisms of germ cell differentiation after birth and potentially explain the spatiotemporal RA pulses driving the transition between undifferentiated to differentiating spermatogonia.-Parekh, P. A., Garcia, T. X., Waheeb, R., Jain, V., Gandhi, P., Meistrich, M. L., Shetty, G., Hofmann, M.-C. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation.
Collapse
Affiliation(s)
- Parag A Parekh
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Thomas X Garcia
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, Texas, USA
| | - Reham Waheeb
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Theriogenology, University of Alexandria, Alexandria, Egypt
| | - Vivek Jain
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, Texas, USA
| | - Pooja Gandhi
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
Zhong G, Ortiz D, Zelter A, Nath A, Isoherranen N. CYP26C1 Is a Hydroxylase of Multiple Active Retinoids and Interacts with Cellular Retinoic Acid Binding Proteins. Mol Pharmacol 2018; 93:489-503. [PMID: 29476041 PMCID: PMC5894800 DOI: 10.1124/mol.117.111039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
The clearance of retinoic acid (RA) and its metabolites is believed to be regulated by the CYP26 enzymes, but the specific roles of CYP26A1, CYP26B1, and CYP26C1 in clearing active vitamin A metabolites have not been defined. The goal of this study was to establish the substrate specificity of CYP26C1, and determine whether CYP26C1 interacts with cellular retinoic acid binding proteins (CRABPs). CYP26C1 was found to effectively metabolize all-trans retinoic acid (atRA), 9-cis-retinoic acid (9-cis-RA), 13-cis-retinoic acid, and 4-oxo-atRA with the highest intrinsic clearance toward 9-cis-RA. In comparison with CYP26A1 and CYP26B1, CYP26C1 resulted in a different metabolite profile for retinoids, suggesting differences in the active-site structure of CYP26C1 compared with other CYP26s. Homology modeling of CYP26C1 suggested that this is attributable to the distinct binding orientation of retinoids within the CYP26C1 active site. In comparison with other CYP26 family members, CYP26C1 was up to 10-fold more efficient in clearing 4-oxo-atRA (intrinsic clearance 153 μl/min/pmol) than CYP26A1 and CYP26B1, suggesting that CYP26C1 may be important in clearing this active retinoid. In support of this, CRABPs delivered 4-oxo-atRA and atRA for metabolism by CYP26C1. Despite the tight binding of 4-oxo-atRA and atRA with CRABPs, the apparent Michaelis-Menten constant in biological matrix (Km) value of these substrates with CYP26C1 was not increased when the substrates were bound with CRABPs, in contrast to what is predicted by free drug hypothesis. Together these findings suggest that CYP26C1 is a 4-oxo-atRA hydroxylase and may be important in regulating the concentrations of this active retinoid in human tissues.
Collapse
Affiliation(s)
- Guo Zhong
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - David Ortiz
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - Alex Zelter
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Departments of Pharmaceutics (G.Z., N.I.) and Medicinal Chemistry (D.O., A.N.), School of Pharmacy, and Department of Biochemistry, School of Medicine (A.Z.), University of Washington, Seattle, Washington
| |
Collapse
|