1
|
Boucherie C, Alkailani M, Jossin Y, Ruiz-Reig N, Mahdi A, Aldaalis A, Aittaleb M, Tissir F. Auts2 enhances neurogenesis and promotes expansion of the cerebral cortex. J Adv Res 2025; 72:151-163. [PMID: 39013538 DOI: 10.1016/j.jare.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION The AUTS2 gene is associated with various neurodevelopmental and psychiatric disorders and has been suggested to play a role in acquiring human-specific traits. Functional analyses of Auts2 knockout mice have focused on postmitotic neurons, and the reported phenotypes do not faithfully recapitulate the whole spectrum of AUTS2-related human diseases. OBJECTIVE The objective of the study is to assess the role of AUTS2 in the biology of neural progenitor cells, cortical neurogenesis and expansion; and understand how its deregulation leads to neurological disorders. METHODS We screened the literature and conducted a time point analysis of AUTS2 expression during cortical development. We used in utero electroporation to acutely modulate the expression level of AUTS2 in the developing cerebral cortex in vivo, and thoroughly characterized cortical neurogenesis and morphogenesis using immunofluorescence, cell tracing and sorting, transcriptomic profiling, and gene ontology enrichment analyses. RESULTS In addition to its expression in postmitotic neurons, we showed that AUTS2 is also expressed in neural progenitor cells at the peak of neurogenesis. Upregulation of AUTS2 dramatically altered the differentiation program and fate determination of cortical progenitors. Notably, it increased the number of basal progenitors and neurons and changed the expression of hundreds of genes, among which 444 have not been implicated in mouse brain development or function. CONCLUSION The study provides evidence that AUTS2 is expressed in germinal zones and plays a key role in fate decision of neural progenitor cells with impact on corticogenesis. It also presents comprehensive lists of AUTS2 target genes thus advancing the molecular mechanisms underlying AUTS2-associated diseases and the evolutionary expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Cédric Boucherie
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Maisa Alkailani
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Yves Jossin
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Asma Mahdi
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Arwa Aldaalis
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Mohamed Aittaleb
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium; Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar.
| |
Collapse
|
2
|
Kamenev D, Kameneva P, Adameyko I. The role of microheterogeneity in cell fate decisions in neural progenitors and neural crest. Curr Opin Neurobiol 2025; 92:103031. [PMID: 40288017 DOI: 10.1016/j.conb.2025.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/23/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025]
Abstract
Neuroprogenitors must integrate a multitude of signals, including gradients of morphogens, transcriptional programs, and temporal cues to generate an astonishing diversity of cell types inhabiting the nervous system. How do these different layers of information come together to influence cell fate in progenitor cells in a coordinated way? Here we provide a nuanced perspective on cell fate selection in the nervous system and neural crest lineage, suggesting that it is not a straightforward, deterministic process governed by rigid on-off switches. Instead, the process involves probabilistic transitions influenced by small variations - termed "microheterogeneity" - within a progenitor cell population. These minuscule differences between individual neural progenitor cells can result in significantly different outcomes, making certain fates more probable for some cells than others. Here we discuss the diversity of such examples and the theory behind, also providing future perspectives.
Collapse
Affiliation(s)
- Dmitrii Kamenev
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Polina Kameneva
- St. Anna Children's Cancer Research Institute (CCRI), 1090 Vienna, Austria.
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria; Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
3
|
Salinas-Torres VM, Salinas-Torres RA. Casamassima-Morton-Nance Syndrome and Limb-Body Wall Defect: Presentation of the Second Case and Phenotypic Assessment. Pediatr Dev Pathol 2025; 28:63-67. [PMID: 39324207 DOI: 10.1177/10935266241281797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Casamassima-Morton-Nance syndrome (CMNS) is a rare disorder characterized by spondylocostal dysostosis (SCD), anal atresia, and urogenital anomalies. We describe a fetus with CMNS associated with a limb-body wall defect (LBWD), the second such case in the literature. We compare the phenotypic differences with previously reported cases, including those with segmentation anomalies of the axial skeleton, body wall defects, or absent/abnormal genitalia, revealing the consistent presence of SCD in CMNS. However, as expected, a wide phenotypic spectrum emerges, providing useful observations for fetal/neonatal screening relevant to differential diagnoses. Advanced diagnostic methods using imaging and next-generation skeletal dysplasia multi-gene panels are advisable, as they enable timely, actionable, well-informed decisions for parental counseling, potential elective termination of pregnancy, and prenatal and/or postnatal care. Most reported cases do not mention the recurrence of these usually lethal anomalies.
Collapse
Affiliation(s)
- Víctor M Salinas-Torres
- Secretaria de Salud Durango, Durango General Hospital, Human Genetics and Genomics Department, Durango, México
| | - Rafael A Salinas-Torres
- Instituto Tecnológico de Tijuana, Systems and Computing Department, Tijuana, Baja California, México
| |
Collapse
|
4
|
Bulger EA, Muncie-Vasic I, Libby ARG, McDevitt TC, Bruneau BG. TBXT dose sensitivity and the decoupling of nascent mesoderm specification from EMT progression in 2D human gastruloids. Development 2024; 151:dev202516. [PMID: 38411343 PMCID: PMC11006400 DOI: 10.1242/dev.202516] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
In the nascent mesoderm, TBXT expression must be precisely regulated to ensure that cells exit the primitive streak and pattern the anterior-posterior axis, but how varying dosage informs morphogenesis is not well understood. In this study, we define the transcriptional consequences of TBXT dosage reduction during early human gastrulation using human induced pluripotent stem cell models of gastrulation and mesoderm differentiation. Multi-omic single-nucleus RNA and single-nucleus ATAC sequencing of 2D gastruloids comprising wild-type, TBXT heterozygous or TBXT null human induced pluripotent stem cells reveal that varying TBXT dosage does not compromise the ability of a cell to differentiate into nascent mesoderm, but instead directly influences the temporal progression of the epithelial-to-mesenchymal transition with wild type transitioning first, followed by TBXT heterozygous and then TBXT null. By differentiating cells into nascent mesoderm in a monolayer format, we further illustrate that TBXT dosage directly impacts the persistence of junctional proteins and cell-cell adhesions. These results demonstrate that epithelial-to-mesenchymal transition progression can be decoupled from the acquisition of mesodermal identity in the early gastrula and shed light on the mechanisms underlying human embryogenesis.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Ivana Muncie-Vasic
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94158, USA and University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ashley R. G. Libby
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Ramesh PS, Chu LF. Species-specific roles of the Notch ligands, receptors, and targets orchestrating the signaling landscape of the segmentation clock. Front Cell Dev Biol 2024; 11:1327227. [PMID: 38348091 PMCID: PMC10859470 DOI: 10.3389/fcell.2023.1327227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
Somitogenesis is a hallmark feature of all vertebrates and some invertebrate species that involves the periodic formation of block-like structures called somites. Somites are transient embryonic segments that eventually establish the entire vertebral column. A highly conserved molecular oscillator called the segmentation clock underlies this periodic event and the pace of this clock regulates the pace of somite formation. Although conserved signaling pathways govern the clock in most vertebrates, the mechanisms underlying the species-specific divergence in various clock characteristics remain elusive. For example, the segmentation clock in classical model species such as zebrafish, chick, and mouse embryos tick with a periodicity of ∼30, ∼90, and ∼120 min respectively. This enables them to form the species-specific number of vertebrae during their overall timespan of somitogenesis. Here, we perform a systematic review of the species-specific features of the segmentation clock with a keen focus on mouse embryos. We perform this review using three different perspectives: Notch-responsive clock genes, ligand-receptor dynamics, and synchronization between neighboring oscillators. We further review reports that use non-classical model organisms and in vitro model systems that complement our current understanding of the segmentation clock. Our review highlights the importance of comparative developmental biology to further our understanding of this essential developmental process.
Collapse
Affiliation(s)
- Pranav S. Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
6
|
Bulger EA, Muncie-Vasic I, Libby AR, McDevitt TC, Bruneau BG. TBXT dose sensitivity and the decoupling of nascent mesoderm specification from EMT progression in 2D human gastruloids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565933. [PMID: 37986746 PMCID: PMC10659276 DOI: 10.1101/2023.11.06.565933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In the nascent mesoderm, levels of Brachyury (TBXT) expression must be precisely regulated to ensure cells exit the primitive streak and pattern the anterior-posterior axis, but how this varying dosage informs morphogenesis is not well understood. In this study, we define the transcriptional consequences of TBXT dose reduction during early human gastrulation using human induced pluripotent stem cell (hiPSC)-based models of gastrulation and mesoderm differentiation. Multiomic single-nucleus RNA and single-nucleus ATAC sequencing of 2D gastruloids comprised of WT, TBXT heterozygous (TBXT-Het), or TBXT null (TBXT-KO) hiPSCs reveal that varying TBXT dosage does not compromise a cell's ability to differentiate into nascent mesoderm, but that the loss of TBXT significantly delays the temporal progression of the epithelial to mesenchymal transition (EMT). This delay is dependent on TBXT dose, as cells heterozygous for TBXT proceed with EMT at an intermediate pace relative to WT or TBXT-KO. By differentiating iPSCs of the allelic series into nascent mesoderm in a monolayer format, we further illustrate that TBXT dose directly impacts the persistence of junctional proteins and cell-cell adhesions. These results demonstrate that EMT progression can be decoupled from the acquisition of mesodermal identity in the early gastrula and shed light on the mechanisms underlying human embryogenesis.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institutes, San Francisco, CA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA
| | - Ivana Muncie-Vasic
- Gladstone Institutes, San Francisco, CA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA
| | - Ashley R.G. Libby
- Gladstone Institutes, San Francisco, CA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - Benoit G. Bruneau
- Gladstone Institutes, San Francisco, CA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| |
Collapse
|
7
|
Hughes FA, Barr AR, Thomas P. Patterns of interdivision time correlations reveal hidden cell cycle factors. eLife 2022; 11:e80927. [PMID: 36377847 PMCID: PMC9822260 DOI: 10.7554/elife.80927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
The time taken for cells to complete a round of cell division is a stochastic process controlled, in part, by intracellular factors. These factors can be inherited across cellular generations which gives rise to, often non-intuitive, correlation patterns in cell cycle timing between cells of different family relationships on lineage trees. Here, we formulate a framework of hidden inherited factors affecting the cell cycle that unifies known cell cycle control models and reveals three distinct interdivision time correlation patterns: aperiodic, alternator, and oscillator. We use Bayesian inference with single-cell datasets of cell division in bacteria, mammalian and cancer cells, to identify the inheritance motifs that underlie these datasets. From our inference, we find that interdivision time correlation patterns do not identify a single cell cycle model but generally admit a broad posterior distribution of possible mechanisms. Despite this unidentifiability, we observe that the inferred patterns reveal interpretable inheritance dynamics and hidden rhythmicity of cell cycle factors. This reveals that cell cycle factors are commonly driven by circadian rhythms, but their period may differ in cancer. Our quantitative analysis thus reveals that correlation patterns are an emergent phenomenon that impact cell proliferation and these patterns may be altered in disease.
Collapse
Affiliation(s)
- Fern A Hughes
- Department of Mathematics, Imperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Alexis R Barr
- MRC London Institute of Medical SciencesLondonUnited Kingdom
- Institute of Clinical Sciences, Imperial College LondonLondonUnited Kingdom
| | - Philipp Thomas
- Department of Mathematics, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Carraco G, Martins-Jesus AP, Andrade RP. The vertebrate Embryo Clock: Common players dancing to a different beat. Front Cell Dev Biol 2022; 10:944016. [PMID: 36036002 PMCID: PMC9403190 DOI: 10.3389/fcell.2022.944016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Vertebrate embryo somitogenesis is the earliest morphological manifestation of the characteristic patterned structure of the adult axial skeleton. Pairs of somites flanking the neural tube are formed periodically during early development, and the molecular mechanisms in temporal control of this early patterning event have been thoroughly studied. The discovery of a molecular Embryo Clock (EC) underlying the periodicity of somite formation shed light on the importance of gene expression dynamics for pattern formation. The EC is now known to be present in all vertebrate organisms studied and this mechanism was also described in limb development and stem cell differentiation. An outstanding question, however, remains unanswered: what sets the different EC paces observed in different organisms and tissues? This review aims to summarize the available knowledge regarding the pace of the EC, its regulation and experimental manipulation and to expose new questions that might help shed light on what is still to unveil.
Collapse
Affiliation(s)
- Gil Carraco
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Raquel P. Andrade
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
- *Correspondence: Raquel P. Andrade,
| |
Collapse
|
9
|
Novev JK, Heltberg ML, Jensen MH, Doostmohammadi A. Spatiotemporal model of cellular mechanotransduction via Rho and YAP. Integr Biol (Camb) 2021; 13:197-209. [PMID: 34278428 DOI: 10.1093/intbio/zyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 01/20/2023]
Abstract
How cells sense and respond to mechanical stimuli remains an open question. Recent advances have identified the translocation of Yes-associated protein (YAP) between nucleus and cytoplasm as a central mechanism for sensing mechanical forces and regulating mechanotransduction. We formulate a spatiotemporal model of the mechanotransduction signalling pathway that includes coupling of YAP with the cell force-generation machinery through the Rho family of GTPases. Considering the active and inactive forms of a single Rho protein (GTP/GDP-bound) and of YAP (non-phosphorylated/phosphorylated), we study the cross-talk between cell polarization due to active Rho and YAP activation through its nuclear localization. For fixed mechanical stimuli, our model predicts stationary nuclear-to-cytoplasmic YAP ratios consistent with experimental data at varying adhesive cell area. We further predict damped and even sustained oscillations in the YAP nuclear-to-cytoplasmic ratio by accounting for recently reported positive and negative YAP-Rho feedback. Extending the framework to time-varying mechanical stimuli that simulate cyclic stretching and compression, we show that the YAP nuclear-to-cytoplasmic ratio's time dependence follows that of the cyclic mechanical stimulus. The model presents one of the first frameworks for understanding spatiotemporal YAP mechanotransduction, providing several predictions of possible YAP localization dynamics, and suggesting new directions for experimental and theoretical studies.
Collapse
Affiliation(s)
- Javor K Novev
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Mathias L Heltberg
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.,Laboratoire de Physique, Ecole Normale Superieure, Rue Lhomond 15, Paris 07505, France
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK, Nagahashi A, Nishio M, Guo L, Ikegawa S, Sakurai S, Kihara S, Maurissen TL, Nakamura M, Matsumoto T, Yoshitomi H, Ikeya M, Kawakami N, Yamamoto T, Woltjen K, Ebisuya M, Toguchida J, Alev C. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 2020; 580:124-129. [PMID: 32238941 DOI: 10.1038/s41586-020-2144-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/20/2020] [Indexed: 12/29/2022]
Abstract
Pluripotent stem cells are increasingly used to model different aspects of embryogenesis and organ formation1. Despite recent advances in in vitro induction of major mesodermal lineages and cell types2,3, experimental model systems that can recapitulate more complex features of human mesoderm development and patterning are largely missing. Here we used induced pluripotent stem cells for the stepwise in vitro induction of presomitic mesoderm and its derivatives to model distinct aspects of human somitogenesis. We focused initially on modelling the human segmentation clock, a major biological concept believed to underlie the rhythmic and controlled emergence of somites, which give rise to the segmental pattern of the vertebrate axial skeleton. We observed oscillatory expression of core segmentation clock genes, including HES7 and DKK1, determined the period of the human segmentation clock to be around five hours, and demonstrated the presence of dynamic travelling-wave-like gene expression in in vitro-induced human presomitic mesoderm. Furthermore, we identified and compared oscillatory genes in human and mouse presomitic mesoderm derived from pluripotent stem cells, which revealed species-specific and shared molecular components and pathways associated with the putative mouse and human segmentation clocks. Using CRISPR-Cas9-based genome editing technology, we then targeted genes for which mutations in patients with segmentation defects of the vertebrae, such as spondylocostal dysostosis, have been reported (HES7, LFNG, DLL3 and MESP2). Subsequent analysis of patient-like and patient-derived induced pluripotent stem cells revealed gene-specific alterations in oscillation, synchronization or differentiation properties. Our findings provide insights into the human segmentation clock as well as diseases associated with human axial skeletogenesis.
Collapse
Affiliation(s)
- Mitsuhiro Matsuda
- Laboratory for Reconstitutive Developmental Biology, RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe, Japan.,European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Yoshihiro Yamanaka
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Maya Uemura
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ayako Nagahashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Megumi Nishio
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences (RIKEN IMS), Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences (RIKEN IMS), Tokyo, Japan
| | - Satoko Sakurai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shunsuke Kihara
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Thomas L Maurissen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomoko Matsumoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makoto Ikeya
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Noriaki Kawakami
- Department of Orthopedics and Spine Surgery, Meijo Hospital, Nagoya, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo, Japan.,Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Miki Ebisuya
- Laboratory for Reconstitutive Developmental Biology, RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe, Japan. .,European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.
| | - Junya Toguchida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan. .,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Bougioukli S, Saitta B, Sugiyama O, Tang AH, Elphingstone J, Evseenko D, Lieberman JR. Lentiviral Gene Therapy for Bone Repair Using Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Hum Gene Ther 2019; 30:906-917. [PMID: 30773946 DOI: 10.1089/hum.2018.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Umbilical cord blood (UCB) has been increasingly explored as an alternative source of stem cells for use in regenerative medicine due to several advantages over other stem-cell sources, including the need for less stringent human leukocyte antigen matching. Combined with an osteoinductive signal, UCB-derived mesenchymal stem cells (MSCs) could revolutionize the treatment of challenging bone defects. This study aimed to develop an ex vivo regional gene-therapy strategy using BMP-2-transduced allogeneic UCB-MSCs to promote bone repair. To this end, human UCB-MSCs were transduced with a lentiviral vector carrying the cDNA for BMP-2 (LV-BMP-2). In vitro assays to determine the UCB-MSC osteogenic potential and BMP-2 production were followed by in vivo implantation of LV-BMP-2-transduced UCB-MSCs in a mouse hind-limb muscle pouch. Non-transduced and LV-GFP-transduced UCB-MSCs were used as controls. Transduction with LV-BMP-2 was associated with abundant BMP-2 production and induction of osteogenic differentiation in vitro. Implantation of BMP-2-transduced UCB-MSCs led to robust heterotopic bone formation 4 weeks postoperatively, as seen on radiographs and histology. These results, along with the fact that UCB-MSCs can be easily collected with no donor-site morbidity and low immunogenicity, suggest that UCB might be a preferable allogeneic source of MSCs to develop an ex vivo gene-therapy approach to treat difficult bone-repair scenarios.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
12
|
Sueda R, Imayoshi I, Harima Y, Kageyama R. High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev 2019; 33:511-523. [PMID: 30862661 PMCID: PMC6499325 DOI: 10.1101/gad.323196.118] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/26/2019] [Indexed: 01/03/2023]
Abstract
Sueda et al. show that in quiescent neural stem cells, Hes1 levels are oscillatory, although the peaks and troughs are higher than those in active neural stem cells, causing Ascl1 expression to be continuously suppressed. Somatic stem/progenitor cells are active in embryonic tissues but quiescent in many adult tissues. The detailed mechanisms that regulate active versus quiescent stem cell states are largely unknown. In active neural stem cells, Hes1 expression oscillates and drives cyclic expression of the proneural gene Ascl1, which activates cell proliferation. Here, we found that in quiescent neural stem cells in the adult mouse brain, Hes1 levels are oscillatory, although the peaks and troughs are higher than those in active neural stem cells, causing Ascl1 expression to be continuously suppressed. Inactivation of Hes1 and its related genes up-regulates Ascl1 expression and increases neurogenesis. This causes rapid depletion of neural stem cells and premature termination of neurogenesis. Conversely, sustained Hes1 expression represses Ascl1, inhibits neurogenesis, and maintains quiescent neural stem cells. In contrast, induction of Ascl1 oscillations activates neural stem cells and increases neurogenesis in the adult mouse brain. Thus, Ascl1 oscillations, which normally depend on Hes1 oscillations, regulate the active state, while high Hes1 expression and resultant Ascl1 suppression promote quiescence in neural stem cells.
Collapse
Affiliation(s)
- Risa Sueda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Itaru Imayoshi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Yukiko Harima
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Wittmann G, Lechan RM. Prss56 expression in the rodent hypothalamus: Inverse correlation with pro-opiomelanocortin suggests oscillatory gene expression in adult rat tanycytes. J Comp Neurol 2018; 526:2444-2461. [PMID: 30242838 DOI: 10.1002/cne.24504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 11/11/2022]
Abstract
We recently reported that the number of hypothalamic tanycytes expressing pro-opiomelanocortin (Pomc) is highly variable among brains of adult rats. While its cause and significance remain unknown, identifying other variably expressed genes in tanycytes may help understand this curious phenomenon. In this in situ hybridization study, we report that the Prss56 gene, which encodes a trypsin-like serine protease and is expressed in neural stem/progenitor cells, shows a similarly variable mRNA expression in tanycytes of adult rats and correlates inversely with tanycyte Pomc mRNA. Prss56 was expressed in α1, β1, subsets of α2, and some median eminence γ tanycytes, but virtually absent from β2 tanycytes. Prss56 was also expressed in vimentin positive tanycyte-like cells in the parenchyma of the ventromedial and arcuate nuclei, and in thyrotropin beta subunit-expressing cells of the pars tuberalis of the pituitary. In contrast to adults, Prss56 expression was uniformly high in tanycytes in adolescent rats. In mice, Prss56-expressing tanycytes and parenchymal cells were also observed but fewer in number and without significant variations. The results identify Prss56 as a second gene that is expressed variably in tanycytes of adult rats. We propose that the variable, inversely correlating expression of Prss56 and Pomc reflect periodically oscillating gene expression in tanycytes rather than stable expression levels that vary between individual rats. A possible functional link between Prss56 and POMC, and Prss56 as a potential marker for migrating tanycytes are discussed.
Collapse
Affiliation(s)
- Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts.,Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
14
|
Boareto M, Iber D, Taylor V. Differential interactions between Notch and ID factors control neurogenesis by modulating Hes factor autoregulation. Development 2017; 144:3465-3474. [PMID: 28974640 PMCID: PMC5665482 DOI: 10.1242/dev.152520] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
Abstract
During embryonic and adult neurogenesis, neural stem cells (NSCs) generate the correct number and types of neurons in a temporospatial fashion. Control of NSC activity and fate is crucial for brain formation and homeostasis. Neurogenesis in the embryonic and adult brain differ considerably, but Notch signaling and inhibitor of DNA-binding (ID) factors are pivotal in both. Notch and ID factors regulate NSC maintenance; however, it has been difficult to evaluate how these pathways potentially interact. Here, we combined mathematical modeling with analysis of single-cell transcriptomic data to elucidate unforeseen interactions between the Notch and ID factor pathways. During brain development, Notch signaling dominates and directly regulates Id4 expression, preventing other ID factors from inducing NSC quiescence. Conversely, during adult neurogenesis, Notch signaling and Id2/3 regulate neurogenesis in a complementary manner and ID factors can induce NSC maintenance and quiescence in the absence of Notch. Our analyses unveil key molecular interactions underlying NSC maintenance and mechanistic differences between embryonic and adult neurogenesis. Similar Notch and ID factor interactions may be crucial in other stem cell systems. Summary: Computational analysis of transcriptome data from neural stem cells reveals key differences in the synergistic interactions between Notch and inhibitor of DNA-binding factors during embryonic and adult neurogenesis.
Collapse
Affiliation(s)
- Marcelo Boareto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland .,Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland .,Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
15
|
Wahi K, Friesen S, Coppola V, Cole SE. Putative binding sites for mir-125 family miRNAs in the mouse Lfng 3'UTR affect transcript expression in the segmentation clock, but mir-125a-5p is dispensable for normal somitogenesis. Dev Dyn 2017; 246:740-748. [PMID: 28710810 PMCID: PMC5597482 DOI: 10.1002/dvdy.24552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/21/2017] [Accepted: 07/01/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In vertebrate embryos, a "segmentation clock" times somitogenesis. Clock-linked genes, including Lunatic fringe (Lfng), exhibit cyclic expression in the presomitic mesoderm (PSM), with a period matching the rate of somite formation. The clock period varies widely across species, but the mechanisms that underlie this variability are not clear. The half-lives of clock components are proposed to influence the rate of clock oscillations, and are tightly regulated in the PSM. Interactions between Lfng and mir-125a-5p in the embryonic chicken PSM promote Lfng transcript instability, but the conservation of this mechanism in other vertebrates has not been tested. Here, we examine whether this interaction affects clock activity in a mammalian species. RESULTS Mutation of mir-125 binding sites in the Lfng 3'UTR leads to persistent, nonoscillatory reporter transcript expression in the caudal-most mouse PSM, although dynamic transcript expression recovers in the central PSM. Despite this, expression of endogenous mir-125a-5p is dispensable for mouse somitogenesis. CONCLUSIONS These results suggest that mir-125a sites in the Lfng 3' untranslated region influence transcript turnover in both mouse and chicken embryos, and support the existence of position-dependent regulatory mechanisms in the PSM. They further suggest the existence of compensatory mechanisms that can rescue the loss of mir-125a-5p in mice. Developmental Dynamics 246:740-748, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kanu Wahi
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio
| | - Sophia Friesen
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Susan E Cole
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Kohli V, Nardini D, Ehrman LA, Waclaw RR. Characterization of Glcci1 expression in a subpopulation of lateral ganglionic eminence progenitors in the mouse telencephalon. Dev Dyn 2017; 247:222-228. [PMID: 28744915 DOI: 10.1002/dvdy.24556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The lateral ganglionic eminence (LGE) in the ventral telencephalon is a diverse progenitor domain subdivided by distinct gene expression into a dorsal region (dLGE) that gives rise to olfactory bulb and amygdalar interneurons and a ventral region (vLGE) that gives rise to striatal projection neurons. The homeobox gene, Gsx2, is an enriched marker of the LGE and is expressed in a high dorsal to low ventral gradient in the ventricular zone (VZ) as development proceeds. Aside from Gsx2, markers restricted to the VZ in the dLGE and/or vLGE remain largely unknown. RESULTS Here, we show that the gene and protein expression of Glucocorticoid-induced transcript 1 (Glcci1) has a similar dorsal to ventral gradient of expression in the VZ as Gsx2. We found that Glcci1 gene and protein expression are reduced in Gsx2 mutants, and are increased in the cortex after early and late Gsx2 misexpression. Moreover, Glcci1 expressing cells are restricted to a subpopulation of Gsx2 positive cells on the basal side of the VZ and co-express Ascl1, but not the subventricular zone dLGE marker, Sp8. CONCLUSIONS These findings suggest that Glcci1 is a new marker of a subpopulation of LGE VZ progenitor cells in the Gsx2 lineage. Developmental Dynamics 247:222-228, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vikram Kohli
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
17
|
Abstract
In the developing vertebrate embryo, segmentation initiates through the formation of repeated segments, or somites, on either side of the posterior neural tube along the anterior to posterior axis. The periodicity of somitogenesis is regulated by a molecular oscillator, the segmentation clock, driving cyclic gene expression in the unsegmented paraxial mesoderm, from which somites derive. Three signaling pathways underlie the molecular mechanism of the oscillator: Wnt, FGF, and Notch. In particular, Notch has been demonstrated to be an essential piece in the intricate somitogenesis regulation puzzle. Notch is required to synchronize oscillations between neighboring cells, and is moreover necessary for somite formation and clock gene oscillations. Following ligand activation, the Notch receptor is cleaved to liberate the active intracellular domain (NICD) and during somitogenesis NICD itself is produced and degraded in a cyclical manner, requiring tightly regulated, and coordinated turnover. It was recently shown that the pace of the segmentation clock is exquisitely sensitive to levels/stability of NICD. In this review, we focus on what is known about the mechanisms regulating NICD turnover, crucial to the activity of the pathway in all developmental contexts. To date, the regulation of NICD stability has been attributed to phosphorylation of the PEST domain which serves to recruit the SCF/Sel10/FBXW7 E3 ubiquitin ligase complex involved in NICD turnover. We will describe the pathophysiological relevance of NICD-FBXW7 interaction, whose defects have been linked to leukemia and a variety of solid cancers.
Collapse
Affiliation(s)
- Francesca A Carrieri
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee Dundee, UK
| | - Jacqueline Kim Dale
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee Dundee, UK
| |
Collapse
|
18
|
Yang Y, Wang BQ, Wu ZH, Zhang HY, Qiu GX, Shen JX, Zhang JG, Zhao Y, Wang YP, Fei Q. Five known tagging DLL3 SNPs are not associated with congenital scoliosis: A case-control association study in a Chinese Han population. Medicine (Baltimore) 2016; 95:e4347. [PMID: 27472720 PMCID: PMC5265857 DOI: 10.1097/md.0000000000004347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genetic etiology hypothesis is widely accepted in the development of congenital scoliosis (CS). The delta-like 3 (DLL3) gene, a member of the Notch signaling pathway, was implicated to contribute to human CS. In this study, a case-control association study was conducted to determine the association of single nucleotide polymorphism (SNP) in the DLL3 gene with CS in a Chinese Han Population. Five known tagging SNPs of the DLL3 gene were genotyped among 270 Chinese Han subjects (128 nonsyndromic CS patients and 142 matched controls). CS patients were divided into 3 types: type I-failure of formation (29 cases), type II-failure of segmentation (50 cases), and type III-mixed defects (49 cases). The 5 SNPs were analyzed by the allelic and genotypic association analysis, genotype-phenotype association analysis, and haplotype analysis. Allele frequencies of 5 tagging SNPs (SNP1: rs1110627, SNP2: rs3212276, SNP3: rs2304223, SNP4: rs2304222, and SNP5: rs2304214) in CS cases and controls were comparable and there were no available inheritance models. The SNPs were not associated with clinical phenotypes. Moreover, the 5 makers in the DLL3 gene were found to be in strong linkage disequilibrium (LD). Both global haplotype and individual haplotype analyses showed that the haplotypes of SNP1/SNP2/SNP3/SNP4/SNP5 did not correlate with the disease (P >0.05). Together, these data suggest that genetic variants of the DLL3 gene are not associated with CS in the Chinese Han population.
Collapse
Affiliation(s)
- Yong Yang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University
| | - Bing-Qiang Wang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University
| | - Zhi-Hong Wu
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Hai-Yan Zhang
- Department of Cell Biology, Capital Medical University, Xicheng, Beijing, China
| | - Gui-Xing Qiu
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Jian-Xiong Shen
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Jian-Guo Zhang
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Yi-Peng Wang
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Qi Fei
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University
- Correspondence: Qi Fei, Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Xicheng, Beijing, China (e-mail: )
| |
Collapse
|
19
|
The many roles of Notch signaling during vertebrate somitogenesis. Semin Cell Dev Biol 2016; 49:68-75. [DOI: 10.1016/j.semcdb.2014.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
|
20
|
Oksenberg N, Haliburton GDE, Eckalbar WL, Oren I, Nishizaki S, Murphy K, Pollard KS, Birnbaum RY, Ahituv N. Genome-wide distribution of Auts2 binding localizes with active neurodevelopmental genes. Transl Psychiatry 2014; 4:e431. [PMID: 25180570 PMCID: PMC4199417 DOI: 10.1038/tp.2014.78] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/14/2014] [Accepted: 07/26/2014] [Indexed: 12/16/2022] Open
Abstract
The autism susceptibility candidate 2 gene (AUTS2) has been associated with multiple neurological diseases including autism spectrum disorders (ASDs). Previous studies showed that AUTS2 has an important neurodevelopmental function and is a suspected master regulator of genes implicated in ASD-related pathways. However, the regulatory role and targets of Auts2 are not well known. Here, by using ChIP-seq (chromatin immunoprecipitation followed by deep sequencing) and RNA-seq on mouse embryonic day 16.5 forebrains, we elucidated the gene regulatory networks of Auts2. We find that the majority of promoters bound by Auts2 belong to genes highly expressed in the developing forebrain, suggesting that Auts2 is involved in transcriptional activation. Auts2 non-promoter-bound regions significantly overlap developing brain-associated enhancer marks and are located near genes involved in neurodevelopment. Auts2-marked sequences are enriched for binding site motifs of neurodevelopmental transcription factors, including Pitx3 and TCF3. In addition, we characterized two functional brain enhancers marked by Auts2 near NRXN1 and ATP2B2, both ASD-implicated genes. Our results implicate Auts2 as an active regulator of important neurodevelopmental genes and pathways and identify novel genomic regions that could be associated with ASD and other neurodevelopmental diseases.
Collapse
Affiliation(s)
- N Oksenberg
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - G D E Haliburton
- Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Gladstone Institutes, San
Francisco, CA, USA
| | - W L Eckalbar
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - I Oren
- Department of Life Sciences, Ben Gurion University of
the Negev, Beer Sheva, Israel
| | - S Nishizaki
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - K Murphy
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - K S Pollard
- Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Gladstone Institutes, San
Francisco, CA, USA,Division of Biostatistics, University of California
San Francisco, San Francisco, CA, USA
| | - R Y Birnbaum
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Department of Life Sciences, Ben Gurion University of
the Negev, Beer Sheva, Israel,Department of Bioengineering and Therapeutic Sciences, University of
California San Francisco, 1550 4th Street, Rock Hall, RH584C, San Francisco,
CA
94158, USA. E-mails: or
| | - N Ahituv
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Department of Bioengineering and Therapeutic Sciences, University of
California San Francisco, 1550 4th Street, Rock Hall, RH584C, San Francisco,
CA
94158, USA. E-mails: or
| |
Collapse
|
21
|
Timing embryo segmentation: dynamics and regulatory mechanisms of the vertebrate segmentation clock. BIOMED RESEARCH INTERNATIONAL 2014; 2014:718683. [PMID: 24895605 PMCID: PMC4033425 DOI: 10.1155/2014/718683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022]
Abstract
All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations.
Collapse
|
22
|
Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. Proc Natl Acad Sci U S A 2013; 110:E4316-24. [PMID: 24151332 DOI: 10.1073/pnas.1308811110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sequential production of body segments in vertebrate embryos is regulated by a molecular oscillator (the segmentation clock) that drives cyclic transcription of genes involved in positioning intersegmental boundaries. Mathematical modeling indicates that the period of the clock depends on the total delay kinetics of a negative feedback circuit, including those associated with the synthesis of transcripts encoding clock components [Lewis J (2003) Curr Biol 13(16):1398-1408]. Here, we measure expression delays for three transcripts [Lunatic fringe, Hes7/her1, and Notch-regulated-ankyrin-repeat-protein (Nrarp)], that cycle during segmentation in the zebrafish, chick, and mouse, and provide in vivo measurements of endogenous splicing and export kinetics. We show that mRNA splicing and export are much slower than transcript elongation, with the longest delay (about 16 min in the mouse) being due to mRNA export. We conclude that the kinetics of mRNA and protein production and destruction can account for much of the clock period, and provide strong support for delayed autorepression as the underlying mechanism of the segmentation clock.
Collapse
|
23
|
Oksenberg N, Ahituv N. The role of AUTS2 in neurodevelopment and human evolution. Trends Genet 2013; 29:600-8. [PMID: 24008202 DOI: 10.1016/j.tig.2013.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 12/31/2022]
Abstract
The autism susceptibility candidate 2 (AUTS2) gene is associated with multiple neurological diseases, including autism, and has been implicated as an important gene in human-specific evolution. Recent functional analysis of this gene has revealed a potential role in neuronal development. Here, we review the literature regarding AUTS2, including its discovery, expression, association with autism and other neurological and non-neurological traits, implication in human evolution, function, regulation, and genetic pathways. Through progress in clinical genomic analysis, the medical importance of this gene is becoming more apparent, as highlighted in this review, but more work needs to be done to discover the precise function and the genetic pathways associated with AUTS2.
Collapse
Affiliation(s)
- Nir Oksenberg
- Department of Bioengineering and Therapeutic Sciences, and Institute for Human Genetics, University of California, San Francisco (UCSF), 1550 4th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
24
|
Human umbilical cord blood-derived mesenchymal stem cells in the cultured rabbit intervertebral disc: a novel cell source for disc repair. Am J Phys Med Rehabil 2013; 92:420-9. [PMID: 23598901 DOI: 10.1097/phm.0b013e31825f148a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Back pain associated with symptomatic disc degeneration is a common clinical condition. Intervertebral disc (IVD) cell apoptosis and senescence increase with aging and degeneration. Repopulating the IVD with cells that could produce and maintain extracellular matrix would be an alternative therapy to surgery. The objective of this study was to determine the potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) as a novel cell source for disc repair. In this study, we intended to confirm the potential for hUCB-MSCs to differentiate and display a chondrocyte-like phenotype after culturing in micromass and after injection into the rabbit IVD explant culture. We also wanted to confirm hUCB-MSC survival after transplantation into the IVD explant culture. DESIGN This study consisted of micromass cultures and in vitro rabbit IVD explant cultures to assess hUCB-MSC survival and differentiation to display chondrocyte-like phenotype. First, hUCB-MSCs were cultured in micromass and stained with Alcian blue dye. Second, to confirm cell survival, hUCB-MSCs were labeled with an infrared dye and a fluorescent dye before injection into whole rabbit IVD explants (host). IVD explants were then cultured for 4 wks. Cell survival was confirmed by two independent techniques: an imaging system detecting the infrared dye at the organ level and fluorescence microscopy detecting fluorescent dye at the cellular level. Cell viability was assessed by staining the explant with CellTracker green, a membrane-permeant tracer specific for live cells. Human type II collagen gene expression (from the graft) was assessed by polymerase chain reaction. RESULTS We have shown that hUCB-MSCs cultured in micromass are stained blue with Alcian blue dye, which suggests that proteoglycan-rich extracellular matrix is produced. In the cultured rabbit IVD explants, hUCB-MSCs survived for at least 4 wks and expressed the human type II collagen gene, suggesting that the injected hUCB-MSCs are differentiating into a chondrocyte-like lineage. CONCLUSIONS This study demonstrates the abiity of hUBC-MSCs to survive and assume a chondrocyte-like phenotype when injected into the rabbit IVD. These data support the potential for hUBC-MSCs as a cell source for disc repair. Further measures of the host response to the injection and studies in animal models are needed before trials in humans.
Collapse
|
25
|
Giampietro PF, Dunwoodie SL, Kusumi K, Pourquié O, Tassy O, Offiah AC, Cornier AS, Alman BA, Blank RD, Raggio CL, Glurich I, Turnpenny PD. Molecular diagnosis of vertebral segmentation disorders in humans. ACTA ACUST UNITED AC 2013; 2:1107-21. [PMID: 23496422 DOI: 10.1517/17530059.2.10.1107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Vertebral malformations contribute substantially to the pathophysiology of kyphosis and scoliosis, common health problems associated with back and neck pain, disability, cosmetic disfigurement and functional distress. OBJECTIVE To provide an overview of the current understanding of vertebral malformations, at both the clinical level and the molecular level, and factors that contribute to their occurrence. METHODS The literature related to the following was reviewed: recent advances in the understanding of the molecular embryology underlying vertebral development and relevance to elucidation of etiologies of several known human vertebral malformation syndromes; outcomes of molecular studies elucidating genetic contributions to congenital and sporadic vertebral malformations; and complex interrelationships between genetic and environmental factors that contribute to the pathogenesis of isolated syndromic and non-syndromic congenital vertebral malformations. RESULTS/CONCLUSION Expert opinions extend to discussion of the importance of establishing improved classification systems for vertebral malformation, future directions in molecular and genetic research approaches to vertebral malformation and translational value of research efforts to clinical management and genetic counseling of affected individuals and their families.
Collapse
Affiliation(s)
- Philip F Giampietro
- Marshfield Clinic, Department of Genetic Services, 1000 N. Oak Avenue, Marshfield, WI 54449, USA +1 715 221 7410 ; +1 715 389 4399 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Urbizu A, Toma C, Poca MA, Sahuquillo J, Cuenca-León E, Cormand B, Macaya A. Chiari malformation type I: a case-control association study of 58 developmental genes. PLoS One 2013; 8:e57241. [PMID: 23437350 PMCID: PMC3578784 DOI: 10.1371/journal.pone.0057241] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/18/2013] [Indexed: 01/07/2023] Open
Abstract
Chiari malformation type I (CMI) is a disorder characterized by hindbrain overcrowding into an underdeveloped posterior cranial fossa (PCF), often causing progressive neurological symptoms. The etiology of CMI remains unclear and is most likely multifactorial. A putative genetic contribution to CMI is suggested by familial aggregation and twin studies. Experimental models and human morphometric studies have suggested an underlying paraxial mesoderm insufficiency. We performed a case-control association study of 303 tag single nucleotide polymorphisms (SNP) across 58 candidate genes involved in early paraxial mesoderm development in a sample of 415 CMI patients and 524 sex-matched controls. A subgroup of patients diagnosed with classical, small-PCF CMI by means of MRI-based PCF morphometry (n = 186), underwent additional analysis. The genes selected are involved in signalling gradients occurring during segmental patterning of the occipital somites (FGF8, Wnt, and retinoic acid pathways and from bone morphogenetic proteins or BMP, Notch, Cdx and Hox pathways) or in placental angiogenesis, sclerotome development or CMI-associated syndromes. Single-marker analysis identified nominal associations with 18 SNPs in 14 genes (CDX1, FLT1, RARG, NKD2, MSGN1, RBPJ1, FGFR1, RDH10, NOG, RARA, LFNG, KDR, ALDH1A2, BMPR1A) considering the whole CMI sample. None of these overcame corrections for multiple comparisons, in contrast with four SNPs in CDX1, FLT1 and ALDH1A2 in the classical CMI group. Multiple marker analysis identified a risk haplotype for classical CMI in ALDH1A2 and CDX1. Furthermore, we analyzed the possible contributions of the most significantly associated SNPs to different PCF morphometric traits. These findings suggest that common variants in genes involved in somitogenesis and fetal vascular development may confer susceptibility to CMI.
Collapse
Affiliation(s)
- Aintzane Urbizu
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Claudio Toma
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases, Barcelona, Spain
| | - Maria A. Poca
- Department of Neurosurgery, Research Unit Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neurosurgery and Neurotraumatology, Research Unit Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Sahuquillo
- Department of Neurosurgery, Research Unit Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neurosurgery and Neurotraumatology, Research Unit Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Cuenca-León
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Sparrow DB, McInerney-Leo A, Gucev ZS, Gardiner B, Marshall M, Leo PJ, Chapman DL, Tasic V, Shishko A, Brown MA, Duncan EL, Dunwoodie SL. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet 2013; 22:1625-31. [DOI: 10.1093/hmg/ddt012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Beets K, Huylebroeck D, Moya IM, Umans L, Zwijsen A. Robustness in angiogenesis: notch and BMP shaping waves. Trends Genet 2012; 29:140-9. [PMID: 23279848 DOI: 10.1016/j.tig.2012.11.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/31/2012] [Accepted: 11/16/2012] [Indexed: 12/20/2022]
Abstract
Vascular patterning involves sprouting of blood vessels, which is governed by orchestrated communication between cells in the surrounding tissue and endothelial cells (ECs) lining the blood vessels. Single ECs are selected for sprouting by hypoxia-induced stimuli and become the 'tip' or leader cell that guides new sprouts. The 'stalk' or trailing ECs proliferate for tube extension and lumenize the nascent vessel. Stalk and tip cells can dynamically switch their identities during this process in a Notch-dependent manner. Here, we review recent studies showing that bone morphogenetic protein (BMP) signaling coregulates Notch target genes in ECs. In particular, we focus on how Delta-like ligand 4 (DLL4)-Notch and BMP effector interplay may drive nonsynchronized oscillatory gene expression in ECs essential for setting sharp tip-stalk cell boundaries while sustaining a dynamic pool of nonsprouting ECs. Deeper knowledge about the coregulation of vessel plasticity in different vascular beds may result in refinement of anti-angiogenesis and vessel normalization therapies.
Collapse
Affiliation(s)
- Karen Beets
- Laboratory of Developmental Signaling, VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
29
|
Sheeba CJ, Andrade RP, Palmeirim I. Joint interpretation of AER/FGF and ZPA/SHH over time and space underlies hairy2 expression in the chick limb. Biol Open 2012; 1:1102-10. [PMID: 23213390 PMCID: PMC3507187 DOI: 10.1242/bio.20122386] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/11/2012] [Indexed: 12/15/2022] Open
Abstract
Embryo development requires precise orchestration of cell proliferation and differentiation in both time and space. A molecular clock operating through gene expression oscillations was first described in the presomitic mesoderm (PSM) underlying periodic somite formation. Cycles of HES gene expression have been further identified in other progenitor cells, including the chick distal limb mesenchyme, embryonic neural progenitors and both mesenchymal and embryonic stem cells. In the limb, hairy2 is expressed in the distal mesenchyme, adjacent to the FGF source (AER) and along the ZPA-derived SHH gradient, the two major regulators of limb development. Here we report that hairy2 expression depends on joint AER/FGF and ZPA/SHH signaling. FGF plays an instructive role on hairy2, mediated by Erk and Akt pathway activation, while SHH acts by creating a permissive state defined by Gli3-A/Gli3-R>1. Moreover, we show that AER/FGF and ZPA/SHH present distinct temporal and spatial signaling properties in the distal limb mesenchyme: SHH acts at a long-term, long-range on hairy2, while FGF has a short-term, short-range action. Our work establishes limb hairy2 expression as an output of integrated FGF and SHH signaling in time and space, providing novel clues for understanding the regulatory mechanisms underlying HES oscillations in multiple systems, including embryonic stem cell pluripotency.
Collapse
Affiliation(s)
- Caroline J Sheeba
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , 4710-057 Braga , Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal ; Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve , 8005-139 Faro , Portugal; IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | |
Collapse
|
30
|
Sheeba CJ, Palmeirim I, Andrade RP. Retinoic acid signaling regulates embryonic clock hairy2 gene expression in the developing chick limb. Biochem Biophys Res Commun 2012; 423:889-94. [DOI: 10.1016/j.bbrc.2012.06.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 12/20/2022]
|
31
|
Sparrow DB, Chapman G, Smith AJ, Mattar MZ, Major JA, O'Reilly VC, Saga Y, Zackai EH, Dormans JP, Alman BA, McGregor L, Kageyama R, Kusumi K, Dunwoodie SL. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 2012; 149:295-306. [PMID: 22484060 DOI: 10.1016/j.cell.2012.02.054] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/15/2011] [Accepted: 02/15/2012] [Indexed: 12/16/2022]
Abstract
Congenital scoliosis, a lateral curvature of the spine caused by vertebral defects, occurs in approximately 1 in 1,000 live births. Here we demonstrate that haploinsufficiency of Notch signaling pathway genes in humans can cause this congenital abnormality. We also show that in a mouse model, the combination of this genetic risk factor with an environmental condition (short-term gestational hypoxia) significantly increases the penetrance and severity of vertebral defects. We demonstrate that hypoxia disrupts FGF signaling, leading to a temporary failure of embryonic somitogenesis. Our results potentially provide a mechanism for the genesis of a host of common sporadic congenital abnormalities through gene-environment interaction.
Collapse
Affiliation(s)
- Duncan B Sparrow
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:401-23. [PMID: 23801490 DOI: 10.1002/wdev.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vertebral column derives from somites, which are transient paired segments of mesoderm that surround the neural tube in the early embryo. Somites are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt, and fibroblast growth factor (FGF) signaling pathways. These oscillators together with signaling gradients within the presomitic mesoderm help to set somitic boundaries and rostral-caudal polarity that are essential for the precise patterning of the vertebral column. Disruption of this mechanism has been identified as the cause of severe segmentation defects of the vertebrae in humans. These segmentation defects are part of a spectrum of spinal disorders affecting the skeletal elements and musculature of the spine, resulting in curvatures such as scoliosis, kyphosis, and lordosis. While the etiology of most disorders with spinal curvatures is still unknown, genetic and developmental studies of somitogenesis and patterning of the axial skeleton and musculature are yielding insights into the causes of these diseases.
Collapse
|
33
|
Joyce NC, Harris DL, Markov V, Zhang Z, Saitta B. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol Vis 2012; 18:547-64. [PMID: 22419848 PMCID: PMC3298421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 02/28/2012] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To test the feasibility of altering the phenotype of umbilical cord blood mesenchymal stem cells (UCB MSCs) toward that of human corneal endothelial cells (HCEC) and to determine whether UCB MSCs can "home" to sites of corneal endothelial cell injury using an ex vivo corneal wound model. METHODS RNA was isolated and purified from UCB MSCs and HCECs. Baseline information regarding the relative gene expression of UCB MSCs and HCEC was obtained by microarray analysis. Quantitative real-time PCR (q-PCR) verified the microarray findings for a subset of genes. The ability of different culture media to direct UCB MSCs toward a more HCEC-like phenotype was tested in both tissue culture and ex vivo corneal endothelial wound models using three different media: MSC basal medium (MSCBM), a basal medium used to culture lens epithelial cells (LECBM), or lens epithelial cell-conditioned medium (LECCM). Morphology of the MSCs was observed by phase-contrast microscopy or by light microscopic observation of crystal violet-stained cells. Immunolocalization of the junction-associated proteins, zonula occludins-1 (ZO1) and N-cadherin, was visualized by fluorescence confocal microscopy. Formation of cell-cell junctions was tested by treatment with the calcium chelator, EGTA. A second microarray analysis compared gene expression between UCB MSCs grown in LECBM and LECCM to identify changes induced by the lens epithelial cell-conditioned culture medium. The ability of UCB MSCs to "home" to areas of endothelial injury was determined using ZO1 immunolocalization patterns in ex vivo corneal endothelial wounds. RESULTS Baseline microarray analysis provided information regarding relative gene expression in UCB MSCs and HCECs. MSCs attached to damaged, but not intact, corneal endothelium in ex vivo corneal wounds. The morphology of MSCs was consistently altered when cells were grown in the presence of LECCM. In tissue culture and in ex vivo corneal wounds, UCB MSC treated with LECCM were elongated and formed parallel sheets of closely apposed cells. In both tissue culture and ex vivo corneal endothelial wounds, ZO1 and N-cadherin localized mainly to the cytoplasm of UCB MSCs in the presence of MSCBM. However, both proteins localized to cell borders when UCB MSCs were grown in either LECBM or LECCM. This localization was lost when extracellular calcium levels were reduced by treatment with EGTA. A second microarray analysis showed that, when UCB MSCs were grown in LECCM instead of LECBM, the relative expression of a subset of genes markedly differed, suggestive of a more HCEC-like phenotype. CONCLUSIONS Results indicate that UCB MSCs are able to "home" to areas of injured corneal endothelium and that the phenotype of UCB MSCs can be altered toward that of HCEC-like cells. Further study is needed to identify the specific microenvironmental conditions that would permit tissue engineering of UCB MSCs to replace damaged or diseased corneal endothelium.
Collapse
Affiliation(s)
- Nancy C. Joyce
- Schepens Eye Research Institute, Boston, MA,Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Deshea L. Harris
- Schepens Eye Research Institute, Boston, MA,Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Vladimir Markov
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey-School of Osteopathic Medicine, Stratford, NJ
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Biagio Saitta
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey-School of Osteopathic Medicine, Stratford, NJ
| |
Collapse
|
34
|
Trofka A, Schwendinger-Schreck J, Brend T, Pontius W, Emonet T, Holley SA. The Her7 node modulates the network topology of the zebrafish segmentation clock via sequestration of the Hes6 hub. Development 2012; 139:940-7. [PMID: 22278920 DOI: 10.1242/dev.073544] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using in vitro and in vivo assays, we define a network of Her/Hes dimers underlying transcriptional negative feedback within the zebrafish segmentation clock. Some of the dimers do not appear to be DNA-binding, whereas those dimers that do interact with DNA have distinct preferences for cis regulatory sequences. Dimerization is specific, with Hes6 serving as the hub of the network. Her1 binds DNA only as a homodimer but will also dimerize with Hes6. Her12 and Her15 bind DNA both as homodimers and as heterodimers with Hes6. Her7 dimerizes strongly with Hes6 and weakly with Her15. This network structure engenders specific network dynamics and imparts greater influence to the Her7 node. Computational analysis supports the hypothesis that Her7 disproportionately influences the availability of Hes6 to heterodimerize with other Her proteins. Genetic experiments suggest that this regulation is important for operation of the network. Her7 therefore has two functions within the zebrafish segmentation clock. Her7 acts directly within the delayed negative feedback as a DNA-binding heterodimer with Hes6. Her7 also has an emergent function, independent of DNA binding, in which it modulates network topology via sequestration of the network hub.
Collapse
Affiliation(s)
- Anna Trofka
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
35
|
Nishibori Y, Katayama K, Parikka M, Oddsson A, Nukui M, Hultenby K, Wernerson A, He B, Ebarasi L, Raschperger E, Norlin J, Uhlén M, Patrakka J, Betsholtz C, Tryggvason K. Glcci1 deficiency leads to proteinuria. J Am Soc Nephrol 2011; 22:2037-46. [PMID: 21949092 DOI: 10.1681/asn.2010111147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Unbiased transcriptome profiling and functional genomics approaches identified glucocorticoid-induced transcript 1 (GLCCI1) as being a transcript highly specific for the glomerulus, but its role in glomerular development and disease is unknown. Here, we report that mouse glomeruli express far greater amounts of Glcci1 protein compared with the rest of the kidney. RT-PCR and Western blotting demonstrated that mouse glomerular Glcci1 is approximately 60 kD and localizes to the cytoplasm of podocytes in mature glomeruli. In the fetal kidney, intense Glcci1 expression occurs at the capillary-loop stage of glomerular development. Using gene knockdown in zebrafish with morpholinos, morphants lacking Glcci1 function had collapsed glomeruli with foot-process effacement. Permeability studies of the glomerular filtration barrier in these zebrafish morphants demonstrated a disruption of the selective glomerular permeability filter. Taken together, these data suggest that Glcci1 promotes the normal development and maintenance of podocyte structure and function.
Collapse
Affiliation(s)
- Yukino Nishibori
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The Wnt3a/β-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program. Nat Commun 2011; 2:390. [PMID: 21750544 DOI: 10.1038/ncomms1381] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022] Open
Abstract
Segmentation is an organizing principle of body plans. The segmentation clock, a molecular oscillator best illustrated by the cyclic expression of Notch signalling genes, controls the periodic cleavage of somites from unsegmented presomitic mesoderm during vertebrate segmentation. Wnt3a controls the spatiotemporal expression of cyclic Notch genes; however, the underlying mechanisms remain obscure. Here we show by transcriptional profiling of Wnt3a (-/-) embryos that the bHLH transcription factor, Mesogenin1 (Msgn1), is a direct target gene of Wnt3a. To identify Msgn1 targets, we conducted genome-wide studies of Msgn1 activity in embryonic stem cells. We show that Msgn1 is a major transcriptional activator of a Notch signalling program and synergizes with Notch to trigger clock gene expression. Msgn1 also indirectly regulates cyclic genes in the Fgf and Wnt pathways. Thus, Msgn1 is a central component of a transcriptional cascade that translates a spatial Wnt3a gradient into a temporal pattern of clock gene expression.
Collapse
|
37
|
The mouse notches up another success: understanding the causes of human vertebral malformation. Mamm Genome 2011; 22:362-76. [DOI: 10.1007/s00335-011-9335-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/23/2011] [Indexed: 11/27/2022]
|
38
|
Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand Delta-Like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet 2010; 20:905-16. [DOI: 10.1093/hmg/ddq529] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Santosh N, Windsor LJ, Mahmoudi BS, Li B, Zhang W, Chernoff EA, Rao N, Stocum DL, Song F. Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dyn 2010; 240:1127-41. [DOI: 10.1002/dvdy.22503] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/06/2022] Open
|
40
|
Ottaviani S, Tahiri K, Frazier A, Hassaine ZN, Dumontier MF, Baschong W, Rannou F, Corvol MT, Savouret JF, Richette P. Hes1, a new target for interleukin 1beta in chondrocytes. Ann Rheum Dis 2010; 69:1488-94. [PMID: 19914905 DOI: 10.1136/ard.2009.120816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To investigate the effects of interleukin 1beta (IL1beta) treatment on the Notch1/Hes1 pathway in chondrocytes in vitro. METHODS Mouse articular chondrocytes in primary culture were challenged with IL1beta, alone or combined with Notch1 and IL1beta pathway inhibitors. Notch1 and Hes1 expressions were investigated by immunocytochemistry, western blot and real-time quantitative (q)PCR. IL1beta-responsive genes were assessed by real-time qPCR and a specific siRNA against Hes1 was used to identify Hes1 target genes. RESULTS Notch1 labelling remained nuclear and stable in intensity irrespective of treatment, suggesting a steady state activation of this pathway in our model. IL1beta transiently increased Hes1 mRNA (2.5-fold) and protein expression in treated versus naive chondrocytes. Hes1 mRNA level then decreased below control and its cyclic pattern of expression was lost. This was associated with nuclear translocation of the cytoplasmic Hes1 protein. IL1beta induced increase in Hes1 mRNA was transcriptional, occurred through nuclear factor (NF)kappaB activation and appeared to be associated with downregulation by its own protein. Hes1 induction was insensitive to the gamma-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester (DAPT), which suggested its independence from novel Notch1 activation. Hes1 expression was efficiently silenced by a specific siRNA. This experiment revealed that Hes1 did not mediate IL1beta-induced downregulation of Sox9, type II collagen and aggrecan transcription but mediated IL1beta induction of matrix metalloproteinase (MMP)13 and ADAM metallopeptidase with thrombospondin type 1 motif, 5 (ADAMTS5). The Hes1-related repressor Hey1 was expressed at a very low level and was not inducible by IL1beta. CONCLUSION Hes1 is a novel IL1beta target gene in chondrocytes which influences a discrete subset of genes linked to cartilage matrix remodelling and/or degradation.
Collapse
|
41
|
Lutter D, Marr C, Krumsiek J, Lang EW, Theis FJ. Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics 2010; 11:224. [PMID: 20370903 PMCID: PMC2865499 DOI: 10.1186/1471-2164-11-224] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 04/06/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MicroRNA-mediated control of gene expression via translational inhibition has substantial impact on cellular regulatory mechanisms. About 37% of mammalian microRNAs appear to be located within introns of protein coding genes, linking their expression to the promoter-driven regulation of the host gene. In our study we investigate this linkage towards a relationship beyond transcriptional co-regulation. RESULTS Using measures based on both annotation and experimental data, we show that intronic microRNAs tend to support their host genes by regulation of target gene expression with significantly correlated expression patterns. We used expression data of three differentiating cell types and compared gene expression profiles of host and target genes. Many microRNA target genes show expression patterns significantly correlated with the expressions of the microRNA host genes. By calculating functional similarities between host and predicted microRNA target genes based on GO annotations, we confirm that many microRNAs link host and target gene activity in an either synergistic or antagonistic manner. CONCLUSIONS These two regulatory effects may result from fine tuning of target gene expression functionally related to the host or knock-down of remaining opponent target gene expression. This finding allows to extend the common practice of mapping large scale gene expression data to protein associated genes with functionality of co-expressed intronic microRNAs.
Collapse
Affiliation(s)
- Dominik Lutter
- Institute of Bioinformatics and Systems Biology, CMB, Helmholtz Zentrum München, Germany.
| | | | | | | | | |
Collapse
|
42
|
Heng BC, Hsu SH, Cowan CM, Liu A, Tai J, Chan Y, Sherman W, Basu S. Transcatheter injection-induced changes in human bone marrow-derived mesenchymal stem cells. Cell Transplant 2009; 18:1111-21. [PMID: 19650972 DOI: 10.3727/096368909x12483162197006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human mesenchymal stem cells (hMSC) are being administered by direct intramyocardial (IM) injection into patients with myocardial dysfunction with an objective to improve clinical status. However, surprisingly little attention has been directed to qualifying hMSC functionality beyond simple viability. In particular, the transit of hMSCs through a small-caliber needle lumen, the final fluidic pathway for all IM injection devices, may be especially prone to inducing unwarranted effects on cell function. This study evaluated the changes in clonogenicity, gene expression, and cytokine secretion that may be induced in hMSC (20 million/ml) by injection through a 26-gauge Nitinol needle at two different flow rates compared to noninjected control samples. Results indicated that hMSC viability and colony forming unit (CFU) formation was not altered by changes in injection rate, although a trend toward lower titers was noted at the higher flow rate, for the specific batch of hMSCs studied. The gene expression and cytokine analysis data suggest that delivering a suspension of MSCs through narrow lumen needles may marginally alter certain gene expression programs, but that such in vitro effects are transient and not translated into measurable differences in protein production. Gene expression levels of four cytokines (bFGF, SDF-1, SCF, VEGF) were significantly different at 400 microl/min, and that of all cytokines were significantly different at 1600 microl/min when compared to controls (p < 0.05). These changes were less pronounced (statistically insignificant for most cases, p > 0.05) and, in certain instances directionally opposite, at 72 h. However, no differences in the amounts of secreted bFGF, VEGF, or TGF-beta were detectable at either of the two time points or flow rates. We infer that intramyocardial administration by transcatheter techniques is unlikely to interfere with the machinery required for cell replication or secretion of regulatory and other growth factors, which are the mainstays of MSC contribution to cardiac tissue repair and regeneration.
Collapse
|
43
|
Sewell W, Sparrow DB, Smith AJ, Gonzalez DM, Rappaport EF, Dunwoodie SL, Kusumi K. Cyclical expression of the Notch/Wnt regulator Nrarp requires modulation by Dll3 in somitogenesis. Dev Biol 2009; 329:400-9. [PMID: 19268448 PMCID: PMC2697309 DOI: 10.1016/j.ydbio.2009.02.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 01/19/2009] [Accepted: 02/19/2009] [Indexed: 11/30/2022]
Abstract
Delta-like 3 (Dll3) is a divergent ligand and modulator of the Notch signaling pathway only identified so far in mammals. Null mutations of Dll3 disrupt cycling expression of Notch targets Hes1, Hes5, and Lfng, but not of Hes7. Compared with Dll1 or Notch1, the effects of Dll3 mutations are less severe for gene expression in the presomitic mesoderm, yet severe segmentation phenotypes and vertebral defects result in both human and mouse. Reasoning that Dll3 specifically disrupts key regulators of somite cycling, we carried out functional analysis to identify targets accounting for the segmental phenotype. Using microdissected embryonic tissue from somitic and presomitic mesodermal tissue, we identified new genes enriched in these tissues, including Limch1, Rhpn2, and A130022J15Rik. Surprisingly, we only identified a small number of genes disrupted by the Dll3 mutation. These include Uncx, a somite gene required for rib and vertebral patterning, and Nrarp, a regulator of Notch/Wnt signaling in zebrafish and a cycling gene in mouse. To determine the effects of Dll3 mutation on Nrarp, we characterized the cycling expression of this gene from early (8.5 dpc) to late (10.5 dpc) somitogenesis. Nrarp displays a distinct pattern of cycling phases when compared to Lfng and Axin2 (a Wnt pathway gene) at 9.5 dpc but appears to be in phase with Lfng by 10.5 dpc. Nrarp cycling appears to require Dll3 but not Lfng modulation. In Dll3 null embryos, Nrarp displayed static patterns. However, in Lfng null embryos, Nrarp appeared static at 8.5 dpc but resumed cycling expression by 9.5 and dynamic expression at 10.5 dpc stages. By contrast, in Wnt3a null embryos, Nrarp expression was completely absent in the presomitic mesoderm. Towards identifying the role of Dll3 in regulating somitogenesis, Nrarp emerges as a potentially important regulator that requires Dll3 but not Lfng for normal function.
Collapse
Affiliation(s)
- William Sewell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Duncan B. Sparrow
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | | | | | - Eric F. Rappaport
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sally L. Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, NSW 2052, Australia
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Dept. of Basic Medical Sciences, The University of Arizona College of Medicine–Phoenix in partnership with Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
44
|
Giampietro PF, Dunwoodie SL, Kusumi K, Pourquié O, Tassy O, Offiah AC, Cornier AS, Alman BA, Blank RD, Raggio CL, Glurich I, Turnpenny PD. Progress in the understanding of the genetic etiology of vertebral segmentation disorders in humans. Ann N Y Acad Sci 2009; 1151:38-67. [PMID: 19154516 DOI: 10.1111/j.1749-6632.2008.03452.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vertebral malformations contribute substantially to the pathophysiology of kyphosis and scoliosis, common health problems associated with back and neck pain, disability, cosmetic disfigurement, and functional distress. This review explores (1) recent advances in the understanding of the molecular embryology underlying vertebral development and relevance to elucidation of etiologies of several known human vertebral malformation syndromes; (2) outcomes of molecular studies elucidating genetic contributions to congenital and sporadic vertebral malformation; and (3) complex interrelationships between genetic and environmental factors that contribute to the pathogenesis of isolated syndromic and nonsyndromic congenital vertebral malformation. Discussion includes exploration of the importance of establishing improved classification systems for vertebral malformation, future directions in molecular and genetic research approaches to vertebral malformation, and translational value of research efforts to clinical management and genetic counseling of affected individuals and their families.
Collapse
Affiliation(s)
- Philip F Giampietro
- Department of Medical Genetic Services, Marshfield Clinic, 1000 North Oak Avenue, Marshfield, WI 54449, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The body axis of vertebrates is composed of a serial repetition of similar anatomical modules that are called segments or metameres. This particular mode of organization is especially conspicuous at the level of the periodic arrangement of vertebrae in the spine. The segmental pattern is established during embryogenesis when the somites--the embryonic segments of vertebrates--are rhythmically produced from the paraxial mesoderm. This process involves the segmentation clock, which is a travelling oscillator that interacts with a maturation wave called the wavefront to produce the periodic series of somites. Here, we review our current understanding of the segmentation process in vertebrates.
Collapse
|
46
|
Momiji H, Monk NAM. Oscillatory expression of Hes family transcription factors: insights from mathematical modelling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 641:72-87. [PMID: 18783173 DOI: 10.1007/978-0-387-09794-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Oscillatory expression of the Hes family of transcription factors plays a central role in the segmentation of the vertebrate body during embryonic development. Analogous oscillations in cultured cells suggest that Hes oscillations may be important in other developmental processes, and provide an excellent opportunity to explore the origin of these oscillations in a relatively simple setting. Mathematical and computational modelling have been used in combination with quantitative mRNA and protein expression data to analyse the origin and properties of Hes oscillations, and have highlighted the important roles played by time delays in negative feedback circuits. In this chapter, we review recent theoretical and experimental results, and discuss how analysis of existing models suggests potential avenues for further study of delayed feedback oscillators.
Collapse
Affiliation(s)
- Hiroshi Momiji
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
47
|
Andrade RP, Palmeirim I, Bajanca F. Molecular clocks underlying vertebrate embryo segmentation: A 10-year-old hairy-go-round. ACTA ACUST UNITED AC 2007; 81:65-83. [PMID: 17600780 DOI: 10.1002/bdrc.20094] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Segmentation of the vertebrate embryo body is a fundamental developmental process that occurs with strict temporal precision. Temporal control of this process is achieved through molecular segmentation clocks, evidenced by oscillations of gene expression in the unsegmented presomitic mesoderm (PSM, precursor tissue of the axial skeleton) and in the distal limb mesenchyme (limb chondrogenic precursor cells). The first segmentation clock gene, hairy1, was identified in the chick embryo PSM in 1997. Ten years later, chick hairy2 expression unveils a molecular clock operating during limb development. This review revisits vertebrate embryo segmentation with special emphasis on the current knowledge on somitogenesis and limb molecular clocks. A compilation of human congenital disorders that may arise from deregulated embryo clock mechanisms is presented here, in an attempt to reconcile different sources of information regarding vertebrate embryo development. Challenging open questions concerning the somitogenesis clock are presented and discussed, such as When?, Where?, How?, and What for? Hopefully the next decade will be equally rich in answers.
Collapse
Affiliation(s)
- Raquel P Andrade
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|
48
|
Cinquin O. Understanding the somitogenesis clock: what's missing? Mech Dev 2007; 124:501-17. [PMID: 17643270 DOI: 10.1016/j.mod.2007.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 05/10/2007] [Accepted: 06/09/2007] [Indexed: 01/09/2023]
Abstract
The segmentation of vertebrate embryos depends on a complex genetic network that generates highly dynamic gene expression. Many of the elements of the network have been identified, but their interaction and their influence on segmentation remain poorly understood. A few mathematical models have been proposed to explain the dynamics of subsets of the network, but the mechanistic bases remain controversial. This review focuses on outstanding problems with the generation of somitogenesis clock oscillations, and the ways they could regulate segmentation. Proposals that oscillations are generated by a negative feedback loop formed by Lunatic fringe and Notch signaling are weighed against a model based on positive feedback, and the experimental basis for models of simple negative feedback involving Her/Hes genes or Wnt targets is evaluated. Differences are then made explicit between the many 'clock and wavefront' model variants that have been proposed to explain how the clock regulates segmentation. An understanding of the somitogenesis clock will require addressing experimentally the many questions that arise from the study of simple models.
Collapse
Affiliation(s)
- Olivier Cinquin
- Howard Hughes Medical Institute and Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
49
|
Sewell W, Kusumi K. Genetic analysis of molecular oscillators in mammalian somitogenesis: Clues for studies of human vertebral disorders. ACTA ACUST UNITED AC 2007; 81:111-20. [PMID: 17600783 DOI: 10.1002/bdrc.20091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The repeating pattern of the human vertebral column is shaped early in development, by a process called somitogenesis. In this embryonic process, pairs of mesodermal segments called somites are serially laid down along the developing neural tube. Somitogenesis is an iterative process, repeating at regular time intervals until the last somite is formed. This process lays down the vertebrate body axis from head to tail, making for a progression of developmental steps along the rostral-caudal axis. In this review, the roles of the Notch, Wnt, fibroblast growth factor, retinoic acid and other pathways are described during the following key steps in somitogenesis: formation of the presomitic mesoderm (PSM) and establishment of molecular gradients; prepatterning of the PSM by molecular oscillators; patterning of rostral-caudal polarity within the somite; formation of somite borders; and maturation and resegmentation of somites to form musculoskeletal tissues. Disruption of somitogenesis can lead to severe vertebral birth defects such as spondylocostal dysostosis (SCD). Genetic studies in the mouse have been instrumental in finding mutations in this disorder, and ongoing mouse studies should provide functional insights and additional candidate genes to help in efforts to identify genes causing human spinal birth defects.
Collapse
Affiliation(s)
- William Sewell
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | |
Collapse
|
50
|
Sparrow DB, Chapman G, Turnpenny PD, Dunwoodie SL. Disruption of the somitic molecular clock causes abnormal vertebral segmentation. ACTA ACUST UNITED AC 2007; 81:93-110. [PMID: 17600782 DOI: 10.1002/bdrc.20093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Somites are the precursors of the vertebral column. They segment from the presomitic mesoderm (PSM) that is caudally located and newly generated from the tailbud. Somites form in synchrony on either side of the embryonic midline in a reiterative manner. A molecular clock that operates in the PSM drives this reiterative process. Genetic manipulation in mouse, chick and zebrafish has revealed that the molecular clock controls the activity of the Notch and WNT signaling pathways in the PSM. Disruption of the molecular clock impacts on somite formation causing abnormal vertebral segmentation (AVS). A number of dysmorphic syndromes manifest AVS defects. Interaction between developmental biologists and clinicians has lead to groundbreaking research in this area with the identification that spondylocostal dysostosis (SCD) is caused by mutation in Delta-like 3 (DLL3), Mesoderm posterior 2 (MESP2), and Lunatic fringe (LFNG); three genes that are components of the Notch signaling pathway. This review describes our current understanding of the somitic molecular clock and highlights how key findings in developmental biology can impact on clinical practice.
Collapse
Affiliation(s)
- Duncan B Sparrow
- Developmental Biology Program, Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | | | | |
Collapse
|