1
|
Matsuoka M, Uchibe K, Tang N, Tian H, Suzuki A, Oichi T, Usami Y, Alferiev I, Otsuru S, Abzug JM, Herzenberg JE, Pacifici M, Enomoto-Iwamoto M, Chorny M, Iwamoto M. Retinoid-impregnated nanoparticles enable control of bone growth by site-specific modulation of endochondral ossification in mice. J Bone Miner Res 2025; 40:535-547. [PMID: 39883086 PMCID: PMC12010157 DOI: 10.1093/jbmr/zjaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Growth-plate (GP) injures in limbs and other sites can impair GP function and cause deceleration of bone growth, leading to progressive bone lengthening imbalance, deformities and/or physical discomfort, decreased motion and pain. At present, surgical interventions are the only means available to correct these conditions by suppressing the GP activity in the unaffected limb and/or other bones in the ipsilateral region. Here, we aimed to develop a pharmacologic treatment of GP growth imbalance that involves local application of nanoparticles (NP)-based controlled release of a selective retinoic acid nuclear receptor gamma (RARγ) agonist drug. When RARγ agonist-loaded NP were implanted near the medial and lateral sides of proximal tibial growth plate in juvenile C57BL/6J mice, the GP underwent involution and closure. Overall tibia length was shortened compared to the contralateral element implanted with drug-free control NP. Importantly, when the RARγ agonist NP were implanted on the lateral side only, the adjacent epiphysis tilted toward the lateral side, leading to apical angulation of the tibia. In contrast to the local selectivity of these responses, systemic administration of RARγ agonists led to GP closure at many sites, inhibiting skeletal growth over time. Agonists for RARα and RARβ elicited no obvious responses over parallel regimens. Our findings provide novel evidence that RARγ agonist-loaded NP can control activity, function and directionality of a targeted GP, offering a potential and clinically-relevant alternative or supplementation to surgical correction of limb length discrepancy and angular deformities.
Collapse
Affiliation(s)
- Masatake Matsuoka
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenta Uchibe
- Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Maxillofacial Anatomy and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ningfeng Tang
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hongying Tian
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Akiko Suzuki
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Takeshi Oichi
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yu Usami
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ivan Alferiev
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joshua M Abzug
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - John E Herzenberg
- International Center for Limb Lengthening, Sinai Hospital, Baltimore, MD, United States
| | - Maurizio Pacifici
- Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michael Chorny
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Hsiao EC, Pacifici M. Palovarotene (Sohonos), a synthetic retinoid for reducing new heterotopic ossification in fibrodysplasia ossificans progressiva: history, present, and future. JBMR Plus 2025; 9:ziae147. [PMID: 39677926 PMCID: PMC11646086 DOI: 10.1093/jbmrpl/ziae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Retinoids are metabolic derivatives of vitamin A and play crucial roles in the regulation of various tissues and organs during prenatal and postnatal development. Active retinoids, like all-trans-retinoic acid, are synthesized in the cytoplasm and subsequently interact with nuclear retinoic acid receptors (RARα, RARβ, and RARγ) to enhance transcription of specific genes. In the absence of retinoids, RARs can still bind to response elements of target genes but repress their transcription. Chondrogenic cell differentiation and cartilage maturation in the growth plate require the absence of retinoid signaling and transcriptional repression by unliganded RARs. This led to the hypothesis that synthetic retinoid agonists may be pharmacological agents to inhibit those cellular processes and counter the excessive formation of cartilage and bone in conditions like heterotopic ossification (HO). HO can be instigated by diverse culprits including trauma, invasive surgeries, inflammatory disorders, or genetic conditions. One such genetic disease is fibrodysplasia ossificans progressiva (FOP), a rare disorder driven by activating mutations in the ACVR1 gene. Patients with FOP have severe and progressive HO formation in soft tissues, leading to extensive permanent loss of mobility and increased mortality. Synthetic retinoid agonists selective for RARα or RARγ showed efficacy against injury-induced and genetic HO in mouse models. The RARγ agonists showed the highest effectiveness, with palovarotene being selected for clinical trials in patients with FOP. Post hoc analyses of phase II and phase III clinical trials showed that palovarotene has significant disease-modifying effects for FOP, but with significant risks such as premature growth plate closure in some younger subjects. This review provides an overview of retinoid and RAR roles in skeletal development and discusses the identification of palovarotene as a potential FOP therapy, the clinical data supporting its regulatory approval in some countries, and the potential applications of this drug for other relevant disorders besides FOP.
Collapse
Affiliation(s)
- Edward C Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine; the Program in Craniofacial Biology; The Institute for Human Genetics; and The Ely and Edythe Broad Institute for Regeneration Medicine, University of California—San Francisco, San Francisco, CA 94143, United States
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| |
Collapse
|
3
|
Matsuoka M, Uchibe K, Tang N, Tian H, Suzuki A, Oichi T, Usami Y, Alferiev I, Otsuru S, Abzug JM, Herzenberg JE, Pacifici M, Enomoto-Iwamoto M, Chorny M, Iwamoto M. Retinoid-impregnated nanoparticles enable control of bone growth by site-specific modulation of endochondral ossification in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622655. [PMID: 39605497 PMCID: PMC11601462 DOI: 10.1101/2024.11.08.622655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Growth-plate (GP) injures in limbs and other sites can impair GP function and cause deceleration of bone growth, leading to progressive bone lengthening imbalance, deformities and/or physical discomfort, decreased motion and pain. At present, surgical interventions are the only means available to correct these conditions by suppressing the GP activity in the unaffected limb and/or other bones in the ipsilateral region. Here, we aimed to develop a pharmacologic treatment of GP growth imbalance that involves local application of nanoparticles-based controlled release of a selective retinoic acid nuclear receptor gamma (RARγ) agonist drug. When RARγ agonist-loaded nanoparticles were implanted near the medial and lateral sides of proximal tibial growth plate in juvenile C57BL/6j mice, the GP underwent involution and closure. Overall tibia length was shortened compared to the contralateral element implanted with drug-free control nanoparticles. Importantly, when the RARγ agonist nanoparticles were implanted on the lateral side only, the adjacent epiphysis tilted toward the lateral site, leading to apical angulation of the tibia. In contrast to the local selectivity of these responses, systemic administration of RARγ agonists led to GP closure at many sites, inhibiting skeletal growth over time. Agonists for RARα and RARβ elicited no obvious responses over parallel regimens. Our findings provide novel evidence that RARγ agonist-loaded nanoparticles can control activity, function and directionality of a targeted GP, offering a potential and clinically-relevant alternative or supplementation to surgical correction of limb length discrepancy and angular deformities. Lay summary Growth-plates (physes), which are cartilage tissues near the ends of bones, support normal bone growth in children. Growth plate injures in limbs and other sites can impair growth plate function, leading to inhibited or imbalanced bone growth, skeletal deformities, decreased motion, discomfort or pain. At present, surgical interventions are the only means available to correct these conditions. Here, we aimed to develop a pharmacologic treatment for bone growth imbalance. Nanoparticles loaded with a selective agonist for the retinoic acid nuclear receptor gamma were prepared and implanted near the tibial growth plate in juvenile mice. The growth plate underwent involution and closure, and overall tibia length was shortened compared to the contralateral element implanted with drug-free control nanoparticles. Importantly, when the same drug nanoparticles were implanted in only one side of the tibia, the tibia was tilted toward the injection site. Our findings provide novel evidence that retinoic acid receptor gamma agonist-loaded nanoparticles can control activity, function and directionality of a targeted growth plate, offering a potential and clinically-relevant alternative or supplementation to surgical correction of limb length imbalances and deformities.
Collapse
|
4
|
Garcia SA, Wilson K, Tang N, Tian H, Oichi T, Gunawardena AT, Chorny M, Alferiev IS, Herzenberg JE, Ng VY, Iwamoto M, Enomoto-Iwamoto M. Analysis of the Actions of RARγ Agonists on Growing Osteochondromas in a Mouse Model. Int J Mol Sci 2024; 25:7610. [PMID: 39062860 PMCID: PMC11277217 DOI: 10.3390/ijms25147610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The actions of the retinoic acid nuclear receptor gamma (RARγ) agonist, palovarotene, on pre-existing osteochondromas were investigated using a mouse multiple osteochondroma model. This approach was based on the knowledge that patients often present to the clinic after realizing the existence of osteochondroma masses, and the findings from preclinical investigations are the effects of drugs on the initial formation of osteochondromas. Systemic administration of palovarotene, with increased doses (from 1.76 to 4.0 mg/kg) over time, fully inhibited tumor growth, keeping the tumor size (0.31 ± 0.049 mm3) similar to the initial size (0.27 ± 0.031 mm3, p = 0.66) while the control group tumor grew (1.03 ± 0.23 mm3, p = 0.023 to the drug-treated group). Nanoparticle (NP)-based local delivery of the RARγ agonist also inhibited the growth of osteochondromas at an early stage (Control: 0.52 ± 0.11 mm3; NP: 0.26 ± 0.10, p = 0.008). Transcriptome analysis revealed that the osteoarthritis pathway was activated in cultured chondrocytes treated with palovarotene (Z-score = 2.29), with the upregulation of matrix catabolic genes and the downregulation of matrix anabolic genes, consistent with the histology of palovarotene-treated osteochondromas. A reporter assay performed in cultured chondrocytes demonstrated that the Stat3 pathway, but not the Stat1/2 pathway, was stimulated by RARγ agonists. The activation of Stat3 by palovarotene was confirmed using immunoblotting and immunohistochemistry. These findings suggest that palovarotene treatment is effective against pre-existing osteochondromas and that the Stat3 pathway is involved in the antitumor actions of palovarotene.
Collapse
Affiliation(s)
- Sonia A. Garcia
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.A.G.); (K.W.); (N.T.); (H.T.); (T.O.); (V.Y.N.); (M.I.)
| | - Kimberly Wilson
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.A.G.); (K.W.); (N.T.); (H.T.); (T.O.); (V.Y.N.); (M.I.)
| | - Ningfeng Tang
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.A.G.); (K.W.); (N.T.); (H.T.); (T.O.); (V.Y.N.); (M.I.)
| | - Hongying Tian
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.A.G.); (K.W.); (N.T.); (H.T.); (T.O.); (V.Y.N.); (M.I.)
| | - Takeshi Oichi
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.A.G.); (K.W.); (N.T.); (H.T.); (T.O.); (V.Y.N.); (M.I.)
- Department of Orthopedics, Teikyo University School of Medicine, Tokyo 1738608, Japan
| | - Aruni T. Gunawardena
- Department of Biomechanics, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA;
| | - Michael Chorny
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (M.C.); (I.S.A.)
| | - Ivan S. Alferiev
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (M.C.); (I.S.A.)
| | - John E. Herzenberg
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA;
| | - Vincent Y. Ng
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.A.G.); (K.W.); (N.T.); (H.T.); (T.O.); (V.Y.N.); (M.I.)
| | - Masahiro Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.A.G.); (K.W.); (N.T.); (H.T.); (T.O.); (V.Y.N.); (M.I.)
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.A.G.); (K.W.); (N.T.); (H.T.); (T.O.); (V.Y.N.); (M.I.)
| |
Collapse
|
5
|
Sheriff O, Ahbara AM, Haile A, Alemayehu K, Han JL, Mwacharo JM. Whole-genome resequencing reveals genomic variation and dynamics in Ethiopian indigenous goats. Front Genet 2024; 15:1353026. [PMID: 38854428 PMCID: PMC11156998 DOI: 10.3389/fgene.2024.1353026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Ethiopia has about 52 million indigenous goats with marked phenotypic variability, which is the outcome of natural and artificial selection. Here, we obtained whole-genome sequence data of three Ethiopian indigenous goat populations (Arab, Fellata, and Oromo) from northwestern Ethiopia and analyzed their genome-wide genetic diversity, population structure, and signatures of selection. We included genotype data from four other Ethiopian goat populations (Abergelle, Keffa, Gumuz, and Woyto-Guji) and goats from Asia; Europe; and eastern, southern, western, and northern Africa to investigate the genetic predisposition of the three Ethiopian populations and performed comparative genomic analysis. Genetic diversity analysis showed that Fellata goats exhibited the lowest heterozygosity values (Ho = 0.288 ± 0.005 and He = 0.334 ± 0.0001). The highest values were observed in Arab goats (Ho = 0.310 ± 0.010 and He = 0.347 ± 4.35e-05). A higher inbreeding coefficient (FROH = 0.137 ± 0.016) was recorded for Fellata goats than the 0.105 ± 0.030 recorded for Arab and the 0.112 ± 0.034 recorded for Oromo goats. This indicates that the Fellata goat population should be prioritized in future conservation activities. The three goat populations showed the majority (∼63%) of runs of homozygosity in the shorter (100-150 Kb) length category, illustrating ancient inbreeding and/or small founder effects. Population relationship and structure analysis separated the Ethiopian indigenous goats into two distinct genetic clusters lacking phylogeographic structure. Arab, Fellata, Oromo, Abergelle, and Keffa represented one genetic cluster. Gumuz and Woyto-Guji formed a separate cluster and shared a common genetic background with the Kenyan Boran goat. Genome-wide selection signature analysis identified nine strongest regions spanning 163 genes influencing adaptation to arid and semi-arid environments (HOXC12, HOXC13, HOXC4, HOXC6, and HOXC9, MAPK8IP2), immune response (IL18, TYK2, ICAM3, ADGRG1, and ADGRG3), and production and reproduction (RARG and DNMT1). Our results provide insights into a thorough understanding of genetic architecture underlying selection signatures in Ethiopian indigenous goats in a semi-arid tropical environment and deliver valuable information for goat genetic improvement, conservation strategy, genome-wide association study, and marker-assisted breeding.
Collapse
Affiliation(s)
- Oumer Sheriff
- Department of Animal Science, Assosa University, Assosa, Ethiopia
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abulgasim M. Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
| | - Aynalem Haile
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Kefyalew Alemayehu
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
- Ethiopian Agricultural Transformation Institute, Amhara Agricultural Transformation Center, Bahir Dar, Ethiopia
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
| | - Joram M. Mwacharo
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Liu Z, Shi C, Wang B, Zhang X, Ding J, Gao P, Yuan X, Liu Z, Zhang H. Cytochrome P450 enzymes in the black-spotted frog ( Pelophylax nigromaculatus): molecular characterization and upregulation of expression by sulfamethoxazole. Front Physiol 2024; 15:1412943. [PMID: 38784115 PMCID: PMC11112259 DOI: 10.3389/fphys.2024.1412943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cytochrome P450 (CYP) enzymes are crucial for the detoxification of xenobiotics, cellular metabolism, and homeostasis. This study investigated the molecular characterization of CYP enzymes in the black-spotted frog, Pelophylax nigromaculatus, and examined the regulation of CYP expression in response to chronic exposure to the antibiotic sulfamethoxazole (SMX) at various environmental concentrations (0, 1, 10, and 100 μg/L). The full-length cDNA of Pn-CYP26B1 was identified. The sequence included open reading frames of 1,536 bp, encoding proteins comprising 511 amino acids. The signature motif, FxxGxxxCxG, was highly conserved when compared with a number of selected animal species. SMX significantly upregulated the expression of the protein CYP26B1 in frog livers at concentrations of 1 and 10 μg/L. SMX showed an affinity for CYP26B1 of -7.6 kcal/mol, indicating a potential mechanism for SMX detoxification or adaptation of the frog. These findings contributed to our understanding of the environmental impact of antibiotics on amphibian species and underscored the importance of CYP enzymes in maintaining biochemical homeostasis under exposure to xenobiotic stress.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, China
| | - Chaoli Shi
- Hangzhou Normal University, Hangzhou, China
| | | | | | - Jiafeng Ding
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Panpan Gao
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Xia Yuan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| |
Collapse
|
7
|
Zhou T, Chen Y, Liao Z, Zhang L, Su D, Li Z, Yang X, Ke X, Liu H, Chen Y, Weng R, Shen H, Xu C, Wan Y, Xu R, Su P. Spatiotemporal Characterization of Human Early Intervertebral Disc Formation at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206296. [PMID: 36965031 DOI: 10.1002/advs.202206296] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 05/18/2023]
Abstract
The intervertebral disc (IVD) acts as a fibrocartilaginous joint to anchor adjacent vertebrae. Although several studies have demonstrated the cellular heterogeneity of adult mature IVDs, a single-cell transcriptomic atlas mapping early IVD formation is still lacking. Here, the authors generate a spatiotemporal and single cell-based transcriptomic atlas of human IVD formation at the embryonic stage and a comparative mouse transcript landscape. They identify two novel human notochord (NC)/nucleus pulposus (NP) clusters, SRY-box transcription factor 10 (SOX10)+ and cathepsin K (CTSK)+ , that are distributed in the early and late stages of IVD formation and they are validated by lineage tracing experiments in mice. Matrisome NC/NP clusters, T-box transcription factor T (TBXT)+ and CTSK+ , are responsible for the extracellular matrix homeostasis. The IVD atlas suggests that a subcluster of the vertebral chondrocyte subcluster might give rise to an inner annulus fibrosus of chondrogenic origin, while the fibroblastic outer annulus fibrosus preferentially expresseds transgelin and fibromodulin . Through analyzing intercellular crosstalk, the authors further find that notochordal secreted phosphoprotein 1 (SPP1) is a novel cue in the IVD microenvironment, and it is associated with IVD development and degeneration. In conclusion, the single-cell transcriptomic atlas will be leveraged to develop preventative and regenerative strategies for IVD degeneration.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuling Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Ke
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ricong Weng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Wan
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
8
|
Pignolo RJ, Hsiao EC, Al Mukaddam M, Baujat G, Berglund SK, Brown MA, Cheung AM, De Cunto C, Delai P, Haga N, Kannu P, Keen R, Le Quan Sang KH, Mancilla EE, Marino R, Strahs A, Kaplan FS. Reduction of New Heterotopic Ossification (HO) in the Open-Label, Phase 3 MOVE Trial of Palovarotene for Fibrodysplasia Ossificans Progressiva (FOP). J Bone Miner Res 2023; 38:381-394. [PMID: 36583535 DOI: 10.1002/jbmr.4762] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare, severely disabling genetic disorder of progressive heterotopic ossification (HO). The single-arm, open-label, phase 3 MOVE trial (NCT03312634) assessed efficacy and safety of palovarotene, a selective retinoic acid receptor gamma agonist, in patients with FOP. Findings were compared with FOP natural history study (NHS; NCT02322255) participants untreated beyond standard of care. Patients aged ≥4 years received palovarotene once daily (chronic: 5 mg; flare-up: 20 mg for 4 weeks, then 10 mg for ≥8 weeks; weight-adjusted if skeletally immature). The primary endpoint was annualized change in new HO volume versus NHS participants (by low-dose whole-body computed tomography [WBCT]), analyzed using a Bayesian compound Poisson model (BcPM) with square-root transformation. Twelve-month interim analyses met futility criteria; dosing was paused. An independent Data Monitoring Committee recommended trial continuation. Post hoc 18-month interim analyses utilized BcPM with square-root transformation and HO data collapsed to equalize MOVE and NHS visit schedules, BcPM without transformation, and weighted linear mixed-effects (wLME) models, alongside prespecified analysis. Safety was assessed throughout. Eighteen-month interim analyses included 97 MOVE and 101 NHS individuals with post-baseline WBCT. BcPM analyses without transformation showed 99.4% probability of any reduction in new HO with palovarotene versus NHS participants (with transformation: 65.4%). Mean annualized new HO volume was 60% lower in MOVE versus the NHS. wLME results were similar (54% reduction fitted; nominal p = 0.039). All palovarotene-treated patients reported ≥1 adverse event (AE); 97.0% reported ≥1 retinoid-associated AE; 29.3% reported ≥1 serious AE, including premature physeal closure (PPC)/epiphyseal disorder in 21/57 (36.8%) patients aged <14 years. Post hoc computational analyses using WBCT showed decreased vertebral bone mineral density, content, and strength, and increased vertebral fracture risk in palovarotene-treated patients. Thus, post hoc analyses showed evidence for efficacy of palovarotene in reducing new HO in FOP, but high risk of PPC in skeletally immature patients. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, the UCSF Metabolic Bone Clinic, the Eli and Edythe Broad Institute for Regeneration Medicine, and the Institute of Human Genetics, Department of Medicine, and the UCSF Program in Craniofacial Biology, University of California-San Francisco, San Francisco, CA, USA
| | - Mona Al Mukaddam
- Departments of Orthopaedic Surgery & Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Geneviève Baujat
- Département de Génétique, Institut IMAGINE and Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Staffan K Berglund
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Matthew A Brown
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Genomics England Ltd, London, UK
| | - Angela M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Carmen De Cunto
- Pediatric Rheumatology Section, Department of Pediatrics, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Patricia Delai
- Centro de Pesquisa Clinica, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nobuhiko Haga
- Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Peter Kannu
- Hospital for Sick Children, Toronto, ON, Canada
| | - Richard Keen
- Centre for Metabolic Bone Disease, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Kim-Hanh Le Quan Sang
- Département de Génétique, Institut IMAGINE and Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edna E Mancilla
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Frederick S Kaplan
- Departments of Orthopaedic Surgery & Medicine, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Li DX, Ma Z, Szojka ARA, Lan X, Kunze M, Mulet-Sierra A, Westover L, Adesida AB. Non-hypertrophic chondrogenesis of mesenchymal stem cells through mechano-hypoxia programing. J Tissue Eng 2023; 14:20417314231172574. [PMID: 37216035 PMCID: PMC10192798 DOI: 10.1177/20417314231172574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/09/2023] [Indexed: 05/24/2023] Open
Abstract
Cartilage tissue engineering aims to generate functional replacements to treat cartilage defects from damage and osteoarthritis. Human bone marrow-derived mesenchymal stem cells (hBM-MSC) are a promising cell source for making cartilage, but current differentiation protocols require the supplementation of growth factors like TGF-β1 or -β3. This can lead to undesirable hypertrophic differentiation of hBM-MSC that progress to bone. We have found previously that exposing engineered human meniscus tissues to physiologically relevant conditions of the knee (mechanical loading and hypoxia; hence, mechano-hypoxia conditioning) increased the gene expression of hyaline cartilage markers, SOX9 and COL2A1, inhibited hypertrophic marker COL10A1, and promoted bulk mechanical property development. Adding further to this protocol, we hypothesize that combined mechano-hypoxia conditioning with TGF-β3 growth factor withdrawal will promote stable, non-hypertrophic chondrogenesis of hBM-MSC embedded in an HA-hydrogel. We found that the combined treatment upregulated many cartilage matrix- and development-related markers while suppressing many hypertrophic- and bone development-related markers. Tissue level assessments with biochemical assays, immunofluorescence, and histochemical staining confirmed the gene expression data. Further, mechanical property development in the dynamic compression treatment shows promise toward generating functional engineered cartilage through more optimized and longer culture conditions. In summary, this study introduced a novel protocol to differentiate hBM-MSC into stable, cartilage-forming cells.
Collapse
Affiliation(s)
- David Xinzheyang Li
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Zhiyao Ma
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexander RA Szojka
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering,
Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Retinoic Acid Receptor Gamma (RARγ) Promotes Cartilage Destruction through Positive Feedback Activation of NF-κB Pathway in Human Osteoarthritis. Mediators Inflamm 2022; 2022:1875736. [DOI: 10.1155/2022/1875736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) is a severe inflammation-related disease which leads to cartilage destruction. The retinoic acid receptor gamma (RARγ) has been indicated to be involved in many inflammation processes. However, the role and mechanism of RARγ in cartilage destruction caused by inflammation in OA are still unknown. Here, we demonstrated that the RARγ was highly expressed in chondrocytes of OA patients compared with healthy people and was positively correlated with the damage degree of cartilage in OA. Cytokine TNF-α promoted the transcription and expression of RARγ through activating the NF-κB pathway in OA cartilage. In addition, the overexpression of RARγ resulted in the upregulation of matrix degradation and inflammation associated genes and downregulation of differentiation and collagen production genes in human normal chondrocyte C28/I2 cells. Mechanistically, overexpression of RARγ could increase the level of p-IκBα and p-P65 to regulate the expression of downstream genes. RARγ and IκBα also could interact with each other and had the same localization in C28/I2 cells. Moreover, the SD rats OA model induced by monosodium iodoacetate indicated that CD437 (RARγ agonist) and TNF-α accelerated the OA progression, including more severe cartilage layer destruction, larger knee joint diameter, and higher serum ALP levels, while LY2955303 (RARγ inhibitor) showed the opposite result. RARγ was also highly expressed in OA group and even higher in TNF-α group. In conclusion, RARγ/NF-κB positive feedback loop was activated by TNF-α in chondrocyte to promote cartilage destruction. Our data not only propose a novel and precise molecular mechanism for OA disease but also provide a prospective strategy for the treatment.
Collapse
|
11
|
Li M, Zhang L, Li J, Zhu Q. Direct Reprogramming of Mouse Subchondral Bone Osteoblasts into Chondrocyte-like Cells. Biomedicines 2022; 10:2582. [PMID: 36289842 PMCID: PMC9599480 DOI: 10.3390/biomedicines10102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment of full-thickness articular cartilage defects with exposure of subchondral bone often seen in osteoarthritic conditions has long been a great challenge, especially with a focus on the feasibility of in situ cartilage regeneration through minimally invasive procedures. Osteoblasts that situate in the subchondral bone plate may be considered a potentially vital endogenous source of cells for cartilage resurfacing through direct reprogramming into chondrocytes. Microarray-based gene expression profiles were generated to compare tissue-specific transcripts between subchondral bone and cartilage of mice and to assess age-dependent differences of chondrocytes as well. On osteoblast cell lines established from mouse proximal tibial subchondral bone, sequential screening by co-transduction of transcription factor (TF) genes that distinguish chondrocytes from osteoblasts reveals a shortlist of potential reprogramming factors exhibiting combined effects in inducing chondrogenesis of subchondral bone osteoblasts. A further combinatorial approach unexpectedly identified two 3-TF combinations containing Sox9 and Sox5 that exhibit differences in reprogramming propensity with the third TF c-Myc or Plagl1, which appeared to direct the converted chondrocytes toward either a superficial or a deeper zone phenotype. Thus, our approach demonstrates the possibility of converting osteoblasts into two major chondrocyte subpopulations with two combinations of three genes (Sox9, Sox5, and c-Myc or Plagl1). The findings may have important implications for developing novel in situ regeneration strategies for the reconstruction of full-thickness cartilage defects.
Collapse
Affiliation(s)
| | | | | | - Qing Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Tateiwa D, Kaito T, Hashimoto K, Okada R, Kodama J, Kushioka J, Bal Z, Tsukazaki H, Nakagawa S, Ukon Y, Hirai H, Tian H, Alferiev I, Chorny M, Otsuru S, Okada S, Iwamoto M. Selective Retinoic Acid Receptor γ Antagonist 7C is a Potent Enhancer of BMP-Induced Ectopic Endochondral Bone Formation. Front Cell Dev Biol 2022; 10:802699. [PMID: 35359440 PMCID: PMC8963923 DOI: 10.3389/fcell.2022.802699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been clinically applied for induction of bone formation in musculoskeletal disorders such as critical-sized bone defects, nonunions, and spinal fusion surgeries. However, the use of supraphysiological doses of BMP caused adverse events, which were sometimes life-threatening. Therefore, safer treatment strategies for bone regeneration have been sought for decades. Systemic administration of a potent selective antagonist of retinoic acid nuclear receptor gamma (RARγ) (7C) stimulated BMP-induced ectopic bone formation. In this study, we developed 7C-loaded poly lactic nanoparticles (7C-NPs) and examined whether local application of 7C enhances BMP-induced bone regeneration. The collagen sponge discs that absorbed recombinant human (rh) BMP-2 were implanted into the dorsal fascia of young adult mice to induce ectopic bone. The combination of rhBMP-2 and 7C-NP markedly increased the total bone volume and thickness of the bone shell of the ectopic bone in a dose-dependent manner compared to those with rhBMP-2 only. 7C stimulated sulfated proteoglycan production, expression of chondrogenic marker genes, and Sox9 reporter activity in both chondrogenic cells and MSCs. The findings suggest that selective RARγ antagonist 7C or the related compounds potentiate the bone inductive ability of rhBMP-2, as well as support any future research to improve the BMP-2 based bone regeneration procedures in a safe and efficient manner.
Collapse
Affiliation(s)
- Daisuke Tateiwa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
- *Correspondence: Takashi Kaito, ; Masahiro Iwamoto,
| | - Kunihiko Hashimoto
- Department of Orthopaedic Surgery, Osaka Second Police Hospital, Osaka, Japan
| | - Rintaro Okada
- Department of Orthopaedic Surgery, Mino Municipal Hospital, Mino, Japan
| | - Joe Kodama
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Zeynep Bal
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroyuki Tsukazaki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Amagasaki, Japan
| | - Shinichi Nakagawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichiro Ukon
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiromasa Hirai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hongying Tian
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ivan Alferiev
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Michael Chorny
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Takashi Kaito, ; Masahiro Iwamoto,
| |
Collapse
|
13
|
Garcia SA, Ng VY, Iwamoto M, Enomoto-Iwamoto M. Osteochondroma Pathogenesis: Mouse Models and Mechanistic Insights into Interactions with Retinoid Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2042-2051. [PMID: 34809786 PMCID: PMC8647428 DOI: 10.1016/j.ajpath.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 05/02/2023]
Abstract
Osteochondromas are cartilage-capped tumors that arise near growing physes and are the most common benign bone tumor in children. Osteochondromas can lead to skeletal deformity, pain, loss of motion, and neurovascular compression. Currently, surgery is the only available treatment for symptomatic osteochondromas. Osteochondroma mouse models have been developed to understand the pathology and the origin of osteochondromas and develop therapeutic drugs. Several cartilage regulatory pathways have been implicated in the development of osteochondromas, such as bone morphogenetic protein, hedgehog, and WNT/β-catenin signaling. Retinoic acid receptor-γ is an important regulator of endochondral bone formation. Selective agonists for retinoic acid receptor-γ, such as palovarotene, have been investigated as drugs for inhibition of ectopic endochondral ossification, including osteochondromas. This review discusses the signaling pathways involved in osteochondroma pathogenesis and their possible interactions with the retinoid pathway.
Collapse
Affiliation(s)
- Sonia Arely Garcia
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Vincent Y Ng
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
14
|
Pignolo RJ, Pacifici M. Retinoid Agonists in the Targeting of Heterotopic Ossification. Cells 2021; 10:cells10113245. [PMID: 34831466 PMCID: PMC8617746 DOI: 10.3390/cells10113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Retinoids are metabolic derivatives of vitamin A and regulate the function of many tissues and organs both prenatally and postnatally. Active retinoids, such as all trans-retinoic acid, are produced in the cytoplasm and then interact with nuclear retinoic acid receptors (RARs) to up-regulate the transcription of target genes. The RARs can also interact with target gene response elements in the absence of retinoids and exert a transcriptional repression function. Studies from several labs, including ours, showed that chondrogenic cell differentiation and cartilage maturation require (i) the absence of retinoid signaling and (ii) the repression function by unliganded RARs. These and related insights led to the proposition that synthetic retinoid agonists could thus represent pharmacological agents to inhibit heterotopic ossification (HO), a process that recapitulates developmental skeletogenesis and involves chondrogenesis, cartilage maturation, and endochondral ossification. One form of HO is acquired and is caused by injury, and another severe and often fatal form of it is genetic and occurs in patients with fibrodysplasia ossificans progressiva (FOP). Mouse models of FOP bearing mutant ACVR1R206H, characteristic of most FOP patients, were used to test the ability of the retinoid agonists selective for RARα and RARγ against spontaneous and injury-induced HO. The RARγ agonists were found to be most effective, and one such compound, palovarotene, was selected for testing in FOP patients. The safety and effectiveness data from recent and ongoing phase II and phase III clinical trials support the notion that palovarotene may represent a disease-modifying treatment for patients with FOP. The post hoc analyses showed substantial efficacy but also revealed side effects and complications, including premature growth plate closure in some patients. Skeletally immature patients will need to be carefully weighed in any future regulatory indications of palovarotene as an important therapeutic option in FOP.
Collapse
Affiliation(s)
- Robert J. Pignolo
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopedics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| |
Collapse
|
15
|
Abstract
While the uses of retinoids for cancer treatment continue to evolve, this review focuses on other therapeutic areas in which retinoids [retinol (vitamin A), all-trans retinoic acid (RA), and synthetic retinoic acid receptor (RAR)α-, β-, and γ-selective agonists] are being used and on promising new research that suggests additional uses for retinoids for the treatment of disorders of the kidneys, skeletal muscles, heart, pancreas, liver, nervous system, skin, and other organs. The most mature area, in terms of US Food and Drug Administration-approved, RAR-selective agonists, is for treatment of various skin diseases. Synthetic retinoid agonists have major advantages over endogenous RAR agonists such as RA. Because they act through a specific RAR, side effects may be minimized, and synthetic retinoids often have better pharmaceutical properties than does RA. Based on our increasing knowledge of the multiple roles of retinoids in development, epigenetic regulation, and tissue repair, other exciting therapeutic areas are emerging. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA;
| |
Collapse
|
16
|
Kaji DA, Montero AM, Patel R, Huang AH. Transcriptional profiling of mESC-derived tendon and fibrocartilage cell fate switch. Nat Commun 2021; 12:4208. [PMID: 34244516 PMCID: PMC8270956 DOI: 10.1038/s41467-021-24535-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFβ and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGFβ-induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease.
Collapse
Affiliation(s)
- Deepak A Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angela M Montero
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roosheel Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Koyama E, Mundy C, Saunders C, Chung J, Catheline SE, Rux D, Iwamoto M, Pacifici M. Premature Growth Plate Closure Caused by a Hedgehog Cancer Drug Is Preventable by Co-Administration of a Retinoid Antagonist in Mice. J Bone Miner Res 2021; 36:1387-1402. [PMID: 33724538 PMCID: PMC9661967 DOI: 10.1002/jbmr.4291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
The growth plates are key engines of skeletal development and growth and contain a top reserve zone followed by maturation zones of proliferating, prehypertrophic, and hypertrophic/mineralizing chondrocytes. Trauma or drug treatment of certain disorders can derange the growth plates and cause accelerated maturation and premature closure, one example being anti-hedgehog drugs such as LDE225 (Sonidegib) used against pediatric brain malignancies. Here we tested whether such acceleration and closure in LDE225-treated mice could be prevented by co-administration of a selective retinoid antagonist, based on previous studies showing that retinoid antagonists can slow down chondrocyte maturation rates. Treatment of juvenile mice with an experimental dose of LDE225 for 2 days (100 mg/kg by gavage) initially caused a significant shortening of long bone growth plates, with concomitant decreases in chondrocyte proliferation; expression of Indian hedgehog, Sox9, and other key genes; and surprisingly, the number of reserve progenitors. Growth plate involution followed with time, leading to impaired long bone lengthening. Mechanistically, LDE225 treatment markedly decreased the expression of retinoid catabolic enzyme Cyp26b1 within growth plate, whereas it increased and broadened the expression of retinoid synthesizing enzyme Raldh3, thus subverting normal homeostatic retinoid circuitries and in turn accelerating maturation and closure. All such severe skeletal and molecular changes were prevented when LDE-treated mice were co-administered the selective retinoid antagonist CD2665 (1.5 mg/kg/d), a drug targeting retinoid acid receptor γ, which is most abundantly expressed in growth plate. When given alone, CD2665 elicited the expected maturation delay and growth plate expansion. In vitro data showed that LDE225 acted directly to dampen chondrogenic phenotypic expression, a response fully reversed by CD2665 co-treatment. In sum, our proof-of-principle data indicate that drug-induced premature growth plate closures can be prevented or delayed by targeting a separate phenotypic regulatory mechanism in chondrocytes. The translation applicability of the findings remains to be studied. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Cheri Saunders
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Juliet Chung
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Sarah E. Catheline
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Masahiro Iwamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
18
|
Tepelenis K, Papathanakos G, Kitsouli A, Troupis T, Barbouti A, Vlachos K, Kanavaros P, Kitsoulis P. Osteochondromas: An Updated Review of Epidemiology, Pathogenesis, Clinical Presentation, Radiological Features and Treatment Options. In Vivo 2021; 35:681-691. [PMID: 33622860 DOI: 10.21873/invivo.12308] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Osteochondroma, the most common benign bone tumor, is a projection on the external surface of the bone, which can be sessile or pedunculated. 85% of osteochondromas present as solitary lesions, while 15% occur in the context of hereditary multiple exostoses (HME), a genetic disorder that is inherited in an autosomal dominant manner. Although often asymptomatic, symptoms may eventuate from compression of adjacent vessels or nerves, fractures, osseous deformities, bursa formation, or malignant transformation. Cartilage cap thickness >2 cm in adults or >3 cm in children as well as new onset of pain or growth, or rapid growth of the lesion, especially after the closure of the growth plate, might reflect cancerous transformation. Surgical resection is indicated for symptomatic lesions, complications, cosmetic reasons or malignant transformation. Excision of the tumor with free margin is the treatment of choice. Local recurrence is less than 2% if complete resection is achieved.
Collapse
Affiliation(s)
- Kostas Tepelenis
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece;
| | | | | | - Theodoros Troupis
- Department of Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Barbouti
- Anatomy - Histology - Embryology, University of Ioannina, Ioannina, Greece
| | | | | | - Panagiotis Kitsoulis
- Anatomy - Histology - Embryology, University of Ioannina, Ioannina, Greece.,Orthopaedics, University of Ioannina, Ioannina, Greece
| |
Collapse
|
19
|
Fraher D, Mann RJ, Dubuisson MJ, Ellis MK, Yu T, Walder K, Ward AC, Winkler C, Gibert Y. The endocannabinoid system and retinoic acid signaling combine to influence bone growth. Mol Cell Endocrinol 2021; 529:111267. [PMID: 33839219 PMCID: PMC8127411 DOI: 10.1016/j.mce.2021.111267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 01/26/2023]
Abstract
Osteoporosis is an increasing burden on public health as the world-wide population ages and effective therapeutics are severely needed. Two pathways with high potential for osteoporosis treatment are the retinoic acid (RA) and endocannabinoid system (ECS) signaling pathways. We sought to elucidate the roles that these pathways play in bone development and maturation. Here, we use chemical treatments to modulate the RA and ECS pathways at distinct early, intermediate, and late times bone development in zebrafish. We further assessed osteoclast activity later in zebrafish and medaka. Finally, by combining sub-optimal doses of AR and ECS modulators, we show that enhancing RA signaling or reducing the ECS promote bone formation and decrease osteoclast abundance and activity. These data demonstrate that RA signaling and the ECS can be combined as sub-optimal doses to influence bone growth and may be key targets for potential therapeutics.
Collapse
Affiliation(s)
- Daniel Fraher
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Robert J Mann
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Matthew J Dubuisson
- University of Mississippi Medical Center, Dept of Cell and Molecular Biology, 2500 North State Street, Jackson, MS, 39216, USA
| | - Megan K Ellis
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Tingsheng Yu
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Ken Walder
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Alister C Ward
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Yann Gibert
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, Geelong, VIC, 3216, Australia; University of Mississippi Medical Center, Dept of Cell and Molecular Biology, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
20
|
Knudsen TB, Pierro JD, Baker NC. Retinoid signaling in skeletal development: Scoping the system for predictive toxicology. Reprod Toxicol 2021; 99:109-130. [PMID: 33202217 PMCID: PMC11451096 DOI: 10.1016/j.reprotox.2020.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
All-trans retinoic acid (ATRA), the biologically active form of vitamin A, is instrumental in regulating the patterning and specification of the vertebrate embryo. Various animal models demonstrate adverse developmental phenotypes following experimental retinoid depletion or excess during pregnancy. Windows of vulnerability for altered skeletal patterning coincide with early specification of the body plan (gastrulation) and regional specification of precursor cell populations forming the facial skeleton (cranial neural crest), vertebral column (somites), and limbs (lateral plate mesoderm) during organogenesis. A common theme in physiological roles of ATRA signaling is mutual antagonism with FGF signaling. Consequences of genetic errors or environmental disruption of retinoid signaling include stage- and region-specific homeotic transformations to severe deficiencies for various skeletal elements. This review derives from an annex in Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97) to support recommendations regarding assay development for the retinoid system and the use of resulting data in a regulatory context for developmental and reproductive toxicity (DART) testing.
Collapse
Affiliation(s)
- Thomas B Knudsen
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Jocylin D Pierro
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Nancy C Baker
- Leidos, Contractor to CCTE, Research Triangle Park, NC, 27711, United States.
| |
Collapse
|
21
|
Wong KR, Mychasiuk R, O'Brien TJ, Shultz SR, McDonald SJ, Brady RD. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res 2020; 8:42. [PMID: 33298867 PMCID: PMC7725771 DOI: 10.1038/s41413-020-00119-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological heterotopic ossification (NHO) is a debilitating condition where bone forms in soft tissue, such as muscle surrounding the hip and knee, following an injury to the brain or spinal cord. This abnormal formation of bone can result in nerve impingement, pain, contractures and impaired movement. Patients are often diagnosed with NHO after the bone tissue has completely mineralised, leaving invasive surgical resection the only remaining treatment option. Surgical resection of NHO creates potential for added complications, particularly in patients with concomitant injury to the central nervous system (CNS). Although recent work has begun to shed light on the physiological mechanisms involved in NHO, there remains a significant knowledge gap related to the prognostic biomarkers and prophylactic treatments which are necessary to prevent NHO and optimise patient outcomes. This article reviews the current understanding pertaining to NHO epidemiology, pathobiology, biomarkers and treatment options. In particular, we focus on how concomitant CNS injury may drive ectopic bone formation and discuss considerations for treating polytrauma patients with NHO. We conclude that understanding of the pathogenesis of NHO is rapidly advancing, and as such, there is the strong potential for future research to unearth methods capable of identifying patients likely to develop NHO, and targeted treatments to prevent its manifestation.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
22
|
Chiaradia E, Pepe M, Sassi P, Mohren R, Orvietani PL, Paolantoni M, Tognoloni A, Sforna M, Eveque M, Tombolesi N, Cillero-Pastor B. Comparative label-free proteomic analysis of equine osteochondrotic chondrocytes. J Proteomics 2020; 228:103927. [PMID: 32768606 DOI: 10.1016/j.jprot.2020.103927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Osteochondrosis is a developmental orthopedic disease affecting growing cartilage in young horses. In this study we compared the proteomes of equine chondrocytes obtained from healthy and osteochondrotic cartilage using a label-free mass spectrometry approach. Quantitative changes of some proteins selected for their involvement in different functional pathways highlighted by the bioinformatics analysis, were validated by western blotting, while biochemical alterations of extracellular matrix were confirmed via Raman spectroscopy analysis. In total 1637 proteins were identified, of which 59 were differentially abundant. Overall, the results highlighted differentially represented proteins involved in metabolic and functional pathways that may be related to the failure of the endochondral ossification process occurring in osteochondrosis. In particular, we identified proteins involved in extracellular matrix degradation and organization, vitamin metabolism, osteoblast differentiation, apoptosis, protein folding and localization, signalling and gene expression modulation and lysosomal activities. These results provide valuable new insights to elucidate the underlying molecular mechanisms associated with the development and progression of osteochondrosis. SIGNIFICANCE: Osteochondrosis is a common articular disorder in young horses mainly due to defects in endochondral ossification. The pathogenesis of osteochondrosis is still poorly understood and only a limited number of proteomic studies have been conducted. This study provides a comprehensive characterization of proteomic alterations occurring in equine osteochondrotic chondrocytes, the only resident cell type that modulates differentiation and maturation of articular cartilage. The results evidenced alterations in abundance of proteins involved in functional and metabolic pathways and in extracellular matrix remodelling. These findings could help clarify some molecular aspects of osteochondrosis and open new fields of research for elucidating the pathogenesis of this disease.
Collapse
Affiliation(s)
- Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy.
| | - Marco Pepe
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy.
| | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di sotto 8, 06123 Perugia, Italy
| | - Ronny Mohren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Pier Luigi Orvietani
- Department of Experimental Medicine, University of Perugia, via Gambuli, 1, 06132 Perugia, Italy
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di sotto 8, 06123 Perugia, Italy
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy
| | - Maxime Eveque
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Niki Tombolesi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di sotto 8, 06123 Perugia, Italy
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| |
Collapse
|
23
|
Sekimata K, Sato T, Sakai N. ALK2: A Therapeutic Target for Fibrodysplasia Ossificans Progressiva and Diffuse Intrinsic Pontine Glioma. Chem Pharm Bull (Tokyo) 2020; 68:194-200. [PMID: 32115526 DOI: 10.1248/cpb.c19-00882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are diseases that typically manifest in childhood and are associated with severely reduced life expectancy. However, there are currently no effective therapies for these diseases, which remain incurable. Activin receptor-like kinase-2 (ALK2), encoded by the ACVR1 gene, is a bone morphogenetic protein (BMP) type-I receptor subtype that plays an important physiological role in the development of bones, muscles, brain, and other organs. Constitutively active mutants of ALK2 have been identified as causative of FOP and involved in the tumorigenesis of DIPG owing to abnormal activation of BMP signaling, and therefore have emerged as promising treatment targets. Here, we describe these two diseases, along with the link to ALK2 signal transduction, and highlight potential ALK2 inhibitors that are under development to offer new hope for patients with FOP and DIPG.
Collapse
Affiliation(s)
- Katsuhiko Sekimata
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science
| | - Tomohiro Sato
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research
| | - Naoki Sakai
- Drug Discovery Structural Biology Platform Unit, RIKEN Biosystems Dynamics Research
| |
Collapse
|
24
|
Garcia SA, Tian H, Imamura-Kawasawa Y, Fisher A, Cellini A, Codd C, Herzenberg JE, Abzug JM, Ng V, Iwamoto M, Enomoto-Iwamoto M. Understanding the Action of RARγ Agonists on Human Osteochondroma Explants. Int J Mol Sci 2020; 21:E2686. [PMID: 32294904 PMCID: PMC7215996 DOI: 10.3390/ijms21082686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Osteochondromas are cartilage-capped growths located proximate to the physis that can cause skeletal deformities, pain, limited motion, and neurovascular impingement. Previous studies have demonstrated retinoic acid receptor gamma (RARγ) agonists to inhibit ectopic endochondral ossification, therefore we hypothesize that RARγ agonists can target on established osteochondromas. The purpose of this study was to examine the action of RARγ agonist in human osteochondromas. Osteochondroma specimens were obtained during surgery, subjected to explant culture and were treated with RARγ agonists or vehicles. Gene expression analysis confirmed the up-regulation of RARγ target genes in the explants treated with NRX 204647 and Palovarotene and revealed strong inhibition of cartilage matrix and increased extracellular matrix proteases gene expression. In addition, immunohistochemical staining for the neoepitope of protease-cleaved aggrecan indicated that RARγ agonist treatment stimulated cartilage matrix degradation. Interestingly, cell survival studies demonstrated that RARγ agonist treatment stimulated cell death. Moreover, RNA sequencing analysis indicates changes in multiple molecular pathways due to RARγ agonists treatment, showing similarly to human growth plate chondrocytes. Together, these findings suggest that RARγ agonist may exert anti-tumor function on osteochondromas by inhibiting matrix synthesis, promoting cartilage matrix degradation and stimulating cell death.
Collapse
Affiliation(s)
- Sonia A. Garcia
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
| | - Hongying Tian
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
| | - Yuka Imamura-Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Aidan Fisher
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
| | - Ashley Cellini
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
| | - Casey Codd
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
| | - John E. Herzenberg
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
- Pediatric Orthopaedics, Sinai Hospital, Baltimore, MD 21215, USA
| | - Joshua M. Abzug
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
| | - Vincent Ng
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, 20 Penn Street, HSFII, Baltimore, MD 21201, USA; (S.A.G.); (H.T.); (A.F.); (A.C.); (C.C.); (J.E.H.); (J.M.A.); (V.N.); (M.I.)
| |
Collapse
|
25
|
Shimo T, Takebe H, Okui T, Kunisada Y, Ibaragi S, Obata K, Kurio N, Shamsoon K, Fujii S, Hosoya A, Irie K, Sasaki A, Iwamoto M. Expression and Role of IL-1β Signaling in Chondrocytes Associated with Retinoid Signaling during Fracture Healing. Int J Mol Sci 2020; 21:ijms21072365. [PMID: 32235405 PMCID: PMC7177407 DOI: 10.3390/ijms21072365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/08/2023] Open
Abstract
The process of fracture healing consists of an inflammatory reaction and cartilage and bone tissue reconstruction. The inflammatory cytokine interleukin-1β (IL-1β) signal is an important major factor in fracture healing, whereas its relevance to retinoid receptor (an RAR inverse agonist, which promotes endochondral bone formation) remains unclear. Herein, we investigated the expressions of IL-1β and retinoic acid receptor gamma (RARγ) in a rat fracture model and the effects of IL-1β in the presence of one of several RAR inverse agonists on chondrocytes. An immunohistochemical analysis revealed that IL-1β and RARγ were expressed in chondrocytes at the fracture site in the rat ribs on day 7 post-fracture. In chondrogenic ATDC5 cells, IL-1β decreases the levels of aggrecan and type II collagen but significantly increased the metalloproteinase-13 (Mmp13) mRNA by real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. An RAR inverse agonist (AGN194310) inhibited IL-1β-stimulated Mmp13 and Ccn2 mRNA in a dose-dependent manner. Phosphorylated extracellular signal regulated-kinases (pERK1/2) and p-p38 mitogen-activated protein kinase (MAPK) were increased time-dependently by IL-1β treatment, and the IL-1β-induced p-p38 MAPK was inhibited by AGN194310. Experimental p38 inhibition led to a drop in the IL-1β-stimulated expressions of Mmp13 and Ccn2 mRNA. MMP13, CCN2, and p-p38 MAPK were expressed in hypertrophic chondrocytes near the invaded vascular endothelial cells. As a whole, these results point to role of the IL-1β via p38 MAPK as important signaling in the regulation of the endochondral bone formation in fracture healing, and to the actions of RAR inverse agonists as potentially relevant modulators of this process.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan;
- Correspondence: ; Tel./Fax: +81-133-23-1429
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (H.T.); (A.H.); (K.I.)
| | - Tatsuo Okui
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Yuki Kunisada
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Soichiro Ibaragi
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Kyoichi Obata
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Naito Kurio
- Department of Oral Surgery, Tokushima University Graduate School, Tokushima 770-8504, Japan;
| | - Karnoon Shamsoon
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, University of Hokkaido, School of Dentistry, Hokkaido 061-0293, Japan;
| | - Saki Fujii
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan;
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (H.T.); (A.H.); (K.I.)
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (H.T.); (A.H.); (K.I.)
| | - Akira Sasaki
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
26
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
27
|
Sumitani Y, Uchibe K, Yoshida K, Weng Y, Guo J, Yuan H, Ikegame M, Kamioka H, Okamura H. Inhibitory effect of retinoic acid receptor agonists on in vitro chondrogenic differentiation. Anat Sci Int 2019; 95:202-208. [PMID: 31732869 DOI: 10.1007/s12565-019-00512-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 11/25/2022]
Abstract
Retinoic acid (RA), an active metabolite of vitamin A, plays pivotal roles in a wide variety of biological processes, such as body patterning, organ development, and cell differentiation and proliferation. RA signaling is mediated by nuclear retinoic acid receptors, α, β, and γ (RARα, RARβ, and RARγ). RA is a well-known regulator of cartilage and skeleton formation and RARs are also essential for skeletal growth and hypertrophic chondrocyte-specific gene expression. These important roles of RA and RARs in chondrogenesis have been widely investigated using in vivo mouse models. However, few reports are available on the function of each subtype of RARs on in vitro chondrocyte differentiation. Here, we examined the effect of specific agonists of RARs on chondrogenic differentiation of ATDC5 and C3H10T1/2 cells. Subtype-specific RAR agonists as well as RA decreased the expressions of chondrogenic differentiation marker genes and inhibited chondrogenic differentiation, which was accompanied with morphological change to spindle-shaped cells. Among RAR agonists, RARα and RARγ agonists revealed a strong inhibitory effect on chondrogenic differentiation. RARα and RARγ agonists also hampered viability of ATDC5 cells. These observations suggested that RARα and RARγ are dominant receptors of RA signaling that negatively regulate chondrogenic differentiation.
Collapse
Affiliation(s)
- Yusuke Sumitani
- Department of Orthodontics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Kenta Uchibe
- Department of Oral Morphology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Kaya Yoshida
- Department of Oral Healthcare Promotion, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Yao Weng
- Department of Oral Morphology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Jiajie Guo
- Department of Oral Morphology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Haoze Yuan
- Department of Oral Morphology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| |
Collapse
|
28
|
Conserva MR, Redavid I, Anelli L, Zagaria A, Specchia G, Albano F. RARG Gene Dysregulation in Acute Myeloid Leukemia. Front Mol Biosci 2019; 6:114. [PMID: 31709264 PMCID: PMC6822255 DOI: 10.3389/fmolb.2019.00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Retinoic acid receptor γ (RARγ) belongs to the nuclear receptor superfamily and shares 90% homology with retinoic acid receptor α (RARα) and retinoic acid receptor β (RARβ). RARA rearrangements are well-known to be involved in acute promyelocytic leukemia (APL), but RARG rearrangements can also resemble this kind of leukemia. In this review we trace the role of RARγ, considering both its physiological and oncogenic contribution; from 2011 to date, nine cases of patients harboring RARG fusions have been reported. These patients showed typical APL features, including the clinical presentation, coagulation abnormalities and morphological features of bone marrow (BM), but are not responsive to APL standard therapy. We stress the urgent need for a better comprehension of the critical role of RARG dysregulation in the leukemogenesis process, since optimum therapy strategies have not yet been established.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Immacolata Redavid
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Giorgina Specchia
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| |
Collapse
|
29
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
30
|
Shimo T, Koyama E, Okui T, Masui M, Kunisada Y, Ibaragi S, Yoshioka N, Kurio N, Yoshida S, Sasaki A, Iwamoto M. Retinoic Receptor Signaling Regulates Hypertrophic Chondrocyte-specific Gene Expression. In Vivo 2019; 33:85-91. [PMID: 30587607 PMCID: PMC6364088 DOI: 10.21873/invivo.11443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIM Retinoid signaling is important for the maturation of growth-plate chondrocytes. The effect of retinoid receptor gamma (RARγ) signaling on the expression of genes in hypertrophic chondrocytes is unclear. This study investigated the role of RARγ signaling in regulation of hypertrophic chondrocyte-specific genes. MATERIALS AND METHODS The gene expression in mouse E17.5 tibial cartilage was examined by in situ hybridization analysis. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunoblotting were used for analysis of mRNA and phosphorylated mitogen-activated protein kinase (MAPK). RESULTS mRNA expression of Rarg and connective tissue growth factor (Ccn2) was detected in maturing chondrocytes throughout the cartilaginous skeletal elements. In chondrogenic ATDC5 cells, an RARγ agonist induced the gene expression of type-X collagen (Col10A1), transglutaminase-2 (Tg2), matrix metalloproteinase-13 (Mmp13), and Ccn2 mRNA, whereas a retinoic acid pan-agonist suppressed RARγ agonist-stimulated gene expression. Phosphorylated extracellular signal regulated-kinases (pERK1/2), p-p38, and phosphorylated c-Jun N-terminal kinase (pJNK) MAPK were time-dependently increased by RARγ agonist treatment. Experimental p38 inhibition led to a severe drop in the RARγ agonist-stimulated expressions of Col10A1, Tg2, Mmp13, and Ccn2 mRNA. CONCLUSION RARγ signaling is required for the differentiation of hypertrophic chondrocytes, with differential cooperation with p38 MAPK.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masanori Masui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Kunisada
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Norie Yoshioka
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Naito Kurio
- Department of Oral Surgery, Tokushima University Graduate School, Tokushima, Japan
| | - Shoko Yoshida
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| |
Collapse
|
31
|
Green AC, Rudolph-Stringer V, Straszkowski L, Tjin G, Crimeen-Irwin B, Walia M, Martin TJ, Sims NA, Purton LE. Retinoic Acid Receptor γ Activity in Mesenchymal Stem Cells Regulates Endochondral Bone, Angiogenesis, and B Lymphopoiesis. J Bone Miner Res 2018; 33:2202-2213. [PMID: 30040873 DOI: 10.1002/jbmr.3558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Retinoic acid receptor (RAR) signaling regulates bone structure and hematopoiesis through intrinsic and extrinsic mechanisms. This study aimed to establish how early in the osteoblast lineage loss of RARγ (Rarg) disrupts the bone marrow microenvironment. Bone structure was analyzed by micro-computed tomography (μCT) in Rarg-/- mice and mice with Rarg conditional deletion in Osterix-Cre-targeted osteoblast progenitors or Prrx1-Cre-targeted mesenchymal stem cells. Rarg-/- tibias exhibited less trabecular and cortical bone and impaired longitudinal and radial growth. The trabecular bone and longitudinal, but not radial, growth defects were recapitulated in Prrx1:RargΔ/Δ mice but not Osx1:RargΔ/Δ mice. Although both male and female Prrx1:RargΔ/Δ mice had low trabecular bone mass, males exhibited increased numbers of trabecular osteoclasts and Prrx1:RargΔ/Δ females had impaired mineral deposition. Both male and female Prrx1:RargΔ/Δ growth plates were narrower than controls and their epiphyses contained hypertrophic chondrocyte islands. Flow cytometry revealed that male Prrx1:RargΔ/Δ bone marrow exhibited elevated pro-B and pre-B lymphocyte numbers, accompanied by increased Cxcl12 expression in bone marrow cells. Prrx1:RargΔ/Δ bone marrow also had elevated megakaryocyte-derived Vegfa expression accompanied by smaller sinusoidal vessels. Thus, RARγ expression by Prrx1-Cre-targeted cells directly regulates endochondral bone formation and indirectly regulates tibial vascularization. Furthermore, RARγ expression by Prrx1-Cre-targeted cells extrinsically regulates osteoclastogenesis and B lymphopoiesis in male mice. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alanna C Green
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Victoria Rudolph-Stringer
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | | | - Gavin Tjin
- St Vincent's Institute, Fitzroy, VIC, Australia
| | | | - Mannu Walia
- St Vincent's Institute, Fitzroy, VIC, Australia
| | - T John Martin
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Natalie A Sims
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Louise E Purton
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
32
|
Lees-Shepard JB, Nicholas SAE, Stoessel SJ, Devarakonda PM, Schneider MJ, Yamamoto M, Goldhamer DJ. Palovarotene reduces heterotopic ossification in juvenile FOP mice but exhibits pronounced skeletal toxicity. eLife 2018; 7:40814. [PMID: 30226468 PMCID: PMC6143342 DOI: 10.7554/elife.40814] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by debilitating heterotopic ossification (HO). The retinoic acid receptor gamma agonist, palovarotene, and antibody-mediated activin A blockade have entered human clinical trials, but how these therapeutic modalities affect the behavior of pathogenic fibro/adipogenic progenitors (FAPs) is unclear. Using live-animal luminescence imaging, we show that transplanted pathogenic FAPs undergo rapid initial expansion, with peak number strongly correlating with HO severity. Palovarotene significantly reduced expansion of pathogenic FAPs, but was less effective than activin A inhibition, which restored wild-type population growth dynamics to FAPs. Palovarotene pretreatment did not reduce FAPs’ skeletogenic potential, indicating that efficacy requires chronic administration. Although palovarotene inhibited chondrogenic differentiation in vitro and reduced HO in juvenile FOP mice, daily dosing resulted in aggressive synovial joint overgrowth and long bone growth plate ablation. These results highlight the challenge of inhibiting pathological bone formation prior to skeletal maturation.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, United States
| | - Sarah-Anne E Nicholas
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, United States
| | - Sean J Stoessel
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, United States
| | - Parvathi M Devarakonda
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, United States
| | - Michael J Schneider
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, United States
| | - Masakazu Yamamoto
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, United States
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, United States
| |
Collapse
|
33
|
Huynh NPT, Zhang B, Guilak F. High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis. FASEB J 2018; 33:358-372. [PMID: 29985644 DOI: 10.1096/fj.201800534r] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) provide an attractive cell source for cartilage repair and cell therapy; however, the underlying molecular pathways that drive chondrogenesis of these populations of adult stem cells remain poorly understood. We generated a rich data set of high-throughput RNA sequencing of human MSCs throughout chondrogenesis at 6 different time points. Our data consisted of 18 libraries with 3 individual donors as biologic replicates, with each library possessing a sequencing depth of 100 million reads. Computational analyses with differential gene expression, gene ontology, and weighted gene correlation network analysis identified dynamic changes in multiple biologic pathways and, most importantly, a chondrogenic gene subset, whose functional characterization promises to further harness the potential of MSCs for cartilage tissue engineering. Furthermore, we created a graphic user interface encyclopedia built with the goal of producing an open resource of transcriptomic regulation for additional data mining and pathway analysis of the process of MSC chondrogenesis.-Huynh, N. P. T., Zhang, B., Guilak, F. High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis.
Collapse
Affiliation(s)
- Nguyen P T Huynh
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; and.,Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; and
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; and
| |
Collapse
|
34
|
Hoyt BW, Pavey GJ, Potter BK, Forsberg JA. Heterotopic ossification and lessons learned from fifteen years at war: A review of therapy, novel research, and future directions for military and civilian orthopaedic trauma. Bone 2018; 109:3-11. [PMID: 29462673 DOI: 10.1016/j.bone.2018.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Heterotopic ossification, the formation of bone in soft tissues, is a common complication of the high-energy extremity trauma sustained in modern armed conflict. In the past 15years, military treatment facilities and aligned laboratories have been in a unique position to study and treat this process due to the high volume of patients with these injuries secondary to blast trauma. The devastating nature of these wounds has limited traditional therapeutic options, necessitating alternative solutions to prophylaxis and initial treatment producing substantial advances in modeling, prophylaxis, detection, and therapy. Specific developments include establishment of an animal model that reproduces the systemic and local tissue injury of blast injuries, the use of molecular assays and predictive modeling in clinical decision making, advances in early detection including Raman spectroscopy, and investigation of prophylactic and therapeutic pharmacotherapy targeting the molecular pathways of aberrant bone formation. In this review article, we will present the literature to date, ongoing studies, and future directions for investigation of heterotopic ossification, with a focus on military-specific research.
Collapse
Affiliation(s)
- Benjamin W Hoyt
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Gabriel J Pavey
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Benjamin K Potter
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Jonathan A Forsberg
- Orthopaedics, USU-Walter Reed Department of Surgery Walter Reed National Military Medical Center, Bethesda, MD, United States..
| |
Collapse
|
35
|
Pacifici M. Retinoid roles and action in skeletal development and growth provide the rationale for an ongoing heterotopic ossification prevention trial. Bone 2018; 109:267-275. [PMID: 28826842 PMCID: PMC8011837 DOI: 10.1016/j.bone.2017.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/30/2022]
Abstract
The majority of skeletal elements develop via endochondral ossification. This process starts with formation of mesenchymal cell condensations at prescribed sites and times in the early embryo and is followed by chondrogenesis, growth plate cartilage maturation and hypertrophy, and replacement of cartilage with bone and marrow. This complex stepwise process is reactivated and recapitulated in physiologic conditions such as fracture repair, but can occur extraskeletally in pathologies including heterotopic ossification (HO), Ossification of the Posterior Longitudinal Ligament (OPLL) and Hereditary Multiple Exostoses (HME). One form of HO is common and is triggered by trauma, invasive surgeries or burns and is thus particularly common amongst severely wounded soldiers. There is also a congenital and very severe form of HO that occurs in children with Fibrodysplasia Ossificans Progressiva (FOP) and is driven by activating mutations in ACVR1 encoding the type I bone morphogenetic protein (BMP) receptor ALK2. Current treatments for acquired HO, including NSAIDs and local irradiation, are not always effective and can have side effects, and there is no effective treatment for HO in FOP. This review article describes the research path we took several years ago to develop a new and effective treatment for both congenital and acquired forms of HO and specifically, the testing of synthetic retinoid agonists to block the initial and critical chondrogenic step leading to HO onset and progression. We summarize studies with mouse models of injury-induced and congenital HO demonstrating the effectiveness and mode of action of the retinoid agonists, including Palovarotene. Our studies have provided the rationale for, directly led to, an ongoing phase 2 FDA clinical trial to test efficacy and safety of Palovarotene in FOP. Top-line results released a few months ago by the pharmaceutical sponsor Clementia are very encouraging. Given shared developmental pathways amongst pathologies of extraskeletal tissue formation, Palovarotene may also be effective in HME as preliminary in vitro data suggest.
Collapse
Affiliation(s)
- Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| |
Collapse
|
36
|
Ivanovska IL, Swift J, Spinler K, Dingal D, Cho S, Discher DE. Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol Biol Cell 2017; 28:2010-2022. [PMID: 28566555 PMCID: PMC5541850 DOI: 10.1091/mbc.e17-01-0010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/09/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
A nanofilm of cross-linked collagen-I is equivalent to a relatively stiff matrix, which stiffens the nucleus, correlating broadly with lamin-A (including mutant progerin), retinoic acid transcription factor level and activity, and osteoinduction. In vitro results are supported by studies of ectopic bone formation in vivo. Synergistic cues from extracellular matrix and soluble factors are often obscure in differentiation. Here the rigidity of cross-linked collagen synergizes with retinoids in the osteogenesis of human marrow mesenchymal stem cells (MSCs). Collagen nanofilms serve as a model matrix that MSCs can easily deform unless the film is enzymatically cross-linked, which promotes the spreading of cells and the stiffening of nuclei as both actomyosin assembly and nucleoskeletal lamin-A increase. Expression of lamin-A is known to be controlled by retinoic acid receptor (RAR) transcription factors, but soft matrix prevents any response to any retinoids. Rigid matrix is needed to induce rapid nuclear accumulation of the RARG isoform and for RARG-specific antagonist to increase or maintain expression of lamin-A as well as for RARG-agonist to repress expression. A progerin allele of lamin-A is regulated in the same manner in iPSC-derived MSCs. Rigid matrices are further required for eventual expression of osteogenic markers, and RARG-antagonist strongly drives lamin-A–dependent osteogenesis on rigid substrates, with pretreated xenografts calcifying in vivo to a similar extent as native bone. Proteomics-detected targets of mechanosensitive lamin-A and retinoids underscore the convergent synergy of insoluble and soluble cues in differentiation.
Collapse
Affiliation(s)
- Irena L Ivanovska
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Joe Swift
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Kyle Spinler
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Dave Dingal
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Sangkyun Cho
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
37
|
Uchibe K, Son J, Larmour C, Pacifici M, Enomoto-Iwamoto M, Iwamoto M. Genetic and pharmacological inhibition of retinoic acid receptor γ function promotes endochondral bone formation. J Orthop Res 2017; 35:1096-1105. [PMID: 27325507 PMCID: PMC6900928 DOI: 10.1002/jor.23347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
The nuclear retinoic acid receptors (RARs) play key roles in skeletal development and endochondral ossification. Previously, we showed that RARγ regulates chondrogenesis and that pharmacological activation of RARγ blocked heterotopic ossification (HO), pathology in which endochondral bone forms in soft tissues. Thus, we reasoned that pharmacological inhibition of RARγ should enhance endochondral ossification, leading to a potential therapeutic strategy for bone deficiencies. We created surgical bone defects in wild type and RARγ-null mice and monitored bone healing. Fibrous, cartilaginous, and osseous tissues formed in both groups by day 7, but more cartilaginous tissue formed in mutants within and around the defects compared to controls. Next, we implanted a mixture of Matrigel and rhBMP2 subdermally to induce ectopic endochondral ossification. Administration of RARγ antagonists significantly stimulated ectopic bone formation in wild type but not in RARγ-null mice. The antagonist-induced increases in bone formation were preceded by increases in cartilage formation and were accompanied by higher levels of phosphorylated Smad1/5/8 (pSmad1/5/8) compared to vehicle-treated control. Higher pSmad1/5/8 levels were also observed in cartilaginous tissues forming in healing bone defects in RARγ-null mice, and increases in pSmad1/5/8 levels and Id1-luc activity were observed in RARγ antagonist-treated chondrogenic cells in culture. Our data show that genetic or pharmacological interference with RARγ stimulates endochondral bone formation and does so at least in part by stimulating canonical BMP signaling. This pharmacologic strategy could represent a new tool to enhance endochondral bone formation in the setting of various orthopedic surgical interventions and other skeletal deficiencies. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1096-1105, 2017.
Collapse
Affiliation(s)
- Kenta Uchibe
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jiyeon Son
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colleen Larmour
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
38
|
Abstract
Nuclear receptors are a family of transcription factors that can be activated by lipophilic ligands. They are fundamental regulators of development, reproduction, and energy metabolism. In bone, nuclear receptors enable bone cells, including osteoblasts, osteoclasts, and osteocytes, to sense their dynamic microenvironment and maintain normal bone development and remodeling. Our views of the molecular mechanisms in this process have advanced greatly in the past decade. Drugs targeting nuclear receptors are widely used in the clinic for treating patients with bone disorders such as osteoporosis by modulating bone formation and resorption rates. Deficiency in the natural ligands of certain nuclear receptors can cause bone loss; for example, estrogen loss in postmenopausal women leads to osteoporosis and increases bone fracture risk. In contrast, excessive ligands of other nuclear receptors, such as glucocorticoids, can also be detrimental to bone health. Nonetheless, the ligand-induced osteoprotective effects of many other nuclear receptors, e.g., vitamin D receptor, are still in debate and require further characterizations. This review summarizes previous studies on the roles of nuclear receptors in bone homeostasis and incorporates the most recent findings. The advancement of our understanding in this field will help researchers improve the applications of agonists, antagonists, and selective modulators of nuclear receptors for therapeutic purposes; in particular, determining optimal pharmacological drug doses, preventing side effects, and designing new drugs that are more potent and specific.
Collapse
|
39
|
Sequence variant at 8q24.21 associates with sciatica caused by lumbar disc herniation. Nat Commun 2017; 8:14265. [PMID: 28223688 PMCID: PMC5322534 DOI: 10.1038/ncomms14265] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Lumbar disc herniation (LDH) is common and often debilitating. Microdiscectomy of herniated lumbar discs (LDHsurg) is performed on the most severe cases to resolve the resulting sciatica. Here we perform a genome-wide association study on 4,748 LDHsurg cases and 282,590 population controls and discover 37 highly correlated markers associating with LDHsurg at 8q24.21 (between CCDC26 and GSDMC), represented by rs6651255[C] (OR=0.81; P=5.6 × 10−12) with a stronger effect among younger patients than older. As rs6651255[C] also associates with height, we performed a Mendelian randomization analysis using height polygenic risk scores as instruments to estimate the effect of height on LDHsurg risk, and found that the marker's association with LDHsurg is much greater than predicted by its effect on height. In light of presented findings, we speculate that the effect of rs6651255 on LDHsurg is driven by susceptibility to developing severe and persistent sciatica upon LDH. Lumbar disc herniation (LDH) can cause persistent sciatica, and in some cases surgery is required to relieve symptoms. Here, the authors carry out a genome-wide association study using microdiscectomy as an indicator of severe LDH, and find a locus on chromosome 8 associated with this condition.
Collapse
|
40
|
Nguyen M, Singhal P, Piet JW, Shefelbine SJ, Maden M, Voss SR, Monaghan JR. Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl. Development 2017; 144:601-611. [PMID: 28087637 DOI: 10.1242/dev.139873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2023]
Abstract
Salamanders are capable of regenerating amputated limbs by generating a mass of lineage-restricted cells called a blastema. Blastemas only generate structures distal to their origin unless treated with retinoic acid (RA), which results in proximodistal (PD) limb duplications. Little is known about the transcriptional network that regulates PD duplication. In this study, we target specific retinoic acid receptors (RARs) to either PD duplicate (RA treatment or RARγ agonist) or truncate (RARβ antagonist) regenerating limbs. RARE-EGFP reporter axolotls showed divergent reporter activity in limbs undergoing PD duplication versus truncation, suggesting differences in patterning and skeletal regeneration. Transcriptomics identified expression patterns that explain PD duplication, including upregulation of proximal homeobox gene expression and silencing of distal-associated genes, whereas limb truncation was associated with disrupted skeletal differentiation. RARβ antagonism in uninjured limbs induced a loss of skeletal integrity leading to long bone regression and loss of skeletal turnover. Overall, mechanisms were identified that regulate the multifaceted roles of RARs in the salamander limb including regulation of skeletal patterning during epimorphic regeneration, skeletal tissue differentiation during regeneration, and homeostatic regeneration of intact limbs.
Collapse
Affiliation(s)
- Matthew Nguyen
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Pankhuri Singhal
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Judith W Piet
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sandra J Shefelbine
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Malcolm Maden
- Department of Biology and UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - S Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
41
|
Nilsson O, Isoherranen N, Guo MH, Lui JC, Jee YH, Guttmann-Bauman I, Acerini C, Lee W, Allikmets R, Yanovski JA, Dauber A, Baron J. Accelerated Skeletal Maturation in Disorders of Retinoic Acid Metabolism: A Case Report and Focused Review of the Literature. Horm Metab Res 2016; 48:737-744. [PMID: 27589347 PMCID: PMC5534175 DOI: 10.1055/s-0042-114038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nutritional excess of vitamin A, a precursor for retinoic acid (RA), causes premature epiphyseal fusion, craniosynostosis, and light-dependent retinopathy. Similarly, homozygous loss-of-function mutations in CYP26B1, one of the major RA-metabolizing enzymes, cause advanced bone age, premature epiphyseal fusion, and craniosynostosis. In this paper, a patient with markedly accelerated skeletal and dental development, retinal scarring, and autism-spectrum disease is presented and the role of retinoic acid in longitudinal bone growth and skeletal maturation is reviewed. Genetic studies were carried out using SNP array and exome sequencing. RA isomers were measured in the patient, family members, and in 18 age-matched healthy children using high-performance liquid chromatography coupled to tandem mass spectrometry. A genomic SNP array identified a novel 8.3 megabase microdeletion on chromosome 10q23.2-23.33. The 79 deleted genes included CYP26A1 and C1, both major RA-metabolizing enzymes. Exome sequencing did not detect any variants that were predicted to be deleterious in the remaining alleles of these genes or other known retinoic acid-metabolizing enzymes. The patient exhibited elevated plasma total RA (16.5 vs. 12.6±1.5 nM, mean±SD, subject vs. controls) and 13-cisRA (10.7 nM vs. 6.1±1.1). The findings support the hypothesis that elevated RA concentrations accelerate bone and dental maturation in humans. CYP26A1 and C1 haploinsufficiency may contribute to the elevated retinoic acid concentrations and clinical findings of the patient, although this phenotype has not been reported in other patients with similar deletions, suggesting that other unknown genetic or environmental factors may also contribute.
Collapse
Affiliation(s)
- Ola Nilsson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Nina Isoherranen
- Department of Pharmaceutics School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Michael H. Guo
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Julian C. Lui
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Youn Hee Jee
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ines Guttmann-Bauman
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, OR, USA
| | - Carlo Acerini
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jack A. Yanovski
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Baron
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Liu CF, Samsa WE, Zhou G, Lefebvre V. Transcriptional control of chondrocyte specification and differentiation. Semin Cell Dev Biol 2016; 62:34-49. [PMID: 27771362 DOI: 10.1016/j.semcdb.2016.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
A milestone in the evolutionary emergence of vertebrates was the invention of cartilage, a tissue that has key roles in modeling, protecting and complementing the bony skeleton. Cartilage is elaborated and maintained by chondrocytes. These cells derive from multipotent skeletal progenitors and they perform highly specialized functions as they proceed through sequential lineage commitment and differentiation steps. They form cartilage primordia, the primary skeleton of the embryo. They then transform these primordia either into cartilage growth plates, temporary drivers of skeletal elongation and endochondral ossification, or into permanent tissues, namely articular cartilage. Chondrocyte fate decisions and differentiated activities are controlled by numerous extrinsic and intrinsic cues, and they are implemented at the gene expression level by transcription factors. The latter are the focus of this review. Meritorious efforts from many research groups have led over the last two decades to the identification of dozens of key chondrogenic transcription factors. These regulators belong to all types of transcription factor families. Some have master roles at one or several differentiation steps. They include SOX9 and RUNX2/3. Others decisively assist or antagonize the activities of these masters. They include TWIST1, SOX5/6, and MEF2C/D. Many more have tissue-patterning roles and regulate cell survival, proliferation and the pace of cell differentiation. They include, but are not limited to, homeodomain-containing proteins and growth factor signaling mediators. We here review current knowledge of all these factors, one superclass, class, and family at a time. We then compile all knowledge into transcriptional networks. We also identify remaining gaps in knowledge and directions for future research to fill these gaps and thereby provide novel insights into cartilage disease mechanisms and treatment options.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| | - William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
43
|
Abstract
Heterotopic ossification is the formation of bone at extraskeletal sites. The incidence of heterotopic ossification in military amputees from recent operations in Iraq and Afghanistan has been demonstrated to be as high as 65%. Heterotopic ossification poses problems to wound healing, rehabilitation, and prosthetic fitting. This article details the current evidence regarding its etiology, prevention, management, and research strategies.
Collapse
|
44
|
Sinha S, Uchibe K, Usami Y, Pacifici M, Iwamoto M. Effectiveness and mode of action of a combination therapy for heterotopic ossification with a retinoid agonist and an anti-inflammatory agent. Bone 2016; 90:59-68. [PMID: 26891836 PMCID: PMC4970925 DOI: 10.1016/j.bone.2016.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/09/2016] [Accepted: 02/13/2016] [Indexed: 01/03/2023]
Abstract
Heterotopic ossification (HO) consists of ectopic cartilage and bone formation following severe trauma or invasive surgeries, and a genetic form of it characterizes patients with Fibrodysplasia Ossificans Progressiva (FOP). Recent mouse studies showed that HO was significantly inhibited by systemic treatment with a corticosteroid or the retinoic acid receptor γ agonist Palovarotene. Because these drugs act differently, the data raised intriguing questions including whether the drugs affected HO via similar means, whether a combination therapy would be more effective or whether the drugs may hamper each other's action. To tackle these questions, we used an effective HO mouse model involving subcutaneous implantation of Matrigel plus rhBMP2, and compared the effectiveness of prednisone, dexamathaosone, Palovarotene or combination of. Each corticosteroid and Palovarotene reduced bone formation at max doses, and a combination therapy elicited similar outcomes without obvious interference. While Palovarotene had effectively prevented the initial cartilaginous phase of HO, the steroids appeared to act more on the bony phase. In reporter assays, dexamethasone and Palovarotene induced transcriptional activity of their respective GRE or RARE constructs and did not interfere with each other's pathway. Interestingly, both drugs inhibited the activity of a reporter construct for the inflammatory mediator NF-κB, particularly in combination. In good agreement, immunohistochemical analyses showed that both drugs markedly reduced the number of mast cells and macrophages near and within the ectopic Matrigel mass and reduced also the number of progenitor cells. In sum, corticosteroids and Palovarotene appear to block HO via common and distinct mechanisms. Most importantly, they directly or indirectly inhibit the recruitment of immune and inflammatory cells present at the affected site, thus alleviating the effects of key HO instigators.
Collapse
Affiliation(s)
- Sayantani Sinha
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Kenta Uchibe
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yu Usami
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Pavey GJ, Qureshi AT, Tomasino AM, Honnold CL, Bishop DK, Agarwal S, Loder S, Levi B, Pacifici M, Iwamoto M, Potter BK, Davis TA, Forsberg JA. Targeted stimulation of retinoic acid receptor-γ mitigates the formation of heterotopic ossification in an established blast-related traumatic injury model. Bone 2016; 90:159-67. [PMID: 27368930 PMCID: PMC5546218 DOI: 10.1016/j.bone.2016.06.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/24/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
Heterotopic ossification (HO) involves formation of endochondral bone at non-skeletal sites, is prevalent in severely wounded service members, and causes significant complications and delayed rehabilitation. As common prophylactic treatments such as anti-inflammatory drugs and irradiation cannot be used after multi-system combat trauma, there is an urgent need for new remedies. Previously, we showed that the retinoic acid receptor γ agonist Palovarotene inhibited subcutaneous and intramuscular HO in mice, but those models do not mimic complex combat injury. Thus, we tested Palovarotene in our validated rat trauma-induced HO model that involves blast-related limb injury, femoral fracture, quadriceps crush injury, amputation and infection with methicillin-resistant Staphylococcus aureus from combat wound infections. Palovarotene was given orally for 14days at 1mg/kg/day starting on post-operative day (POD) 1 or POD-5, and HO amount, wound dehiscence and related processes were monitored for up to 84days post injury. Compared to vehicle-control animals, Palovarotene significantly decreased HO by 50 to 60% regardless of when the treatment started and if infection was present. Histological analyses showed that Palovarotene reduced ectopic chondrogenesis, osteogenesis and angiogenesis forming at the injury site over time, while fibrotic tissue was often present in place of ectopic bone. Custom gene array data verified that while expression of key chondrogenic and osteogenic genes was decreased within soft tissues of residual limb in Palovarotene-treated rats, expression of cartilage catabolic genes was increased, including matrix metalloproteinase-9. Importantly, Palovarotene seemed to exert moderate inhibitory effects on wound healing, raising potential safety concerns related to dosing and timing. Our data show for the first time that Palovarotene significantly inhibits HO triggered by blast injury and associated complications, strongly indicating that it may prevent HO in patients at high risk such as those sustaining combat injuries and other forms of blast trauma.
Collapse
Affiliation(s)
- Gabriel J Pavey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States; USU-Walter Reed Surgery, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Ammar T Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Allison M Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - Cary L Honnold
- Department of Pathology, Naval Medical Research Center, Silver Spring, MD, United States
| | - Danett K Bishop
- Department of Wound Infections, Naval Medical Research Center, Silver Spring, MD, United States
| | - Shailesh Agarwal
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Shawn Loder
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Maurizio Pacifici
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, PA, United States
| | - Masahiro Iwamoto
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, PA, United States
| | - Benjamin K Potter
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States; USU-Walter Reed Surgery, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States; USU-Walter Reed Surgery, Walter Reed National Military Medical Center, Bethesda, MD, United States.
| | - Jonathan A Forsberg
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States; USU-Walter Reed Surgery, Walter Reed National Military Medical Center, Bethesda, MD, United States
| |
Collapse
|
46
|
Chakkalakal SA, Uchibe K, Convente MR, Zhang D, Economides AN, Kaplan FS, Pacifici M, Iwamoto M, Shore EM. Palovarotene Inhibits Heterotopic Ossification and Maintains Limb Mobility and Growth in Mice With the Human ACVR1(R206H) Fibrodysplasia Ossificans Progressiva (FOP) Mutation. J Bone Miner Res 2016; 31:1666-75. [PMID: 26896819 PMCID: PMC4992469 DOI: 10.1002/jbmr.2820] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 01/08/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP), a rare and as yet untreatable genetic disorder of progressive extraskeletal ossification, is the most disabling form of heterotopic ossification (HO) in humans and causes skeletal deformities, movement impairment, and premature death. Most FOP patients carry an activating mutation in a bone morphogenetic protein (BMP) type I receptor gene, ACVR1(R206H) , that promotes ectopic chondrogenesis and osteogenesis and, in turn, HO. We showed previously that the retinoic acid receptor γ (RARγ) agonist palovarotene effectively inhibited HO in injury-induced and genetic mouse models of the disease. Here we report that the drug additionally prevents spontaneous HO, using a novel conditional-on knock-in mouse line carrying the human ACVR1(R206H) mutation for classic FOP. In addition, palovarotene restored long bone growth, maintained growth plate function, and protected growing mutant neonates when given to lactating mothers. Importantly, palovarotene maintained joint, limb, and body motion, providing clear evidence for its encompassing therapeutic potential as a treatment for FOP. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Salin A Chakkalakal
- Department of Orthopedic Surgery, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Kenta Uchibe
- The Children's Hospital of Philadelphia, Division of Orthopedic Surgery, Philadelphia, PA, USA
| | - Michael R Convente
- Department of Orthopedic Surgery, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopedic Surgery, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Frederick S Kaplan
- Department of Orthopedic Surgery, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Pacifici
- The Children's Hospital of Philadelphia, Division of Orthopedic Surgery, Philadelphia, PA, USA
| | - Masahiro Iwamoto
- The Children's Hospital of Philadelphia, Division of Orthopedic Surgery, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Samsa WE, Zhou X, Zhou G. Signaling pathways regulating cartilage growth plate formation and activity. Semin Cell Dev Biol 2016; 62:3-15. [PMID: 27418125 DOI: 10.1016/j.semcdb.2016.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
The growth plate is a highly specialized and dynamic cartilage structure that serves many essential functions in skeleton patterning, growth and endochondral ossification in developing vertebrates. Major signaling pathways initiated by classical morphogens and by other systemic and tissue-specific factors are intimately involved in key aspects of growth plate development. As a corollary of these essential functions, disturbances in these pathways due to mutations or environmental factors lead to severe skeleton disorders. Here, we review these pathways and the most recent progress made in understanding their roles in chondrocyte differentiation in growth plate development and activity. Furthermore, we discuss newly uncovered pathways involved in growth plate formation, including mTOR, the circadian clock, and the COP9 signalosome.
Collapse
Affiliation(s)
- William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Zhou
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
48
|
Guo PD, Lu XX, Gan WJ, Li XM, He XS, Zhang S, Ji QH, Zhou F, Cao Y, Wang JR, Li JM, Wu H. RARγ Downregulation Contributes to Colorectal Tumorigenesis and Metastasis by Derepressing the Hippo-Yap Pathway. Cancer Res 2016; 76:3813-25. [PMID: 27325643 DOI: 10.1158/0008-5472.can-15-2882] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
The Hippo-Yap pathway conveys oncogenic signals, but its regulation during cancer development is not well understood. Here, we identify the nuclear receptor RARγ as a regulator of the Hippo-Yap pathway in colorectal tumorigenesis and metastasis. RARγ is downregulated in human colorectal cancer tissues, where its expression correlates inversely with tumor size, TNM stage, and distant metastasis. Functional studies established that silencing of RARγ drove colorectal cancer cell growth, invasion, and metastatic properties both in vitro and in vivo Mechanistically, RARγ controlled Hippo-Yap signaling to inhibit colorectal cancer development, acting to promote phosphorylation and binding of Lats1 to its transcriptional coactivator Yap and thereby inactivating Yap target gene expression. In clinical specimens, RARγ expression correlated with overall survival outcomes and expression of critical Hippo-Yap pathway effector molecules in colorectal cancer patients. Collectively, our results defined RARγ as tumor suppressor in colorectal cancer that acts by restricting oncogenic signaling by the Hippo-Yap pathway, with potential implications for new approaches to colorectal cancer therapy. Cancer Res; 76(13); 3813-25. ©2016 AACR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Hippo Signaling Pathway
- Humans
- Immunoenzyme Techniques
- Lymphatic Metastasis
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Staging
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Transcription Factors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xing-Xing Lu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China. The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China. The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Qing-Hua Ji
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Feng Zhou
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Yue Cao
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China.
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China.
| |
Collapse
|
49
|
Zhang S, Chen X, Hu Y, Wu J, Cao Q, Chen S, Gao Y. All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3β signalling pathway. Mol Cell Endocrinol 2016; 422:243-253. [PMID: 26747727 DOI: 10.1016/j.mce.2015.12.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/19/2015] [Accepted: 12/24/2015] [Indexed: 01/06/2023]
Abstract
Osteogenic differentiation of mesenchymal stem cells (MSCs) is a vital process for the maintenance of healthy bone tissue and is mediated by numerous factors. Canonical Wnt signalling is essential for MSC osteogenic differentiation, and it interacts with several nuclear receptors, including the retinoic acid receptor, vitamin D receptor, and glucocorticoid receptor. Here, we explored whether Wnt3A and all-trans-retinoic acid (ATRA) play synergistic roles in MSC osteogenic differentiation. We found that ATRA potentiated the Wnt3A-induced expression of early and late osteogenic markers as well as matrix mineralization and further confirmed the phenomena using foetal limb explant culture and MSC implantation experiments. Mechanistically, ATRA cooperated with Wnt3A to induce β-catenin translocation from cell-cell contacts into the cytosol and nucleus, thereby activating Wnt/β-catenin signalling. Additionally, Wnt3A attenuated ATRA-induced Cyp26a1 expression, inhibiting the degradation of ATRA into its oxidative forms. β-catenin silencing abolished the stimulatory effect of ATRA on Wnt3A-induced alkaline phosphatase (ALP) activity and reversed its inhibitory effect on Cyp26a1 expression. Furthermore, ATRA and Wnt3A synergistically promoted AKT phosphorylation, enhancing β-catenin-dependent transcription through GSK3β inhibition or direct β-catenin phosphorylation at Ser552. This event was largely abolished by LY294002 pre-treatment, suggesting that ATRA and Wnt3A at least partially promote osteogenic differentiation via activating the PI3K/AKT/GSK3β signalling pathway. Thus, crosstalk between the Wnt/β-catenin and retinoic acid signalling pathways may be an effective therapeutic target for bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoting Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Wu
- Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Cao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyan Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanhong Gao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|