1
|
Zhao Y, Xu Z, Zhang R, Liu M, Lu C, Fan C, Wang J. Integrated scRNAseq analyses of mouse cochlear supporting cells reveal the involvement of Ezh2 in hair cell regeneration. Mol Biol Rep 2024; 51:217. [PMID: 38281217 DOI: 10.1007/s11033-023-09173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND In lower vertebrates like fish, the inner ear and lateral line hair cells (HCs) can regenerate after being damaged by proliferation/differentiation of supporting cells (SCs). However, the HCs of mouse cochlear could only regenerate within one to two weeks after birth but not for adults. METHODS AND RESULTS To better understand the molecular foundations, we collected several public single-cell RNA sequencing (scRNAseq) data of mouse cochleae from E14 to P33 and extracted the prosensory and supporting cells specifically. Gene Set Enrichment Analysis (GSEA) results revealed a down-regulation of genes in Notch signaling pathway during postnatal stages (P7 and P33). We also identified 107 time-course co-expression genes correlated with developmental stage and predicated that EZH2 and KLF15 may be the key transcriptional regulators for these genes. Expressions of candidate target genes of EZH2 and KLF15 were also found in supporting cells of the auditory epithelia in chick and the neuromasts in zebrafish. Furthermore, inhibiting EZH2 suppressed regeneration of hair cells in zebrafish neuromasts and altered expressions of some developmental stage correlated genes. CONCLUSIONS Our results extended the understanding for molecular basis of hair cell regeneration ability and revealed the potential role of Ezh2 in it.
Collapse
Affiliation(s)
- Yifan Zhao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Ze Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Ran Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Mingli Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Chengcheng Lu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
- Shanghai Horizon Medical Technology Co. Ltd, Shanghai, China
| | - Chunxin Fan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China.
- Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai, China.
| | - Jian Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Kaiser M, Wojahn I, Rudat C, Lüdtke TH, Christoffels VM, Moon A, Kispert A, Trowe MO. Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development 2021; 148:dev.195651. [PMID: 33795231 DOI: 10.1242/dev.195651] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
All epithelial components of the inner ear, including sensory hair cells and innervating afferent neurons, arise by patterning and differentiation of epithelial progenitors residing in a simple sphere, the otocyst. Here, we identify the transcriptional repressors TBX2 and TBX3 as novel regulators of these processes in the mouse. Ablation of Tbx2 from the otocyst led to cochlear hypoplasia, whereas loss of Tbx3 was associated with vestibular malformations. The loss of function of both genes (Tbx2/3cDKO) prevented inner ear morphogenesis at midgestation, resulting in indiscernible cochlear and vestibular structures at birth. Morphogenetic impairment occurred concomitantly with increased apoptosis in ventral and lateral regions of Tbx2/3cDKO otocysts around E10.5. Expression analyses revealed partly disturbed regionalisation, and a posterior-ventral expansion of the neurogenic domain in Tbx2/3cDKO otocysts at this stage. We provide evidence that repression of FGF signalling by TBX2 is important to restrict neurogenesis to the anterior-ventral otocyst and implicate another T-box factor, TBX1, as a crucial mediator in this regulatory network.
Collapse
Affiliation(s)
- Marina Kaiser
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Timo H Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| |
Collapse
|
3
|
Li C, Ding D, Gao Y, Li Y. MicroRNA‑3651 promotes colorectal cancer cell proliferation through directly repressing T‑box transcription factor 1. Int J Mol Med 2020; 45:956-966. [PMID: 31922246 DOI: 10.3892/ijmm.2020.4458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is a commonly diagnosed gastrointestinal malignancy worldwide with a high mortality rate. Accumulating evidence has indicated that the expression of a number of microRNAs (miRNAs) is associated with the development of colorectal cancer. However, the precise molecular mechanism of these miRNAs in regulating cancer progression is yet to be determined. In the present study, miR‑3651 was demonstrated to be overexpressed in colorectal cancer tissues compared with normal tissues, and to be associated with the tumor‑node‑metastasis stage. The downregulation of miR‑3651 was found to induce growth arrest and apoptosis in colorectal cancer cells. In addition, western blot analysis demonstrated that the downregulation of miR‑3651 inactivated PI3K/AKT and MAPK/ERK signaling in colorectal cancer cells. Bioinformatics analysis predicted T‑box transcription factor 1 (TBX1) as a potential target gene of miR‑3651, and a dual‑luciferase reporter assay confirmed that TBX1 was directly repressed by miR‑3651. The results of the current study also indicated that TBX1 was associated with the miR‑3651 mediated activation of oncogenic signaling and colorectal cancer cell proliferation. In conclusion, the results of the current study revealed the oncogenic potential of miR‑3651 in colorectal cancer.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dayong Ding
- Department of Gastrointestinal Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yongchao Li
- Department of Gastrointestinal Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
4
|
Tian C, Johnson KR. TBX1 is required for normal stria vascularis and semicircular canal development. Dev Biol 2019; 457:91-103. [PMID: 31550482 DOI: 10.1016/j.ydbio.2019.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
Little is known about the role of TBX1 in post-otocyst stages of inner ear development. Here, we report on mice with a missense mutation of Tbx1 that are viable with fully developed but abnormally formed inner ears. Mutant mice are deaf due to an undeveloped stria vascularis and show vestibular dysfunction associated with abnormal semicircular canal formation. We show that TBX1 is expressed in endolymph-producing strial marginal cells and vestibular dark cells of the inner ear and is an upstream regulator of Esrrb, which previously was shown to control the developmental fate of these cells. We also show that TBX1 is expressed in sensory cells of the crista ampullaris, which may relate to the semicircular canal abnormalities observed in mutant mice. Inner ears of mutant embryos have a non-resorbed fusion plate in the posterior semicircular canal and a single ampulla connecting anterior and lateral canals. We hypothesize that the TBX1 missense mutation prevents binding with specific co-regulatory proteins. These findings reveal previously unknown functions of TBX1 during later stages of inner ear development.
Collapse
Affiliation(s)
- Cong Tian
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | |
Collapse
|
5
|
Yang LM, Ornitz DM. Sculpting the skull through neurosensory epithelial-mesenchymal signaling. Dev Dyn 2018; 248:88-97. [PMID: 30117627 DOI: 10.1002/dvdy.24664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
The vertebrate skull is a complex structure housing the brain and specialized sensory organs, including the eye, the inner ear, and the olfactory system. The close association between bones of the skull and the sensory organs they encase has posed interesting developmental questions about how the tissues scale with one another. Mechanisms that regulate morphogenesis of the skull are hypothesized to originate in part from the encased neurosensory organs. Conversely, the developing skull is hypothesized to regulate the growth of neurosensory organs, through mechanical forces or molecular signaling. Here, we review studies of epithelial-mesenchymal interactions during inner ear and olfactory system development that may coordinate the growth of the two sensory organs with their surrounding bone. We highlight recent progress in the field and provide evidence that mechanical forces arising from bone growth may affect olfactory epithelium development. Developmental Dynamics 248:88-97, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
6
|
Macchiarulo S, Morrow BE. Tbx1 and Jag1 act in concert to modulate the fate of neurosensory cells of the mouse otic vesicle. Biol Open 2017; 6:1472-1482. [PMID: 28838968 PMCID: PMC5665468 DOI: 10.1242/bio.027359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The domain within the otic vesicle (OV) known as the neurosensory domain (NSD), contains cells that will give rise to the hair and support cells of the otic sensory organs, as well as the neurons that form the cochleovestibular ganglion (CVG). The molecular dynamics that occur at the NSD boundary relative to adjacent OV cells is not well defined. The Tbx1 transcription factor gene expression pattern is complementary to the NSD, and inactivation results in expansion of the NSD and expression of the Notch ligand, Jag1 mapping, in part of the NSD. To shed light on the role of Jag1 in NSD development, as well as to test whether Tbx1 and Jag1 might genetically interact to regulate this process, we inactivated Jag1 within the Tbx1 expression domain using a knock-in Tbx1Cre allele. We observed an enlarged neurogenic domain marked by a synergistic increase in expression of NeuroD and other proneural transcription factor genes in double Tbx1 and Jag1 conditional loss-of-function embryos. We noted that neuroblasts preferentially expanded across the medial-lateral axis and that an increase in cell proliferation could not account for this expansion, suggesting that there was a change in cell fate. We also found that inactivation of Jag1 with Tbx1Cre resulted in failed development of the cristae and semicircular canals, as well as notably fewer hair cells in the ventral epithelium of the inner ear rudiment when inactivated on a Tbx1 null background, compared to Tbx1Cre/− mutant embryos. We propose that loss of expression of Tbx1 and Jag1 within the Tbx1 expression domain tips the balance of cell fates in the NSD, resulting in an overproduction of neuroblasts at the expense of non-neural cells within the OV. Summary: Normal dosages of Tbx1 and Jag1 are required to maintain a proper balance of cell types within the neurosensory domain of the otic vesicle to form the inner ear.
Collapse
Affiliation(s)
- Stephania Macchiarulo
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA .,Departments of Obstetrics and Gynecology and Pediatrics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Flore G, Cioffi S, Bilio M, Illingworth E. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome. Cereb Cortex 2017; 27:2210-2225. [PMID: 27005988 DOI: 10.1093/cercor/bhw076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm.
Collapse
Affiliation(s)
- Gemma Flore
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Sara Cioffi
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy.,Bio-Ker srl, c/o Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Marchesa Bilio
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Elizabeth Illingworth
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy.,Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Torii H, Yoshida A, Katsuno T, Nakagawa T, Ito J, Omori K, Kinoshita M, Yamamoto N. Septin7 regulates inner ear formation at an early developmental stage. Dev Biol 2016; 419:217-228. [PMID: 27634570 DOI: 10.1016/j.ydbio.2016.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 09/10/2016] [Accepted: 09/11/2016] [Indexed: 12/22/2022]
Abstract
Septins are guanosine triphosphate-binding proteins that are evolutionally conserved in all eukaryotes other than plants. They function as multimeric complexes that interact with membrane lipids, actomyosin, and microtubules. Based on these interactions, septins play essential roles in the morphogenesis and physiological functions of many mammalian cell types including the regulation of microtubule stability, vesicle trafficking, cortical rigidity, planar cell polarity, and apoptosis. The inner ear, which perceives auditory and equilibrium sensation with highly differentiated hair cells, has a complicated gross morphology. Furthermore, its development including morphogenesis is dependent on various molecular mechanisms, such as apoptosis, convergent extension, and cell fate determination. To determine the roles of septins in the development of the inner ear, we specifically deleted Septin7 (Sept7), the non-redundant subunit in the canonical septin complex, in the inner ear at different times during development. Foxg1Cre-mediated deletion of Sept7, which achieved the complete knockout of Sept7 within the inner ear at E9.5, caused cystic malformation of inner ears and a reduced numbers of sensory epithelial cells despite the existence of mature hair cells. Excessive apoptosis was observed at E10.5,E11.5 and E12.5 in all inner ear epithelial cells and at E10.5 and E11.5 in prosensory epithelial cells of the inner ears of Foxg1Cre;Septin7floxed/floxed mice. In contrast with apoptosis, cell proliferation in the inner ear did not significantly change between control and mutant mice. Deletion of Sept7 within the cochlea at a later stage (around E15.5) with Emx2Cre did not result in any apparent morphological anomalies observed in Foxg1Cre;Septin7floxed/floxed mice. These results suggest that SEPT7 regulates gross morphogenesis of the inner ear and maintains the size of the inner ear sensory epithelial area and exerts its effects at an early developmental stage of the inner ear.
Collapse
Affiliation(s)
- Hiroko Torii
- Department Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsuhiro Yoshida
- Department of Otolaryngology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama 710-8602, Japan
| | - Tatsuya Katsuno
- Department Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Nakagawa
- Department Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Juichi Ito
- Shiga Medical Center Research Institute, 5-4-30, Moriyama, Moriyama, Shiga 524-8524, Japan
| | - Koichi Omori
- Department Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Makoto Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Norio Yamamoto
- Department Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
9
|
Fulcoli FG, Franzese M, Liu X, Zhang Z, Angelini C, Baldini A. Rebalancing gene haploinsufficiency in vivo by targeting chromatin. Nat Commun 2016; 7:11688. [PMID: 27256596 PMCID: PMC4895808 DOI: 10.1038/ncomms11688] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/19/2016] [Indexed: 11/28/2022] Open
Abstract
Congenital heart disease (CHD) affects eight out of 1,000 live births and is a major social and health-care burden. A common genetic cause of CHD is the 22q11.2 deletion, which is the basis of the homonymous deletion syndrome (22q11.2DS), also known as DiGeorge syndrome. Most of its clinical spectrum is caused by haploinsufficiency of Tbx1, a gene encoding a T-box transcription factor. Here we show that Tbx1 positively regulates monomethylation of histone 3 lysine 4 (H3K4me1) through interaction with and recruitment of histone methyltransferases. Treatment of cells with tranylcypromine (TCP), an inhibitor of histone demethylases, rebalances the loss of H3K4me1 and rescues the expression of approximately one-third of the genes dysregulated by Tbx1 suppression. In Tbx1 mouse mutants, TCP treatment ameliorates substantially the cardiovascular phenotype. These data suggest that epigenetic drugs may represent a potential therapeutic strategy for rescue of gene haploinsufficiency phenotypes, including structural defects. Deficit in transcription factor Tbx1 causes heart defects in humans and mice. Here the authors show that Tbx1 regulates gene expression by recruiting histone methyltransferases that affect chromatin marks, and that a drug inhibiting histone demethylation ameliorates the cardiovascular phenotype in Tbx1 haploinsufficient or hypomorphic mice.
Collapse
Affiliation(s)
- Filomena Gabriella Fulcoli
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, Naples 80131, Italy
| | - Monica Franzese
- Istituto per le Applicazioni del Calcolo, CNR, Naples, Italy
| | - Xiangyang Liu
- Shanghai Pediatric Congenital Heart Institute, Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Zhen Zhang
- Shanghai Pediatric Congenital Heart Institute, Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | | | - Antonio Baldini
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, Naples 80131, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
10
|
Goodrich LV. Early Development of the Spiral Ganglion. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Cochlear afferent innervation development. Hear Res 2015; 330:157-69. [DOI: 10.1016/j.heares.2015.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/02/2015] [Accepted: 07/21/2015] [Indexed: 01/11/2023]
|
12
|
p53 Suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome. Proc Natl Acad Sci U S A 2014; 111:13385-90. [PMID: 25197075 DOI: 10.1073/pnas.1401923111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T-box 1 (Tbx1), a gene encoding a T-box transcription factor, is required for embryonic development in humans and mice. Half dosage of this gene in humans causes most of the features of the DiGeorge or Velocardiofacial syndrome phenotypes, including aortic arch and cardiac outflow tract abnormalities. Here we found a strong genetic interaction between Tbx1 and transformation related protein 53 (Trp53). Indeed, genetic ablation of Trp53, or pharmacological inhibition of its protein product p53, rescues significantly the cardiovascular defects of Tbx1 heterozygous and hypomorphic mutants. We found that the Tbx1 and p53 proteins do not interact directly but both occupy a genetic element of Gbx2, which is required for aortic arch and cardiac outflow tract development, and is a known genetic interactor of Tbx1. We found that Gbx2 expression is down-regulated in Tbx1(+/-) embryos and is restored to normal levels in Tbx1(+/-);Trp53(+/-) embryos. In addition, we found that the genetic element that binds both Tbx1 and p53 is highly enriched in H3K27 trimethylation, and upon p53 suppression H3K27me3 levels are reduced, along with Ezh2 enrichment. This finding suggests that the rescue of Gbx2 expression in Tbx1(+/-);Trp53(+/-) embryos is due to reduction of repressive chromatin marks. Overall our data identify unexpected genetic interactions between Tbx1 and Trp53 and provide a proof of principle that developmental defects associated with reduced dosage of Tbx1 can be rescued pharmacologically.
Collapse
|
13
|
Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta Rev Cancer 2014; 1846:380-91. [PMID: 25149433 DOI: 10.1016/j.bbcan.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023]
Abstract
The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sabina Wansleben
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Jade Peres
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Shannagh Hare
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
14
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
15
|
Yan Y, Su M, Song Y, Tang Y, Tian XC, Rood D, Lai L. Tbx1 modulates endodermal and mesodermal differentiation from mouse induced pluripotent stem cells. Stem Cells Dev 2014; 23:1491-500. [PMID: 24564535 DOI: 10.1089/scd.2013.0488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The T-box transcriptional factor (Tbx) family of transcriptional factors has distinct roles in a wide range of embryonic differentiation or response pathways. Tbx1, a T-box transcription factor, is an important gene for the human congenital disorder 22q11.2 deletion syndrome. Induced pluripotent stem cell (iPSC) technology offers new opportunities for both elucidation of the pathogenesis of diseases and the development of stem-cell-based therapies. In this study, we generated iPSCs from Tbx1(-/-) and Tbx1(+/+) fibroblasts and investigated the spontaneous differentiation potential of iPSCs by detailed lineage analysis of the iPSC-derived embryoid bodies. Undifferentiated Tbx1(-/-) and Tbx1(+/+) iPSCs showed similar expression levels of pluripotent markers. The ability of the Tbx1(-/-) iPSCs to generate endodermal and mesodermal lineages was compromised upon spontaneous differentiation into embryonic bodies. Restoration of Tbx1 expression in the Tbx1(-/-) iPSCs to normal levels using an inducible lentiviral system rescued these cells from the potential of defective differentiation. Interestingly, overexpression of Tbx1 in the Tbx1(-/-) iPSCs to higher levels than in the Tbx1(+/+) iPSCs again led to a defective differentiation potential. Additionally, we observed that expression of fibroblast growth factor (FGF) 10 and FGF8 was downregulated in the Tbx1(-/-) iPSC-derived cells, which suggests that Tbx1 regulates the expression of FGFs. Taken together, our results implicated the Tbx1 level as an important determinant of endodermal and mesodermal lineage differentiation during embryonic development.
Collapse
Affiliation(s)
- Yuan Yan
- 1 Department of Allied Health Sciences, University of Connecticut , Storrs, Connecticut
| | | | | | | | | | | | | |
Collapse
|
16
|
Corsten-Janssen N, Saitta SC, Hoefsloot LH, McDonald-McGinn DM, Driscoll DA, Derks R, Dickinson KA, Kerstjens-Frederikse WS, Emanuel BS, Zackai EH, van Ravenswaaij-Arts CMA. More Clinical Overlap between 22q11.2 Deletion Syndrome and CHARGE Syndrome than Often Anticipated. Mol Syndromol 2013; 4:235-45. [PMID: 23885230 DOI: 10.1159/000351127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2013] [Indexed: 12/15/2022] Open
Abstract
CHARGE (coloboma, heart defects, atresia of choanae, retardation of growth and development, genital hypoplasia, and ear abnormalities) and 22q11.2 deletion syndromes are variable, congenital malformation syndromes that show considerable phenotypic overlap. We further explored this clinical overlap and proposed recommendations for the genetic diagnosis of both syndromes. We described 2 patients clinically diagnosed with CHARGE syndrome, who were found to carry a 22q11.2 deletion, and searched the literature for more cases. In addition, we screened our cohort of CHD7 mutation carriers (n = 802) for typical 22q11.2 deletion features and studied CHD7 in 20 patients with phenotypically 22q11.2 deletion syndrome but without haploinsufficiency of TBX1. In total, we identified 5 patients with a clinical diagnosis of CHARGE syndrome and a proven 22q11.2 deletion. Typical 22q11.2 deletion features were found in 30 patients (30/802, 3.7%) of our CHD7 mutation-positive cohort. We found truncating CHD7 mutations in 5/20 patients with phenotypically 22q11.2 deletion syndrome. Differentiating between CHARGE and 22q11.2 deletion syndromes can be challenging. CHD7 and TBX1 probably share a molecular pathway or have common target genes in affected organs. We strongly recommend performing CHD7 analysis in patients with a 22q11.2 deletion phenotype without TBX1 haploinsufficiency and conversely, performing a genome-wide array in CHARGE syndrome patients without a CHD7 mutation.
Collapse
Affiliation(s)
- N Corsten-Janssen
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Transrepression activity of T-box1 in a gene regulation network in mouse cells. Gene 2012; 510:162-70. [DOI: 10.1016/j.gene.2012.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 11/24/2022]
|
18
|
Papangeli I, Scambler P. The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:393-403. [PMID: 23799583 DOI: 10.1002/wdev.75] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hemizygous deletion of 22q11 affects approximately 1:4000 live births and may give rise to many different malformations but classically results in a constellation of phenotypes that receive a diagnosis of DiGeorge syndrome or velocardiofacial syndrome. Particularly affected are the heart and great vessels, the endocrine glands of the neck, the face, the soft palate, and cognitive development. Although up to 50 genes may be deleted, it is haploinsufficiency of the transcription factor TBX1 that is thought to make the greatest contribution to the disorder. Mouse embryos are exquisitely sensitive to varying levels of Tbx1 mRNA, and Tbx1 is required in all three germ layers of the embryonic pharyngeal region for normal development. TBX1 controls cell proliferation and affects cellular differentiation in a cell autonomous fashion, but it also directs non-cell autonomous effects, most notably in the signaling between pharyngeal surface ectoderm and the rostral neural crest. TBX1 interacts with several signaling pathways, including fibroblast growth factor, retinoic acid, CTNNB1 (formerly known as β-catenin), and bone morphogenetic protein (BMP), and may regulate pathways by both DNA-binding and non-binding activity. In addition to the structural abnormalities seen in 22q11 deletion syndrome (DS) and Tbx1 mutant mouse models, patients reaching adolescence and adulthood have a predisposition to psychiatric illness. Whether this has a developmental basis and, if so, which genes are involved is an ongoing strand of research. Thus, knowledge of the genetic and developmental mechanisms underlying 22q11DS has the potential to inform about common disease as well as developmental defect.
Collapse
Affiliation(s)
- Irinna Papangeli
- Department of Molecular Medicine, UCL Institute of Child Health, London, UK
| | | |
Collapse
|
19
|
Wang XR, Zhang XM, Du J, Jiang H. MicroRNA-182 regulates otocyst-derived cell differentiation and targets T-box1 gene. Hear Res 2012; 286:55-63. [PMID: 22381690 DOI: 10.1016/j.heares.2012.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 01/27/2012] [Accepted: 02/08/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recently, in vitro and in vivo models have identified that microRNAs (miRNAs), which are extensively expressed in the inner ear, play important roles in inner ear development and function. However, the function of miRNA in vertebrate tissue is not well understood. RESULTS The current study used an in vitro model of embryonic mouse inner ear in a stem/progenitor cell culture to demonstrate that: 1) miR-182 is expressed during differentiation of inner ear stem/progenitor cell into a hair cell-like fate, 2) ectopic miR-182 promotes inner ear stem/progenitor cell differentiation into a hair cell-like fate, and 3) the function of miR-182 may be associated with its putative target Tbx1, a transcription factors that have been implicated in inner ear development and hair cell fate. CONCLUSIONS Our findings suggest that miR-182 could regulate inner ear progenitor cell differentiation and that miRNAs are important regulators of hair cell differentiation, providing new targets for hair cell repair.
Collapse
Affiliation(s)
- Xian-Ren Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road, Guangzhou 510080, PR China
| | | | | | | |
Collapse
|
20
|
Monks DC, Morrow BE. Identification of putative retinoic acid target genes downstream of mesenchymal Tbx1 during inner ear development. Dev Dyn 2012; 241:563-73. [PMID: 22275070 DOI: 10.1002/dvdy.23731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2011] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The T-box transcription factor Tbx1 is expressed in the otic vesicle and surrounding mesoderm of the periotic mesenchyme (POM) during inner ear development. Mesenchymal Tbx1 is essential for inner ear development, with conditional mutants displaying defects in both the auditory and vestibular systems. We have previously reported that mesodermal Tbx1 loss of function mutants (Mest-KO) have reduced expression of retinoic acid (RA) metabolic genes, Cyp26a1 and Cyp26c1, in the POM, consistent with other studies showing an increase in mesodermal RA reporter expression in Tbx1-/- embryos. However, putative RA effector genes whose expression is altered downstream of increased otic mesenchymal-epithelial RA signaling have remained elusive. RESULTS Here we report the identification of 18 retinoic acid responsive genes altered in Mest-KO conditional mutants by microarray gene profiling. Nine were chosen for biological validation including quantitative RT-PCR and in situ hybridization (Otor, Mia, Col2a1, Clu, Adm, Myt1, Dlx3, Itgb3, and Itga2b). CONCLUSION Here study provides a series of newly identified RA effector genes for inner ear development downstream of mesenchymal Tbx1 that may contribute to the inner ear phenotype observed in Tbx1 loss of function mouse models.
Collapse
Affiliation(s)
- Dennis C Monks
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
21
|
Haugas M, Lilleväli K, Salminen M. Defects in sensory organ morphogenesis and generation of cochlear hair cells in Gata3-deficient mouse embryos. Hear Res 2011; 283:151-61. [PMID: 22094003 DOI: 10.1016/j.heares.2011.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/05/2011] [Accepted: 10/31/2011] [Indexed: 01/01/2023]
Abstract
The development of the inner ear sensory epithelia involves a complex network of transcription factors and signaling pathways and the whole process is not yet entirely understood. GATA3 is a DNA-binding factor that is necessary for otic morphogenesis and without GATA3 variable defects have been observed already at early stages in mouse embryos. In the less severe phenotypes, one small oval shaped vesicle is formed whereas in the more severe cases, the otic epithelium becomes disrupted and the endolymphatic domain becomes separated from the rest of the otic epithelium. Despite these defects, the early sensory fate specification occurs in Gata3-/- otic epithelium. However, due to the early lethality of Gata3-deficient embryos, the later morphogenesis and sensory development have remained unclear. To gain information of these later processes we produced drug-rescued Gata3-/- embryos that survived up to late gestation. In these older Gata3-/- embryos, a similar variability was observed as earlier. In the more severely affected ears, the development of the separate endolymphatic domain arrested completely whereas the remaining vesicle formed an empty cavity with variable forms, but without any distinguishable otic compartments or morphologically distinct sensory organs. However, the dorsal part of this vesicle was able to adopt a sensory fate and to produce some hair cells. In the less severe cases of Gata3-/- ears, distinct utricular, saccular and cochlear compartments were present and hair cells could be detected in the vestibular sensory epithelia. Although clear cristae and maculae formed, the morphology and size of these sensory areas were abnormal and they remained often un-separated. In contrast to the vestibule, the cochlear sensory compartment remained more immature and no hair or supporting cells could be detected. Our results suggest that GATA3 is critical for normal vestibular and cochlear morphogenesis and that it is especially important for cochlear sensory differentiation.
Collapse
Affiliation(s)
- Maarja Haugas
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjobergin katu 2, 00790 Helsinki, Finland.
| | | | | |
Collapse
|
22
|
Brown AS, Epstein DJ. Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development. Development 2011; 138:3967-76. [PMID: 21831920 DOI: 10.1242/dev.066126] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mouse embryos lacking sonic hedgehog (Shh), dorsoventral polarity within the otic vesicle is disrupted. Consequently, ventral otic derivatives, including the cochlear duct and saccule, fail to form, and dorsal otic derivatives, including the semicircular canals, endolymphatic duct and utricle, are malformed or absent. Since inner ear patterning and morphogenesis are heavily dependent on extracellular signals derived from tissues that are also compromised by the loss of Shh, the extent to which Shh signaling acts directly on the inner ear for its development is unclear. To address this question, we generated embryos in which smoothened (Smo), an essential transducer of Hedgehog (Hh) signaling, was conditionally inactivated in the otic epithelium (Smo(ecko)). Ventral otic derivatives failed to form in Smo(ecko) embryos, whereas vestibular structures developed properly. Consistent with these findings, we demonstrate that ventral, but not dorsal, otic identity is directly dependent on Hh. The role of Hh in cochlear-vestibular ganglion (cvg) formation is more complex, as both direct and indirect signaling mechanisms are implicated. Our data suggest that the loss of cvg neurons in Shh(-/-) animals is due, in part, to an increase in Wnt responsiveness in the otic vesicle, resulting in the ectopic expression of Tbx1 in the neurogenic domain and subsequent repression of Ngn1 transcription. A mitogenic role for Shh in cvg progenitor proliferation was also revealed in our analysis of Smo(ecko) embryos. Taken together, these data contribute to a better understanding of the intrinsic and extrinsic signaling properties of Shh during inner ear development.
Collapse
Affiliation(s)
- Alexander S Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
23
|
Trempus CS, Wei SJ, Humble MM, Dang H, Bortner CD, Sifre MI, Kissling GE, Sunman JA, Akiyama SK, Roberts JD, Tucker CJ, Chun KS, Tennant RW, Langenbach R. A novel role for the T-box transcription factor Tbx1 as a negative regulator of tumor cell growth in mice. Mol Carcinog 2011; 50:981-91. [PMID: 21438027 DOI: 10.1002/mc.20768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 11/09/2022]
Abstract
The T-box transcription factor, Tbx1, an important regulatory gene in development, is highly expressed in hair follicle (HF) stem cells in adult mice. Because mouse models of skin carcinogenesis have demonstrated that HF stem cells are a carcinogen target population and contribute significantly to tumor development, we investigated whether Tbx1 plays a role in skin carcinogenesis. We first assessed Tbx1 expression levels in mouse skin tumors, and found down-regulation in all tumors examined. To study the effect of Tbx1 expression on growth and tumorigenic potential of carcinoma cells, we transfected mouse Tbx1 cDNA into a mouse spindle cell carcinoma cell line that did not express endogenous Tbx1. Following transfection, two cell lines expressing different levels of the Tbx1/V5 fusion protein were selected for further study. Intradermal injection of the cell lines into mice revealed that Tbx1 expression significantly suppressed tumor growth, albeit with no change in tumor morphology. In culture, ectopic Tbx1 expression resulted in decreased cell growth and reduced development into multilayered colonies, compared to control cells. Tbx1-transfectants exhibited a reduced proliferative rate compared to control cells, with fewer cells in S and G2/M phases. The Tbx1 transfectants developed significantly fewer colonies in soft agar, demonstrating loss of anchorage-independent growth. Taken together, our data show that ectopic expression of Tbx1 restored contact inhibition to the skin tumor cells, suggesting that this developmentally important transcription factor may have a novel dual role as a negative regulator of tumor growth. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carol S Trempus
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Radosevic M, Robert-Moreno À, Coolen M, Bally-Cuif L, Alsina B. Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development 2011; 138:397-408. [DOI: 10.1242/dev.056093] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper spatial control of neurogenesis in the inner ear ensures the precise innervation of mechanotransducing cells and the propagation of auditory and equilibrium stimuli to the brain. Members of the Hairy and enhancer of split (Hes) gene family regulate neurogenesis by inhibiting neuronal differentiation and maintaining neural stem cell pools in non-neurogenic zones. Remarkably, their role in the spatial control of neurogenesis in the ear is unknown. In this study, we identify her9, a zebrafish ortholog of Hes1, as a key gene in regulating otic neurogenesis through the definition of the posterolateral non-neurogenic field. First, her9 emerges as a novel otic patterning gene that represses proneural function and regulates the extent of the neurogenic domain. Second, we place Her9 downstream of Tbx1, linking these two families of transcription factors for the first time in the inner ear and suggesting that the reported role of Tbx1 in repressing neurogenesis is in part mediated by the bHLH transcriptional repressor Her9. Third, we have identified retinoic acid (RA) signaling as the upstream patterning signal of otic posterolateral genes such as tbx1 and her9. Finally, we show that at the level of the cranial otic field, opposing RA and Hedgehog signaling position the boundary between the neurogenic and non-neurogenic compartments. These findings permit modeling of the complex genetic cascade that underlies neural patterning of the otic vesicle.
Collapse
Affiliation(s)
- Marija Radosevic
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Àlex Robert-Moreno
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Marion Coolen
- Laboratory of Neurobiology and Development, Institute of Neurobiology Alfred Fessard, CNRS, Avenue de Terrasse, 91198 cedex, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Laboratory of Neurobiology and Development, Institute of Neurobiology Alfred Fessard, CNRS, Avenue de Terrasse, 91198 cedex, Gif-sur-Yvette, France
| | - Berta Alsina
- Developmental Biology Laboratory, Dept. Ciències Experimentals i de la Salut, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
25
|
Appler JM, Goodrich LV. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Prog Neurobiol 2011; 93:488-508. [PMID: 21232575 DOI: 10.1016/j.pneurobio.2011.01.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/09/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain.
Collapse
Affiliation(s)
- Jessica M Appler
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
26
|
Freyer L, Morrow BE. Canonical Wnt signaling modulates Tbx1, Eya1, and Six1 expression, restricting neurogenesis in the otic vesicle. Dev Dyn 2010; 239:1708-22. [PMID: 20503367 DOI: 10.1002/dvdy.22308] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To understand the mechanism by which canonical Wnt signaling sets boundaries for pattern formation in the otic vesicle (OV), we examined Tbx1 and Eya1-Six1 downstream of activated beta-catenin. Tbx1, the gene for velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), is essential for inner ear development where it promotes Bmp4 and Otx1 expression and restricts neurogenesis. Using floxed beta-catenin gain-of-function (GOF) and loss-of-function (LOF) alleles, we found Tbx1 expression was down-regulated and maintained/enhanced in the two mouse mutants, respectively. Bmp4 was ectopically expressed and Otx1 was lost in beta-catenin GOF mutants. Normally, inactivation of Tbx1 causes expanded neurogenesis, but expression of NeuroD was down-regulated in beta-catenin GOF mutants. To explain this paradox, Eya1 and Six1, genes for branchio-oto-renal (BOR) syndrome were down-regulated in the OV of beta-catenin GOF mutants independently of Tbx1. Overall, this work helps explain the mechanism by which Wnt signaling modulates transcription factors required for neurogenesis and patterning of the OV.
Collapse
Affiliation(s)
- Laina Freyer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
27
|
|
28
|
Scambler PJ. 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol 2010; 31:378-90. [PMID: 20054531 DOI: 10.1007/s00246-009-9613-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 12/24/2022]
Abstract
Tbx1 is a member of the Tbox family of binding domain transcription factors. TBX1 maps within the region of 22q11 deleted in humans with DiGeorge or velocardiofacial syndrome. Mice haploinsufficient for Tbx1 have phenotypes that recapitulate major features of the syndrome, notably abnormal growth and remodelling of the pharyngeal arch arteries. The Tbx1 haploinsufficiency phenotype is modified by genetic background and by mutations in putative downstream targets. Homozygous null mutations of Tbx1 have more severe defects including failure of outflow tract septation, and absence of the caudal pharyngeal arches. Tbx1 is a transcriptional activator, and loss of this activity has been linked to alterations in the expression of various genes involved in cardiovascular morphogenesis. In particular, Fgf and retinoic acid signalling are dysregulated in Tbx1 mutants. This article summarises the tissue specific and temporal requirements for Tbx1, and attempts to synthesis what is know about the developmental pathways under its control.
Collapse
Affiliation(s)
- Peter J Scambler
- Molecular Medicine Unit, Institute of Child Health, 30, Guilford St., London WC1N 1EH, UK.
| |
Collapse
|
29
|
Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Dev Biol 2010; 339:166-78. [DOI: 10.1016/j.ydbio.2009.12.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/30/2009] [Accepted: 12/18/2009] [Indexed: 01/02/2023]
|
30
|
van Bueren KL, Papangeli I, Rochais F, Pearce K, Roberts C, Calmont A, Szumska D, Kelly RG, Bhattacharya S, Scambler PJ. Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome. Dev Biol 2010; 340:369-80. [PMID: 20122914 PMCID: PMC2877781 DOI: 10.1016/j.ydbio.2010.01.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 12/25/2022]
Abstract
22q11 deletion syndrome (22q11DS) is characterised by aberrant development of the pharyngeal apparatus and the heart with haploinsufficiency of the transcription factor TBX1 being considered the major underlying cause of the disease. Tbx1 mutations in mouse phenocopy the disorder. In order to identify the transcriptional dysregulation in Tbx1-expressing lineages we optimised fluorescent-activated cell sorting of β-galactosidase expressing cells (FACS-Gal) to compare the expression profile of Df1/Tbx1lacZ (effectively Tbx1 null) and Tbx1 heterozygous cells isolated from mouse embryos. Hes1, a major effector of Notch signalling, was identified as downregulated in Tbx1−/− mutants. Hes1 mutant mice exhibited a partially penetrant range of 22q11DS-like defects including pharyngeal arch artery (PAA), outflow tract, craniofacial and thymic abnormalities. Similar to Tbx1 mice, conditional mutagenesis revealed that Hes1 expression in embryonic pharyngeal ectoderm contributes to thymus and pharyngeal arch artery development. These results suggest that Hes1 acts downstream of Tbx1 in the morphogenesis of pharyngeal-derived structures.
Collapse
|
31
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
32
|
Liang JK, Bok J, Wu DK. Distinct contributions from the hindbrain and mesenchyme to inner ear morphogenesis. Dev Biol 2009; 337:324-34. [PMID: 19896934 DOI: 10.1016/j.ydbio.2009.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 10/29/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
A mature inner ear is a complex structure consisting of vestibular and auditory components. Microsurgical ablations, rotations, and translocations were performed in ovo to identify the tissues that control inner ear morphogenesis. We show that mesenchyme/ectoderm adjacent to the developing ear specifically governs the shape of vestibular components - the semicircular canals and ampullae - by conferring anteroposterior axial information to these structures. In contrast, removal of individual hindbrain rhombomeres adjacent to the developing ear preferentially affects the growth and morphogenesis of the auditory subdivision, the cochlear duct, or basilar papilla. Removal of rhombomere 5 affects cochlear duct growth, while rhombomere 6 removal affects cochlear growth and morphogenesis. Rotating rhombomeres 5 and 6 along the anteroposterior axis also impacts cochlear duct morphogenesis but has little effect on the vestibular components. Our studies indicate that discrete tissues, acting at a distance, control the morphogenesis of distinct elements of the inner ear. These results provide a basis for identifying factors that are essential to vestibular and auditory development in vertebrates.
Collapse
Affiliation(s)
- Jennifer K Liang
- National Institute on Deafness and Other Communication Disorders, 5 Research Court, Rockville, MD 20850, USA
| | | | | |
Collapse
|
33
|
Randall V, McCue K, Roberts C, Kyriakopoulou V, Beddow S, Barrett AN, Vitelli F, Prescott K, Shaw-Smith C, Devriendt K, Bosman E, Steffes G, Steel KP, Simrick S, Basson MA, Illingworth E, Scambler PJ. Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 2009; 119:3301-10. [PMID: 19855134 DOI: 10.1172/jci37561] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 08/19/2009] [Indexed: 11/17/2022] Open
Abstract
Aortic arch artery patterning defects account for approximately 20% of congenital cardiovascular malformations and are observed frequently in velocardiofacial syndrome (VCFS). In the current study, we screened for chromosome rearrangements in patients suspected of VCFS, but who lacked a 22q11 deletion or TBX1 mutation. One individual displayed hemizygous CHD7, which encodes a chromodomain protein. CHD7 haploinsufficiency is the major cause of coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, and ear anomalies/deafness (CHARGE) syndrome, but this patient lacked the major diagnostic features of coloboma and choanal atresia. Because a subset of CHARGE cases also display 22q11 deletions, we explored the embryological relationship between CHARGE and VCSF using mouse models. The hallmark of Tbx1 haploinsufficiency is hypo/aplasia of the fourth pharyngeal arch artery (PAA) at E10.5. Identical malformations were observed in Chd7 heterozygotes, with resulting aortic arch interruption at later stages. Other than Tbx1, Chd7 is the only gene reported to affect fourth PAA development by haploinsufficiency. Moreover, Tbx1+/-;Chd7+/- double heterozygotes demonstrated a synergistic interaction during fourth PAA, thymus, and ear morphogenesis. We could not rescue PAA morphogenesis by restoring neural crest Chd7 expression. Rather, biallelic expression of Chd7 and Tbx1 in the pharyngeal ectoderm was required for normal PAA development.
Collapse
Affiliation(s)
- Victoria Randall
- Molecular Medicine Unit, Institute of Child Health, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Calmont A, Ivins S, Van Bueren KL, Papangeli I, Kyriakopoulou V, Andrews WD, Martin JF, Moon AM, Illingworth EA, Basson MA, Scambler PJ. Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 2009; 136:3173-83. [PMID: 19700621 PMCID: PMC2730371 DOI: 10.1242/dev.028902] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2009] [Indexed: 12/13/2022]
Abstract
Elucidating the gene regulatory networks that govern pharyngeal arch artery (PAA) development is an important goal, as such knowledge can help to identify new genes involved in cardiovascular disease. The transcription factor Tbx1 plays a vital role in PAA development and is a major contributor to cardiovascular disease associated with DiGeorge syndrome. In this report, we used various genetic approaches to reveal part of a signalling network by which Tbx1 controls PAA development in mice. We investigated the crucial role played by the homeobox-containing transcription factor Gbx2 downstream of Tbx1. We found that PAA formation requires the pharyngeal surface ectoderm as a key signalling centre from which Gbx2, in response to Tbx1, triggers essential directional cues to the adjacent cardiac neural crest cells (cNCCs) en route to the caudal PAAs. Abrogation of this signal generates cNCC patterning defects leading to PAA abnormalities. Finally, we showed that the Slit/Robo signalling pathway is activated during cNCC migration and that components of this pathway are affected in Gbx2 and Tbx1 mutant embryos at the time of PAA development. We propose that the spatiotemporal control of this tightly orchestrated network of genes participates in crucial aspects of PAA development.
Collapse
Affiliation(s)
- Amélie Calmont
- Molecular Medicine Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fulcoli FG, Huynh T, Scambler PJ, Baldini A. Tbx1 regulates the BMP-Smad1 pathway in a transcription independent manner. PLoS One 2009; 4:e6049. [PMID: 19557177 PMCID: PMC2698216 DOI: 10.1371/journal.pone.0006049] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 05/27/2009] [Indexed: 11/18/2022] Open
Abstract
Tbx1 is a T-box transcription factor implicated in DiGeorge syndrome. The molecular function of Tbx1 is unclear although it can transactivate reporters with T-box binding elements. We discovered that Tbx1 binds Smad1 and suppresses the Bmp4/Smad1 signaling. Tbx1 interferes with Smad1 to Smad4 binding, and a mutation of Tbx1 that abolishes transactivation, does not affect Smad1 binding nor does affect the ability to suppress Smad1 activity. In addition, a disease-associated mutation of TBX1 that does not prevent transactivation, prevents the TBX1-SMAD1 interaction. Expression of Tbx1 in transgenic mice generates phenotypes similar to those associated with loss of a Bmp receptor. One phenotype could be rescued by transgenic Smad1 expression. Our data indicate that Tbx1 interferes with Bmp/Smad1 signaling and provide strong evidence that a T-box transcription factor has functions unrelated to transactivation.
Collapse
Affiliation(s)
- F. Gabriella Fulcoli
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Institute of Genetics and Biophysics, CNR, Naples, Italy
| | - Tuong Huynh
- Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, Texas, United States of America
| | | | - Antonio Baldini
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, Texas, United States of America
- University Federico II, Naples, Italy
- Institute of Genetics and Biophysics, CNR, Naples, Italy
| |
Collapse
|
36
|
Braunstein EM, Monks DC, Aggarwal VS, Arnold JS, Morrow BE. Tbx1 and Brn4 regulate retinoic acid metabolic genes during cochlear morphogenesis. BMC DEVELOPMENTAL BIOLOGY 2009; 9:31. [PMID: 19476657 PMCID: PMC2700094 DOI: 10.1186/1471-213x-9-31] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 05/29/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND In vertebrates, the inner ear is comprised of the cochlea and vestibular system, which develop from the otic vesicle. This process is regulated via inductive interactions from surrounding tissues. Tbx1, the gene responsible for velo-cardio-facial syndrome/DiGeorge syndrome in humans, is required for ear development in mice. Tbx1 is expressed in the otic epithelium and adjacent periotic mesenchyme (POM), and both of these domains are required for inner ear formation. To study the function of Tbx1 in the POM, we have conditionally inactivated Tbx1 in the mesoderm while keeping expression in the otic vesicle intact. RESULTS Conditional mutants (TCre-KO) displayed malformed inner ears, including a hypoplastic otic vesicle and a severely shortened cochlear duct, indicating that Tbx1 expression in the POM is necessary for proper inner ear formation. Expression of the mesenchyme marker Brn4 was also lost in the TCre-KO. Brn4-;Tbx1+/-embryos displayed defects in growth of the distal cochlea. To identify a potential signal from the POM to the otic epithelium, expression of retinoic acid (RA) catabolizing genes was examined in both mutants. Cyp26a1 expression was altered in the TCre-KO, while Cyp26c1 showed reduced expression in both TCre-KO and Brn4-;Tbx1+/- embryos. CONCLUSION These results indicate that Tbx1 expression in the POM regulates cochlear outgrowth potentially via control of local retinoic acid activity.
Collapse
Affiliation(s)
- Evan M Braunstein
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
37
|
Catón J, Luder HU, Zoupa M, Bradman M, Bluteau G, Tucker AS, Klein O, Mitsiadis TA. Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors. Dev Biol 2009; 328:493-505. [PMID: 19233155 DOI: 10.1016/j.ydbio.2009.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/14/2009] [Accepted: 02/11/2009] [Indexed: 02/07/2023]
Abstract
TBX1 is a principal candidate gene for DiGeorge syndrome, a developmental anomaly that affects the heart, thymus, parathyroid, face, and teeth. A mouse model carrying a deletion in a functional region of the Tbx1 gene has been extensively used to study anomalies related to this syndrome. We have used the Tbx1 null mouse to understand the tooth phenotype reported in patients afflicted by DiGeorge syndrome. Because of the early lethality of the Tbx1-/- mice, we used long-term culture techniques that allow the unharmed growth of incisors until their full maturity. All cultured incisors of Tbx1-/- mice were hypoplastic and lacked enamel, while thorough histological examinations demonstrated the complete absence of ameloblasts. The absence of enamel is preceded by a decrease in proliferation of the ameloblast precursor cells and a reduction in amelogenin gene expression. The cervical loop area of the incisor, which contains the niche for the epithelial stem cells, was either severely reduced or completely missing in mutant incisors. In contrast, ectopic expression of Tbx1 was observed in incisors from mice with upregulated Fibroblast Growth Factor signalling and was closely linked to ectopic enamel formation and deposition in these incisors. These results demonstrate that Tbx1 is essential for the maintenance of ameloblast progenitor cells in rodent incisors and that its deletion results in the absence of enamel formation.
Collapse
Affiliation(s)
- Javier Catón
- Department of Craniofacial Development, King's College London, GKT Dental Institute, London SE1 9RT, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Vázquez-Echeverría C, Dominguez-Frutos E, Charnay P, Schimmang T, Pujades C. Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain. Dev Biol 2008; 322:167-78. [PMID: 18703040 DOI: 10.1016/j.ydbio.2008.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
The inner ear, the sensory organ responsible for hearing and balance, contains specialized sensory and non-sensory epithelia arranged in a highly complex three-dimensional structure. To achieve this complexity, a tight coordination between morphogenesis and cell fate specification is essential during otic development. Tissues surrounding the otic primordium, and more particularly the adjacent segmented hindbrain, have been implicated in specifying structures along the anteroposterior and dorsoventral axes of the inner ear. In this work we have first characterized the generation and axial specification of the otic neurogenic domain, and second, we have investigated the effects of the mutation of kreisler/MafB--a gene transiently expressed in rhombomeres 5 and 6 of the developing hindbrain--in early otic patterning and cell specification. We show that kr/kr embryos display an expansion of the otic neurogenic domain, due to defects in otic patterning. Although many reports have pointed to the role of FGF3 in otic regionalisation, we provide evidence that FGF3 is not sufficient to govern this process. Neither Krox20 nor Fgf3 mutant embryos, characterized by a downregulation or absence of Fgf3 in r5 and r6, display ectopic neuroblasts in the otic primordium. However, Fgf3-/-Fgf10-/- double mutants show a phenotype very similar to kr/kr embryos: they present ectopic neuroblasts along the AP and DV otic axes. Finally, partial rescue of the kr/kr phenotype is obtained when Fgf3 or Fgf10 are ectopically expressed in the hindbrain of kr/kr embryos. These results highlight the importance of hindbrain-derived signals in the regulation of otic neurogenesis.
Collapse
Affiliation(s)
- Citlali Vázquez-Echeverría
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
39
|
Fritzsch B, Beisel KW, Pauley S, Soukup G. Molecular evolution of the vertebrate mechanosensory cell and ear. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2008; 51:663-78. [PMID: 17891725 PMCID: PMC3918877 DOI: 10.1387/ijdb.072367bf] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has been spent on the evolution of the inner ear and the central auditory system. Recent advances in our molecular understanding of ear and brain development provide novel avenues to this neglected aspect of auditory neurosensory evolution.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Creighton University, Dept of Biomedical Sciences, Omaha, NE 68178, USA.
| | | | | | | |
Collapse
|
40
|
Cooperative function of Tbx1 and Brn4 in the periotic mesenchyme is necessary for cochlea formation. J Assoc Res Otolaryngol 2008; 9:33-43. [PMID: 18231833 DOI: 10.1007/s10162-008-0110-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022] Open
Abstract
The T-box transcription factor TBX1 has been identified as the major gene responsible for the etiology of velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS). Conductive hearing loss occurs in a majority of patients with this syndrome, while sensorineural deafness has also been reported in some cases. Mutations in POU3F4/BRN4, a POU domain transcription factor, cause DFN3, an X-linked nonsyndromic form of deafness characterized by mixed conductive and sensorineural hearing loss. Inactivation of the murine orthologues of these genes causes similar defects to those seen in humans and has provided excellent models for the study of inner ear development. Tbx1 and Brn4 are expressed in the mesenchymal cells surrounding the otic vesicle and have been shown to play roles in cochlear outgrowth. Furthermore, expression of Brn4 is reduced in Tbx1 null mutants, suggesting a possible genetic interaction between these genes. To test whether Tbx1 and Brn4 function in a common pathway, mice mutant for both genes were generated and analyzed for inner ear defects. Brn4-;Tbx1+/- mutants displayed a significant reduction in the number of turns of the cochlea compared to Brn4- or Tbx1+/- mice. In addition, Brn4-;Tbx1+/- mice displayed structural defects in the apical cochlea indicative of Mondini dysplasia found in patients with either VCFS/DGS or DFN3. These data establish a genetic interaction between Tbx1 and Brn4 relevant to human disease and indicate a function of these genes in signaling from the periotic mesenchyme to the otic vesicle to direct proper coiling of the cochlear duct.
Collapse
|
41
|
Tiecke E, Matsuura M, Kokubo N, Kuraku S, Kusakabe R, Kuratani S, Tanaka M. Identification and developmental expression of two Tbx1/10-related genes in the agnathan Lethenteron japonicum. Dev Genes Evol 2007; 217:691-7. [PMID: 17874129 DOI: 10.1007/s00427-007-0181-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 08/27/2007] [Indexed: 01/31/2023]
Abstract
We have identified two Tbx1/10-related genes, LjTbx1/10A and LjTbx1/10B, from the Japanese river lamprey Lethenteron japonicum. We used in situ hybridization to characterize their expression pattern during embryonic development. LjTbx1/10A and LjTbx1/10B shared common expression in the pharyngeal arches and otic vesicle, although their levels and timing of expression differed markedly. LjTbx1/10A was highly expressed in the mesodermal core of pharyngeal arches and the adjacent endoderm throughout pharyngeal arch development, whereas LjTbx1/10B expression was only transiently upregulated in forming pharyngeal pouches. LjTbx1/10A transcripts first appeared at stage 25 in otic vesicles, whereas LjTbx1/10B transcripts could already be detected in the developing otic placode at stage 20. These results suggest that lamprey LjTbx1/10A and LjTbx1/10B may play distinct roles in the patterning and development of the pharyngeal apparatus. It appears that lamprey Tbx1/10 genes have undergone subfunctionalization independent from gnathostomes, with regard to both regulation and function.
Collapse
Affiliation(s)
- Eva Tiecke
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Huynh T, Chen L, Terrell P, Baldini A. A fate map of Tbx1 expressing cells reveals heterogeneity in the second cardiac field. Genesis 2007; 45:470-5. [PMID: 17610275 DOI: 10.1002/dvg.20317] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tbx1 is required for the expansion of second heart field (SHF) cardiac progenitors destined to the outflow tract of the heart. Loss of Tbx1 causes heart defects in humans and mice. We report a novel Tbx1(Cre) knock-in allele that we use to fate map Tbx1-expressing cells during development in conjunction with a reporter and 3D image reconstruction. Tbx1 descendants constitute a mesodermal cell population that surrounds the primitive pharynx and approaches the arterial pole of the heart from lateral and posterior, but not anterior directions. These cells populate most of the outflow tract with the exception of the anterior portion, thus identifying a population of the SHF of distinct origin. Both myocardial and underlying endocardial layers were labeled, suggesting a common origin of these cell types. Finally, we show that Tbx1(Cre)-positive and Tbx1(Cre)-negative cell descendants occupy discrete domains in the outflow tract throughout development.
Collapse
Affiliation(s)
- Tuong Huynh
- Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
43
|
Xu H, Chen L, Baldini A. In vivo genetic ablation of the periotic mesoderm affects cell proliferation survival and differentiation in the cochlea. Dev Biol 2007; 310:329-40. [PMID: 17825816 PMCID: PMC2223065 DOI: 10.1016/j.ydbio.2007.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 07/24/2007] [Accepted: 08/01/2007] [Indexed: 02/08/2023]
Abstract
Tbx1 is required for ear development in humans and mice. Gene manipulation in the mouse has discovered multiple consequences of loss of function on early development of the inner ear, some of which are attributable to a cell autonomous role in maintaining cell proliferation of epithelial progenitors of the cochlear and vestibular apparata. However, ablation of the mesodermal domain of the gene also results in severe but more restricted abnormalities. Here we show that Tbx1 has a dynamic expression during late development of the ear, in particular, is expressed in the sensory epithelium of the vestibular organs but not of the cochlea. Vice versa, it is expressed in the condensed mesenchyme that surrounds the cochlea but not in the one that surrounds the vestibule. Loss of Tbx1 in the mesoderm disrupts this peri-cochlear capsule by strongly reducing the proliferation of mesenchymal cells. The organogenesis of the cochlea, which normally occurs inside the capsule, was dramatically affected in terms of growth of the organ, as well as proliferation, differentiation and survival of its epithelial cells. This model provides a striking demonstration of the essential role played by the periotic mesenchyme in the organogenesis of the cochlea.
Collapse
Affiliation(s)
- Huansheng Xu
- Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, TX 77030
| | - Li Chen
- Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, TX 77030
- Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030
| | - Antonio Baldini
- Institute of Biosciences and Technology, Texas A&M University Health Sciences Center, Houston, TX 77030
- Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030
- Telethon Institute of Genetics and Medicine, Naples, Italy
| |
Collapse
|
44
|
Choo D. The role of the hindbrain in patterning of the otocyst. Dev Biol 2007; 308:257-65. [PMID: 17601528 PMCID: PMC1986645 DOI: 10.1016/j.ydbio.2007.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/17/2022]
Affiliation(s)
- Daniel Choo
- Ear and Hearing Center, Univeristy of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|