1
|
Noble AR, Masek M, Hofmann C, Cuoco A, Rusterholz TDS, Özkoc H, Greter NR, Phelps IG, Vladimirov N, Kollmorgen S, Stoeckli E, Bachmann-Gagescu R. Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system. Biol Open 2024; 13:bio060421. [PMID: 39400299 PMCID: PMC11583916 DOI: 10.1242/bio.060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Joubert Syndrome (JBTS) is a neurodevelopmental ciliopathy defined by a highly specific midbrain-hindbrain malformation, variably associated with additional neurological features. JBTS displays prominent genetic heterogeneity with >40 causative genes that encode proteins localising to the primary cilium, a sensory organelle that is essential for transduction of signalling pathways during neurodevelopment, among other vital functions. JBTS proteins localise to distinct ciliary subcompartments, suggesting diverse functions in cilium biology. Currently, there is no unifying pathomechanism to explain how dysfunction of such diverse primary cilia-related proteins results in such a highly specific brain abnormality. To identify the shared consequence of JBTS gene dysfunction, we carried out transcriptomic analysis using zebrafish mutants for the JBTS-causative genes cc2d2aw38, cep290fh297, inpp5ezh506, talpid3i264 and togaram1zh510 and the Bardet-Biedl syndrome-causative gene bbs1k742. We identified no commonly dysregulated signalling pathways in these mutants and yet all mutants displayed an enrichment of altered gene sets related to central nervous system function. We found that JBTS mutants have altered primary cilia throughout the brain but do not display abnormal brain morphology. Nonetheless, behavioural analyses revealed reduced locomotion and loss of postural control which, together with the transcriptomic results, hint at underlying abnormalities in neuronal activity and/or neuronal circuit function. These zebrafish models therefore offer the unique opportunity to study the role of primary cilia in neuronal function beyond early patterning, proliferation and differentiation.
Collapse
Affiliation(s)
- Alexandra R. Noble
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Masek
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Claudia Hofmann
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Arianna Cuoco
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | | - Hayriye Özkoc
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Nadja R. Greter
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ian G. Phelps
- Department of Pediatrics, University of Washington, Seattle, WA 8057, USA
| | - Nikita Vladimirov
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 98105 Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, 8057 Zurich, Switzerland
| | - Sepp Kollmorgen
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Esther Stoeckli
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Institute for Medical Genetics, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
2
|
Casey MJ, Chan PP, Li Q, Zu JF, Jette CA, Kohler M, Myers BR, Stewart RA. A simple and scalable zebrafish model of Sonic hedgehog medulloblastoma. Cell Rep 2024; 43:114559. [PMID: 39078737 PMCID: PMC11404834 DOI: 10.1016/j.celrep.2024.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ∼30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe a zebrafish model of SHH MB using CRISPR to create mutant ptch1, the primary genetic driver of human SHH MB. In these animals, tumors rapidly arise in the cerebellum and resemble human SHH MB by histology and comparative onco-genomics. Similar to human patients, MB tumors with loss of both ptch1 and tp53 have aggressive tumor histology and significantly worse survival outcomes. The simplicity and scalability of the ptch1-crispant MB model makes it highly amenable to CRISPR-based genome-editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the gene encoding Grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- High-Throughput Genomics and Cancer Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ju-Fen Zu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Jiang Y, Cai Y, Yang N, Gao S, Li Q, Pang Y, Su P. Molecular mechanisms of spinal cord injury repair across vertebrates: A comparative review. Eur J Neurosci 2024; 60:4552-4568. [PMID: 38978308 DOI: 10.1111/ejn.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/09/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
In humans and other adult mammals, axon regeneration is difficult in axotomized neurons. Therefore, spinal cord injury (SCI) is a devastating event that can lead to permanent loss of locomotor and sensory functions. Moreover, the molecular mechanisms of axon regeneration in vertebrates are not very well understood, and currently, no effective treatment is available for SCI. In striking contrast to adult mammals, many nonmammalian vertebrates such as reptiles, amphibians, bony fishes and lampreys can spontaneously resume locomotion even after complete SCI. In recent years, rapid progress in the development of next-generation sequencing technologies has offered valuable information on SCI. In this review, we aimed to provide a comparison of axon regeneration process across classical model organisms, focusing on crucial genes and signalling pathways that play significant roles in the regeneration of individually identifiable descending neurons after SCI. Considering the special evolutionary location and powerful regenerative ability of lamprey and zebrafish, they will be the key model organisms for ongoing studies on spinal cord regeneration. Detailed study of SCI in these model organisms will help in the elucidation of molecular mechanisms of neuron regeneration across species.
Collapse
Affiliation(s)
- Ying Jiang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Cai
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Ning Yang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Si Gao
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Pose-Méndez S, Rehbock M, Wolf-Asseburg A, Köster RW. In Vivo Monitoring of Fabp7 Expression in Transgenic Zebrafish. Cells 2024; 13:1138. [PMID: 38994990 PMCID: PMC11240397 DOI: 10.3390/cells13131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
In zebrafish, like in mammals, radial glial cells (RGCs) can act as neural progenitors during development and regeneration in adults. However, the heterogeneity of glia subpopulations entails the need for different specific markers of zebrafish glia. Currently, fluorescent protein expression mediated by a regulatory element from the glial fibrillary acidic protein (gfap) gene is used as a prominent glia reporter. We now expand this tool by demonstrating that a regulatory element from the mouse Fatty acid binding protein 7 (Fabp7) gene drives reliable expression in fabp7-expressing zebrafish glial cells. By using three different Fabp7 regulatory element-mediated fluorescent protein reporter strains, we reveal in double transgenic zebrafish that progenitor cells expressing fluorescent proteins driven by the Fabp7 regulatory element give rise to radial glia, oligodendrocyte progenitors, and some neuronal precursors. Furthermore, Bergmann glia represent the almost only glial population of the zebrafish cerebellum (besides a few oligodendrocytes), and the radial glia also remain in the mature cerebellum. Fabp7 regulatory element-mediated reporter protein expression in Bergmann glia progenitors suggests their origin from the ventral cerebellar proliferation zone, the ventricular zone, but not from the dorsally positioned upper rhombic lip. These new Fabp7 reporters will be valuable for functional studies during development and regeneration.
Collapse
Affiliation(s)
- Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Zoological Institut, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.R.); (A.W.-A.)
| | | | | | - Reinhard W. Köster
- Cellular and Molecular Neurobiology, Zoological Institut, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.R.); (A.W.-A.)
| |
Collapse
|
5
|
Itoh T, Uehara M, Yura S, Wang JC, Fujii Y, Nakanishi A, Shimizu T, Hibi M. Foxp and Skor family proteins control differentiation of Purkinje cells from Ptf1a- and Neurog1-expressing progenitors in zebrafish. Development 2024; 151:dev202546. [PMID: 38456494 PMCID: PMC11057878 DOI: 10.1242/dev.202546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Cerebellar neurons, such as GABAergic Purkinje cells (PCs), interneurons (INs) and glutamatergic granule cells (GCs) are differentiated from neural progenitors expressing proneural genes, including ptf1a, neurog1 and atoh1a/b/c. Studies in mammals previously suggested that these genes determine cerebellar neuron cell fate. However, our studies on ptf1a;neurog1 zebrafish mutants and lineage tracing of ptf1a-expressing progenitors have revealed that the ptf1a/neurog1-expressing progenitors can generate diverse cerebellar neurons, including PCs, INs and a subset of GCs in zebrafish. The precise mechanisms of how each cerebellar neuron type is specified remains elusive. We found that genes encoding the transcriptional regulators Foxp1b, Foxp4, Skor1b and Skor2, which are reportedly expressed in PCs, were absent in ptf1a;neurog1 mutants. foxp1b;foxp4 mutants showed a strong reduction in PCs, whereas skor1b;skor2 mutants completely lacked PCs, and displayed an increase in immature GCs. Misexpression of skor2 in GC progenitors expressing atoh1c suppressed GC fate. These data indicate that Foxp1b/4 and Skor1b/2 function as key transcriptional regulators in the initial step of PC differentiation from ptf1a/neurog1-expressing neural progenitors, and that Skor1b and Skor2 control PC differentiation by suppressing their differentiation into GCs.
Collapse
Affiliation(s)
- Tsubasa Itoh
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Mari Uehara
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Shinnosuke Yura
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Jui Chun Wang
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Yukimi Fujii
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiko Nakanishi
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Takashi Shimizu
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
6
|
Casey MJ, Chan PP, Li Q, Jette CA, Kohler M, Myers BR, Stewart RA. A Simple and Scalable Zebrafish Model of Sonic Hedgehog Medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.577834. [PMID: 38370799 PMCID: PMC10871209 DOI: 10.1101/2024.02.03.577834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ~30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe the first zebrafish model of SHH MB using CRISPR to mutate ptch1, the primary genetic driver in human SHH MB. These tumors rapidly arise adjacent to the valvula cerebelli and resemble human SHH MB by histology and comparative genomics. In addition, ptch1-deficient MB tumors with loss of tp53 have aggressive tumor histology and significantly worse survival outcomes, comparable to human patients. The simplicity and scalability of the ptch1 MB model makes it highly amenable to CRISPR-based genome editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P. Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Primary Children’s Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Lead contact
| |
Collapse
|
7
|
Najac M, McLean DL, Raman IM. Synaptic variance and action potential firing of cerebellar output neurons during motor learning in larval zebrafish. Curr Biol 2023; 33:3299-3311.e3. [PMID: 37421952 PMCID: PMC10527510 DOI: 10.1016/j.cub.2023.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
The cerebellum regulates both reflexive and acquired movements. Here, by recording voltage-clamped synaptic currents and spiking in cerebellar output (eurydendroid) neurons in immobilized larval zebrafish, we investigated synaptic integration during reflexive movements and throughout associative motor learning. Spiking coincides with the onset of reflexive fictive swimming but precedes learned swimming, suggesting that eurydendroid signals may facilitate the initiation of acquired movements. Although firing rates increase during swimming, mean synaptic inhibition greatly exceeds mean excitation, indicating that learned responses cannot result solely from changes in synaptic weight or upstream excitability that favor excitation. Estimates of spike threshold crossings based on measurements of intrinsic properties and the time course of synaptic currents demonstrate that noisy excitation can transiently outweigh noisy inhibition enough to increase firing rates at swimming onset. Thus, the millisecond-scale variance of synaptic currents can regulate cerebellar output, and the emergence of learned cerebellar behaviors may involve a time-based code.
Collapse
Affiliation(s)
- Marion Najac
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
8
|
Pose-Méndez S, Schramm P, Valishetti K, Köster RW. Development, circuitry, and function of the zebrafish cerebellum. Cell Mol Life Sci 2023; 80:227. [PMID: 37490159 PMCID: PMC10368569 DOI: 10.1007/s00018-023-04879-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
The cerebellum represents a brain compartment that first appeared in gnathostomes (jawed vertebrates). Besides the addition of cell numbers, its development, cytoarchitecture, circuitry, physiology, and function have been highly conserved throughout avian and mammalian species. While cerebellar research in avian and mammals is extensive, systematic investigations on this brain compartment in zebrafish as a teleostian model organism started only about two decades ago, but has provided considerable insight into cerebellar development, physiology, and function since then. Zebrafish are genetically tractable with nearly transparent small-sized embryos, in which cerebellar development occurs within a few days. Therefore, genetic investigations accompanied with non-invasive high-resolution in vivo time-lapse imaging represents a powerful combination for interrogating the behavior and function of cerebellar cells in their complex native environment.
Collapse
Affiliation(s)
- Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| | - Paul Schramm
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
9
|
Magnus G, Xing J, Zhang Y, Han VZ. Diversity of cellular physiology and morphology of Purkinje cells in the adult zebrafish cerebellum. J Comp Neurol 2022; 531:461-485. [PMID: 36453181 DOI: 10.1002/cne.25435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 12/04/2022]
Abstract
This study was designed to explore the functional circuitry of the adult zebrafish cerebellum, focusing on its Purkinje cells and using whole-cell patch recordings and single cell labeling in slice preparations. Following physiological characterizations, the recorded single cells were labeled for morphological identification. It was found that the zebrafish Purkinje cells are surprisingly diverse. Based on their physiology and morphology, they can be classified into at least three subtypes: Type I, a narrow spike cell, which fires only narrow Na+ spikes (<3 ms in duration), and has a single primary dendrite with an arbor restricted to the distal molecular layer; Type II, a broad spike cell, which fires broad Ca2+ spikes (5-7 ms in duration) and has a primary dendrite with limited branching in the inner molecular layer and then further radiates throughout the molecular layer; and Type III, a very broad spike cell, which fires very broad Ca2+ spikes (≥10 ms in duration) and has a dense proximal dendritic arbor that is either restricted to the inner molecular layer (Type IIIa), or radiates throughout the entire molecular layer (Type IIIb). The graded paired-pulse facilitation of these Purkinje cells' responses to parallel fiber activations and the all-or-none, paired-pulse depression of climbing fiber activation are largely similar to those reported for mammals. The labeled axon terminals of these Purkinje cells end locally, as reported for larval zebrafish. The present study provides evidence that the corresponding functional circuitry and information processing differ from what has been well-established in the mammalian cerebellum.
Collapse
Affiliation(s)
- Gerhard Magnus
- Department of Biology University of Washington Seattle Washington USA
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
| | - Junling Xing
- Department of Pediatrics and Neuroscience Xijing Hospital Xi'an China
| | - Yueping Zhang
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
- Department of Pediatrics and Neuroscience Xijing Hospital Xi'an China
| | - Victor Z. Han
- Department of Biology University of Washington Seattle Washington USA
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
| |
Collapse
|
10
|
Deficiency of the ywhaz gene, involved in neurodevelopmental disorders, alters brain activity and behaviour in zebrafish. Mol Psychiatry 2022; 27:3739-3748. [PMID: 35501409 DOI: 10.1038/s41380-022-01577-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
Abstract
Genetic variants in YWHAZ contribute to psychiatric disorders such as autism spectrum disorder and schizophrenia, and have been related to an impaired neurodevelopment in humans and mice. Here, we have used zebrafish to investigate the mechanisms by which YWHAZ contributes to neurodevelopmental disorders. We observed that ywhaz expression was pan-neuronal during developmental stages and restricted to Purkinje cells in the adult cerebellum, cells that are described to be reduced in number and size in autistic patients. We then performed whole-brain imaging in wild-type and ywhaz CRISPR/Cas9 knockout (KO) larvae and found altered neuronal activity and connectivity in the hindbrain. Adult ywhaz KO fish display decreased levels of monoamines in the hindbrain and freeze when exposed to novel stimuli, a phenotype that can be reversed with drugs that target monoamine neurotransmission. These findings suggest an important role for ywhaz in establishing neuronal connectivity during development and modulating both neurotransmission and behaviour in adults.
Collapse
|
11
|
Rusterholz TDS, Hofmann C, Bachmann-Gagescu R. Insights Gained From Zebrafish Models for the Ciliopathy Joubert Syndrome. Front Genet 2022; 13:939527. [PMID: 35846153 PMCID: PMC9280682 DOI: 10.3389/fgene.2022.939527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cilia are quasi-ubiquitous microtubule-based sensory organelles, which play vital roles in signal transduction during development and cell homeostasis. Dysfunction of cilia leads to a group of Mendelian disorders called ciliopathies, divided into different diagnoses according to clinical phenotype constellation and genetic causes. Joubert syndrome (JBTS) is a prototypical ciliopathy defined by a diagnostic cerebellar and brain stem malformation termed the “Molar Tooth Sign” (MTS), in addition to which patients display variable combinations of typical ciliopathy phenotypes such as retinal dystrophy, fibrocystic renal disease, polydactyly or skeletal dystrophy. Like most ciliopathies, JBTS is genetically highly heterogeneous with ∼40 associated genes. Zebrafish are widely used to model ciliopathies given the high conservation of ciliary genes and the variety of specialized cilia types similar to humans. In this review, we compare different existing JBTS zebrafish models with each other and describe their contributions to our understanding of JBTS pathomechanism. We find that retinal dystrophy, which is the most investigated ciliopathy phenotype in zebrafish ciliopathy models, is caused by distinct mechanisms according to the affected gene. Beyond this, differences in phenotypes in other organs observed between different JBTS-mutant models suggest tissue-specific roles for proteins implicated in JBTS. Unfortunately, the lack of systematic assessment of ciliopathy phenotypes in the mutants described in the literature currently limits the conclusions that can be drawn from these comparisons. In the future, the numerous existing JBTS zebrafish models represent a valuable resource that can be leveraged in order to gain further insights into ciliary function, pathomechanisms underlying ciliopathy phenotypes and to develop treatment strategies using small molecules.
Collapse
Affiliation(s)
- Tamara D. S. Rusterholz
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Claudia Hofmann
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- *Correspondence: Ruxandra Bachmann-Gagescu,
| |
Collapse
|
12
|
Ikenaga T, Shimomai R, Hagio H, Kimura S, Matsumoto K, Kato DI, Uesugi K, Takeuchi A, Yamamoto N, Hibi M. Morphological analysis of the cerebellum and its efferent system in a basal actinopterygian fish, Polypterus senegalus. J Comp Neurol 2021; 530:1231-1246. [PMID: 34729771 DOI: 10.1002/cne.25271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/07/2022]
Abstract
Although all vertebrate cerebella contain granule cells, Purkinje cells, and efferent neurons, the cellular arrangement and neural circuitry are highly diverse. In amniotes, cerebellar efferent neurons form clusters, deep cerebellar nuclei, lie deep in the cerebellum, and receive synaptic inputs from Purkinje cells but not granule cells. However, in the cerebellum of teleosts, the efferent neurons, called eurydendroid cells, lie near the cell bodies of Purkinje cells and receive inputs both from axons of Purkinje cells and granule cell parallel fibers. It is largely unknown how the cerebellar structure evolved in ray-finned fish (actinopterygians). To address this issue, we analyzed the cerebellum of a bichir Polypterus senegalus, one of the most basal actinopterygians. We found that the cell bodies of Purkinje cells are not aligned in a layer; incoming climbing fibers terminate mainly on the basal portion of Purkinje cells, revealing that the Polypterus cerebellum has unique features among vertebrate cerebella. Retrograde labeling and marker analyses of the efferent neurons revealed that their cell bodies lie in restricted granular areas but not as deep cerebellar nuclei in the cerebellar white matter. The efferent neurons have long dendrites like eurydendroid cells, although they do not reach the molecular layer. Our findings suggest that the efferent system of the bichir cerebellum has intermediate features between teleosts and amniote vertebrates, and provides a model to understand the basis generating diversity in actinopterygian cerebella.
Collapse
Affiliation(s)
- Takanori Ikenaga
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Rinko Shimomai
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Hanako Hagio
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Satoru Kimura
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kazumasa Matsumoto
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Dai-Ichiro Kato
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kentaro Uesugi
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute/SPring-8, Hyogo, Japan
| | - Akihisa Takeuchi
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute/SPring-8, Hyogo, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Zebrafish Blunt-Force TBI Induces Heterogenous Injury Pathologies That Mimic Human TBI and Responds with Sonic Hedgehog-Dependent Cell Proliferation across the Neuroaxis. Biomedicines 2021; 9:biomedicines9080861. [PMID: 34440066 PMCID: PMC8389629 DOI: 10.3390/biomedicines9080861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Blunt-force traumatic brain injury (TBI) affects an increasing number of people worldwide as the range of injury severity and heterogeneity of injury pathologies have been recognized. Most current damage models utilize non-regenerative organisms, less common TBI mechanisms (penetrating, chemical, blast), and are limited in scalability of injury severity. We describe a scalable blunt-force TBI model that exhibits a wide range of human clinical pathologies and allows for the study of both injury pathology/progression and mechanisms of regenerative recovery. We modified the Marmarou weight drop model for adult zebrafish, which delivers a scalable injury spanning mild, moderate, and severe phenotypes. Following injury, zebrafish display a wide range of severity-dependent, injury-induced pathologies, including seizures, blood–brain barrier disruption, neuroinflammation, edema, vascular injury, decreased recovery rate, neuronal cell death, sensorimotor difficulties, and cognitive deficits. Injury-induced pathologies rapidly dissipate 4–7 days post-injury as robust cell proliferation is observed across the neuroaxis. In the cerebellum, proliferating nestin:GFP-positive cells originated from the cerebellar crest by 60 h post-injury, which then infiltrated into the granule cell layer and differentiated into neurons. Shh pathway genes increased in expression shortly following injury. Injection of the Shh agonist purmorphamine in undamaged fish induced a significant proliferative response, while the proliferative response was inhibited in injured fish treated with cyclopamine, a Shh antagonist. Collectively, these data demonstrate that a scalable blunt-force TBI to adult zebrafish results in many pathologies similar to human TBI, followed by recovery, and neuronal regeneration in a Shh-dependent manner.
Collapse
|
14
|
Almeida MP, Welker JM, Siddiqui S, Luiken J, Ekker SC, Clark KJ, Essner JJ, McGrail M. Endogenous zebrafish proneural Cre drivers generated by CRISPR/Cas9 short homology directed targeted integration. Sci Rep 2021; 11:1732. [PMID: 33462297 PMCID: PMC7813866 DOI: 10.1038/s41598-021-81239-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023] Open
Abstract
We previously reported efficient precision targeted integration of reporter DNA in zebrafish and human cells using CRISPR/Cas9 and short regions of homology. Here, we apply this strategy to isolate zebrafish Cre recombinase drivers whose spatial and temporal restricted expression mimics endogenous genes. A 2A-Cre recombinase transgene with 48 bp homology arms was targeted into proneural genes ascl1b, olig2 and neurod1. We observed high rates of germline transmission ranging from 10 to 100% (2/20 olig2; 1/5 neurod1; 3/3 ascl1b). The transgenic lines Tg(ascl1b-2A-Cre)is75, Tg(olig2-2A-Cre)is76, and Tg(neurod1-2A-Cre)is77 expressed functional Cre recombinase in the expected proneural cell populations. Somatic targeting of 2A-CreERT2 into neurod1 resulted in tamoxifen responsive recombination in the nervous system. The results demonstrate Cre recombinase expression is driven by the native promoter and regulatory elements of the targeted genes. This approach provides a straightforward, efficient, and cost-effective method to generate cell type specific zebrafish Cre and CreERT2 drivers, overcoming challenges associated with promoter-BAC and transposon mediated transgenics.
Collapse
Affiliation(s)
- Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.,Department III - Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sahiba Siddiqui
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jon Luiken
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
15
|
The Joubert Syndrome Gene arl13b is Critical for Early Cerebellar Development in Zebrafish. Neurosci Bull 2020; 36:1023-1034. [PMID: 32812127 PMCID: PMC7475164 DOI: 10.1007/s12264-020-00554-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Joubert syndrome is characterized by unique malformation of the cerebellar vermis. More than thirty Joubert syndrome genes have been identified, including ARL13B. However, its role in cerebellar development remains unexplored. We found that knockdown or knockout of arl13b impaired balance and locomotion in zebrafish larvae. Granule cells were selectively reduced in the corpus cerebelli, a structure homologous to the mammalian vermis. Purkinje cell progenitors were also selectively disturbed dorsomedially. The expression of atoh1 and ptf1, proneural genes of granule and Purkinje cells, respectively, were selectively down-regulated along the dorsal midline of the cerebellum. Moreover, wnt1, which is transiently expressed early in cerebellar development, was selectively reduced. Intriguingly, activating Wnt signaling partially rescued the granule cell defects in arl13b mutants. These findings suggested that Arl13b is necessary for the early development of cerebellar granule and Purkinje cells. The arl13b-deficient zebrafish can serve as a model organism for studying Joubert syndrome.
Collapse
|
16
|
Adusumilli L, Facchinello N, Teh C, Busolin G, Le MTN, Yang H, Beffagna G, Campanaro S, Tam WL, Argenton F, Lim B, Korzh V, Tiso N. miR-7 Controls the Dopaminergic/Oligodendroglial Fate through Wnt/β-catenin Signaling Regulation. Cells 2020; 9:cells9030711. [PMID: 32183236 PMCID: PMC7140713 DOI: 10.3390/cells9030711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
During the development of the central nervous system, the proliferation of neural progenitors and differentiation of neurons and glia are tightly regulated by different transcription factors and signaling cascades, such as the Wnt and Shh pathways. This process takes place in cooperation with several microRNAs, some of which evolutionarily conserved in vertebrates, from teleosts to mammals. We focused our attention on miR-7, as its role in the regulation of cell signaling during neural development is still unclear. Specifically, we used human stem cell cultures and whole zebrafish embryos to study, in vitro and in vivo, the role of miR-7 in the development of dopaminergic (DA) neurons, a cell type primarily affected in Parkinson’s disease. We demonstrated that the zebrafish homologue of miR-7 (miR-7a) is expressed in the forebrain during the development of DA neurons. Moreover, we identified 143 target genes downregulated by miR-7, including the neural fate markers TCF4 and TCF12, as well as the Wnt pathway effector TCF7L2. We then demonstrated that miR-7 negatively regulates the proliferation of DA-progenitors by inhibiting Wnt/β-catenin signaling in zebrafish embryos. In parallel, miR-7 positively regulates Shh signaling, thus controlling the balance between oligodendroglial and DA neuronal cell fates. In summary, this study identifies a new molecular cross-talk between Wnt and Shh signaling pathways during the development of DA-neurons. Being mediated by a microRNA, this mechanism represents a promising target in cell differentiation therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Lavanya Adusumilli
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, A-STAR, Singapore 138632, Singapore;
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Giorgia Busolin
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Minh TN Le
- Department of Pharmacology, National University of Singapore, Singapore 117559, Singapore;
| | - Henry Yang
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Giorgia Beffagna
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Stefano Campanaro
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Wai Leong Tam
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Francesco Argenton
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Bing Lim
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A-STAR, Singapore 138632, Singapore;
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| | - Natascia Tiso
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| |
Collapse
|
17
|
Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2 + Eurydendroid Neurons in Larval Zebrafish Cerebellum. J Neurosci 2020; 40:3063-3074. [PMID: 32139583 DOI: 10.1523/jneurosci.2322-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning.SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates.
Collapse
|
18
|
Wang L, Liu Y. Signaling pathways in cerebellar granule cells development. AMERICAN JOURNAL OF STEM CELLS 2019; 8:1-6. [PMID: 31139492 PMCID: PMC6526362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Cerebellar granule cells originate from precursors located at the dorsal region of rhombomere in the hindbrain of embryos. They undergo proliferation from embryo to post-natal period so as to form the major cell type of the cerebellum. The development of granule cell is not only highly dependent on the cerebellar intrinsic environment, but also is regulated by serials of transcription factors on different signaling pathways. Therefore, in this manuscript the signaling pathways participating in the proliferation and differentiation of granular cells during normal development was reviewed.
Collapse
Affiliation(s)
- Li Wang
- Department of Research Institute of Surgery, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury Chongqing 400042, PR China
| | - Yuan Liu
- Department of Research Institute of Surgery, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury Chongqing 400042, PR China
| |
Collapse
|
19
|
Lindsey BW, Hall ZJ, Heuzé A, Joly JS, Tropepe V, Kaslin J. The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair. Prog Neurobiol 2018; 170:99-114. [PMID: 29902500 DOI: 10.1016/j.pneurobio.2018.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
Neural stem and progenitor cells (NSPCs) are the primary source of new neurons in the brain and serve critical roles in tissue homeostasis and plasticity throughout life. Within the vertebrate brain, NSPCs are located within distinct neurogenic niches differing in their location, cellular composition, and proliferative behaviour. Heterogeneity in the NSPC population is hypothesized to reflect varying capacities for neurogenesis, plasticity and repair between different neurogenic zones. Since the discovery of adult neurogenesis, studies have predominantly focused on the behaviour and biological significance of adult NSPCs (aNSPCs) in rodents. However, compared to rodents, who show lifelong neurogenesis in only two restricted neurogenic niches, zebrafish exhibit constitutive neurogenesis across multiple stem cell niches that provide new neurons to every major brain division. Accordingly, zebrafish are a powerful model to probe the unique cellular and molecular profiles of NSPCs and investigate how these profiles govern tissue homeostasis and regenerative plasticity within distinct stem cell populations over time. Amongst the NSPC populations residing in the zebrafish central nervous system (CNS), proliferating radial-glia, quiescent radial-glia and neuro-epithelial-like cells comprise the majority. Here, we provide insight into the extent to which these distinct NSPC populations function and mature during development, respond to experience, and contribute to successful CNS regeneration in teleost fish. Together, our review brings to light the dynamic biological roles of these individual NSPC populations and showcases their diverse regenerative modes to achieve vertebrate brain repair later in life.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Department of Biology, Brain and Mind Research Institute, University of Ottawa, Ontario, Canada; Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| | - Zachary J Hall
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Aurélie Heuzé
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Jean-Stéphane Joly
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| |
Collapse
|
20
|
Comparative proteome and peptidome analysis of the cephalic fluid secreted by Arapaima gigas (Teleostei: Osteoglossidae) during and outside parental care. PLoS One 2017; 12:e0186692. [PMID: 29065179 PMCID: PMC5655490 DOI: 10.1371/journal.pone.0186692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/05/2017] [Indexed: 02/05/2023] Open
Abstract
Parental investment in Arapaima gigas includes nest building and guarding, followed by a care provision when a cephalic fluid is released from the parents’ head to the offspring. This fluid has presumably important functions for the offspring but so far its composition has not been characterised. In this study the proteome and peptidome of the cephalic secretion was studied in parental and non-parental fish using capillary electrophoresis coupled to mass spectrometry (CE-MS) and GeLC-MS/MS analyses. Multiple comparisons revealed 28 peptides were significantly different between males and parental males (PC-males), 126 between females and parental females (PC-females), 51 between males and females and 9 between PC-males and PC-females. Identification revealed peptides were produced in the inner ear (pcdh15b), eyes (tetraspanin and ppp2r3a), central nervous system (otud4, ribeye a, tjp1b and syn1) among others. A total of 422 proteins were also identified and gene ontology analysis revealed 28 secreted extracellular proteins. From these, 2 hormones (prolactin and stanniocalcin) and 12 proteins associated to immunological processes (serotransferrin, α-1-antitrypsin homolog, apolipoprotein A-I, and others) were identified. This study provides novel biochemical data on the lateral line fluid which will enable future hypotheses-driven experiments to better understand the physiological roles of the lateral line in chemical communication.
Collapse
|
21
|
Hibi M, Matsuda K, Takeuchi M, Shimizu T, Murakami Y. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum. Dev Growth Differ 2017; 59:228-243. [DOI: 10.1111/dgd.12349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Masahiko Hibi
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Koji Matsuda
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Miki Takeuchi
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
| | - Takashi Shimizu
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering; Ehime University; Matsuyama 790-8577 Japan
| |
Collapse
|
22
|
Abstract
Teleost fish have a remarkable neurogenic and regenerative capacity in the adult throughout the rostrocaudal axis of the brain. The distribution of proliferation zones shows a remarkable conservation, even in distantly related teleost species, suggesting a common teleost ground plan of proliferation zones. There are different progenitor populations in the neurogenic niches-progenitors positive for radial glial markers (dorsal telencephalon, hypothalamus) and progenitors with neuroepithelial-like characteristics (ventral telencephalon, optic tectum, cerebellum). Definition of these progenitors has allowed studying their role in normal growth of the adult brain, but also when challenged following a lesion. From these studies, important roles have emerged for intrinsic mechanisms and extrinsic signals controlling the activation of adult neurogenesis that enable regeneration of the adult brain to occur, opening up new perspectives on rekindling regeneration also in the context of the mammalian brain.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403
| | - Michael Brand
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
23
|
Biechl D, Dorigo A, Köster RW, Grothe B, Wullimann MF. Eppur Si Muove: Evidence for an External Granular Layer and Possibly Transit Amplification in the Teleostean Cerebellum. Front Neuroanat 2016; 10:49. [PMID: 27199681 PMCID: PMC4852188 DOI: 10.3389/fnana.2016.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/13/2016] [Indexed: 01/12/2023] Open
Abstract
The secreted signaling factor Sonic Hedgehog (Shh) acts in the floor plate of the developing vertebrate CNS to promote motoneuron development. In addition, shh has dorsal expression domains in the amniote alar plate (i.e., in isocortex, superior colliculus, and cerebellum). For example, shh expressing Purkinje cells act in transit amplification of external granular layer (EGL) cells of the developing cerebellum. Our previous studies had indicated the presence of an EGL in anamniote zebrafish, but a possible role of shh in the zebrafish cerebellar plate remained elusive. Therefore, we used an existing zebrafish transgenic line Tg(2.4shha-ABC-GFP)sb15; Shkumatava et al., 2004) to show this gene activity and its cellular localization in the larval zebrafish brain. Clearly, GFP expressing cells occur in larval alar zebrafish brain domains, i.e., optic tectum and cerebellum. Analysis of critical cerebellar cell markers on this transgenic background and a PH3 assay for mitotic cells reveals that Purkinje cells and eurydendroid cells are completely non-overlapping postmitotic cell populations. Furthermore, shh-GFP cells never express Zebrin II or parvalbumin, nor calretinin. They are thus neither Purkinje cells nor calretinin positive migrating rhombic lip derived cells. The shh-GFP cells also never correspond to PH3 positive cells of the ventral cerebellar proliferative zone or the upper rhombic lip-derived EGL. From this marker analysis and the location of shh-GFP cells sandwiched between calretinin positive rhombic lip derived cells and parvalbumin positive Purkinje cells, we conclude that shh-GFP expressing cells qualify as previously reported olig2 positive eurydendroid cells, which are homologous to the amniote deep cerebellar nuclei. We confirm this using double transgenic progeny of shh-GFP and olig2-dsRed zebrafish. Thus, these zebrafish eurydendroid cells may have the same role in transit amplification as Purkinje cells do in amniotes.
Collapse
Affiliation(s)
- Daniela Biechl
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Munich, Germany
| | - Alessandro Dorigo
- Institute of Zoology, Cellular and Molecular Neurobiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Reinhard W Köster
- Institute of Zoology, Cellular and Molecular Neurobiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Munich, Germany
| | - Mario F Wullimann
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Munich, Germany
| |
Collapse
|
24
|
Pan YB, Gong Y, Ruan HF, Pan LY, Wu XK, Tang C, Wang CJ, Zhu HB, Zhang ZM, Tang LF, Zou CC, Wang HB, Wu XM. Sonic hedgehog through Gli2 and Gli3 is required for the proper development of placental labyrinth. Cell Death Dis 2015; 6:e1653. [PMID: 25695606 PMCID: PMC4669788 DOI: 10.1038/cddis.2015.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/20/2023]
Abstract
Sonic hedgehog (Shh) functions as a conserved morphogen in the development of various organs in metazoans ranging from Drosophila to humans. Here, we have investigated the potential roles and underlying mechanisms of Shh signaling in murine placentation. Immunostaining revealed the abundant expression of the main components of Shh pathway in both the trophectoderm of blastocysts and developing placentas. Disruption of Shh led to impaired vascularogenesis of yolk sac, less branching and malformation of placental labyrinth, thereby leading to a robust decrease in capacity of transplacental passages. Moreover, placenta-specific gene incorporation by lentiviral transduction of mouse blastocysts and blastocyst transplantation robustly knocked down the expression of Gli3 and Gli2 in placenta but not in embryos. Finally, Gli3 knockdown in Shh−/− placentas partially rescued the defects of both yolk sac and placental labyrinth, and robustly restored the capacity of transplacental passages. Gli2 knockdown in Shh+/− placentas affected neither the capacity of tranplacental passages nor the vascularogenesis of yolk sac, however, it partially phenocopied the labyrinthine defects of Shh−/− placentas. Taken together, these results uncover that both Shh/Gli2 and Shh/Gli3 signals are required for proper development of murine placentas and are possibly essential for pregnant maintenance.
Collapse
Affiliation(s)
- Y B Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Y Gong
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - H F Ruan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - L Y Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - X K Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - C Tang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - C J Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H B Zhu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Z M Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - L F Tang
- Department of Internal Medicine, The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - C C Zou
- Department of Internal Medicine, The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H B Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X M Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Li H, Zhang Z, Bi Y, Yang D, Zhang L, Liu J. Expression characteristics of β-catenin in scallop Chlamys farreri gonads and its role as a potential upstream gene of Dax1 through canonical Wnt signalling pathway regulating the spermatogenesis. PLoS One 2014; 9:e115917. [PMID: 25549092 PMCID: PMC4280107 DOI: 10.1371/journal.pone.0115917] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/01/2014] [Indexed: 01/15/2023] Open
Abstract
β-catenin is a key signaling molecule in the canonical Wnt pathway, which is involved in animal development. However, little information has been reported for β-catenin in bivalves. In the present study, we cloned a homolog of β-catenin from the scallop Chlamys farreri and determined its expression characteristics. The full-length cDNA of β-catenin was 3,353 bp, including a 2,511 bp open reading frame that encoded a predicted 836 amino acid protein. Level of the β-catenin mRNA increased significantly (P<0.05) with C. farreri gonadal development and presented a sexually dimorphic expression pattern in the gonads, which was significantly high in ovaries detected by quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis revealed that the β-catenin was mainly located in germ cells of the gonads, with obvious positive immune signals in the oogonia and oocytes of ovaries as well as in the spermatogonia and spermatocytes of testes, implying β-catenin might be involved in the gametogenesis of C. farreri. Furthermore, when 0.1 µg/mL and 0.2 µg/mL DKK-1 (an inhibitor of the canonical Wnt pathway) were added in vitro to culture medium containing testis cells of C. farreri, the expression of β-catenin decreased significantly detected by qRT-PCR (P<0.05), suggesting the canonical Wnt signal pathway exists in the scallop testis. Similarly, when 50 µM and 100 µM quercetin (an inhibitor of β-catenin) were added in vitro to the culture system, Dax1 expression was significantly down-regulated compared with controls (P<0.05), implying the β-catenin is an upstream gene of Dax1 and is involved in the regulation of C. farreri spermatogenesis.
Collapse
Affiliation(s)
- Hailong Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhifeng Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ying Bi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Dandan Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Litao Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianguo Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
26
|
Takeuchi M, Matsuda K, Yamaguchi S, Asakawa K, Miyasaka N, Lal P, Yoshihara Y, Koga A, Kawakami K, Shimizu T, Hibi M. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry. Dev Biol 2014; 397:1-17. [PMID: 25300581 DOI: 10.1016/j.ydbio.2014.09.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 09/26/2014] [Indexed: 02/02/2023]
Abstract
The cerebellum is involved in some forms of motor coordination and motor learning. Here we isolated transgenic (Tg) zebrafish lines that express a modified version of Gal4-VP16 (GFF) in the cerebellar neural circuits: granule, Purkinje, or eurydendroid cells, Bergmann glia, or the neurons in the inferior olive nuclei (IO) which send climbing fibers to Purkinje cells, with the transposon Tol2 system. By combining GFF lines with Tg lines carrying a reporter gene located downstream of Gal4 binding sequences (upstream activating sequence: UAS), we investigated the anatomy and developmental processes of the cerebellar neural circuitry. Combining an IO-specific Gal4 line with a UAS reporter line expressing the photoconvertible fluorescent protein Kaede demonstrated the contralateral projections of climbing fibers. Combining a granule cell-specific Gal4 line with a UAS reporter line expressing wheat germ agglutinin (WGA) confirmed direct and/or indirect connections of granule cells with Purkinje cells, eurydendroid cells, and IO neurons in zebrafish. Time-lapse analysis of a granule cell-specific Gal4 line revealed initial random movements and ventral migration of granule cell nuclei. Transgenesis of a reporter gene with another transposon Tol1 system visualized neuronal structure at a single cell resolution. Our findings indicate the usefulness of these zebrafish Gal4 Tg lines for studying the development and function of cerebellar neural circuits.
Collapse
Affiliation(s)
- Miki Takeuchi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Shingo Yamaguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Kazuhide Asakawa
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | - Pradeep Lal
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama 464-8506, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
27
|
Su CY, Kemp HA, Moens CB. Cerebellar development in the absence of Gbx function in zebrafish. Dev Biol 2013; 386:181-90. [PMID: 24183937 DOI: 10.1016/j.ydbio.2013.10.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/26/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is a well-known organizing center during vertebrate brain development. The MHB forms at the expression boundary of Otx2 and Gbx2, mutually repressive homeodomain transcription factors expressed in the midbrain/forebrain and anterior hindbrain, respectively. The genetic hierarchy of gene expression at the MHB is complex, involving multiple positive and negative feedback loops that result in the establishment of non-overlapping domains of Wnt1 and Fgf8 on either side of the boundary and the consequent specification of the cerebellum. The cerebellum derives from the dorsal part of the anterior-most hindbrain segment, rhombomere 1 (r1), which undergoes a distinctive morphogenesis to give rise to the cerebellar primordium within which the various cerebellar neuron types are specified. Previous studies in the mouse have shown that Gbx2 is essential for cerebellar development. Using zebrafish mutants we show here that in the zebrafish gbx1 and gbx2 are required redundantly for morphogenesis of the cerebellar primordium and subsequent cerebellar differentiation, but that this requirement is alleviated by knocking down Otx. Expression of fgf8, wnt1 and the entire MHB genetic program is progressively lost in gbx1-;gbx2- double mutants but is rescued by Otx knock-down. This rescue of the MHB genetic program depends on rescued Fgf signaling, however the rescue of cerebellar primordium morphogenesis is independent of both Gbx and Fgf. Based on our findings we propose a revised model for the role of Gbx in cerebellar development.
Collapse
Affiliation(s)
- Chen-Ying Su
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hilary A Kemp
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
28
|
Kaslin J, Kroehne V, Benato F, Argenton F, Brand M. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult. Neural Dev 2013; 8:9. [PMID: 23641971 PMCID: PMC3685596 DOI: 10.1186/1749-8104-8-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/11/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. RESULTS To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. CONCLUSIONS Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish brain. This implies that the post-embryonic neurogenesis in fish is linked to the production of particular neurons involved in specific brain functions, rather than to general, indeterminate growth of the CNS and all of its cell types.
Collapse
Affiliation(s)
- Jan Kaslin
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Fetscherstr, 105, Dresden, 01307, Germany.
| | | | | | | | | |
Collapse
|
29
|
Heap LA, Goh CC, Kassahn KS, Scott EK. Cerebellar output in zebrafish: an analysis of spatial patterns and topography in eurydendroid cell projections. Front Neural Circuits 2013; 7:53. [PMID: 23554587 PMCID: PMC3612595 DOI: 10.3389/fncir.2013.00053] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/09/2013] [Indexed: 01/16/2023] Open
Abstract
The cerebellum is a brain region responsible for motor coordination and for refining motor programs. While a great deal is known about the structure and connectivity of the mammalian cerebellum, fundamental questions regarding its function in behavior remain unanswered. Recently, the zebrafish has emerged as a useful model organism for cerebellar studies, owing in part to the similarity in cerebellar circuits between zebrafish and mammals. While the cell types composing their cerebellar cortical circuits are generally conserved with mammals, zebrafish lack deep cerebellar nuclei, and instead a majority of cerebellar output comes from a single type of neuron: the eurydendroid cell. To describe spatial patterns of cerebellar output in zebrafish, we have used genetic techniques to label and trace eurydendroid cells individually and en masse. We have found that cerebellar output targets the thalamus and optic tectum, and have confirmed the presence of pre-synaptic terminals from eurydendroid cells in these structures using a synaptically targeted GFP. By observing individual eurydendroid cells, we have shown that different medial-lateral regions of the cerebellum have eurydendroid cells projecting to different targets. Finally, we found topographic organization in the connectivity between the cerebellum and the optic tectum, where more medial eurydendroid cells project to the rostral tectum while lateral cells project to the caudal tectum. These findings indicate that there is spatial logic underpinning cerebellar output in zebrafish with likely implications for cerebellar function.
Collapse
Affiliation(s)
- Lucy A Heap
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
30
|
Liao WH, Cheng CH, Hung KS, Chiu WT, Chen GD, Hwang PP, Hwang SPL, Kuan YS, Huang CJ. Protein tyrosine phosphatase receptor type O (Ptpro) regulates cerebellar formation during zebrafish development through modulating Fgf signaling. Cell Mol Life Sci 2013; 70:2367-81. [PMID: 23361036 PMCID: PMC3676743 DOI: 10.1007/s00018-013-1259-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/13/2012] [Accepted: 01/03/2013] [Indexed: 02/04/2023]
Abstract
Protein activities controlled by receptor protein tyrosine phosphatases (RPTPs) play comparably important roles in transducing cell surface signals into the cytoplasm by protein tyrosine kinases. Previous studies showed that several RPTPs are involved in neuronal generation, migration, and axon guidance in Drosophila, and the vertebrate hippocampus, retina, and developing limbs. However, whether the protein tyrosine phosphatase type O (ptpro), one kind of RPTP, participates in regulating vertebrate brain development is largely unknown. We isolated the zebrafish ptpro gene and found that its transcripts are primarily expressed in the embryonic and adult central nervous system. Depletion of zebrafish embryonic Ptpro by antisense morpholino oligonucleotide knockdown resulted in prominent defects in the forebrain and cerebellum, and the injected larvae died on the 4th day post-fertilization (dpf). We further investigated the function of ptpro in cerebellar development and found that the expression of ephrin-A5b (efnA5b), a Fgf signaling induced cerebellum patterning factor, was decreased while the expression of dusp6, a negative-feedback gene of Fgf signaling in the midbrain-hindbrain boundary region, was notably induced in ptpro morphants. Further analyses demonstrated that cerebellar defects of ptpro morphants were partially rescued by inhibiting Fgf signaling. Moreover, Ptpro physically interacted with the Fgf receptor 1a (Fgfr1a) and dephosphorylated Fgfr1a in a dose-dependant manner. Therefore, our findings demonstrate that Ptpro activity is required for patterning the zebrafish embryonic brain. Specifically, Ptpro regulates cerebellar formation during zebrafish development through modulating Fgf signaling.
Collapse
Affiliation(s)
- Wei-Hao Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 104, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Damage in brain development by morpholino knockdown of zebrafish dax1. J Biosci Bioeng 2012; 113:683-8. [PMID: 22483435 DOI: 10.1016/j.jbiosc.2012.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/21/2022]
Abstract
DAX1 is an orphan nuclear receptor and involved in development of steroidogenic organs, which activates transcription of genes involved in steroidogenesis. In this study, we analyzed the function of the zebrafish dax1 during early development of central nervous systems to appear unidentified aspects of DAX1 and decrease confusions concerned with functions of DAX1 in early development of vertebrates. By whole-mount in situ hybridization of embryo at the 32 h post fertilization (hpf), expression of zebrafish dax1 was detected around the forebrain, midbrain, hindbrain, and the extending tail tip. Embryos injected with zebrafish dax1 morpholino antisense nucleotide (MO) exhibited delayed development. When the developmental stage of wild type embryos was at Prim-15 (32 hpf), zebrafish dax1MO injected embryos were at Prim-5 (24 hpf). Concurrently with developmental delay, the MO injected embryos showed high mortality. At 48 hpf, the MO injected embryos exhibited abnormal development in the central nervous systems. The enlarged tectum and the protruded rhombomeres were observed. Moreover, development of central nervous systems, especially midbrain-hindbrain boundary, became narrower. At 5 day post fertilization, the MO injected embryos formed edemas around head, pericardial sac and abdomen. Collectively, our results indicated that the zebrafish dax1 is important for brain development.
Collapse
|
32
|
Hibi M, Shimizu T. Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol 2012; 72:282-301. [DOI: 10.1002/dneu.20875] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Baumgart EV, Barbosa JS, Bally-Cuif L, Götz M, Ninkovic J. Stab wound injury of the zebrafish telencephalon: a model for comparative analysis of reactive gliosis. Glia 2011; 60:343-57. [PMID: 22105794 DOI: 10.1002/glia.22269] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 10/21/2011] [Indexed: 02/06/2023]
Abstract
Reactive glia, including astroglia and oligodendrocyte progenitors (OPCs) are at the core of the reaction to injury in the mammalian brain with initially beneficial and later partially adverse functions such as scar formation. Given the different glial composition in the adult zebrafish brain with radial ependymoglia but no parenchymal astrocytes, we examined the glial response to an invasive stab wound injury model in the adult zebrafish telencephalon. Strikingly, already a few days after injury the wound was closed without any scar tissue. Similar to mammals, microglia cells reacted first and accumulated close to the injury site, while neither GFAP+ radial ependymoglia nor adult OPCs were recruited to the injury site. Moreover, OPCs failed to increase their proliferation after this injury, while the number of proliferating GFAP+ glia was increased until 7 days after injury. Importantly, neurogenesis was also increased after injury, generating additional neurons recruited to the parenchyma which survived for several months. Thus, these data suggest that the specific glial environment in the adult zebrafish telencephalon is not only permissive for long-term neuronal survival, but avoids scar formation. Invasive injury in the adult zebrafish telencephalon may therefore provide a useful model to untangle the molecular mechanisms involved in these beneficial glial reactions.
Collapse
Affiliation(s)
- Emily Violette Baumgart
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
34
|
Münzel EJ, Schaefer K, Obirei B, Kremmer E, Burton EA, Kuscha V, Becker CG, Brösamle C, Williams A, Becker T. Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia 2011; 60:253-70. [PMID: 22020875 DOI: 10.1002/glia.21260] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/05/2011] [Indexed: 01/07/2023]
Abstract
The zebrafish has become an important model organism to study myelination during development and after a lesion of the adult central nervous system (CNS). Here, we identify Claudin k as a myelin-associated protein in zebrafish and determine its localization during development and adult optic nerve regeneration. We find Claudin k in subcellular compartments consistent with location in autotypic tight junctions of oligodendrocytes and myelinating Schwann cells. Expression starts in the hindbrain at 2 days (mRNA) and 3 days (protein) postfertilization and is maintained in adults. A newly generated claudin k:green fluorescent protein (GFP) reporter line allowed us to characterize oligodendrocytes in the adult retina that express Claudin k and olig2, but not P0 and uniquely only form loose wraps of membrane around axons. After a crush of the adult optic nerve, Claudin k protein levels were first reduced and then recovered within 4 weeks postlesion, concomitant with optic nerve myelin de- and regeneration. During optic nerve regeneration, oligodendrocytes, many of which were newly generated, repopulated the lesion site and exhibited increasing morphological complexity over time. Thus, Claudin k is a novel myelin-associated protein expressed by oligodendrocytes and Schwann cells from early stages of wrapping and myelin formation in zebrafish development and adult regeneration, suggesting important functions of the gene for myelin formation and maintenance. Our Claudin k antibodies and claudin k:GFP reporter line represent excellent ways to visualize oligodendrocyte and Schwann cell differentiation in vivo.
Collapse
Affiliation(s)
- Eva Jolanda Münzel
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wullimann MF, Mueller T, Distel M, Babaryka A, Grothe B, Köster RW. The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Front Neuroanat 2011; 5:27. [PMID: 21559349 PMCID: PMC3085262 DOI: 10.3389/fnana.2011.00027] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/06/2011] [Indexed: 12/21/2022] Open
Abstract
This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes) share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP) giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells) and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei). As for the lower rhombic lip (LRL), gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins) and partially primary auditory nuclei (likely convergently evolved) from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of) the inferior olive (climbing fiber origin) and (inhibitory cells of ) cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologs (i.e., eurydendroid cells) from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogs and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei) in jawless fishes
Collapse
Affiliation(s)
- Mario F Wullimann
- Graduate School of Systemic Neurosciences and Department Biology II, Ludwig-Maximilians-Universität Munich Planegg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Sajan SA, Waimey KE, Millen KJ. Novel approaches to studying the genetic basis of cerebellar development. THE CEREBELLUM 2011; 9:272-83. [PMID: 20387026 DOI: 10.1007/s12311-010-0169-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The list of genes that when mutated cause disruptions in cerebellar development is rapidly increasing. The study of both spontaneous and engineered mouse mutants has been essential to this progress, as it has revealed much of our current understanding of the developmental processes required to construct the mature cerebellum. Improvements in brain imaging, such as magnetic resonance imaging (MRI) and the emergence of better classification schemes for human cerebellar malformations, have recently led to the identification of a number of genes which cause human cerebellar disorders. In this review we argue that synergistic approaches combining classical molecular techniques, genomics, and mouse models of human malformations will be essential to fuel additional discoveries of cerebellar developmental genes and mechanisms.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Human Genetics, The University of Chicago, 920 E 58th Street, CLSC 319, Chicago, IL 60637, USA
| | | | | |
Collapse
|
38
|
Feijóo CG, Oñate MG, Milla LA, Palma VA. Sonic hedgehog (Shh)-Gli signaling controls neural progenitor cell division in the developing tectum in zebrafish. Eur J Neurosci 2011; 33:589-98. [PMID: 21219478 DOI: 10.1111/j.1460-9568.2010.07560.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite considerable progress, the mechanisms that control neural progenitor differentiation and behavior, as well as their functional integration into adult neural circuitry, are far from being understood. Given the complexity of the mammalian brain, non-mammalian models provide an excellent model to study neurogenesis, including both the cellular composition of the neurogenic microenvironment, and the factors required for precursor growth and maintenance. In particular, we chose to address the question of the control of progenitor proliferation by Sonic hedgehog (Shh) using the zebrafish dorsal mesencephalon, known as the optic tectum (OT), as a model system. Here we show that either inhibiting pharmacologically or eliminating hedgehog (Hh) signaling by using mutants that lack essential components of the Hh pathway reduces neural progenitor cell proliferation affecting neurogenesis in the OT. On the contrary, pharmacological gain-of-function experiments result in significant increase in proliferation. Importantly, Shh-dependent function controls neural progenitor cell behavior as sox2-positive cell populations were lost in the OT in the absence of Hh signaling, as evidenced in slow-muscle-omitted (smu) mutants and with timed cyclopamine inhibition. Expressions of essential components of the Hh pathway reveal for the first time a late dorsal expression in the embryonic OT. Our observations argue strongly for a role of Shh in neural progenitor biology in the OT and provide comparative data to our current understanding of progenitor/stem cell mechanisms that place Shh as a key niche factor in the dorsal brain.
Collapse
Affiliation(s)
- Carmen G Feijóo
- Center for Genomics of the Cell, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | |
Collapse
|
39
|
Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ, Scott E, Higashijima SI, Hibi M. Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol 2010; 343:1-17. [PMID: 20388506 DOI: 10.1016/j.ydbio.2010.03.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/30/2023]
Abstract
In mammals, cerebellar neurons are categorized as glutamatergic or GABAergic, and are derived from progenitors that express the proneural genes atoh1 or ptf1a, respectively. In zebrafish, three atoh1 genes, atoh1a, atoh1b, and atoh1c, are expressed in overlapping but distinct expression domains in the upper rhombic lip (URL): ptf1a is expressed exclusively in the ventricular zone (VZ). Using transgenic lines expressing fluorescent proteins under the control of the regulatory elements of atoh1a and ptf1a, we traced the lineages of the cerebellar neurons. The atoh1(+) progenitors gave rise not only to granule cells but also to neurons of the anteroventral rhombencephalon. The ptf1a(+) progenitors generated Purkinje cells. The olig2(+) eurydendroid cells, which are glutamatergic, were derived mostly from ptf1a(+) progenitors in the VZ but some originated from the atoh1(+) progenitors in the URL. In the adult cerebellum, atoh1a, atoh1b, and atoh1c are expressed in the molecular layer of the valvula cerebelli and of the medial corpus cerebelli, and ptf1a was detected in the VZ. The proneural gene expression patterns coincided with the sites of proliferating neuronal progenitors in the adult cerebellum. Our data indicate that proneural gene-linked neurogenesis is evolutionarily conserved in the cerebellum among vertebrates, and that the continuously generated neurons help remodel neural circuits in the adult zebrafish cerebellum.
Collapse
Affiliation(s)
- Shuichi Kani
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
For more than a decade, the zebrafish has proven to be an excellent model organism to investigate the mechanisms of neurogenesis during development. The often cited advantages, namely external development, genetic, and optical accessibility, have permitted direct examination and experimental manipulations of neurogenesis during development. Recent studies have begun to investigate adult neurogenesis, taking advantage of its widespread occurrence in the mature zebrafish brain to investigate the mechanisms underlying neural stem cell maintenance and recruitment. Here we provide a comprehensive overview of the tools and techniques available to study neurogenesis in zebrafish both during development and in adulthood. As useful resources, we provide tables of available molecular markers, transgenic, and mutant lines. We further provide optimized protocols for studying neurogenesis in the adult zebrafish brain, including in situ hybridization, immunohistochemistry, in vivo lipofection and electroporation methods to deliver expression constructs, administration of bromodeoxyuridine (BrdU), and finally slice cultures. These currently available tools have put zebrafish on par with other model organisms used to investigate neurogenesis.
Collapse
Affiliation(s)
- Prisca Chapouton
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
41
|
Rieger S, Senghaas N, Walch A, Köster RW. Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol 2009; 7:e1000240. [PMID: 19901980 PMCID: PMC2766073 DOI: 10.1371/journal.pbio.1000240] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 10/02/2009] [Indexed: 12/17/2022] Open
Abstract
Imaging cerebellar granule neurons in zebrafish embryos reveals a further role for Cadherin-2 in neurogenesis: regulating cohesive and directional granule cell migration via intra-membranous Cadherin-2 relocalisation and centrosome stabilization. Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations. As the vertebrate nervous system develops, neurons migrate from proliferation zones to their later place of function. Adhesion molecules have been implicated as key players in regulating cellular motility. In addition, the centrosome (the main microtubule organizing center of the cell) orients into the direction of neuronal migration. In this study we assign the trans-membrane adhesion molecule Cadherin-2 with an important function in the migration of granule neurons in the cerebellum, by interconnecting adhesion with directionality of migration. Time-lapse analysis in transparent zebrafish embryos revealed that Cadherin-2 enables granule neurons to form ‘chain’-like structures during migration. In addition, this adhesion molecule stabilized the position of the centrosome at the leading edge of the migrating neuron. In vivo tracing of a fluorescent Cadherin-2 reporter molecule showed that during individual migratory steps of a granule neuron, Cadherin-2 is shifted along the cell membrane in contact with chain-migrating neighboring neurons to the front compartment of migrating cells. Cadherin-2 is a crucial component of adherens junctions, which are connected via microtubules to the centrosome. We propose that the forward translocation of Cadherin-2-containing adherens junctions stabilizes the centrosome to the cell's front. Cadherin-2 thus transmits cell-cell contact modulation into directional migration of cerebellar granule neurons.
Collapse
Affiliation(s)
- Sandra Rieger
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Niklas Senghaas
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Axel Walch
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Reinhard W. Köster
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- * E-mail:
| |
Collapse
|
42
|
The autism susceptibility gene met regulates zebrafish cerebellar development and facial motor neuron migration. Dev Biol 2009; 335:78-92. [PMID: 19732764 DOI: 10.1016/j.ydbio.2009.08.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/31/2009] [Accepted: 08/17/2009] [Indexed: 12/31/2022]
Abstract
During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism. In mouse, Met signaling has been shown to regulate cerebellum development. Since abnormalities in cerebellar structure have been reported in some autistic patients, we have used the zebrafish to address the role of Met signaling during cerebellar development and thus further our understanding of the molecular basis of autism. We find that zebrafish met is expressed in the cerebellar primordium, later localizing to the ventricular zone (VZ), with the hgf1 and hgf2 ligand genes expressed in surrounding tissues. Morpholino knockdown of either Met or its Hgf ligands leads to a significant reduction in the size of the cerebellum, primarily as a consequence of reduced proliferation. Met signaling knockdown disrupts specification of VZ-derived cell types, and also reduces granule cell numbers, due to an early effect on cerebellar proliferation and/or as an indirect consequence of loss of signals from VZ-derived cells later in development. These patterning defects preclude analysis of cerebellar neuronal migration, but we have found that Met signaling is necessary for migration of hindbrain facial motor neurons. In summary, we have described roles for Met signaling in coordinating growth and cell type specification within the developing cerebellum, and in migration of hindbrain neurons. These functions may underlie the correlation between altered MET regulation and autism spectrum disorders.
Collapse
|
43
|
Schebesta M, Serluca FC. olig1 Expression identifies developing oligodendrocytes in zebrafish and requires hedgehog and notch signaling. Dev Dyn 2009; 238:887-98. [PMID: 19253391 DOI: 10.1002/dvdy.21909] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myelin, the isolating sheath around large diameter axons, is formed in the central nervous system (CNS) by oligodendrocytes. We isolated the zebrafish ortholog of olig1, a bHLH transcription factor, and describe the origin and development of oligodendrocytes in the zebrafish brain. Olig1:mem-eGFP transgenic animals demonstrate the highly dynamic nature of oligodendrocyte membrane processes, providing a tool for studying in vivo oligodendrocyte development. Formation of oligodendrocytes and initiation of olig1 expression are under the control of long-range hedgehog and notch signaling while maintenance of olig1 expression only depends on hedgehog. Over-expression of olig1 did not affect myelin formation in the brain and combined over-expression of olig1 and olig2 could not rescue loss of hedgehog signaling, indicating that critical factors other than olig1 and olig2 are necessary. Lastly, knockdown of Olig1 in an Olig2-sensitized background did result in defects in CNS myelination, indicating a functional overlap between Olig1 and Olig2 proteins.
Collapse
Affiliation(s)
- Michael Schebesta
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
44
|
Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima SI, Hibi M. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 2009; 330:406-26. [PMID: 19371731 DOI: 10.1016/j.ydbio.2009.04.013] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 01/11/2023]
Abstract
The cerebellum is important for the integration of sensory perception and motor control, but its structure has mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express parvalbumin7, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglut1(+) granule cells and vglut2(high) cells, which receive Purkinje cell inputs; some vglut2(high) cells are eurydendroid cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2(+) neurons in the adult cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar Parvalbumin7 and Vglut1 expression profiles as the cerebellum. The differentiation of GABAergic and glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-Parvalbumin7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide a platform for future studies of zebrafish cerebellar development.
Collapse
Affiliation(s)
- Young-Ki Bae
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wood JD, Bonath F, Kumar S, Ross CA, Cunliffe VT. Disrupted-in-schizophrenia 1 and neuregulin 1 are required for the specification of oligodendrocytes and neurones in the zebrafish brain. Hum Mol Genet 2008; 18:391-404. [DOI: 10.1093/hmg/ddn361] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
46
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|