1
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
2
|
Shi W, Yi X, Ruan H, Wang D, Wu D, Jiang P, Luo L, Ma X, Jiang F, Li C, Wu W, Luo L, Li L, Wang G, Qiu J, Huang H. An animal model recapitulates human hepatic diseases associated with GATA6 mutations. Proc Natl Acad Sci U S A 2025; 122:e2317801121. [PMID: 39739787 PMCID: PMC11725858 DOI: 10.1073/pnas.2317801121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2024] [Indexed: 01/02/2025] Open
Abstract
Heterozygotic GATA6 mutations are responsible for various congenital diseases in the heart, pancreas, liver, and other organs in humans. However, there is lack of an animal that can comprehensively model these diseases since GATA6 is essential for early embryogenesis. Here, we report the establishment of a gata6 knockout zebrafish which recapitulates most of the symptoms in patients with GATA6 mutations, including cardiac outflow tract defects, pancreatic hypoplasia/agenesis, gallbladder agenesis, and various liver diseases. Particularly in the liver, the zebrafish gata6 model exhibits the paucity of intrahepatic bile ducts, disrupted bile canaliculi, cholestasis, resembling the liver diseases associated with GATA6 mutations. Moreover, an unreported phenotype, hepatic cysts, has been also revealed in the model. Mechanistically, Gata6 interacts with Hhex and binds lrh-1 promoter to synergistically activate its expression, thereby enhancing the Lrh-1-mediated β-catenin signaling which is essential for liver development. This transcriptional activation of lrh-1 is tightly controlled by the negative feedback, in which Lrh1 interacts with Gata6 to weaken its transactivation ability. Moreover, Gata6 level is regulated by Hhex-mediated proteasomal degradation. The orchestration by these three transcription factors precisely modulates Gata6 activity, ensuring β-catenin signaling output and proper liver development in zebrafish. Importantly, the molecular mechanism identified in zebrafish is conserved in human cells. GATA6 mutant variants associated with hepatobiliary malformations in humans interact aberrantly with HHEX, resulting in subsequent impairments of LRH-1 activation. Conclusively, the disease model established here provides both phenotypic and mechanism insights into the human hepatic diseases associated with GATA6 mutations.
Collapse
Affiliation(s)
- Wenpeng Shi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaogui Yi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
| | - Hua Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Donglei Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Dan Wu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Pengfei Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Lisha Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xirui Ma
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Faming Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Cairui Li
- Dali Bai Autonomous Prefecture People’s Hospital, The Third Affiliated Hospital of Dali University, Dali671000, China
| | - Weinan Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang524001, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
| | - Honghui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
3
|
Hidayat T, Irwanto I, Rohman A, Muhyiddin AAA, Putri SNA, Kurniawan DB, Syaban MFR, Firdaus T, Rahman MA, Utamayasa IKA. Comprehensive in silico analysis of single nucleotide polymorphism and molecular dynamics simulation of human GATA6 protein in ventricular septal defect. NARRA J 2024; 4:e1344. [PMID: 39816084 PMCID: PMC11731669 DOI: 10.52225/narra.v4i3.1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Congenital heart disease (CHD) represents nearly one-third of congenital birth defects annually, with ventricular septal defect (VSD) being the most common type. The aim of this study was to explore the role of specific GATA binding protein 6 gene (GATA6) mutations as a potential etiological factor in the development of VSD through an in silico approach. Data were collected from the human gene databases: DisGeNET and GeneCards, with protein-protein interaction networks constructed via STRING and Cytoscape. Gene ontology and pathway enrichment analyses were conducted using DAVID, with data analysis in R with significance set at FDR p<0.05. Target single nucleotide polymorphisms (SNPs) of GATA6 were obtained from NCBI dbSNP, and non- synonymous single nucleotide polymorphism (nsSNP) effects were predicted using SIFT, PolyPhen-2, I-Mutant 2.0, Fathmm, MutPred 2.0, SNP&GO, and PON-P2. Conserved regions of GATA6 were analyzed using ConSurf, with functional classification, variant conservation, and stability changes evaluated in Google Colab. Multiple sequence alignment was performed using ClustalW. Mutation modeling and molecular dynamics analysis, using GROMACS, revealed that among 87 intersecting genes, 16 proteins were interconnected with GATA6, showing a centrality value of 0.4378. Gene ontology analysis highlighted atrioventricular canal development, protein-DNA complexes, and transcription factor regulation as key processes for cardiac development, especially in the ventricular septum. NsSNP and molecular dynamics analyses identified rs387906818 and rs387906820 as having the highest pathogenic potential for VSD due to amino acid structural changes.
Collapse
Affiliation(s)
- Taufiq Hidayat
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Pediatric Cardiology, Department of Pediatric, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Pediatric Cardiology, Department of Pediatric, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Irwanto Irwanto
- Department of Pediatric, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Pediatric, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Afrizal AA. Muhyiddin
- Department of Pediatric, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Pediatric, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | | | | | | | - Mahrus A. Rahman
- Division of Pediatric Cardiology, Department of Pediatric, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Pediatric Cardiology, Department of Pediatric, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - I KA. Utamayasa
- Division of Pediatric Cardiology, Department of Pediatric, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Pediatric Cardiology, Department of Pediatric, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
4
|
Sam J, Torregroza I, Evans T. Gata6 functions in zebrafish endoderm to regulate late differentiating arterial pole cardiogenesis. Development 2024; 151:dev202895. [PMID: 39133135 PMCID: PMC11423812 DOI: 10.1242/dev.202895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells, including those of the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation or death. Conditional loss of gata6 starting at 24 h is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole, with decreased expression levels of anterior secondary heart field (SHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout, resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm are mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.
Collapse
Affiliation(s)
- Jessica Sam
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
5
|
Perry BW, McGowan KL, Arias-Rodriguez L, Duttke SH, Tobler M, Kelley JL. Nascent transcription reveals regulatory changes in extremophile fishes inhabiting hydrogen sulfide-rich environments. Proc Biol Sci 2024; 291:20240412. [PMID: 38889788 PMCID: PMC11285508 DOI: 10.1098/rspb.2024.0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/03/2024] [Indexed: 06/20/2024] Open
Abstract
Regulating transcription allows organisms to respond to their environment, both within a single generation (plasticity) and across generations (adaptation). We examined transcriptional differences in gill tissues of fishes in the Poecilia mexicana species complex (family Poeciliidae), which have colonized toxic springs rich in hydrogen sulfide (H2S) in southern Mexico. There are gene expression differences between sulfidic and non-sulfidic populations, yet regulatory mechanisms mediating this gene expression variation remain poorly studied. We combined capped-small RNA sequencing (csRNA-seq), which captures actively transcribed (i.e. nascent) transcripts, and messenger RNA sequencing (mRNA-seq) to examine how variation in transcription, enhancer activity, and associated transcription factor binding sites may facilitate adaptation to extreme environments. csRNA-seq revealed thousands of differentially initiated transcripts between sulfidic and non-sulfidic populations, many of which are involved in H2S detoxification and response. Analyses of transcription factor binding sites in promoter and putative enhancer csRNA-seq peaks identified a suite of transcription factors likely involved in regulating H2S-specific shifts in gene expression, including several key transcription factors known to respond to hypoxia. Our findings uncover a complex interplay of regulatory processes that reflect the divergence of extremophile populations of P. mexicana from their non-sulfidic ancestors and suggest shared responses among evolutionarily independent lineages.
Collapse
Affiliation(s)
- Blair W. Perry
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Kerry L. McGowan
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco 86150, México
| | - Sascha H. Duttke
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Michael Tobler
- Department of Biology, University of Missouri—St Louis, St Louis, MO 63121, USA
- Whitney R. Harris World Ecology Center, University of Missouri—St Louis, St Louis, MO 63121, USA
- WildCare Institute, Saint Louis Zoo, St Louis, MO 63110, USA
| | - Joanna L. Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
6
|
Gurung S, Restrepo NK, Sumanas S. Endocardium gives rise to blood cells in zebrafish embryos. Cell Rep 2024; 43:113736. [PMID: 38308842 PMCID: PMC10993658 DOI: 10.1016/j.celrep.2024.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Previous studies have suggested that the endocardium contributes to hematopoiesis in murine embryos, although definitive evidence to demonstrate the hematopoietic potential of the endocardium is still missing. Here, we use a zebrafish embryonic model to test the emergence of hematopoietic progenitors from the endocardium. By using a combination of expression analysis, time-lapse imaging, and lineage-tracing approaches, we demonstrate that myeloid cells emerge from the endocardium in zebrafish embryos. Inhibition of Etv2/Etsrp or Scl/Tal1, two known master regulators of hematopoiesis and vasculogenesis, does not affect the emergence of endocardial-derived myeloid cells, while inhibition of Hedgehog signaling results in their reduction. Single-cell RNA sequencing analysis followed by experimental validation suggests that the endocardium is the major source of neutrophilic granulocytes. These findings will promote our understanding of alternative mechanisms involved in hematopoiesis, which are likely to be conserved between zebrafish and mammalian embryos.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology, Advanced Diagnostics Laboratories, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
7
|
Beisaw A, Wu CC. Cardiomyocyte maturation and its reversal during cardiac regeneration. Dev Dyn 2024; 253:8-27. [PMID: 36502296 DOI: 10.1002/dvdy.557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Due to the limited proliferative and regenerative capacity of adult cardiomyocytes, the lost myocardium is not replenished efficiently and is replaced by a fibrotic scar, which eventually leads to heart failure. Current therapies to cure or delay the progression of heart failure are limited; hence, there is a pressing need for regenerative approaches to support the failing heart. Cardiomyocytes undergo a series of transcriptional, structural, and metabolic changes after birth (collectively termed maturation), which is critical for their contractile function but limits the regenerative capacity of the heart. In regenerative organisms, cardiomyocytes revert from their terminally differentiated state into a less mature state (ie, dedifferentiation) to allow for proliferation and regeneration to occur. Importantly, stimulating adult cardiomyocyte dedifferentiation has been shown to promote morphological and functional improvement after myocardial infarction, further highlighting the importance of cardiomyocyte dedifferentiation in heart regeneration. Here, we review several hallmarks of cardiomyocyte maturation, and summarize how their reversal facilitates cardiomyocyte proliferation and heart regeneration. A detailed understanding of how cardiomyocyte dedifferentiation is regulated will provide insights into therapeutic options to promote cardiomyocyte de-maturation and proliferation, and ultimately heart regeneration in mammals.
Collapse
Affiliation(s)
- Arica Beisaw
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
| | - Chi-Chung Wu
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Komatsu V, Cooper B, Yim P, Chan K, Gong W, Wheatley L, Rohs R, Fraser SE, Trinh LA. Hand2 represses non-cardiac cell fates through chromatin remodeling at cis- regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559156. [PMID: 37790542 PMCID: PMC10542161 DOI: 10.1101/2023.09.23.559156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Developmental studies have revealed the importance of the transcription factor Hand2 in cardiac development. Hand2 promotes cardiac progenitor differentiation and epithelial maturation, while repressing other tissue types. The mechanisms underlying the promotion of cardiac fates are far better understood than those underlying the repression of alternative fates. Here, we assess Hand2-dependent changes in gene expression and chromatin remodeling in cardiac progenitors of zebrafish embryos. Cell-type specific transcriptome analysis shows a dual function for Hand2 in activation of cardiac differentiation genes and repression of pronephric pathways. We identify functional cis- regulatory elements whose chromatin accessibility are increased in hand2 mutant cells. These regulatory elements associate with non-cardiac gene expression, and drive reporter gene expression in tissues associated with Hand2-repressed genes. We find that functional Hand2 is sufficient to reduce non-cardiac reporter expression in cardiac lineages. Taken together, our data support a model of Hand2-dependent coordination of transcriptional programs, not only through transcriptional activation of cardiac and epithelial maturation genes, but also through repressive chromatin remodeling at the DNA regulatory elements of non-cardiac genes.
Collapse
|
9
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
10
|
Khazamipour A, Gholampour-Faroji N, Zeraati T, Vakilian F, Haddad-Mashadrizeh A, Ghayour Mobarhan M, Pasdar A. A novel causative functional mutation in GATA6 gene is responsible for familial dilated cardiomyopathy as supported by in silico functional analysis. Sci Rep 2022; 12:13752. [PMID: 35962153 PMCID: PMC9374661 DOI: 10.1038/s41598-022-13993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM), one of the most common types of cardiomyopathies has a heterogeneous nature and can be seen in Mendelian forms. Next Generation Sequencing is a powerful tool for identifying novel variants in monogenic disorders. We used whole-exome sequencing (WES) and Sanger sequencing techniques to identify the causative mutation of DCM in an Iranian pedigree. We found a novel variant in the GATA6 gene, leading to substituting Histidine by Tyrosine at position 329, observed in all affected family members in the pedigree, whereas it was not established in any of the unaffected ones. We hypothesized that the H329Y mutation may be causative for the familial pattern of DCM in this family. The predicted models of GATA6 and H329Y showed the high quality according to PROCHECK and ERRAT. Nonetheless, simulation results revealed that the protein stability decreased after mutation, while the flexibility may have been increased. Hence, the mutation led to the increased compactness of GATA6. Overall, these data indicated that the mutation could affect the protein structure, which may be related to the functional impairment of GATA6 upon H329Y mutation, likewise their involvement in pathologies. Further functional investigations would help elucidating the exact mechanism.
Collapse
Affiliation(s)
- Afrouz Khazamipour
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazanin Gholampour-Faroji
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Tina Zeraati
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farveh Vakilian
- Atherosclerosis Prevention Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.
- Bioinformatics Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Song M, Yuan X, Racioppi C, Leslie M, Stutt N, Aleksandrova A, Christiaen L, Wilson MD, Scott IC. GATA4/5/6 family transcription factors are conserved determinants of cardiac versus pharyngeal mesoderm fate. SCIENCE ADVANCES 2022; 8:eabg0834. [PMID: 35275720 PMCID: PMC8916722 DOI: 10.1126/sciadv.abg0834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was substantially altered. In addition to the expected absence of cardiac mesoderm, we confirmed a concomitant expansion of cranial-pharyngeal mesoderm. Moreover, Gata5/6 loss led to extensive changes in chromatin accessibility near cardiac and pharyngeal genes. Functional analyses in zebrafish and the tunicate Ciona, which has a single GATA4/5/6 homolog, revealed that GATA4/5/6 acts upstream of tbx1 to exert essential and cell-autonomous roles in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, cardiac and pharyngeal mesoderm fate choices are achieved through an evolutionarily conserved GATA4/5/6 regulatory network.
Collapse
Affiliation(s)
- Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nathan Stutt
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anastasiia Aleksandrova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| |
Collapse
|
12
|
Lv F, Ge X, Qian P, Lu X, Liu D, Chen C. Neuron navigator 3 (NAV3) is required for heart development in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:173-183. [PMID: 35039994 DOI: 10.1007/s10695-022-01049-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
As a tightly controlled biological process, cardiogenesis requires the specification and migration of a suite of cell types to form a particular three-dimensional configuration of the heart. Many genetic factors are involved in the formation and maturation of the heart, and any genetic mutations may result in severe cardiac failures. The neuron navigator (NAV) family consists of three vertebrate homologs (NAV1, NAV2, and NAV3) of the neural guidance molecule uncoordinated-53 (UNC-53) in Caenorhabditis elegans. Although they are recognized as neural regulators, their expressions are also detected in many organs, including the heart, kidney, and liver. However, the functions of NAVs, regardless of neural guidance, remain largely unexplored. In our study, we found that nav3 gene was expressed in the cardiac region of zebrafish embryos from 24 to 48 h post-fertilization (hpf) by means of in situ hybridization (ISH) assay. A CRISPR/Cas9-based genome editing method was utilized to delete the nav3 gene in zebrafish and loss of function of Nav3 resulted in a severe deficiency in its cardiac morphology and structure. The similar phenotypic defects of the knockout mutants could recur by nav3 morpholino injection and be rescued by nav3 mRNA injection. Dual-color fluorescence imaging of ventricle and atrium markers further confirmed the disruption of the heart development in nav3-deleted mutants. Although the heart rate was not affected by the deletion of nav3, the heartbeat intensity was decreased in the mutants. All these findings indicate that Nav3 was required for cardiogenesis in developing zebrafish embryos.
Collapse
Affiliation(s)
- Feng Lv
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China
| | - Xiaojuan Ge
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China
| | - Peipei Qian
- Medical School, Nantong University, Nantong, China
| | - Xiaofeng Lu
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China
| | - Dong Liu
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China.
| | - Changsheng Chen
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
13
|
Gauvrit S, Bossaer J, Lee J, Collins MM. Modeling Human Cardiac Arrhythmias: Insights from Zebrafish. J Cardiovasc Dev Dis 2022; 9:jcdd9010013. [PMID: 35050223 PMCID: PMC8779270 DOI: 10.3390/jcdd9010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac arrhythmia, or irregular heart rhythm, is associated with morbidity and mortality and is described as one of the most important future public health challenges. Therefore, developing new models of cardiac arrhythmia is critical for understanding disease mechanisms, determining genetic underpinnings, and developing new therapeutic strategies. In the last few decades, the zebrafish has emerged as an attractive model to reproduce in vivo human cardiac pathologies, including arrhythmias. Here, we highlight the contribution of zebrafish to the field and discuss the available cardiac arrhythmia models. Further, we outline techniques to assess potential heart rhythm defects in larval and adult zebrafish. As genetic tools in zebrafish continue to bloom, this model will be crucial for functional genomics studies and to develop personalized anti-arrhythmic therapies.
Collapse
|
14
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
15
|
Kemmler CL, Riemslagh FW, Moran HR, Mosimann C. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis 2021; 8:17. [PMID: 33578943 PMCID: PMC7916704 DOI: 10.3390/jcdd8020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.
Collapse
Affiliation(s)
| | | | | | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (C.L.K.); (F.W.R.); (H.R.M.)
| |
Collapse
|
16
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
17
|
Sam J, Mercer EJ, Torregroza I, Banks KM, Evans T. Specificity, redundancy and dosage thresholds among gata4/5/6 genes during zebrafish cardiogenesis. Biol Open 2020; 9:9/6/bio053611. [PMID: 32580940 PMCID: PMC7327998 DOI: 10.1242/bio.053611] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Gata4/5/6 sub-family of zinc finger transcription factors regulate many aspects of cardiogenesis. However, critical roles in extra-embryonic endoderm also challenge comprehensive analysis during early mouse cardiogenesis, while zebrafish models have previously relied on knockdown assays. We generated targeted deletions to disrupt each gata4/5/6 gene in zebrafish and analyzed cardiac phenotypes in single, double and triple mutants. The analysis confirmed that loss of gata5 causes cardia bifida and validated functional redundancies for gata5/6 in cardiac precursor specification. Surprisingly, we discovered that gata4 is dispensable for early zebrafish development, while loss of one gata4 allele can suppress the bifid phenotype of the gata5 mutant. The gata4 mutants eventually develop an age-dependent cardiomyopathy. By combining combinations of mutant alleles, we show that cardiac specification depends primarily on an overall dosage of gata4/5/6 alleles rather than a specific gene. We also identify a specific role for gata6 in controlling ventricle morphogenesis through regulation of both the first and second heart field, while loss of both gata4/6 eliminates the ventricle. Thus, different developmental programs are dependent on total dosage, certain pairs, or specific gata4/5/6 genes during embryonic cardiogenesis. This article has an associated First Person interview with the first author of the paper. Summary: Targeted mutations were generated for each of the three gata4/5/6 genes in zebrafish to define functions for individual or combinations of these related transcription factors during cardiogenesis.
Collapse
Affiliation(s)
- Jessica Sam
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emily J Mercer
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kelly M Banks
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
18
|
Modification of cardiac transcription factor Gata6 by SUMO. Biochimie 2020; 170:212-218. [DOI: 10.1016/j.biochi.2020.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/31/2020] [Indexed: 01/25/2023]
|
19
|
Shrestha S, Sewell JA, Santoso CS, Forchielli E, Carrasco Pro S, Martinez M, Fuxman Bass JI. Discovering human transcription factor physical interactions with genetic variants, novel DNA motifs, and repetitive elements using enhanced yeast one-hybrid assays. Genome Res 2020; 29:1533-1544. [PMID: 31481462 PMCID: PMC6724672 DOI: 10.1101/gr.248823.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
Identifying transcription factor (TF) binding to noncoding variants, uncharacterized DNA motifs, and repetitive genomic elements has been technically and computationally challenging. Current experimental methods, such as chromatin immunoprecipitation, generally test one TF at a time, and computational motif algorithms often lead to false-positive and -negative predictions. To address these limitations, we developed an experimental approach based on enhanced yeast one-hybrid assays. The first variation of this approach interrogates the binding of >1000 human TFs to repetitive DNA elements, while the second evaluates TF binding to single nucleotide variants, short insertions and deletions (indels), and novel DNA motifs. Using this approach, we detected the binding of 75 TFs, including several nuclear hormone receptors and ETS factors, to the highly repetitive Alu elements. Further, we identified cancer-associated changes in TF binding, including gain of interactions involving ETS TFs and loss of interactions involving KLF TFs to different mutations in the TERT promoter, and gain of a MYB interaction with an 18-bp indel in the TAL1 superenhancer. Additionally, we identified TFs that bind to three uncharacterized DNA motifs identified in DNase footprinting assays. We anticipate that these enhanced yeast one-hybrid approaches will expand our capabilities to study genetic variation and undercharacterized genomic regions.
Collapse
Affiliation(s)
- Shaleen Shrestha
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - Jared Allan Sewell
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | - Elena Forchielli
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | - Melissa Martinez
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - Juan Ignacio Fuxman Bass
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA.,Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
20
|
Racioppi C, Wiechecki KA, Christiaen L. Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices. eLife 2019; 8:49921. [PMID: 31746740 PMCID: PMC6952182 DOI: 10.7554/elife.49921] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
During embryogenesis, chromatin accessibility profiles control lineage-specific gene expression by modulating transcription, thus impacting multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model Ciona to profile chromatin accessibility through stereotyped transitions from naive Mesp+ mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors. An FGF-Foxf pathway acts in multipotent progenitors to establish cardiopharyngeal-specific patterns of accessibility, which govern later heart vs. pharyngeal muscle-specific expression profiles, demonstrating extensive spatiotemporal decoupling between early cardiopharyngeal enhancer accessibility and late cell-type-specific activity. We found that multiple cis-regulatory elements, with distinct chromatin accessibility profiles and motif compositions, are required to activate Ebf and Tbx1/10, two key determinants of cardiopharyngeal fate choices. We propose that these 'combined enhancers' foster spatially and temporally accurate fate choices, by increasing the repertoire of regulatory inputs that control gene expression, through either accessibility and/or activity.
Collapse
Affiliation(s)
- Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Keira A Wiechecki
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
21
|
Wang E, Nie Y, Fan X, Zheng Z, Hu S. Intronic Polymorphisms in Gene of Second Heart Field as Risk Factors for Human Congenital Heart Disease in a Chinese Population. DNA Cell Biol 2019; 38:521-531. [PMID: 31013439 DOI: 10.1089/dna.2018.4254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptional factors and signaling factors in the second heart field (SHF) contribute to cardiac development. However, the associations of intronic gene variants in the SHF with congenital heart disease (CHD) remain ununderstood. Ten single nucleotide polymorphisms (SNPs) from our previous sequencing data were selected and then genotyped in 383 CHD patients and 384 healthy controls in a Chinese population. Genotype analyses revealed that minor alleles in TBX1: rs12165908 C > G [odds ratio (OR) = 2.64; 95% confidence interval (CI) = 1.87-3.73, p = 3.03 × 10-8] and GATA6: rs143085291 C > T (OR = 2.49; 95% CI = 1.18-5.29, p = 0.01) increased CHD risk significantly. Meanwhile, FGF10: rs78454549 T > C and GATA4: rs13275657 A>G polymorphisms were significantly associated with increased risk of simple CHDs. The minor allele C in GATA4: rs17153694 T > C increased the risk of tetralogy of Fallot, whereas minor alleles in TBX1: rs41298006 G>A, FGF10: rs75629618 C>T, FGF10: rs10461755 G>A, FGF10: rs75632187 A>G, and FGF10: rs12518964 G > A were associated with increased risk of single ventricle. The minor allele T in rs143085291 in GATA6 enhancer decreased the transcription level in luciferase assay. Our findings suggest that intronic SNPs in transcriptional factors and signaling factors in the SHF are significantly associated with increased risk of different CHD types.
Collapse
Affiliation(s)
- Enshi Wang
- 1 Center for Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Nie
- 2 State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xuesong Fan
- 3 Department of Clinical Laboratory Center, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases Beijing, Beijing, China
| | - Zhe Zheng
- 1 Center for Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- 1 Center for Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Liu Y, Zhu H, Liu Y, Qu J, Han M, Jin C, Zhang Q, Liu J. Molecular characterization and expression profiles provide new insights into GATA5 functions in tongue sole (Cynoglossus semilaevis). Gene 2019; 708:21-29. [PMID: 31082502 DOI: 10.1016/j.gene.2019.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
GATA5 is a member of the GATA transcription factor family, which serves essential roles in varieties of cellular functions and biological processes. In this study, we have accomplished the molecular cloning, bioinformatic analysis and preliminary function study of C. semilaevis GATA5. The full-length cDNA nucleotide sequence is 1955 bp, with a coding sequence of 1167 bp, which encodes a polypeptide of 388 amino acids. Homology, phylogenetic, gene structure and synteny analysis showed that C. semilaevis GATA5 was highly conserved among vertebrates. Tissue distribution pattern exhibited that C. semilaevis GATA5 was significantly expressed in heart, intestine, liver, kidney and gonad, with a sexual dimorphic feature observed in testis and ovary. Embryonic development expression profiles showed that C. semilaevis GATA5 transcripts increased at the blastula stage, and peaked at the heat-beating period. Strong signals were detected at spermatids of male testis and stage III oocytes of female ovary by ISH. The expression of C. semilaevis GATA5 was regulated by 17α-MT and E2 after hormone stimulation to the ovary. Together, all the results pointed out that GATA5 might play a vital role during gonadal maturation and the reproductive cycle of C. semilaevis. This study lays the foundation for further researches on the sex control breeding in tongue sole.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China.
| |
Collapse
|
23
|
Pawlak M, Kedzierska KZ, Migdal M, Karim AN, Ramilowski JA, Bugajski L, Hashimoto K, Marconi A, Piwocka K, Carninci P, Winata CL. Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Res 2019; 29:506-519. [PMID: 30760547 PMCID: PMC6396412 DOI: 10.1101/gr.244491.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022]
Abstract
Organogenesis involves dynamic regulation of gene transcription and complex multipathway interactions. Despite our knowledge of key factors regulating various steps of heart morphogenesis, considerable challenges in understanding its mechanism still exist because little is known about their downstream targets and interactive regulatory network. To better understand transcriptional regulatory mechanism driving heart development and the consequences of its disruption in vivo, we performed time-series analyses of the transcriptome and genome-wide chromatin accessibility in isolated cardiomyocytes (CMs) from wild-type zebrafish embryos at developmental stages corresponding to heart tube morphogenesis, looping, and maturation. We identified genetic regulatory modules driving crucial events of heart development that contained key cardiac TFs and are associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. Loss of function of cardiac TFs Gata5, Tbx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in chromatin accessibility profile, indicating their role in heart development. Among regions with differential chromatin accessibility in mutants were highly conserved noncoding elements that represent putative enhancers driving heart development. The most prominent gene expression changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred between heart tube morphogenesis and looping, and were associated with metabolic shift and hematopoietic/cardiac fate switch during CM maturation. Our results revealed the dynamic regulatory landscape throughout heart development and identified interactive molecular networks driving key events of heart morphogenesis.
Collapse
Affiliation(s)
- Michal Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Katarzyna Z Kedzierska
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Maciej Migdal
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Abu Nahia Karim
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | | | - Lukasz Bugajski
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, 02-093 Warsaw, Poland
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Aleksandra Marconi
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, 02-093 Warsaw, Poland
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
24
|
Yuan X, Song M, Devine P, Bruneau BG, Scott IC, Wilson MD. Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development. Nat Commun 2018; 9:4977. [PMID: 30478328 PMCID: PMC6255839 DOI: 10.1038/s41467-018-07451-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
During the phylotypic period, embryos from different genera show similar gene expression patterns, implying common regulatory mechanisms. Here we set out to identify enhancers involved in the initial events of cardiogenesis, which occurs during the phylotypic period. We isolate early cardiac progenitor cells from zebrafish embryos and characterize 3838 open chromatin regions specific to this cell population. Of these regions, 162 overlap with conserved non-coding elements (CNEs) that also map to open chromatin regions in human. Most of the zebrafish conserved open chromatin elements tested drive gene expression in the developing heart. Despite modest sequence identity, human orthologous open chromatin regions recapitulate the spatial temporal expression patterns of the zebrafish sequence, potentially providing a basis for phylotypic gene expression patterns. Genome-wide, we discover 5598 zebrafish-human conserved open chromatin regions, suggesting that a diverse repertoire of ancient enhancers is established prior to organogenesis and the phylotypic period. During early embryogenesis, critical cardiac specification events occur. Here the authors isolate cardiac progenitor cells from early zebrafish embryos and characterize accessible chromatin regions specific to this cell population, finding that many of these regions overlap with conserved non-coding elements that are ortholgous to accessible chromatin regions in human.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mengyi Song
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Patrick Devine
- Gladstone Institutes, San Francisco, CA, 94158, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143-0511, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, 94158, USA.,Department of Pediatrics and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ian C Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Michael D Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
25
|
Keßler M, Kieltsch A, Kayvanpour E, Katus H, Schoser B, Schessl J, Just S, Rottbauer W. A zebrafish model for FHL1-opathy reveals loss-of-function effects of human FHL1 mutations. Neuromuscul Disord 2018; 28:521-531. [DOI: 10.1016/j.nmd.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/27/2017] [Accepted: 03/01/2018] [Indexed: 11/16/2022]
|
26
|
Xu YJ, Di RM, Qiao Q, Li XM, Huang RT, Xue S, Liu XY, Wang J, Yang YQ. GATA6 loss-of-function mutation contributes to congenital bicuspid aortic valve. Gene 2018; 663:115-120. [PMID: 29653232 DOI: 10.1016/j.gene.2018.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
Congenital bicuspid aortic valve (BAV), the most common form of birth defect in humans, is associated with substantial morbidity and mortality. Increasing evidence demonstrates that genetic risk factors play a key role in the pathogenesis of BAV. However, BAV is a genetically heterogeneous disease and the genetic determinants underpinning BAV in an overwhelming majority of patients remain unknown. In the present study, the coding exons and flanking introns of the GATA6 gene, which encodes a zinc-finger transcription factor essential for the normal development of the aortic valves, were sequenced in 152 unrelated patients with congenital BAV. The available relatives of a proband harboring an identified GATA6 mutation and 200 unrelated, ethnically matched healthy individuals used as controls were also genotyped for GATA6. The functional characteristics of the mutation were analyzed by using a dual-luciferase reporter assay system. As a result, a novel heterozygous GATA6 mutation, p.E386X, was identified in a family with BAV transmitted in an autosomal dominant mode. The nonsense mutation was absent in 400 control chromosomes. Biological assays revealed that the mutant GATA6 protein had no transcriptional activity compared with its wild-type counterpart. Furthermore, the mutation disrupted the synergistic transcriptional activation between GATA6 and GATA4, another transcription factor causally linked to BAV. In conclusion, this study firstly associates GATA6 loss-of-function mutation with enhanced susceptibility to familial BAV, which provides novel insight into the molecular mechanism of BAV, implying potential implications for genetic counseling and personalized management of BAV patients.
Collapse
Affiliation(s)
- Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China
| | - Ruo-Min Di
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China
| | - Qi Qiao
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China
| | - Xiu-Mei Li
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, PR China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, PR China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University, 389 Xincun Road, Shanghai 200065, PR China
| | - Juan Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, PR China
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China; Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China; Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, PR China.
| |
Collapse
|
27
|
Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S. Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis. Dev Biol 2017; 434:108-120. [PMID: 29229250 PMCID: PMC5814753 DOI: 10.1016/j.ydbio.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
The transcription factors GATA4, GATA5 and GATA6 are important regulators of heart muscle differentiation (cardiomyogenesis), which function in a partially redundant manner. We identified genes specifically regulated by individual cardiogenic GATA factors in a genome-wide transcriptomics analysis. The genes regulated by gata4 are particularly interesting because GATA4 is able to induce differentiation of beating cardiomyocytes in Xenopus and in mammalian systems. Among the specifically gata4-regulated transcripts we identified two SoxF family members, sox7 and sox18. Experimental reinstatement of gata4 restores sox7 and sox18 expression, and loss of cardiomyocyte differentiation due to gata4 knockdown is partially restored by reinstating sox7 or sox18 expression, while (as previously reported) knockdown of sox7 or sox18 interferes with heart muscle formation. In order to test for conservation in mammalian cardiomyogenesis, we confirmed in mouse embryonic stem cells (ESCs) undergoing cardiomyogenesis that knockdown of Gata4 leads to reduced Sox7 (and Sox18) expression and that Gata4 is also uniquely capable of promptly inducing Sox7 expression. Taken together, we identify an important and conserved gene regulatory axis from gata4 to the SoxF paralogs sox7 and sox18 and further to heart muscle cell differentiation. Gata 4, 5 and 6 have redundant and non-redundant functions in heart development. RNA-seq analysis of Gata4, 5 and 6 knockdown experiments was carried out. Genes specifically regulated by Gata4, 5 and 6 were identified. The SoxF genes sox7 and sox18 were identified as specifically regulated by Gata4. Epistasis demonstrates a regulatory axis from Gata4 to Sox7/18 to cardiomyogenesis.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Adam T Lynch
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Eduardo de Paiva Alves
- Centre for Genome-Enabled Biology and Medicine, King's College Campus, University of Aberdeen, Scotland, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK.
| |
Collapse
|
28
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
29
|
Wen B, Yuan H, Liu X, Wang H, Chen S, Chen Z, de The H, Zhou J, Zhu J. GATA5 SUMOylation is indispensable for zebrafish cardiac development. Biochim Biophys Acta Gen Subj 2017; 1861:1691-1701. [PMID: 28285006 DOI: 10.1016/j.bbagen.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/07/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND SUMOylation is a critical regulatory protein modification in eukaryotic cells and plays a pivotal role in cardiac development and disease. Several cardiac transcription factors are modified by SUMO, but little is known about the impact of SUMOylation on their function during cardiac development. METHODS We used a zebrafish model to address the impact of SUMOylation on GATA5, an essential transcription factor in zebrafish cardiac development. GATA5 SUMOylation was probed by western blot, the subcellular localization and transcriptional activity of GATA5 mutants were examined by immunostaining and luciferase reporter assay. The in vivo function of GATA5 SUMOylation was evaluated by gata5 mutants mRNA microinjection and in situ hybridization in gata5 morphants and ubc9 mutants. RESULTS Firstly, we identified GATA5 as a SUMO substrate, and lysine 324 (K324) and lysine 360 (K360) as two major modification sites. Conversion of lysine to arginine at these two sites did not affect subcellular localization, but did affect the transcriptional activity of GATA5. Secondly, in vivo experiments demonstrated that the wild type (WT) and K324R mutant of gata5 could rescue impaired cardiac precursor differentiation, while the K360R mutant of gata5 drastically lost this potency in gata5 morphant. Furthermore, in SUMOylation-deficient ubc9 mutants, the abnormal expression pattern displayed by the early markers of cardiac development (nkx2.5 and mef2cb) could be restored using a sumo-gata5 fusion, but not with a WT gata5. CONCLUSION GATA5 SUMOylation is indispensable for early zebrafish cardiac development. GENERAL SIGNIFICANCE Our studies highlight the potential importance of transcription factor SUMOylation in cardiac development.
Collapse
Affiliation(s)
- Bin Wen
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yuan
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Liu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihong Wang
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saijuan Chen
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hugues de The
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
| | - Jun Zhou
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France.
| |
Collapse
|
30
|
Grant MG, Patterson VL, Grimes DT, Burdine RD. Modeling Syndromic Congenital Heart Defects in Zebrafish. Curr Top Dev Biol 2017; 124:1-40. [DOI: 10.1016/bs.ctdb.2016.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Mespaa can potently induce cardiac fates in zebrafish. Dev Biol 2016; 418:17-27. [PMID: 27554166 DOI: 10.1016/j.ydbio.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/12/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023]
Abstract
The Mesp family of transcription factors have been implicated in the early formation and migration of the cardiac lineage, although the precise molecular mechanisms underlying this process remain unknown. In this study we examine the function of Mesp family members in zebrafish cardiac development and find that Mespaa is remarkably efficient at promoting cardiac fates in normally non-cardiogenic cells. However, Mespaa is dispensable for normal cardiac formation. Despite no overt defects in cardiovascular specification, we find a consistent defect in cardiac laterality in mespaa null embryos. This is further exacerbated by the depletion of other mesp paralogues, highlighting a conserved role for the mesp family in left-right asymmetry, distinct from a function in cardiac specification. Despite an early requirement for mespaa to promote cardiogenesis, cells over-expressing mespaa are found to both exhibit unique cellular behaviors and activate the transcription of gata5 only after the completion of gastrulation. We propose that while mespaa remains capable of driving cardiac progenitor formation in zebrafish, it may not play an essential role in the cardiac regulatory network. Furthermore, the late activation of migration and cardiac gene transcription in mespaa over-expressing cells challenges previous studies on the timing of these events and provides intriguing questions for future study.
Collapse
|
32
|
Bloomekatz J, Galvez-Santisteban M, Chi NC. Myocardial plasticity: cardiac development, regeneration and disease. Curr Opin Genet Dev 2016; 40:120-130. [PMID: 27498024 DOI: 10.1016/j.gde.2016.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/29/2016] [Indexed: 01/14/2023]
Abstract
The adult mammalian heart is unable to recover from myocardial cell loss due to cardiac ischemia and infarction because terminally differentiated cardiomyocytes proliferate at a low rate. However, cardiomyocytes in other vertebrate animal models such as zebrafish, axolotls, newts and mammalian mouse neonates are capable of de-differentiating in order to promote cardiomyocyte proliferation and subsequent cardiac regeneration after injury. Although de-differentiation may occur in adult mammalian cardiomyocytes, it is typically associated with diseased hearts and pathologic remodeling rather than repair and regeneration. Here, we review recent studies of cardiac development, regeneration and disease that highlight how changes in myocardial identity (plasticity) is regulated and impacts adaptive and maladaptive cardiac responses.
Collapse
Affiliation(s)
- Joshua Bloomekatz
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manuel Galvez-Santisteban
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Abstract
Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis.
Collapse
|
34
|
Miyagi H, Nag K, Sultana N, Munakata K, Hirose S, Nakamura N. Characterization of the zebrafish cx36.7 gene promoter: Its regulation of cardiac-specific expression and skeletal muscle-specific repression. Gene 2016; 577:265-74. [PMID: 26692140 DOI: 10.1016/j.gene.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/28/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
Zebrafish connexin 36.7 (cx36.7/ecx) has been identified as a key molecule in the early stages of heart development in this species. A defect in cx36.7 causes severe heart malformation due to the downregulation of nkx2.5 expression, a result which resembles congenital heart disease in humans. It has been shown that cx36.7 is expressed specifically in early developing heart cardiomyocytes. However, the regulatory mechanism for the cardiac-restricted expression of cx36.7 remains to be elucidated. In this study we isolated the 5'-flanking promoter region of the cx36.7 gene and characterized its promoter activity in zebrafish embryos. Deletion analysis showed that a 316-bp upstream region is essential for cardiac-restricted expression. This region contains four GATA elements, the proximal two of which are responsible for promoter activation in the embryonic heart and serve as binding sites for gata4. When gata4, gata5 and gata6 were simultaneously knocked down, the promoter activity was significantly decreased. Moreover, the deletion of the region between -316 and -133bp led to EGFP expression in the embryonic trunk muscle. The distal two GATA and A/T-rich elements in this region act as repressors of promoter activity in skeletal muscle. These results suggest that cx36.7 expression is directed by cardiac promoter activation via the two proximal GATA elements as well as by skeletal muscle-specific promoter repression via the two distal GATA elements.
Collapse
Affiliation(s)
- Hisako Miyagi
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kakon Nag
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Keijiro Munakata
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
35
|
Magli A, Schnettler E, Swanson SA, Borges L, Hoffman K, Stewart R, Thomson JA, Keirstead SA, Perlingeiro RCR. Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating embryonic stem cells. Stem Cells 2015; 32:2072-83. [PMID: 24677751 DOI: 10.1002/stem.1713] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/13/2014] [Accepted: 03/03/2014] [Indexed: 11/08/2022]
Abstract
Embryonic stem cells (ESCs) represent an ideal model to study how lineage decisions are established during embryonic development. Using a doxycycline-inducible mouse ESC line, we have previously shown that expression of the transcriptional activator Pax3 in early mesodermal cells leads to the robust generation of paraxial mesoderm progenitors that ultimately differentiate into skeletal muscle precursors. Here, we show that the ability of this transcription factor to induce the skeletal myogenic cell fate occurs at the expenses of the cardiac lineage. Our results show that the PDGFRα+FLK1--subfraction represents the main population affected by Pax3, through downregulation of several transcripts encoding for proteins involved in cardiac development. We demonstrate that although Nkx2-5, Tbx5, and Gata4 negatively affect Pax3 skeletal myogenic activity, the cardiac potential of embryoid body-derived cultures is restored solely by forced expression of Tbx5. Taking advantage of this model, we used an unbiased genome-wide approach to identify genes whose expression is rescued by Tbx5, and which could represent important regulators of cardiac development. These findings elucidate mechanisms regulating the commitment of mesodermal cells in the early embryo and identify the Tbx5 cardiac transcriptome.
Collapse
Affiliation(s)
- Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang XL, Dai N, Tang K, Chen YQ, Chen W, Wang J, Zhao CM, Yuan F, Qiu XB, Qu XK, Yang YQ, Xu YW. GATA5 loss-of-function mutation in familial dilated cardiomyopathy. Int J Mol Med 2015; 35:763-70. [PMID: 25543888 DOI: 10.3892/ijmm.2014.2050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/22/2014] [Indexed: 11/05/2022] Open
Abstract
Dilated cardiomyopathy (DCM), the most common form of primary myocardial disease, is an important cause of sudden cardiac death and heart failure and is the leading indication for heart transplantation in children and adults worldwide. Recent studies have revealed a strong genetic basis for idiopathic DCM, with many distinct genes causally implicated. Nevertheless, DCM is a genetically heterogeneous disorder and the genetic determinants underlying DCM in a substantial proportion of patients remain unclear. In this study, the whole coding exons and flanking introns of the GATA binding protein 5 (GATA5) gene, which codes for a zinc-finger transcription factor essential for cardiovascular development and structural remodeling, were sequenced in 130 unrelated patients with idiopathic DCM. The available relatives of the index patient carrying an identified mutation and 200 unrelated ethnically matched healthy individuals used as the controls were genotyped for GATA5. The functional characteristics of the mutant GATA5 were analyzed in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system. As a result, a novel heterozygous GATA5 mutation, p.G240D, was identified in a family with DCM inherited in an autosomal dominant pattern, which co-segregated with DCM in the family with complete penetrance. The missense mutation was absent in 400 reference chromosomes and the altered amino acid was completely conserved evolutionarily across species. Functional analyses revealed that the GATA5 mutant was associated with significantly diminished transcriptional activity. This study firstly links GATA5 mutation to DCM, which provides novel insight into the molecular mechanisms of DCM, suggesting a potential molecular target for the prenatal prophylaxis and allele-specific treatment of DCM.
Collapse
Affiliation(s)
- Xian-Ling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Neng Dai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yan-Qing Chen
- Department of Emergency Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wei Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ya-Wei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
37
|
Schupp MO, Waas M, Chun CZ, Ramchandran R. Transcriptional inhibition of etv2 expression is essential for embryonic cardiac development. Dev Biol 2014; 393:71-83. [PMID: 24984259 PMCID: PMC4137469 DOI: 10.1016/j.ydbio.2014.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 04/08/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
E-twenty six variant 2 (Etv2) transcription factor participates in cardiac, vascular-endothelial and blood cell lineage specification decisions during embryonic development. Previous studies have identified genomic elements in the etv2 locus responsible for vascular endothelial cell specification. Using transgenic analysis in zebrafish, we report here an etv2 proximal promoter fragment that prevents transgene misexpression in myocardial progenitor cells. This inhibition of etv2 expression in the cardiac progenitor population is partly mediated by Scl and Nkx2.5, likely through direct binding to the etv2 promoter, and cis-regulatory elements located in the first and second introns. The results identify an etv2 cis-regulatory mechanism controlling cardiovascular fate choice implying that etv2 participates in a transcriptional network mediating developmental plasticity of endothelial progenitor cells during embryonic development.
Collapse
Affiliation(s)
- Marcus-Oliver Schupp
- Medical College of Wisconsin, Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, CRI C3420, 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, WI 53226, USA
| | - Matthew Waas
- Division of Nephrology, Hypertension and Renal Transplantation, Room CG-98, 1600 Archer Road, University of Florida, Gainesville, FL 32610, USA
| | - Chang-Zoon Chun
- Medical College of Wisconsin, Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, CRI C3420, 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, WI 53226, USA; Division of Nephrology, Hypertension and Renal Transplantation, Room CG-98, 1600 Archer Road, University of Florida, Gainesville, FL 32610, USA
| | - Ramani Ramchandran
- Medical College of Wisconsin, Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, CRI C3420, 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, WI 53226, USA.
| |
Collapse
|
38
|
Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li RG, Xu YJ, Zhang M, Fang WY, Qu XK, Yang YQ, Qiu XB. GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. Int J Mol Med 2014; 34:1315-22. [PMID: 25119427 DOI: 10.3892/ijmm.2014.1896] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/08/2014] [Indexed: 11/05/2022] Open
Abstract
Dilated cardiomyopathy (DCM), the most prevalent form of primary heart muscle disease, is the third most common cause of heart failure and the most frequent reason for cardiac transplantation. Mounting evidence has demonstrated that genetic risk factors are crucial in the pathogenesis of DCM. However, DCM is genetically heterogeneous, and the genetic basis of DCM in a large majority of cases remains unclear. In the current study, the coding exons and flanking introns of the GATA6 gene, which encodes a zinc‑finger transcription factor essential for cardiogenesis, was sequenced in 140 unrelated patients with DCM, and two novel heterozygous mutations, p.C447Y and p.H475R, were identified in two index patients with DCM, respectively. Analysis of the pedigrees showed that in each family the mutation co-segregated with DCM transmitted in an autosomal-dominant pattern, with complete penetrance. The missense mutations were absent in 400 control chromosomes and predicted to be disease-causing by MutationTaster or probably damaging by PolyPhen-2. The alignment of multiple GATA6 proteins across species revealed that the altered amino acids were completely conserved evolutionarily. The functional assays showed that the mutated GATA6 proteins were associated with significantly reduced transcriptional activation in comparison with their wild-type counterpart. To the best of our knowledge, this is the first study on the association of GATA6 loss-of-function mutations with enhanced susceptibility to familial DCM, which provides novel insight into the molecular mechanism of DCM and suggests potential implications for the antenatal prophylaxis and allele-specific treatment of DCM.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Yi Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
39
|
Wilkinson RN, Jopling C, van Eeden FJM. Zebrafish as a model of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:65-91. [PMID: 24751427 DOI: 10.1016/b978-0-12-386930-2.00004-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish has been rapidly adopted as a model for cardiac development and disease. The transparency of the embryo, its limited requirement for active oxygen delivery, and ease of use in genetic manipulations and chemical exposure have made it a powerful alternative to rodents. Novel technologies like TALEN/CRISPR-mediated genome engineering and advanced imaging methods will only accelerate its use. Here, we give an overview of heart development and function in the fish and highlight a number of areas where it is most actively contributing to the understanding of cardiac development and disease. We also review the current state of research on a feature that we only could wish to be conserved between fish and human; cardiac regeneration.
Collapse
Affiliation(s)
- Robert N Wilkinson
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Chris Jopling
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Labex Ion Channel Science and Therapeutics, Montpellier, France; INSERM, U661, Montpellier, France; Universités de Montpellier 1&2, UMR-5203, Montpellier, France
| | - Fredericus J M van Eeden
- MRC Centre for Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
Novikov N, Evans T. Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling. Development 2013; 140:3787-98. [PMID: 23903195 DOI: 10.1242/dev.093567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biphasic control of WNT signaling is essential during cardiogenesis, but how the pathway switches from promoting cardiac mesoderm to restricting cardiomyocyte progenitor fate is unknown. We identified genes expressed in lateral mesoderm that are dysregulated in zebrafish when both gata5 and gata6 are depleted, causing a block to cardiomyocyte specification. This screen identified tmem88a, which is expressed in the early cardiac progenitor field and was previously implicated in WNT modulation by overexpression studies. Depletion of tmem88a results in a profound cardiomyopathy, secondary to impaired cardiomyocyte specification. In tmem88a morphants, activation of the WNT pathway exacerbates the cardiomyocyte deficiency, whereas WNT inhibition rescues progenitor cells and cardiogenesis. We conclude that specification of cardiac fate downstream of gata5/6 involves activation of the tmem88a gene to constrain WNT signaling and expand the number of cardiac progenitors. Tmem88a is a novel component of the regulatory mechanism controlling the second phase of biphasic WNT activity essential for embryonic cardiogenesis.
Collapse
Affiliation(s)
- Natasha Novikov
- Department of Surgery, Weill Cornell Medical College, Cornell University, 1300 York Ave., LC-708, New York, NY, USA
| | | |
Collapse
|
41
|
Turbendian HK, Gordillo M, Tsai SY, Lu J, Kang G, Liu TC, Tang A, Liu S, Fishman GI, Evans T. GATA factors efficiently direct cardiac fate from embryonic stem cells. Development 2013; 140:1639-44. [PMID: 23487308 DOI: 10.1242/dev.093260] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The GATA4 transcription factor is implicated in promoting cardiogenesis in combination with other factors, including TBX5, MEF2C and BAF60C. However, when expressed in embryonic stem cells (ESCs), GATA4 was shown to promote endoderm, not cardiac mesoderm. The capacity of related GATA factors to promote cardiogenesis is untested. We found that expression of the highly related gene, Gata5, very efficiently promotes cardiomyocyte fate from murine ESCs. Gata5 directs development of beating sheets of cells that express cardiac troponin T and show a full range of action potential morphologies that are responsive to pharmacological stimulation. We discovered that by removing serum from the culture conditions, GATA4 and GATA6 are each also able to efficiently promote cardiogenesis in ESC derivatives, with some distinctions. Thus, GATA factors can function in ESC derivatives upstream of other cardiac transcription factors to direct the efficient generation of cardiomyocytes.
Collapse
Affiliation(s)
- Harma K Turbendian
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Torregroza I, Holtzinger A, Mendelson K, Liu TC, Hla T, Evans T. Regulation of a vascular plexus by gata4 is mediated in zebrafish through the chemokine sdf1a. PLoS One 2012; 7:e46844. [PMID: 23056483 PMCID: PMC3463525 DOI: 10.1371/journal.pone.0046844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/10/2012] [Indexed: 01/08/2023] Open
Abstract
Using the zebrafish model we describe a previously unrecognized requirement for the transcription factor gata4 controlling embryonic angiogenesis. The development of a vascular plexus in the embryonic tail, the caudal hematopoietic tissue (CHT), fails in embryos depleted of gata4. Rather than forming a normal vascular plexus, the CHT of gata4 morphants remains fused, and cells in the CHT express high levels of osteogenic markers ssp1 and runx1. Definitive progenitors emerge from the hemogenic aortic endothelium, but fail to colonize the poorly vascularized CHT. We also found abnormal patterns and levels for the chemokine sdf1a in gata4 morphants, which was found to be functionally relevant, since the embryos also show defects in development of the lateral line, a mechano-sensory organ system highly dependent on a gradient of sdf1a levels. Reduction of sdf1a levels was sufficient to rescue lateral line development, circulation, and CHT morphology. The result was surprising since neither gata4 nor sdf1a is obviously expressed in the CHT. Therefore, we generated transgenic fish that conditionally express a dominant-negative gata4 isoform, and determined that gata4 function is required during gastrulation, when it is co-expressed with sdf1a in lateral mesoderm. Our study shows that the gata4 gene regulates sdf1a levels during early embryogenesis, which impacts embryonic patterning and subsequently the development of the caudal vascular plexus.
Collapse
Affiliation(s)
- Ingrid Torregroza
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Audrey Holtzinger
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Karen Mendelson
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Timothy Hla
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 2012; 46:397-418. [PMID: 22974299 DOI: 10.1146/annurev-genet-110711-155646] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, the zebrafish has emerged as a powerful model organism for studying cardiac development. Its ability to survive without an active circulation and amenability to forward genetics has led to the identification of numerous mutants whose study has helped elucidate new mechanisms in cardiac development. Furthermore, its transparent, externally developing embryos have allowed detailed cellular analyses of heart development. In this review, we discuss the molecular and cellular processes involved in zebrafish heart development from progenitor specification to development of the valve and the conduction system. We focus on imaging studies that have uncovered the cellular bases of heart development and on zebrafish mutants with cardiac abnormalities whose study has revealed novel molecular pathways in cardiac cell specification and tissue morphogenesis.
Collapse
Affiliation(s)
- David Staudt
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
44
|
Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Dev Biol 2012; 369:199-210. [PMID: 22750409 DOI: 10.1016/j.ydbio.2012.06.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 01/17/2023]
Abstract
Mef2 transcription factors have been strongly linked with early heart development. D-mef2 is required for heart formation in Drosophila, but whether Mef2 is essential for vertebrate cardiomyocyte (CM) differentiation is unclear. In mice, although Mef2c is expressed in all CMs, targeted deletion of Mef2c causes lethal loss of second heart field (SHF) derivatives and failure of cardiac looping, but first heart field CMs can differentiate. Here we examine Mef2 function in early heart development in zebrafish. Two Mef2c genes exist in zebrafish, mef2ca and mef2cb. Both are expressed similarly in the bilateral heart fields but mef2cb is strongly expressed in the heart poles at the primitive heart tube stage. By using fish mutants for mef2ca and mef2cb and antisense morpholinos to knock down either or both Mef2cs, we show that Mef2ca and Mef2cb have essential but redundant roles in myocardial differentiation. Loss of both Mef2ca and Mef2cb function does not interfere with early cardiogenic markers such as nkx2.5, gata4 and hand2 but results in a dramatic loss of expression of sarcomeric genes and myocardial markers such as bmp4, nppa, smyd1b and late nkx2.5 mRNA. Rare residual CMs observed in mef2ca;mef2cb double mutants are ablated by a morpholino capable of knocking down other Mef2s. Mef2cb over-expression activates bmp4 within the cardiogenic region, but no ectopic CMs are formed. Surprisingly, anterior mesoderm and other tissues become skeletal muscle. Mef2ca single mutants have delayed heart development, but form an apparently normal heart. Mef2cb single mutants have a functional heart and are viable adults. Our results show that the key role of Mef2c in myocardial differentiation is conserved throughout the vertebrate heart.
Collapse
|
45
|
Tu S, Chi NC. Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 2012; 84:4-16. [PMID: 22704690 DOI: 10.1016/j.diff.2012.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022]
Abstract
The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs-structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future.
Collapse
Affiliation(s)
- Shu Tu
- Department of Medicine, Division of Cardiology, University of California, San Diego, CA 92093-0613J, USA
| | | |
Collapse
|
46
|
Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease. J Mol Cell Cardiol 2012; 53:277-81. [PMID: 22641149 DOI: 10.1016/j.yjmcc.2012.05.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 11/21/2022]
Abstract
Bicuspid aortic valve (BAV) is the commonest congenital heart disease and a highly heritable trait; however, only the NOTCH1 gene has been linked to limited cases of BAV in humans. Recently, the transcription factor GATA5 has been shown to have an essential role in aortic valve development, and targeted deletion of Gata5 in mice is associated with partially penetrant BAV formation. Here, we investigated the relationship between GATA5 gene variants and BAV with its associated aortopathy. One hundred unrelated individuals with confirmed BAV were prospectively recruited. Following collection of clinical information and DNA extraction, the coding regions and splice signal sequences of the GATA5 gene were screened for sequence variations. The clinical characteristics of the cohort included a male predominance (77%), mean age of diagnosis 29 ± 22 years, associated aortopathy in 59% and positive family history for BAV in 13%. Genetic analysis identified the presence of 4 rare non-synonymous variations within the GATA5 transcriptional activation domains, namely Gln3Arg, Ser19Trp, Tyr142His and Gly166Ser, occurring in one patient each. Gln3Arg and Tyr142His substitutions affect highly conserved and functionally relevant residues, and are likely to impact on the transcriptional activation of GATA5 target regions. A novel Ser19Trp variation was identified at a highly conserved amino acid residue in one patient, while the Gly166Ser variant was found in a familial case of BAV and associated aortopathy. Rare non-synonymous variations in the functionally important GATA5 transcriptional activation domains may be important in the pathogenesis of BAV disease in humans.
Collapse
|
47
|
Xu C, Fan ZP, Müller P, Fogley R, DiBiase A, Trompouki E, Unternaehrer J, Xiong F, Torregroza I, Evans T, Megason SG, Daley GQ, Schier AF, Young RA, Zon LI. Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. Dev Cell 2012; 22:625-38. [PMID: 22421047 DOI: 10.1016/j.devcel.2012.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/19/2011] [Accepted: 01/11/2012] [Indexed: 12/15/2022]
Abstract
In mammalian embryonic stem cells, the acquisition of pluripotency is dependent on Nanog, but the in vivo analysis of Nanog has been hampered by its requirement for early mouse development. In an effort to examine the role of Nanog in vivo, we identified a zebrafish Nanog ortholog and found that its knockdown impaired endoderm formation. Genome-wide transcription analysis revealed that nanog-like morphants fail to develop the extraembryonic yolk syncytial layer (YSL), which produces Nodal, required for endoderm induction. We examined the genes that were regulated by Nanog-like and identified the homeobox gene mxtx2, which is both necessary and sufficient for YSL induction. Chromatin immunoprecipitation assays and genetic studies indicated that Nanog-like directly activates mxtx2, which, in turn, specifies the YSL lineage by directly activating YSL genes. Our study identifies a Nanog-like-Mxtx2-Nodal pathway and establishes a role for Nanog-like in regulating the formation of the extraembryonic tissue required for endoderm induction.
Collapse
Affiliation(s)
- Cong Xu
- Howard Hughes Medical Institute, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Paskaradevan S, Scott IC. The Aplnr GPCR regulates myocardial progenitor development via a novel cell-non-autonomous, Gα(i/o) protein-independent pathway. Biol Open 2012; 1:275-85. [PMID: 23213418 PMCID: PMC3507289 DOI: 10.1242/bio.2012380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myocardial progenitor development involves the migration of cells to the anterior lateral plate mesoderm (ALPM) where they are exposed to the necessary signals for heart development to proceed. Whether the arrival of cells to this location is sufficient, or whether earlier signaling events are required, for progenitor development is poorly understood. Here we demonstrate that in the absence of Aplnr signaling, cells fail to migrate to the heart-forming region of the ALPM. Our work uncovers a previously uncharacterized cell-non-autonomous function for Aplnr signaling in cardiac development. Furthermore, we show that both the single known Aplnr ligand, Apelin, and the canonical Gαi/o proteins that signal downstream of Aplnr are dispensable for Aplnr function in the context of myocardial progenitor development. This novel Aplnr signal can be substituted for by activation of Gata5/Smarcd3 in myocardial progenitors, suggesting a novel mechanism for Aplnr signaling in the establishment of a niche required for the proper migration/development of myocardial progenitor cells.
Collapse
Affiliation(s)
- Sivani Paskaradevan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 555 University Avenue , Toronto, ON M5G 1X8 , Canada ; Department of Molecular Genetics, University of Toronto , Toronto, ON M5S 1A8 , Canada
| | | |
Collapse
|
49
|
|
50
|
Hajeri VA, Amatruda JF. Studying synthetic lethal interactions in the zebrafish system: insight into disease genes and mechanisms. Dis Model Mech 2011; 5:33-7. [PMID: 22107871 PMCID: PMC3255541 DOI: 10.1242/dmm.007989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The post-genomic era is marked by a pressing need to functionally characterize genes through understanding gene-gene interactions, as well as interactions between biological pathways. Exploiting a phenomenon known as synthetic lethality, in which simultaneous loss of two interacting genes leads to loss of viability, aids in the investigation of these interactions. Although synthetic lethal screening is a powerful technique that has been used with great success in many model organisms, including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans, this approach has not yet been applied in the zebrafish, Danio rerio. Recently, the zebrafish has emerged as a valuable system to model many human disease conditions; thus, the ability to conduct synthetic lethal screening using zebrafish should help to uncover many unknown disease-gene interactions. In this article, we discuss the concept of synthetic lethality and provide examples of its use in other model systems. We further discuss experimental approaches by which the concept of synthetic lethality can be applied to the zebrafish to understand the functions of specific genes.
Collapse
Affiliation(s)
- Vinita A Hajeri
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8534, USA
| | | |
Collapse
|