1
|
Jin Z, Zhang Y, Chen W, Li H, Shi L, Wang D, Zhu R, Zhang C. Intracellular autoactivation and surface location of hepsin, TMPRSS2, and TMPRSS13. Life Sci 2025; 361:123299. [PMID: 39643034 DOI: 10.1016/j.lfs.2024.123299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
AIMS Hepsin (HPN), a Type II transmembrane serine protease (TTSP), is involved in hepatocyte metabolism and various diseases. It undergoes autoactivation on the surface of human hepatoma cells, a mechanism not observed in other cell types. This study aims to explore HPN activation and surface expression in endometrial epithelial cells. MATERIALS AND METHODS We studied HPN zymogen activation and cell surface expression in human embryonic kidney 293 and endometrial epithelial AN3CA and Ishikawa cells using site-directed mutagenesis, Western blotting, flow cytometry, and immunostaining. Treatments with brefeldin A (BFA) and monensin, along with co-transfection assays, were employed to assess HPN activation and expression before reaching the cell surface. We also analyzed the activation and expression of TMPRSS2 and TMPRSS13 and examined the effect of the serine protease inhibitor HAI-1 on these proteases. KEY FINDINGS HPN zymogen autoactivates in the endoplasmic reticulum (ER) and Golgi apparatus. Its active form reduces cell surface expression through trans-autodegradation, a mechanism also applicable to in TMPRSS2 and TMPRSS13. Additionally, HAI-1 interacts with these TTSPs in different ways: it inhibits HPN activation and stabilizes its cell-surface expression; it inhibits TMPRSS2 activation without affecting its cell-surface expression; and it facilitates TMPRSS13 activation, protecting it from degradation and stabilizing its cell surface expression. SIGNIFICANCE These results revealed an intracellular autoactivation and expression mechanism of HPN, TMPRSS2, and TMPRSS13, differing from the extracellular activated TTSPs. These findings provide new insights into the diverse mechanisms in regulating TTSP activation, potentially aiding in treating TTSP-related endometrial diseases.
Collapse
Affiliation(s)
- Zili Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjin, China
| | - Yue Zhang
- Medical Science and Technology Innovation Center, Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wenjun Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Li
- Medical Science and Technology Innovation Center, Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lingyun Shi
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Di Wang
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Ce Zhang
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
2
|
Weiting L, Kawaguchi M, Fukushima T, Sato Y. Loss of hepatocyte growth factor activator inhibitor type 1 (HAI-1) upregulates MMP-9 expression and induces degradation of the epidermal basement membrane. Hum Cell 2024; 38:36. [PMID: 39730982 DOI: 10.1007/s13577-024-01159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1), which is encoded by the SPINT1 gene, is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. We had previously demonstrated that HAI-1 is critical for placental development, epidermal keratinization, and maintenance of keratinocyte morphology by regulating cognate proteases, matriptase and prostasin. After performing ultrastructural analysis of Spint1-deleted skin tissues, our results showed that Spint1-deleted epidermis exhibited partially disrupted epidermal basement-membrane structures. Matrix metalloproteinases-9 (MMP-9) expression levels were upregulated in Spint1-deleted primary cultured keratinocytes and SPINT1 knockout (KO) HaCaT cells. Furthermore, gelatin zymography of the conditioned medium showed increased MMP activities in keratinocytes with reduced HAI-1 expression. Treating SPINT1 KO HaCaT cells with dehydroxymethylepoxyquinomicin (DHMEQ), a small molecule inhibitor of NF-κB, abrogated the upregulation of MMP9 and the gelatinolytic activity associated with MMP-9. These results suggest that HAI-1 may play a critical role in epidermal basement membrane integrity by regulating NF-κB activation-induced upregulation of MMP-9.
Collapse
Affiliation(s)
- Liang Weiting
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan.
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| | - Yuichiro Sato
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| |
Collapse
|
3
|
Kim JM, Noh EM, You YO, Kim MS, Lee YR. Downregulation of Matriptase Inhibits Porphyromonas gingivalis Lipopolysaccharide-Induced Matrix Metalloproteinase-1 and Proinflammatory Cytokines by Suppressing the TLR4/NF- κB Signaling Pathways in Human Gingival Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3865844. [PMID: 36246974 PMCID: PMC9553488 DOI: 10.1155/2022/3865844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
Matriptases are cell surface proteolytic enzymes belonging to the type II transmembrane serine protease family that mediate inflammatory skin disorders and cancer progression. Matriptases may affect the development of periodontitis via protease-activated receptor-2 activity. However, the cellular mechanism by which matriptases are involved in periodontitis is unknown. In this study, we examined the antiperiodontitis effects of matriptase on Porphyromonas gingivalis-derived lipopolysaccharide (PG-LPS)-stimulated human gingival fibroblasts (HGFs). Matriptase small interfering RNA-transfected HGFs were treated with PG-LPS. The mRNA and protein levels of proinflammatory cytokines and matrix metalloproteinase 1 (MMP-1) were evaluated using the quantitative real-time polymerase chain reaction (qRT-PCR) and an enzyme-linked immunosorbent assay (ELISA), respectively. Western blot analyses were performed to measure the levels of Toll-like receptor 4 (TLR4)/interleukin-1 (IL-1) receptor-associated kinase (IRAK)/transforming growth factor β-activated kinase 1 (TAK1), p65, and p50 in PG-LPS-stimulated HGFs. Matriptase downregulation inhibited LPS-induced proinflammatory cytokine expression, including the expression of IL-6, IL-8, tumor necrosis factor-α (TNF-α), and IL-Iβ. Moreover, matriptase downregulation inhibited PG-LPS-stimulated MMP-1 expression. Additionally, we confirmed that the mechanism underlying the effects of matriptase downregulation involves the suppression of PG-LPS-induced IRAK1/TAK1 and NF-κB. These results suggest that downregulation of matriptase PG-LPS-induced MMP-1 and proinflammatory cytokine expression via TLR4-mediated IRAK1/TAK1 and NF-κB signaling pathways in HGFs.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, And Institute of Biomaterials-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry, And Institute of Biomaterials-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, And Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, And Institute of Biomaterials-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
4
|
Kim JM, Park J, Noh EM, Song HK, Kang SY, Jung SH, Kim JS, Youn HJ, Lee YR. Downregulation of matriptase suppresses the PAR‑2/PLCγ2/PKC‑mediated invasion and migration abilities of MCF‑7 breast cancer cells. Oncol Rep 2021; 46:247. [PMID: 34608498 PMCID: PMC8524316 DOI: 10.3892/or.2021.8198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Matriptases, members of the type II transmembrane serine protease family, are cell surface proteolytic enzymes that mediate tumor invasion and metastasis. Matriptase is highly expressed in breast cancer and is associated with poor patient outcome. However, the cellular mechanism by which matriptase mediates breast cancer invasion remains unknown. The present study aimed to determine the role of matriptase in the protein kinase C (PKC)‑mediated metastasis of MCF‑7 human breast cancer cells. Matriptase small interfering RNA‑mediated knockdown significantly attenuated the 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced invasiveness and migration of MCF‑7 cells, and inhibited the activation of phospholipase C γ2 (PLCγ2)/PKC/MAPK signaling pathways. Matriptase‑knockdown also suppressed the expression of MMP‑9 and inhibited the activation of NF‑κB/activator protein‑1 in MCF‑7 cells. Additionally, GB83 [an inhibitor of protease‑activated receptor‑2 (PAR‑2)] inhibited PKC‑mediated MMP‑9 expression and metastatic ability in MCF‑7 cells. Furthermore, downregulation of matriptase suppressed TPA‑induced MMP‑9 expression and invasiveness via PAR‑2/PLCγ2/PKC/MAPK activation. These findings shed light on the mechanism underlying the role of matriptase in MCF‑7 cell invasion and migration ability, and suggest that matriptase modulation could be a promising therapeutic strategy for preventing breast cancer metastasis.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Jinny Park
- Department of Internal Medicine, Division of Hematology, Gil Medical Center, Gachon University College of Medicine, Incheon 405‑760, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 570‑749, Republic of Korea
| | - Hyun-Kyung Song
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 570‑749, Republic of Korea
| | - Sang Yull Kang
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 570‑749, Republic of Korea
| |
Collapse
|
5
|
Guo L, Bloom J, Sykes S, Huang E, Kashif Z, Pham E, Ho K, Alcaraz A, Xiao XG, Duarte-Vogel S, Kruglyak L. Genetics of white color and iridophoroma in "Lemon Frost" leopard geckos. PLoS Genet 2021; 17:e1009580. [PMID: 34166378 PMCID: PMC8224956 DOI: 10.1371/journal.pgen.1009580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
The squamates (lizards and snakes) are close relatives of birds and mammals, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration, venom production, and regeneration. Due to a lack of genomic tools, few genetic studies in squamates have been carried out. The leopard gecko, Eublepharis macularius, is a popular companion animal, and displays a variety of coloration patterns. We took advantage of a large breeding colony and used linkage analysis, synteny, and homozygosity mapping to investigate a spontaneous semi-dominant mutation, “Lemon Frost”, that produces white coloration and causes skin tumors (iridophoroma). We localized the mutation to a single locus which contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma (SKCM) and over-proliferation of epithelial cells in mice and zebrafish. Our work establishes the leopard gecko as a tractable genetic system and suggests that a tumor suppressor in melanocytes in humans can also suppress tumor development in iridophores in lizards. The squamates (lizards and snakes) comprise a diverse group of reptiles, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration. In this manuscript, we used quantitative genetics and genomics to map the mutation underlying white coloration in the Lemon Frost morph of the common leopard gecko, Eublepharis macularius. Lemon Frost geckos have increased white body coloration with brightened yellow and orange areas. This morph also displays a high incidence of iridophoroma, a tumor of white-colored cells. We obtained phenotype information and DNA samples from geckos in a large breeding colony and used genome sequencing and genetic linkage analysis to localize the Lemon Frost mutation to a single locus. This locus contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma. Together with other recent advances, our work brings reptiles into the modern genetics era.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| | - Joshua Bloom
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Steve Sykes
- Geckos Etc. Herpetoculture, Rocklin, California, United States of America
| | - Elaine Huang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Zain Kashif
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Elise Pham
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Katarina Ho
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Ana Alcaraz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Xinshu Grace Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Sandra Duarte-Vogel
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| |
Collapse
|
6
|
The Kunitz-type serine protease inhibitor Spint2 is required for cellular cohesion, coordinated cell migration and cell survival during zebrafish hatching gland development. Dev Biol 2021; 476:148-170. [PMID: 33826923 DOI: 10.1016/j.ydbio.2021.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022]
Abstract
We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace between the outer and basal layer of the epidermis to reach their final destination on the yolk sac. Hatching gland cells usually survive their degranulation that drives embryo hatching but die several days later. In spint2 mutants, cohesion among hatching gland cells and their collective intra-epidermal migration are disturbed, leading to a discontinuous organization of the gland. In addition, cells undergo precocious cell death before degranulation, so that embryos fail to hatch. Chimera analyses show that Spint2 is required in hatching gland cells, but not in the overlying periderm, their potential migration and adhesion substrate. Spint2 acts independently of all tested Matriptases, Prostasins and other described Spint1 and Spint2 mediators. However, it displays a tight genetic interaction with and acts at least partly via the cell-cell adhesion protein E-cadherin, promoting both hatching gland cell cohesiveness and survival, in line with formerly reported effects of E-cadherin during morphogenesis and cell death suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.
Collapse
|
7
|
Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN, Alvira CM. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. eLife 2020; 9:e56890. [PMID: 32484158 PMCID: PMC7358008 DOI: 10.7554/elife.56890] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
At birth, the lungs rapidly transition from a pathogen-free, hypoxic environment to a pathogen-rich, rhythmically distended air-liquid interface. Although many studies have focused on the adult lung, the perinatal lung remains unexplored. Here, we present an atlas of the murine lung immune compartment during early postnatal development. We show that the late embryonic lung is dominated by specialized proliferative macrophages with a surprising physical interaction with the developing vasculature. These macrophages disappear after birth and are replaced by a dynamic mixture of macrophage subtypes, dendritic cells, granulocytes, and lymphocytes. Detailed characterization of macrophage diversity revealed an orchestration of distinct subpopulations across postnatal development to fill context-specific functions in tissue remodeling, angiogenesis, and immunity. These data both broaden the putative roles for immune cells in the developing lung and provide a framework for understanding how external insults alter immune cell phenotype during a period of rapid lung growth and heightened vulnerability.
Collapse
Affiliation(s)
- Racquel Domingo-Gonzalez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Fabio Zanini
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South WalesSydneyAustralia
| | - Xibing Che
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Min Liu
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael A Swift
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - David N Cornfield
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Cristina M Alvira
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
8
|
Hong L, He Y, Tan C, Wu Z, Yu M. HAI-1 regulates placental folds development by influencing trophoblast cell proliferation and invasion in pigs. Gene 2020; 749:144721. [PMID: 32360842 DOI: 10.1016/j.gene.2020.144721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Fetal development is critically dependent on the efficiency of the placenta. Porcine trophoblast cell proliferation and invasion have crucial roles in placental fold development, which is one of the essential events determining placental efficiency. The membrane serine proteinase inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1) can regulate cellular invasion and motility in different types of epithelial cells, including trophoblast cells in mice. This work used quantitative polymerase chain reaction (qPCR) and immunohistochemistry to compare the expression level and location of HAI-1 in the placenta on gestational days 26, 50, and 95 in Yorkshire and Meishan pigs. The role of HAI-1 in porcine trophoblast cell (PTr2) proliferation, invasion, and migration in vitro was investigated by analyzing the effects of HAI-1 gene silencing or overexpression. Polymorphism in the HAI-1gene was detected to determine associations between the genotype and piglet birth weight in 400 healthy pure-bred Yorkshire piglets. qPCR results showed that HAI-1 mRNA levels significantly increased (P < 0.01) between gestational days 26 and 50 and then decreased (P < 0.01) between days 50 and 95 in both Meishan and Yorkshire pigs. Immunohistochemical analysis showed that HAI-1 protein was strongly expressed by the high columnar trophoblast cells located at the top of the placental folds with low proliferative and invasion capacities. However, it was expressed at very low levels in cuboidal trophoblast cells located at the side and base of the placental folds with high proliferative and invasion capacities. In vitro experiments indicated that HAI-1 had the ability to reduce the proliferation, invasion and migration of trophoblast cells. In addition, one single-nucleotide polymorphism (SNP) of HAI-1 showed a significant association (P < 0.05) with piglet birth weight. These results revealed that HAI-1 could be a vital molecule in placental folds development by regulating trophoblast proliferation and invasion in pigs.
Collapse
Affiliation(s)
- Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Yanjuan He
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Chengquan Tan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
9
|
Promoter Hypomethylation Is Responsible for Upregulated Expression of HAI-1 in Hepatocellular Carcinoma. DISEASE MARKERS 2019; 2019:9175215. [PMID: 31558918 PMCID: PMC6735181 DOI: 10.1155/2019/9175215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
An upregulated expression of hepatocyte growth factor activator inhibitor type 1 (HAI-1) in hepatocellular carcinomas (HCC) associates with poor prognosis, but the underlying mechanism for expression regulation has not been elucidated. HAI-1 was expressed in HCC cell line Hep3B cells at a high level but absent or has a low level in other HCC cell lines HepG2 and SMMC7721 and immortal normal liver cell line L02 at transcriptional and translational levels, respectively. A dual-luciferase reporter assay showed that transcriptional activity of HAI-1 in the promoter region (-452 bp to -280 bp from the mRNA start site) was strongly enhanced in Hep3B and SMMC7721. Bisulfite genomic sequencing results of the HAI-1 promoter region showed an inverse correlation between levels of promoter methylation and expression in HCC cells. The expression level of HAI-1 in SMMC7721, HepG2, and L02 cells was elevated after 5-Aza-2′-deoxycytidine treatment. Hypomethylation of the HAI-1 promoter region contributed to the elevated HAI-1 expression in HCC tissues. In addition, the hypomethylation of the HAI-1 promoter region correlated with poor differentiation status of HCC tissues. Our findings indicate that promoter hypomethylation is an important mechanism for aberrant HAI-1 expression regulation in HCC.
Collapse
|
10
|
Ye F, Chen S, Liu X, Ye X, Wang K, Zeng Z, Su Y, Zhang X, Zhou H. 3-Cl-AHPC inhibits pro-HGF maturation by inducing matriptase/HAI-1 complex formation. J Cell Mol Med 2019; 23:155-166. [PMID: 30370662 PMCID: PMC6307790 DOI: 10.1111/jcmm.13900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/16/2018] [Indexed: 11/29/2022] Open
Abstract
Matriptase is an epithelia-specific membrane-anchored serine protease, and its dysregulation is highly related to the progression of a variety of cancers. Hepatocyte growth factor activator inhibitor-1 (HAI-1) inhibits matriptase activity through forming complex with activated matriptase. The balance of matriptase activation and matriptase/HAI-1 complex formation determines the intensity and duration of matriptase activity. 3-Cl-AHPC, 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid, is an adamantly substituted retinoid-related molecule and a ligand of retinoic acid receptor γ (RARγ). 3-Cl-AHPC is of strong anti-cancer effect but with elusive mechanisms. In our current study, we show that 3-Cl-AHPC time- and dose- dependently induces matriptase/HAI-1 complex formation, leading to the suppression of activated matriptase in cancer cells and tissues. Furthermore, 3-Cl-AHPC promotes matriptase shedding but without increasing the activity of shed matriptase. Moreover, 3-Cl-AHPC inhibits matriptase-mediated cleavage of pro-HGF through matriptase/HAI-1 complex induction, resulting in the suppression of pro-HGF-stimulated signalling and cell scattering. Although 3-Cl-AHPC binds to RARγ, its induction of matriptase/HAI-1 complex is not RARγ dependent. Together, our data demonstrates that 3-Cl-AHPC down-regulates matriptase activity through induction of matriptase/HAI-1 complex formation in a RARγ-independent manner, providing a mechanism of 3-Cl-AHPC anti-cancer activity and a new strategy to inhibit abnormal matriptase activity via matriptase/HAI-1 complex induction using small molecules.
Collapse
Affiliation(s)
- Fang Ye
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Shuang Chen
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Xingxing Liu
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Xiaohong Ye
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Keqi Wang
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Zhiping Zeng
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Ying Su
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Xiao‐kun Zhang
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Hu Zhou
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| |
Collapse
|
11
|
Matsushita T, Sakai M, Yoshida H, Morita S, Hieda Y, Sakai T. Grhl2 regulation of SPINT1 expression controls salivary gland development. Biochem Biophys Res Commun 2018; 504:263-269. [PMID: 30193734 DOI: 10.1016/j.bbrc.2018.08.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Development of the salivary gland is characterized by extensive branching morphogenesis and lumen formation, the latter of which is closely associated with differentiation into acinar and ductal cells. Although various molecules, including signaling and cell adhesion molecules, have been implicated in salivary gland development, transcription factors (TFs) regulating the expression of those molecules and morphological development of the gland are largely unknown. Here we show that knockdown of the epithelial TF, Grainyhead-like 2 (Grhl2), with siRNA in developing mouse submandibular salivary gland (SMG) cultured ex vivo resulted in retardation of epithelial development. This retardation was concomitant with suppression of gene expression for the cell adhesion molecules, such as E-cadherin and the extracellular protease inhibitor SPINT1, and with the disorganized deposition of the basal lamina protein laminin. ChIP-PCR demonstrated the binding of Grhl2 protein to the Spint1 gene in the SMG. Notably, addition of recombinant SPINT1 protein in cultured SMG overcame the suppressive effects of Grhl2 siRNA on epithelial development and laminin deposition. These findings show that Grhl2 regulation of SPINT1 expression controls salivary gland development.
Collapse
Affiliation(s)
- Takumi Matsushita
- First Department of Oral and Maxillofacial Surgery, Osaka Dental University, 8-1 Hanazono-cho, Kuzuha, Hirakata-city, Osaka, 573-1121, Japan; Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-city, Osaka, 565-0871, Japan
| | - Manabu Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-city, Osaka, 565-0871, Japan; Department of Clinical Laboratory, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita-city, Osaka, 565-0871, Japan
| | - Hiroaki Yoshida
- First Department of Oral and Maxillofacial Surgery, Osaka Dental University, 8-1 Hanazono-cho, Kuzuha, Hirakata-city, Osaka, 573-1121, Japan
| | - Shousuke Morita
- First Department of Oral and Maxillofacial Surgery, Osaka Dental University, 8-1 Hanazono-cho, Kuzuha, Hirakata-city, Osaka, 573-1121, Japan
| | - Yohki Hieda
- Department of Biology, Osaka Dental University, 8-1 Hanazono-cho, Kuzuha, Hirakata-city, Osaka, 573-1121, Japan; Basic Cultural Education Research Center, Kyushu University of Nursing and Social Welfare, 888 Tomino, Tamana-city, Kumamoto, 865-0062, Japan.
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-city, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Szabo R, Bugge TH. Loss of HAI-2 in mice with decreased prostasin activity leads to an early-onset intestinal failure resembling congenital tufting enteropathy. PLoS One 2018; 13:e0194660. [PMID: 29617460 PMCID: PMC5884512 DOI: 10.1371/journal.pone.0194660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/07/2018] [Indexed: 01/15/2023] Open
Abstract
Prostasin (CAP1/PRSS8) is a glycosylphosphatidylinositol (GPI)-anchored serine protease that is essential for epithelial development and overall survival in mice. Prostasin is regulated primarily by the transmembrane serine protease inhibitor, hepatocyte growth factor activator inhibitor (HAI)-2, and loss of HAI-2 function leads to early embryonic lethality in mice due to an unregulated prostasin activity. We have recently reported that critical in vivo functions of prostasin can be performed by proteolytically-inactive or zymogen-locked variants of the protease. Here we show that the zymogen form of prostasin does not bind to HAI-2 and, as a result, loss of HAI-2 does not affect prenatal development and survival of mice expressing only zymogen-locked variant of prostasin (Prss8 R44Q). Indeed, HAI-2-deficient mice homozygous for R44Q mutation (Spint2-/-;Prss8R44Q/R44Q) are born in the expected numbers and do not exhibit any obvious developmental abnormality at birth. However, postnatal growth in these mice is severely impaired and they all die within 4 to 7 days after birth due to a critical failure in the development of small and large intestines, characterized by a widespread villous atrophy, tufted villi, near-complete loss of mucin-producing goblet cells, loss of colonic crypt structure, and bleeding into the intestinal lumen. Intestines of Spint2-/-;Prss8R44Q/R44Q mice showed altered expression of epithelial junctional proteins, including reduced levels of EpCAM, E-cadherin, occludin, claudin-1 and -7, as well as an increased level of claudin-4, indicating that the loss of HAI-2 compromises intestinal epithelial barrier function. Our data indicate that the loss of HAI-2 in Prss8R44Q/R44Q mice leads to development of progressive intestinal failure that at both histological and molecular level bears a striking resemblance to human congenital tufting enteropathy, and may provide important clues for understanding and treating this debilitating human disease.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (RS); (THB)
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (RS); (THB)
| |
Collapse
|
13
|
Wu SR, Teng CH, Tu YT, Ko CJ, Cheng TS, Lan SW, Lin HY, Lin HH, Tu HF, Hsiao PW, Huang HP, Chen CH, Lee MS. The Kunitz Domain I of Hepatocyte Growth Factor Activator Inhibitor-2 Inhibits Matriptase Activity and Invasive Ability of Human Prostate Cancer Cells. Sci Rep 2017; 7:15101. [PMID: 29118397 PMCID: PMC5678078 DOI: 10.1038/s41598-017-15415-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 10/26/2017] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of pericellular proteolysis is often required for tumor invasion and cancer progression. It has been shown that down-regulation of hepatocyte growth factor activator inhibitor-2 (HAI-2) results in activation of matriptase (a membrane-anchored serine protease), human prostate cancer cell motility and tumor growth. In this study, we further characterized if HAI-2 was a cognate inhibitor for matriptase and identified which Kunitz domain of HAI-2 was required for inhibiting matriptase and human prostate cancer cell motility. Our results show that HAI-2 overexpression suppressed matriptase-induced prostate cancer cell motility. We demonstrate that HAI-2 interacts with matriptase on cell surface and inhibits matriptase proteolytic activity. Moreover, cellular HAI-2 harnesses its Kunitz domain 1 (KD1) to inhibit matriptase activation and prostate cancer cell motility although recombinant KD1 and KD2 of HAI-2 both show an inhibitory activity and interaction with matriptase protease domain. The results together indicate that HAI-2 is a cognate inhibitor of matriptase, and KD1 of HAI-2 plays a major role in the inhibition of cellular matritptase activation as well as human prostate cancer invasion.
Collapse
Affiliation(s)
- Shang-Ru Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsin Teng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Ting Tu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Ko
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Shan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Wei Lan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hsien Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fang Tu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hsin Chen
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Maternal HtrA3 optimizes placental development to influence offspring birth weight and subsequent white fat gain in adulthood. Sci Rep 2017; 7:4627. [PMID: 28676687 PMCID: PMC5496872 DOI: 10.1038/s41598-017-04867-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
High temperature requirement factor A3 (HtrA3), a member of the HtrA protease family, is highly expressed in the developing placenta, including the maternal decidual cells in both mice and humans. In this study we deleted the HtrA3 gene in the mouse and crossed females carrying zero, one, or two HtrA3-expressing alleles with HtrA3+/− males to investigate the role of maternal vs fetal HtrA3 in placentation. Although HtrA3−/− mice were phenotypically normal and fertile, HtrA3 deletion in the mother resulted in intra-uterine growth restriction (IUGR). Disorganization of labyrinthine fetal capillaries was the major placental defect when HtrA3 was absent. The IUGR caused by maternal HtrA3 deletion, albeit being mild, significantly altered offspring growth trajectory long after birth. By 8 months of age, mice born to HtrA3-deficient mothers, independent of their own genotype, were significantly heavier and contained a larger mass of white fat. We further demonstrated that in women serum levels of HtrA3 during early pregnancy were significantly lower in IUGR pregnancies, establishing an association between lower HtrA3 levels and placental insufficiency in the human. This study thus revealed the importance of maternal HtrA3 in optimizing placental development and its long-term impact on the offspring well beyond in utero growth.
Collapse
|
15
|
Liu M, Yuan C, Jensen JK, Zhao B, Jiang Y, Jiang L, Huang M. The crystal structure of a multidomain protease inhibitor (HAI-1) reveals the mechanism of its auto-inhibition. J Biol Chem 2017; 292:8412-8423. [PMID: 28348076 DOI: 10.1074/jbc.m117.779256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Indexed: 01/23/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor 1 (HAI-1) is a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development and is also important in maintaining postnatal homeostasis in many tissues. HAI-1 is a Kunitz-type serine protease inhibitor, and soluble fragments of HAI-1 with variable lengths have been identified in vivo The full-length extracellular portion of HAI-1 (sHAI-1) shows weaker inhibitory activity toward target proteases than the smaller fragments, suggesting auto-inhibition of HAI-1. However, this possible regulatory mechanism has not yet been evaluated. Here, we solved the crystal structure of sHAI-1 and determined the solution structure by small-angle X-ray scattering. These structural analyses revealed that, despite the presence of long linkers, sHAI-1 exists in a compact conformation in which sHAI-1 active sites in Kunitz domain 1 are sterically blocked by neighboring structural elements. We also found that in the presence of target proteases, sHAI-1 adopts an extended conformation that disables the auto-inhibition effect. Our results also reveal the roles of non-inhibitory domains of this multidomain protein and explain the low activity of the full-length protein. The structural insights gained here improve our understanding of the regulation of HAI-1 inhibitory activities and point to new approaches for better controlling these activities.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Yuan
- College of Bioscience and Biotechnology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Baoyu Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yunbin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longguang Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
16
|
Oxlund C, Kurt B, Schwarzensteiner I, Hansen MR, Stæhr M, Svenningsen P, Jacobsen IA, Hansen PB, Thuesen AD, Toft A, Hinrichs GR, Bistrup C, Jensen BL. Albuminuria is associated with an increased prostasin in urine while aldosterone has no direct effect on urine and kidney tissue abundance of prostasin. Pflugers Arch 2017; 469:655-667. [PMID: 28233126 DOI: 10.1007/s00424-017-1938-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/29/2023]
Abstract
The proteinase prostasin is a candidate mediator for aldosterone-driven proteolytic activation of the epithelial sodium channel (ENaC). It was hypothesized that the aldosterone-mineralocorticoid receptor (MR) pathway stimulates prostasin abundance in kidney and urine. Prostasin was measured in plasma and urine from type 2 diabetic patients with resistant hypertension (n = 112) randomized to spironolactone/placebo in a clinical trial. Prostasin protein level was assessed by immunoblotting in (1) human and rat urines with/without nephrotic syndrome, (2) human nephrectomy tissue, (3) urine and kidney from aldosterone synthase-deficient (AS-/-) mice and ANGII- and aldosterone-infused mice, and in (4) kidney from adrenalectomized rats. Serum aldosterone concentration related to prostasin concentration in urine but not in plasma. Plasma prostasin concentration increased significantly after spironolactone compared to control. Urinary prostasin and albumin related directly and were reduced by spironolactone. In patients with nephrotic syndrome, urinary prostasin protein was elevated compared to controls. In rat nephrosis, proteinuria coincided with increased urinary prostasin, unchanged kidney tissue prostasin, and decreased plasma prostasin while plasma aldosterone was suppressed. Prostasin protein abundance in human nephrectomy tissue was similar across gender and ANGII inhibition regimens. Prostasin urine abundance was not different in AS-/- and aldosterone-infused mice. Prostasin kidney level was not different from control in adrenalectomized rats and AS-/- mice. We found no evidence for a direct relationship between mineralocorticoid receptor signaling and kidney and urine prostasin abundance. The reduction of urinary prostasin in spironolactone-treated patients is most likely the result of an improved glomerular filtration barrier function and generally reduced proteinuria.
Collapse
Affiliation(s)
- Christina Oxlund
- Research Unit for Cardiovascular and Metabolic Prevention, Department of Endocrinology, Odense University Hospital, Sdr. Boulevard 29, DK-5000, Odense C, Denmark.
| | - Birgül Kurt
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | - Mie R Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mette Stæhr
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ib A Jacobsen
- Research Unit for Cardiovascular and Metabolic Prevention, Department of Endocrinology, Odense University Hospital, Sdr. Boulevard 29, DK-5000, Odense C, Denmark
| | - Pernille B Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne D Thuesen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anja Toft
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Gitte R Hinrichs
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Liu M, Yuan C, Jiang Y, Jiang L, Huang M. Recombinant hepatocyte growth factor activator inhibitor 1: expression in Drosophila S2 cells, purification and crystallization. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2017; 73:45-50. [PMID: 28045393 DOI: 10.1107/s2053230x16020082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Hepatocyte growth factor activator inhibitor 1 (HAI-1) is a multi-domain membrane-associated protease inhibitor that potently inhibits a variety of serine proteases such as hepatocyte growth factor activator and matriptase. Different truncates of HAI-1 show varying potencies for inhibition of target proteases, suggesting that the domain organization of HAI-1 plays a critical role in its function. Here, the soluble full-length extracellular part of HAI-1 (sHAI-1) was expressed using the Drosophila S2 insect-cell expression system. Diffraction-quality crystals of sHAI-1 were produced using ammonium sulfate as precipitant. The crystal diffracted to 3.8 Å resolution and belonged to space group P41212, with unit-cell parameters a = b = 95.42, c = 124.50 Å. The asymmetric unit contains one sHAI-1 molecule.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Cai Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Yunbin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Longguang Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
18
|
Tanabe LM, List K. The role of type II transmembrane serine protease-mediated signaling in cancer. FEBS J 2016; 284:1421-1436. [PMID: 27870503 DOI: 10.1111/febs.13971] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/29/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
Pericellular proteases have long been implicated in carcinogenesis. Previous research focused on these proteins, primarily as extracellular matrix (ECM) protein-degrading enzymes which allowed cancer cells to breach the basement membrane and invade surrounding tissue. However, recently, there has been a shift in the view of cell surface proteases, including serine proteases, as proteolytic modifiers of particular targets, including growth factors and protease-activated receptors, which are critical for the activation of oncogenic signaling pathways. Of the 176 human serine proteases currently identified, a subset of 17, known as type II transmembrane serine proteases (TTSPs). Many have been shown to be relevant to cancer progression since they were first identified as a family around the turn of the century. To this end, altered expression of TTSPs appeared as a trademark of several tumor types. However, the substrates and underlying signaling pathways remained unclear. Localization of these proteins to the cell surface places them in the unique position to mediate signal transduction between the cell and its surrounding environment. Many of the TTSPs have already been shown to play key roles in processes such as postnatal development, tissue homeostasis, and tumor progression, which share overlapping molecular mechanisms. In this review, we summarize the current knowledge regarding the role of the TTSP family in pro-oncogenic signaling.
Collapse
Affiliation(s)
- Lauren M Tanabe
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Karin List
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
19
|
Szabo R, Lantsman T, Peters DE, Bugge TH. Delineation of proteolytic and non-proteolytic functions of the membrane-anchored serine protease prostasin. Development 2016; 143:2818-28. [PMID: 27385010 DOI: 10.1242/dev.137968] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022]
Abstract
The membrane-anchored serine proteases prostasin (PRSS8) and matriptase (ST14) initiate a cell surface proteolytic pathway essential for epithelial function. Mice expressing only catalytically inactive prostasin are viable, unlike prostasin null mice, indicating that at least some prostasin functions are non-proteolytic. Here we used knock-in mice expressing catalytically inactive prostasin (Prss8(Ki/Ki)) to show that the physiological and pathological functions of prostasin vary in their dependence on its catalytic activity. Whereas prostasin null mice exhibited partial embryonic and complete perinatal lethality, Prss8(Ki/Ki) mice displayed normal prenatal and postnatal survival. Unexpectedly, catalytically inactive prostasin caused embryonic lethality in mice lacking its cognate inhibitors HAI-1 (SPINT1) or HAI-2 (SPINT2). Proteolytically inactive prostasin, unlike the wild-type protease, was unable to activate matriptase during placentation. Surprisingly, all essential functions of prostasin in embryonic and postnatal development were compensated for by loss of HAI-1, indicating that prostasin is only required for mouse development and overall viability in the presence of this inhibitor. This study expands our knowledge of non-proteolytic functions of membrane-anchored serine proteases and provides unexpected new data on the mechanistic interactions between matriptase and prostasin in the context of epithelial development.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taliya Lantsman
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diane E Peters
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02110, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Hong Z, De Meulemeester L, Jacobi A, Pedersen JS, Morth JP, Andreasen PA, Jensen JK. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1: FUNCTIONAL INTERACTIONS BETWEEN THE KUNITZ-TYPE INHIBITOR DOMAIN-1 AND THE NEIGHBORING POLYCYSTIC KIDNEY DISEASE-LIKE DOMAIN. J Biol Chem 2016; 291:14340-14355. [PMID: 27189939 DOI: 10.1074/jbc.m115.707240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain).
Collapse
Affiliation(s)
- Zebin Hong
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Laura De Meulemeester
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Annemarie Jacobi
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - J Preben Morth
- Norwegian Center of Molecular Medicine (NCMM), University of Oslo, NO-0316 Oslo, Norway
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark,.
| |
Collapse
|
21
|
Sisson TH, Spagnolo P. Matriptase, Protease-activated Receptor 2, and Idiopathic Pulmonary Fibrosis. Further Evidence for Signaling Pathway Redundancy in this Difficult-to-Treat Disease? Am J Respir Crit Care Med 2016; 193:816-7. [DOI: 10.1164/rccm.201512-2319ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Prostasin and matriptase (ST14) in placenta from preeclamptic and healthy pregnant women. J Hypertens 2016; 34:298-306. [DOI: 10.1097/hjh.0000000000000795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Walentin K, Hinze C, Schmidt-Ott KM. The basal chorionic trophoblast cell layer: An emerging coordinator of placenta development. Bioessays 2016; 38:254-65. [PMID: 26778584 DOI: 10.1002/bies.201500087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During gestation, fetomaternal exchange occurs in the villous tree (labyrinth) of the placenta. Development of this structure depends on tightly coordinated cellular processes of branching morphogenesis and differentiation of specialized trophoblast cells. The basal chorionic trophoblast (BCT) cell layer that localizes next to the chorioallantoic interface is of critical importance for labyrinth morphogenesis in rodents. Gcm1-positive cell clusters within this layer initiate branching morphogenesis thereby guiding allantoic fetal blood vessels towards maternal blood sinuses. Later these cells differentiate and contribute to the syncytiotrophoblast of the fetomaternal barrier. Additional cells within the BCT layer sustain continued morphogenesis, possibly through a repopulating progenitor population. Several mouse mutants highlight the importance of a structurally intact BCT epithelium, and a growing number of studies addresses its patterning and epithelial architecture. Here, we review and discuss emerging concepts in labyrinth development focussing on the biology of the BCT cell layer.
Collapse
Affiliation(s)
| | - Christian Hinze
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
24
|
Ko CJ, Huang CC, Lin HY, Juan CP, Lan SW, Shyu HY, Wu SR, Hsiao PW, Huang HP, Shun CT, Lee MS. Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis. Cancer Res 2015; 75:2949-60. [PMID: 26018085 DOI: 10.1158/0008-5472.can-14-3297] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/15/2015] [Indexed: 11/16/2022]
Abstract
Dysregulation of androgen signaling and pericellular proteolysis is necessary for prostate cancer progression, but the links between them are still obscure. In this study, we show how the membrane-anchored serine protease TMPRSS2 stimulates a proteolytic cascade that mediates androgen-induced prostate cancer cell invasion, tumor growth, and metastasis. We found that matriptase serves as a substrate for TMPRSS2 in mediating this proinvasive action of androgens in prostate cancer. Further, we determined that higher levels of TMPRSS2 expression correlate with higher levels of matriptase activation in prostate cancer tissues. Lastly, we found that the ability of TMPRSS2 to promote prostate cancer tumor growth and metastasis was associated with increased matriptase activation and enhanced degradation of extracellular matrix nidogen-1 and laminin β1 in tumor xenografts. In summary, our results establish that TMPRSS2 promotes the growth, invasion, and metastasis of prostate cancer cells via matriptase activation and extracellular matrix disruption, with implications to target these two proteases as a strategy to treat prostate cancer.
Collapse
Affiliation(s)
- Chun-Jung Ko
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chung Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Pai Juan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Wei Lan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Shyu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan. Bureau of Investigation, Ministry of Justice, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shang-Ru Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Walentin K, Hinze C, Werth M, Haase N, Varma S, Morell R, Aue A, Pötschke E, Warburton D, Qiu A, Barasch J, Purfürst B, Dieterich C, Popova E, Bader M, Dechend R, Staff AC, Yurtdas ZY, Kilic E, Schmidt-Ott KM. A Grhl2-dependent gene network controls trophoblast branching morphogenesis. Development 2015; 142:1125-36. [PMID: 25758223 DOI: 10.1242/dev.113829] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in pre-eclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branching morphogenesis. Selective Grhl2 inactivation only in epiblast-derived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIP-seq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2(-/-) placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction.
Collapse
Affiliation(s)
- Katharina Walentin
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Christian Hinze
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Max Werth
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Nadine Haase
- Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Saaket Varma
- Department of Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Robert Morell
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD)/National Institutes of Health (NIH), 5 Research Court, Rockville, MD 20850, USA
| | - Annekatrin Aue
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Elisabeth Pötschke
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - David Warburton
- Department of Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Andong Qiu
- Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Jonathan Barasch
- Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Bettina Purfürst
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Christoph Dieterich
- Bioinformatics, Max Planck Institute for Biology of Ageing, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Anne Cathrine Staff
- Department of Gynecology and Obstetrics, Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, Kirkeveien 166, Oslo 0450, Norway
| | - Zeliha Yesim Yurtdas
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Department of Urology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany Berlin Institute of Urologic Research, Berlin 10117, Germany
| | - Ergin Kilic
- Department of Pathology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany Department of Nephrology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
26
|
The solution structure of the MANEC-type domain from hepatocyte growth factor activator inhibitor-1 reveals an unexpected PAN/apple domain-type fold. Biochem J 2015; 466:299-309. [DOI: 10.1042/bj20141236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The first 3D structure and characterization of a MANEC domain is presented, defining MANEC as a new subclass of the PAN/apple domain family. The structure is a key to understanding HAI-1 function and a reference-structure for the >400 MANEC-containing proteins.
Collapse
|
27
|
Szabo R, Peters DE, Kosa P, Camerer E, Bugge TH. Regulation of feto-maternal barrier by matriptase- and PAR-2-mediated signaling is required for placental morphogenesis and mouse embryonic survival. PLoS Genet 2014; 10:e1004470. [PMID: 25078604 PMCID: PMC4117450 DOI: 10.1371/journal.pgen.1004470] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022] Open
Abstract
The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functional feto-maternal barrier. Mice with a combined matriptase and PAR-2 deficiency do not survive to term and the survival of matriptase-deficient mice heterozygous for PAR-2 is severely diminished. Embryos with the combined loss of PAR-2 and matriptase or PAR-2 and the matriptase partner protease, prostasin, uniformly die on or before embryonic day 14.5. Despite the extensive co-localization of matriptase, prostasin, and PAR-2 in embryonic epithelia, the overall macroscopic and histological analysis of the double-deficient embryos did not reveal any obvious developmental abnormalities. In agreement with this, the conditional deletion of matriptase from the embryo proper did not affect the prenatal development or survival of PAR-2-deficient mice, indicating that the critical redundant functions of matriptase/prostasin and PAR-2 are limited to extraembryonic tissues. Indeed, placentas of the double-deficient animals showed decreased vascularization, and the ability of placental epithelium to establish a functional feto-maternal barrier was severely diminished. Interestingly, molecular analysis suggested that the barrier defect was associated with a selective deficiency in the expression of the tight junction protein, claudin-1. Our results reveal unexpected complementary roles of matriptase-prostasin- and PAR-2-dependent proteolytic signaling in the establishment of placental epithelial barrier function and overall embryonic survival. Development of mammalian embryos is dependent on an efficient exchange of nutrients, oxygen, and waste products between the mother and the embryo. The interface between the two systems is provided by the placenta in a form of a specialized epithelium that both facilitates the transport of molecules between the mother and the embryo and screens the substances that can pass between the maternal and fetal tissues. We now show that two independent signaling pathways that include the serine proteases, matriptase and prostasin, and a G protein-coupled receptor PAR-2, are critical for the establishment of a functional feto-maternal interface by specifically regulating the barrier properties of the placental epithelium. Because aberrant formation of epithelial barriers is an underlying feature of a great variety of human developmental abnormalities, the identification of the two protease-dependent signaling pathways critical for the barrier formation in embryonic tissues may help pinpoint molecular mechanisms involved in the etiology of these conditions.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Diane E. Peters
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Kosa
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France
- Université Paris-Descartes, Paris, France
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ye J, Cheng H, Wang Y, Cao J. Down-regulation of HAI-1 is associated with poor-differentiation status of colorectal cancer. Hum Cell 2013; 26:162-9. [PMID: 23979832 DOI: 10.1007/s13577-013-0074-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type serine protease inhibitor which is widely expressed in epithelial cells. The purpose of this study is to investigate the relationship between HAI-1 expression and differentiation status of colorectal epithelia. The expression of HAI-1 in clinical samples of both cancerous and normal colorectal tissues was evaluated by immunohistochemical staining. An in vitro epithelial differentiation model of Caco-2 cell was established, and the characteristics of differentiation of Caco-2 cells were observed by transmission electron microscopy. The expression of HAI-1 in Caco-2 cells at different differentiation stages was examined by western blot. Immunohistochemical staining of 52 human colorectal cancer tissues showed a definite correlation between HAI-1 expression and differentiation status: IHC score (mean ± SE) of HAI-1 was higher for well- or moderately-differentiated colorectal cancer tissues than for poorly-differentiated colorectal cancer tissues, with significant differences in HAI-1 positive rate (P < 0.01 and P < 0.05 for well-differentiated vs. poorly-differentiated and moderately-differentiated vs. poorly-differentiated, respectively). Immunohistochemical staining of normal colorectal tissues showed positive HAI-1 expression in well-differentiated epithelial cells whereas the under-differentiated crypt cells showed very weak HAI-1 staining signals. The result of western blot also showed the gradual increasing of HAI-1 expression during the process of Caco-2 differentiation in vitro. HAI-1 expression correlates with the differentiation status of colorectal epithelia and could serve as a differentiation marker.
Collapse
Affiliation(s)
- Jingjia Ye
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | | | | | | |
Collapse
|
29
|
Hepatocyte growth factor activator inhibitor-1 is induced by bone morphogenetic proteins and regulates proliferation and cell fate of neural progenitor cells. PLoS One 2013; 8:e56117. [PMID: 23409135 PMCID: PMC3567048 DOI: 10.1371/journal.pone.0056117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/04/2013] [Indexed: 12/20/2022] Open
Abstract
Background Neural progenitor cells (NPCs) in the developing neuroepithelium are regulated by intrinsic and extrinsic factors. There is evidence that NPCs form a self-supporting niche for cell maintenance and proliferation. However, molecular interactions and cell-cell contacts and the microenvironment within the neuroepithelium are largely unknown. We hypothesized that cellular proteases especially those associated with the cell surface of NPCs play a role in regulation of progenitor cells in the brain. Methodology/Principal Findings In this work, we show that NPCs, isolated from striatal anlage of developing rat brain, express hepatocyte growth factor activator inhibitor-1 and -2 (HAI-1 and HAI-2) that are cell surface-linked serine protease inhibitors. In addition, radial glia cells derived from mouse embryonic stem cells also express HAI-1 and HAI-2. To study the functional significance of HAI-1 and HAI-2 in progenitor cells, we modulated their levels using expression plasmids or silencing RNA (siRNA) transfected into the NPCs. Data showed that overexpression of HAI-1 or HAI-2 decreased cell proliferation of cultured NPCs, whilst their siRNAs had opposite effects. HAI-1 also influenced NPC differentiation by increasing the number of glial fibrillary acidic protein (GFAP) expressing cells in the culture. Expression of HAI-1 in vivo decreased cell proliferation in developing neuroepithelium in E15 old animals and promoted astrocyte cell differentiation in neonatal animals. Studying the regulation of HAI-1, we observed that Bone morphogenetic protein-2 (BMP-2) and BMP-4 increased HAI-1 levels in the NPCs. Experiments using HAI-1-siRNA showed that these BMPs act on the NPCs partly in a HAI-1-dependent manner. Conclusions This study shows that the cell-surface serine protease inhibitors, HAI-1 and HAI-2 influence proliferation and cell fate of NPCs and their expression levels are linked to BMP signaling. Modulation of the levels and actions of HAI-1 in NPCs may be of a potential value in stem cell therapies in various brain diseases.
Collapse
|
30
|
Kohama K, Kawaguchi M, Fukushima T, Lin CY, Kataoka H. Regulation of pericellular proteolysis by hepatocyte growth factor activator inhibitor type 1 (HAI-1) in trophoblast cells. Hum Cell 2012; 25:100-10. [PMID: 23248048 DOI: 10.1007/s13577-012-0055-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor Kunitz type 1 (HAI-1/SPINT1) is a membrane-bound Kunitz-type serine protease inhibitor that is abundantly expressed on the surface of cytotrophoblasts, and is critically required for the formation of the placenta labyrinth in mice. HAI-1/SPINT1 regulates several membrane-associated cell surface serine proteases, with matriptase being the most cognate target. Matriptase degrades extracellular matrix protein such as laminin and activates other cell surface proteases including prostasin. This study aimed to analyze the role of HAI-1/SPINT1 in pericellular proteolysis of trophoblasts. In HAI-1/SPINT1-deficient mouse placenta, laminin immunoreactivity around trophoblasts was irregular and occasionally showed an intense punctate pattern, which differed significantly from the linear distribution along the basement membrane observed in wild-type placenta. To explore the molecular mechanism underlying this observation, we analyzed the effect of HAI-1/SPINT1 knock down (KD) on pericellular proteolysis in the human trophoblast cell line, BeWo. HAI-1/SPINT1-KD BeWo cells had increased amounts of cellular laminin protein and decreased laminin degradation activity in the culture supernatant. Subsequent analysis indicated that cell-associated matriptase was significantly decreased in KD cells whereas its mRNA level was not altered, suggesting an enhanced release and/or dislocation of matriptase in the absence of HAI-1/SPINT1. Moreover, prostasin activation and pericellular total serine protease activities were significantly suppressed by HAI-1/SPINT1 KD. These observations suggest that HAI-1/SPINT1 is critically required for the cell surface localization of matriptase in trophoblasts, and, in the absence of HAI-1/SPINT1, physiological activation of prostasin and other protease(s) initiated by cell surface matriptase may be impaired.
Collapse
Affiliation(s)
- Kazuyo Kohama
- Department of Pathology, Faculty of Medicine, Section of Oncopathology and Regenerative Biology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | |
Collapse
|
31
|
Szabo R, Uzzun Sales K, Kosa P, Shylo NA, Godiksen S, Hansen KK, Friis S, Gutkind JS, Vogel LK, Hummler E, Camerer E, Bugge TH. Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation. PLoS Genet 2012; 8:e1002937. [PMID: 22952456 PMCID: PMC3431340 DOI: 10.1371/journal.pgen.1002937] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/18/2012] [Indexed: 12/14/2022] Open
Abstract
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1–deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2–deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent. Vertebrate embryogenesis is dependent upon a series of precisely coordinated cell proliferation, migration, and differentiation events. Recently, the execution of these events was shown to be guided in part by extracellular cues provided by focal pericellular proteolysis by a newly identified family of membrane-anchored serine proteases. We now show that two of these membrane-anchored serine proteases, prostasin and matriptase, constitute a single proteolytic signaling cascade that is active at multiple stages of development. Furthermore, we show that failure to precisely regulate the enzymatic activity of both prostasin and matriptase by two developmentally co-expressed transmembrane serine protease inhibitors, hepatocyte growth factor activator inhibitor-1 and -2, causes an array of developmental defects, including clefting of the embryonic ectoderm, lack of placental labyrinth formation, and inability to close the neural tube. Our study also provides evidence that the failure to regulate the prostasin–matriptase cascade may derail morphogenesis independent of the activation of known protease-regulated developmental signaling pathways. Because hepatocyte growth factor activator inhibitor–deficiency in humans is known to cause an assortment of common and rare developmental abnormalities, the aberrant activity of the prostasin–matriptase cascade identified in our study may contribute importantly to genetic as well as sporadic birth defects in humans.
Collapse
Affiliation(s)
- Roman Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katiuchia Uzzun Sales
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter Kosa
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Natalia A. Shylo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sine Godiksen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Karina K. Hansen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stine Friis
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lotte K. Vogel
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Edith Hummler
- Pharmacology and Toxicology Department, University de Lausanne, Lausanne, Switzerland
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France
- Université Paris-Descartes, Paris, France
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
The matriptase-prostasin proteolytic cascade in epithelial development and pathology. Cell Tissue Res 2012; 351:245-53. [DOI: 10.1007/s00441-012-1348-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/20/2012] [Indexed: 01/05/2023]
|
33
|
Kato M, Hashimoto T, Shimomura T, Kataoka H, Ohi H, Kitamura N. Hepatocyte growth factor activator inhibitor type 1 inhibits protease activity and proteolytic activation of human airway trypsin-like protease. J Biochem 2011; 151:179-87. [PMID: 22023801 DOI: 10.1093/jb/mvr131] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type transmembrane serine protease inhibitor initially identified as a potent inhibitor of hepatocyte growth factor activator (HGFA), a serine protease that converts pro-HGF to the active form. HAI-1 also has inhibitory activity against serine proteases such as matriptase, hepsin and prostasin. In this study, we examined effects of HAI-1 on the protease activity and proteolytic activation of human airway trypsin-like protease (HAT), a transmembrane serine protease that is expressed mainly in bronchial epithelial cells. A soluble form of HAI-1 inhibited the protease activity of HAT in vitro. HAT was proteolytically activated in cultured mammalian cells transfected with its expression vector, and a soluble form of active HAT was released into the conditioned medium. The proteolytic activation of HAT required its own serine protease activity. Co-expression of the transmembrane full-length HAI-1 inhibited the proteolytic activation of HAT. In addition, full-length HAI-1 associated with the transmembrane full-length HAT in co-expressing cells. Like other target proteases of HAI-1, HAT converted pro-HGF to the active form in vitro. These results suggest that HAI-1 functions as a physiological regulator of HAT by inhibiting its protease activity and proteolytic activation in airway epithelium.
Collapse
Affiliation(s)
- Minoru Kato
- Advanced Medical Research Laboratory, Mitsubishi Tanabe Pharma Corporation, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Antalis TM, Bugge TH, Wu Q. Membrane-anchored serine proteases in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:1-50. [PMID: 21238933 PMCID: PMC3697097 DOI: 10.1016/b978-0-12-385504-6.00001-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Serine proteases of the trypsin-like family have long been recognized to be critical effectors of biological processes as diverse as digestion, blood coagulation, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes has been identified that are anchored directly to plasma membranes, either by a carboxy-terminal transmembrane domain (Type I), an amino-terminal transmembrane domain with a cytoplasmic extension (Type II or TTSP), or through a glycosylphosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and in vivo analyses have now established that membrane-anchored serine proteases are key pericellular contributors to processes vital for development and the maintenance of homeostasis. This chapter reviews our current knowledge of the biological and physiological functions of these proteases, their molecular substrates, and their contributions to disease.
Collapse
Affiliation(s)
- Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
35
|
Abstract
Analysis of vertebrate genome sequences at the turn of the millennium revealed that a vastly larger repertoire of enzymes execute proteolytic cleavage reactions within the pericellular and extracellular environments than was anticipated from biochemical and molecular analysis. Most unexpected was the unveiling of an entire new family of structurally unique multidomain serine proteases that are anchored directly to the plasma membrane. Unlike secreted serine proteases, which function primarily in tissue repair, immunity, and nutrient uptake, these membrane-anchored serine proteases regulate fundamental cellular and developmental processes, including tissue morphogenesis, epithelial barrier function, ion and water transport, cellular iron export, and fertilization. Here the cellular and developmental biology of this fascinating new group of proteases is reviewed. Particularly highlighted is how the study of membrane-anchored serine proteases has expanded our knowledge of the range of physiological processes that require regulated proteolysis at the cell surface.
Collapse
Affiliation(s)
- Roman Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
36
|
Yuan C, Chen L, Meehan EJ, Daly N, Craik DJ, Huang M, Ngo JC. Structure of catalytic domain of Matriptase in complex with Sunflower trypsin inhibitor-1. BMC STRUCTURAL BIOLOGY 2011; 11:30. [PMID: 21693064 PMCID: PMC3141381 DOI: 10.1186/1472-6807-11-30] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/22/2011] [Indexed: 12/17/2022]
Abstract
Background Matriptase is a type II transmembrane serine protease that is found on the surfaces of epithelial cells and certain cancer cells. Matriptase has been implicated in the degradation of certain extracellular matrix components as well as the activation of various cellular proteins and proteases, including hepatocyte growth factor and urokinase. Sunflower trypsin inhibitor-1 (SFTI-1), a cyclic peptide inhibitor originally isolated from sunflower seeds, exhibits potent inhibitory activity toward matriptase. Results We have engineered and produced recombinant proteins of the matriptase protease domain, and have determined the crystal structures of the protease:SFTI-1 complex at 2.0 Å as well as the protease:benzamidine complex at 1.2 Å. These structures elaborate the structural basis of substrate selectivity of matriptase, and show that the matriptase S1 substrate specificity pocket is larger enough to allow movement of benzamidine inside the S1 pocket. Our study also reveals that SFTI-1 binds to matriptase in a way similar to its binding to trypsin despite the significantly different isoelectric points of the two proteins (5.6 vs. 8.2). Conclusions This work helps to define the structural basis of substrate specificity of matriptase and the interactions between the inhibitor and protease. The complex structure also provides a structural template for designing new SFTI-1 derivatives with better potency and selectivity against matriptase and other proteases.
Collapse
Affiliation(s)
- Cai Yuan
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Smith CS, Berg DK, Berg M, Pfeffer PL. Nuclear Transfer-Specific Defects Are Not Apparent during the Second Week of Embryogenesis in Cattle. Cell Reprogram 2010; 12:699-707. [DOI: 10.1089/cell.2010.0040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Martin Berg
- AgResearch, Ruakura Campus, Hamilton, New Zealand
| | | |
Collapse
|
38
|
Hashimoto T, Kato M, Shimomura T, Kitamura N. TMPRSS13, a type II transmembrane serine protease, is inhibited by hepatocyte growth factor activator inhibitor type 1 and activates pro-hepatocyte growth factor. FEBS J 2010; 277:4888-900. [PMID: 20977675 DOI: 10.1111/j.1742-4658.2010.07894.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Type II transmembrane serine proteases (TTSPs) are structurally defined by the presence of a transmembrane domain located near the N-terminus and a C-terminal extracellular serine protease domain. The human TTSP family consists of 17 members. Some members of the family have pivotal functions in development and homeostasis, and are involved in tumorigenesis and viral infections. The activities of TTSPs are regulated by endogenous protease inhibitors. However, protease inhibitors of most TTSPs have not yet been identified. In this study, we investigated the inhibitory effect of hepatocyte growth factor activator inhibitor type 1 (HAI-1), a Kunitz-type serine protease inhibitor, on several members of the TTSP family. We found that the protease activity of a member, TMPRSS13, was inhibited by HAI-1. A detailed analysis revealed that a soluble form of HAI-1 with one Kunitz domain (NK1) more strongly inhibited TMPRSS13 than another soluble form of HAI-1 with two Kunitz domains (NK1LK2). In addition, an in vitro protein binding assay showed that NK1 formed complexes with TMPRSS13, but NK1LK2 did not. TMPRSS13 converted single-chain pro-hepatocyte growth factor (pro-HGF) to a two-chain form in vitro, and the pro-HGF converting activity of TMPRSS13 was inhibited by NK1. The two-chain form of HGF exhibited biological activity, assessed by phosphorylation of the HGF receptor (c-Met) and extracellular signal-regulated kinase, and scattered morphology in human hepatocellular carcinoma cell line HepG2. These results suggest that TMPRSS13 functions as an HGF-converting protease, the activity of which may be regulated by HAI-1.
Collapse
Affiliation(s)
- Tomio Hashimoto
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | | | | | | |
Collapse
|
39
|
A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 2010; 28:749-55. [PMID: 20562862 DOI: 10.1038/nbt.1644] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 05/11/2010] [Indexed: 01/11/2023]
Abstract
Large collections of knockout organisms facilitate the elucidation of gene functions. Here we used retroviral insertion or homologous recombination to disrupt 472 genes encoding secreted and membrane proteins in mice, providing a resource for studying a large fraction of this important class of drug target. The knockout mice were subjected to a systematic phenotypic screen designed to uncover alterations in embryonic development, metabolism, the immune system, the nervous system and the cardiovascular system. The majority of knockout lines exhibited altered phenotypes in at least one of these therapeutic areas. To our knowledge, a comprehensive phenotypic assessment of a large number of mouse mutants generated by a gene-specific approach has not been described previously.
Collapse
|
40
|
Eigenbrot C, Ganesan R, Kirchhofer D. Hepatocyte growth factor activator (HGFA): molecular structure and interactions with HGFA inhibitor-1 (HAI-1). FEBS J 2010; 277:2215-22. [DOI: 10.1111/j.1742-4658.2010.07638.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Tanaka H, Fukushima T, Yorita K, Kawaguchi M, Kataoka H. Tissue injury alters the site of expression of hepatocyte growth factor activator inhibitor type 1 in bronchial epithelial cells. Hum Cell 2009; 22:11-7. [PMID: 19222607 DOI: 10.1111/j.1749-0774.2008.00062.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a Kunitz-type transmembrane serine proteinase inhibitor that inhibits trypsin-like serine proteinases, such as hepatocyte growth factor activator, matriptase, hepsin and prostasin. HAI-1 is expressed in polarized epithelial cells, in which HAI-1 is mainly located on the basolateral membrane. In the present study, we analyzed the expression and distribution of HAI-1 in respiratory epithelium. We found that HAI-1 is expressed by the bronchial respiratory epithelium with basal or basolateral localization and also by the alveolar epithelium. Bronchial expression of HAI-1 was also confirmed using cultured human bronchial epithelial cells. The epithelial expression of HAI-1 was augmented in response to tissue injury such as cancer invasion and inflammation. Surprisingly, in the injured pulmonary tissue, HAI-1 showed distinct apical translocation in ciliated epithelial cells of the bronchiole. We suggest that, in addition to its basolateral surface localization, HAI-1 can transiently localize to the apical surface of respiratory ciliated epithelial cells under conditions of severe inflammation, possibly interacting with a specific cellular proteinase on the apical surface.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | | | | | | | | |
Collapse
|
42
|
Abstract
Pericellular proteases can degrade extracellular matrix proteins and reshape their microenvironment, as well as cleave and activate signaling molecules such as growth factors and their receptors. In this capacity, pericellular proteolysis is essential for multiple biological processes, including development, tissue homeostasis and tissue repair. On the flip side, dysregulated pericellular proteolysis is a hallmark in many pathological conditions including cancer, and is believed to be critically involved in tumor growth, invasion and dissemination of cancer cells to other organs. Matriptase is a member of the family of Type II transmembrane serine proteases, and has been implicated in a variety of epithelial cancers. This review summarizes current knowledge about matriptase and its role in cancer based on expression studies, biochemical characterization, cell-culture based studies and in vivo experiments.
Collapse
Affiliation(s)
- Karin List
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
43
|
Szabo R, Kosa P, List K, Bugge TH. Loss of matriptase suppression underlies spint1 mutation-associated ichthyosis and postnatal lethality. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2015-22. [PMID: 19389929 DOI: 10.2353/ajpath.2009.090053] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hepatocyte growth factor activator inhibitor-1 (HAI)-1 is an epithelial Kunitz-type transmembrane serine protease inhibitor that is encoded by the SPINT1 gene. HAI-1 displays potent inhibitory activity toward a large number of trypsin-like serine proteases. HAI-1 was recently shown to play an essential role in postnatal epithelial homeostasis. Thus, Spint1-deficient mice were found to display severe growth retardation and are unable to survive beyond postnatal day 16. The mice present histologically with overt hyperkeratosis of the forestomach, hyperkeratosis and acanthosis of the epidermis, and hypotrichosis associated with abnormal cuticle development. In this study, we show that loss of inhibition of a proteolytic pathway that is dependent on the type II transmembrane serine protease, matriptase, underlies the detrimental effects of postnatal Spint1 deficiency. Matriptase and HAI-1 precisely co-localize in all tissues that are affected by the Spint1 disruption. Spint1-deficient mice that have low matriptase levels, caused by a hypomorphic mutation in the St14 gene that encodes matriptase, not only survived the neonatal period but were healthy and displayed normal long-term survival. Furthermore, a detailed histological analysis of neonatal, young adult, as well as aged mice did not reveal any abnormalities in Spint1-deficent mice that have low matriptase levels. This study identifies matriptase suppression as an essential function of HAI-1 in postnatal tissue homeostasis.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 211, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
44
|
Cheng H, Fukushima T, Takahashi N, Tanaka H, Kataoka H. Hepatocyte Growth Factor Activator Inhibitor Type 1 Regulates Epithelial to Mesenchymal Transition through Membrane-Bound Serine Proteinases. Cancer Res 2009; 69:1828-35. [DOI: 10.1158/0008-5472.can-08-3728] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Nagaike K, Kawaguchi M, Takeda N, Fukushima T, Sawaguchi A, Kohama K, Setoyama M, Kataoka H. Defect of hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor, Kunitz type 1 (Hai-1/Spint1) leads to ichthyosis-like condition and abnormal hair development in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1464-75. [PMID: 18832587 DOI: 10.2353/ajpath.2008.071142] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1)/serine protease inhibitor, Kunitz type 1 (SPINT1) is a membrane-bound, serine proteinase inhibitor initially identified as an inhibitor of hepatocyte growth factor activator. It also inhibits matriptase and prostasin, both of which are membrane-bound serine proteinases that have critical roles in epidermal differentiation and function. In this study, skin and hair phenotypes of mice lacking the Hai-1/Spint1 gene were characterized. Previously, we reported that the homozygous deletion of Hai-1/Spint1 in mice resulted in embryonic lethality attributable to impaired placental development. To test the role of Hai-1/Spint1 in mice, the placental function of Hai-1/Spint1-mutant mice was rescued. Injection of Hai-1/Spint1(+/+) blastocysts with Hai-1/Spint1(-/-) embryonic stem cells successfully generated high-chimeric Hai-1/Spint1(-/-) embryos (B6Hai-1(-/-High)) with normal placentas. These embryos were delivered without apparent developmental abnormalities, confirming that embryonic lethality of Hai-1/Spint1(-/-) mice was caused by placental dysfunction. However, newborn B6Hai-1(-/-High) mice showed growth retardation and died by 16 days. These mice developed scaly skin because of hyperkeratinization, reminiscent of ichthyosis, and abnormal hair shafts that showed loss of regular cuticular septation. The interfollicular epidermis showed acanthosis with enhanced Akt phosphorylation. Immunoblot analysis revealed altered proteolytic processing of profilaggrin in Hai-1/Spint1-deleted skin with impaired generation of filaggrin monomers. These findings indicate that Hai-1/Spint1 has critical roles in the regulated keratinization of the epidermis and hair development.
Collapse
Affiliation(s)
- Koki Nagaike
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Komaki W, Fukushima T, Tanaka H, Itoh H, Chosa E, Kataoka H. Expression of hepatocyte growth factor activator inhibitor type 1 on the epithelial cell surface is regulated by hypoxic and oxidative stresses. Virchows Arch 2008; 453:347-57. [PMID: 18769935 DOI: 10.1007/s00428-008-0662-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/07/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1)/spint-1 is a membrane-bound protease inhibitor that is thought to regulate the activities of hepatocyte growth factor activator, matriptase, hepsin, and prostasin. In this study, we show that the membrane form of HAI-1 was significantly upregulated immunohistochemically in epithelial cells under adverse conditions including tissue injury, necroinflammatory reactions, and invasion of carcinomas. To analyze the mechanism underlying these in vivo observations, we examined the effects of hypoxia and oxidative stress on HAI-1 expression in vitro, using three human cell lines, HLC-1, WiDr, and HeLa. Hypoxic condition significantly enhanced the expression of HAI-1 in these cells. Oxidative stress also enhanced HAI-1 expression. Promoter analyses of the human HAI-1/spint-1 gene revealed overlapping binding site for Egr-1-3 and Sp1 near the transcription start site as the key domain for HAI-1/spint-1 transcription. This site was also critical in both hypoxic- and oxidative stress-induced HAI-1 upregulation. In fact, in vivo immunohistochemical studies indicated that areas with HAI-1 upregulation tended to express markers associated with hypoxia and oxidative stress. These observations suggest that the tissue microenvironment regulates the cell surface expression of HAI-1, and thereby may regulate proteolysis and processing of bioactive molecules on the cellular surface.
Collapse
Affiliation(s)
- Wataru Komaki
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Szabo R, Hobson JP, List K, Molinolo A, Lin CY, Bugge TH. Potent inhibition and global co-localization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity. J Biol Chem 2008; 283:29495-504. [PMID: 18713750 DOI: 10.1074/jbc.m801970200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor activator inhibitors (HAI)-1 and -2 are recently identified and closely related Kunitz-type transmembrane serine protease inhibitors. Whereas HAI-1 is well established as an inhibitor of the serine proteases matriptase and hepatocyte growth factor activator, the physiological targets of HAI-2 are unknown. Here we show that HAI-2 displays potent inhibitory activity toward matriptase, forms SDS-stable complexes with the serine protease, and blocks matriptase-dependent activation of its candidate physiological substrates proprostasin and cell surface-bound pro-urokinase plasminogen activator. To further explore the potential functional relationship between HAI-2 and matriptase, we generated a transgenic mouse strain with a promoterless beta-galactosidase marker gene inserted into the endogenous locus encoding HAI-2 protein and performed a global high resolution mapping of the expression of HAI-2, matriptase, and HAI-1 proteins in all adult tissues. This analysis showed striking co-localization of HAI-2 with matriptase and HAI-1 in epithelial cells of all major organ systems, thus strongly supporting a role of HAI-2 as a physiological regulator of matriptase activity, possibly acting in a redundant or partially redundant manner with HAI-1. Unlike HAI-1 and matriptase, however, HAI-2 expression was also detected in non-epithelial cells of brain and lymph nodes, suggesting that HAI-2 may also be involved in inhibition of serine proteases other than matriptase.
Collapse
Affiliation(s)
- Roman Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
48
|
Tseng IC, Chou FP, Su SF, Oberst M, Madayiputhiya N, Lee MS, Wang JK, Sloane DE, Johnson M, Lin CY. Purification from human milk of matriptase complexes with secreted serpins: mechanism for inhibition of matriptase other than HAI-1. Am J Physiol Cell Physiol 2008; 295:C423-31. [PMID: 18550704 DOI: 10.1152/ajpcell.00164.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Matriptase, a type 2 transmembrane serine protease, is predominately expressed by epithelial and carcinoma cells in which hepatocyte growth factor activator inhibitor 1 (HAI-1), a membrane-bound, Kunitz-type serine protease inhibitor, is also expressed. HAI-1 plays dual roles in the regulation of matriptase, as a conventional protease inhibitor and as a factor required for zymogen activation of matriptase. As a consequence, activation of matriptase is immediately followed by HAI-1-mediated inhibition, with the activated matriptase being sequestered into HAI-1 complexes. Matriptase is also expressed by peripheral blood leukocytes, such as monocytes and macrophages; however, in contrast to epithelial cells, monocytes and macrophages were reported not to express HAI-1, suggesting that these leukocytes possess alternate, HAI-1-independent mechanisms regulating the zymogen activation and protease inhibition of matriptase. In the present study, we characterized matriptase complexes of 110 kDa in human milk, which contained no HAI-1 and resisted dissociation in boiling SDS in the absence of reducing agents. These complexes were further purified and dissociated into 80-kDa and 45-kDa fragments by treatment with reducing agents. Proteomic and immunological methods identified the 45-kDa fragment as the noncatalytic domains of matriptase and the 80-kDa fragment as the matriptase serine protease domain covalently linked to one of three different secreted serpin inhibitors: antithrombin III, alpha1-antitrypsin, and alpha2-antiplasmin. Identification of matriptase-serpin inhibitor complexes provides evidence for the first time that the proteolytic activity of matriptase, from those cells that express no or low levels of HAI-1, may be controlled by secreted serpins.
Collapse
Affiliation(s)
- I-Chu Tseng
- Greenebaum Cancer Ctr., Dept. of Biochemistry and Molecular Biology, Univ. of Maryland Baltimore, BRB 10-027, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Miyata S, Fukushima T, Kohama K, Tanaka H, Takeshima H, Kataoka H. Roles of Kunitz domains in the anti-invasive effect of hepatocyte growth factor activator inhibitor type 1 in human glioblastoma cells. Hum Cell 2008; 20:100-6. [PMID: 17949349 DOI: 10.1111/j.1749-0774.2007.00035.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-bound serine proteinase inhibitor having two extracellular Kunitz-type proteinase inhibitor domains (KD) namely KD-1 and KD-2. It efficiently inhibits hepatocyte growth factor activator, matriptase, hepsin, prostasin and trypsin. We have previously reported that the expression of HAI-1 suppresses the in vitro invasive capability of human glioblastoma cells. In this study we examined the role of each KD in the anti-invasive effect of HAI-1. Engineered over-expression of the mature membrane-form HAI-1 suppressed in vitro fibrin gel invasion of two human glioblastoma cell lines, U251 and YKG-1. The migratory activity on type IV collagen was also suppressed by the HAI-1 expression. These effects were not affected by the deletion of intracytoplasmic domain of HAI-1. A truncated secreted form of HAI-1 also suppressed in vitro invasion of the cells, indicating that the extracellular portion of HAI-1 was responsible for the anti-invasive effect. To determine the roles of each KD in the anti-invasive effect of HAI-1 in vitro, we constructed expression plasmids for HAI-1 with or without mutation at the P1 position of the reactive site of each KD. The results revealed that the proteinase inhibitor activity of N-terminal KD (KD-1) is responsible for the anti-invasion effect of HAI-1.
Collapse
Affiliation(s)
- Shiro Miyata
- Section of Neursurgery, Department of Neuroscience and Section of Oncopathology and Regenerative Biology, Department of Pathology, Facullty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Mukai S, Fukushima T, Naka D, Tanaka H, Osada Y, Kataoka H. Activation of hepatocyte growth factor activator zymogen (pro-HGFA) by human kallikrein 1-related peptidases. FEBS J 2008; 275:1003-17. [PMID: 18221492 DOI: 10.1111/j.1742-4658.2008.06265.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hepatocyte growth factor activator (HGFA) is a serine protease and a potent activator of prohepatocyte growth factor/scatter factor (pro-HGF/SF), a multifunctional growth factor that is critically involved in tissue morphogenesis, regeneration, and tumor progression. HGFA circulates as a zymogen (pro-HGFA) and is activated in response to tissue injury. Although thrombin is considered to be an activator of pro-HGFA, alternative pro-HGFA activation pathways in tumor microenvironments remain to be identified. In this study, we examined the effects of kallikrein 1-related peptidases (KLKs), a family of extracellular serine proteases, on the activation of pro-HGFA. Among the KLKs examined (KLK2, KLK3, KLK4 and KLK5), we identified KLK4 and KLK5 as novel activators of pro-HGFA. Using N-terminal sequencing, the cleavage site was identified as the normal processing site, Arg407-Ile408. The activation of pro-HGFA by KLK5 required a negatively charged substance such as dextran sulfate, whereas KLK4 could process pro-HGFA without dextran sulfate. KLK5 showed more efficient pro-HGFA processing than KLK4, and was expressed in 50% (13/25) of the tumor cell lines examined. HGFA processed by these KLKs efficiently activated pro-HGF/SF, and led to cellular scattering and invasion in vitro. The activities of both KLK4 and KLK5 were strongly inhibited by HGFA inhibitor type 1, an integral membrane Kunitz-type serine protease inhibitor that inhibits HGFA and other pro-HGF/SF-activating proteases. These data suggest that KLK4 and KLK5 mediate HGFA-induced activation of pro-HGF/SF within tumor tissue, which may thereafter trigger a series of events leading to tumor progression via the MET receptor.
Collapse
Affiliation(s)
- Shoichiro Mukai
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|