1
|
Marchak A, Neilson KM, Majumdar HD, Yamauchi K, Klein SL, Moody SA. The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains. Dev Dyn 2023; 252:1407-1427. [PMID: 37597164 PMCID: PMC10842325 DOI: 10.1002/dvdy.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Kiyoshi Yamauchi
- Department of Biological Science Shizuoka University Shizuoka, Japan
| | - Steven L. Klein
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| |
Collapse
|
2
|
Jourdeuil K, Neilson KM, Cousin H, Tavares ALP, Majumdar HD, Alfandari D, Moody SA. Zmym4 is required for early cranial gene expression and craniofacial cartilage formation. Front Cell Dev Biol 2023; 11:1274788. [PMID: 37854072 PMCID: PMC10579616 DOI: 10.3389/fcell.2023.1274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.
Collapse
Affiliation(s)
- Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Andre L. P. Tavares
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
3
|
Poszewiecka B, Gogolewski K, Karolak JA, Stankiewicz P, Gambin A. PhaseDancer: a novel targeted assembler of segmental duplications unravels the complexity of the human chromosome 2 fusion going from 48 to 46 chromosomes in hominin evolution. Genome Biol 2023; 24:205. [PMID: 37697406 PMCID: PMC10496407 DOI: 10.1186/s13059-023-03022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
Resolving complex genomic regions rich in segmental duplications (SDs) is challenging due to the high error rate of long-read sequencing. Here, we describe a targeted approach with a novel genome assembler PhaseDancer that extends SD-rich regions of interest iteratively. We validate its robustness and efficiency using a golden-standard set of human BAC clones and in silico-generated SDs with predefined evolutionary scenarios. PhaseDancer enables extension of the incomplete complex SD-rich subtelomeric regions of Great Ape chromosomes orthologous to the human chromosome 2 (HSA2) fusion site, informing a model of HSA2 formation and unravelling the evolution of human and Great Ape genomes.
Collapse
Affiliation(s)
- Barbara Poszewiecka
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Krzysztof Gogolewski
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Justyna A. Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, 77030 Houston, TX USA
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, 77030 Houston, TX USA
| | - Anna Gambin
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Shukla D, Gural BM, Cauley ES, Battula N, Mowla S, Karas BF, Roberts LE, Cavallo L, Turkalj L, Moody SA, Swan LE, Manzini MC. Duplicated zebrafish (Danio rerio) inositol phosphatases inpp5ka and inpp5kb diverged in expression pattern and function. Dev Genes Evol 2023; 233:25-34. [PMID: 37184573 PMCID: PMC10239392 DOI: 10.1007/s00427-023-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
One hurdle in the development of zebrafish models of human disease is the presence of multiple zebrafish orthologs resulting from whole genome duplication in teleosts. Mutations in inositol polyphosphate 5-phosphatase K (INPP5K) lead to a syndrome characterized by variable presentation of intellectual disability, brain abnormalities, cataracts, muscle disease, and short stature. INPP5K is a phosphatase acting at position 5 of phosphoinositides to control their homeostasis and is involved in insulin signaling, cytoskeletal regulation, and protein trafficking. Previously, our group and others have replicated the human phenotypes in zebrafish knockdown models by targeting both INPP5K orthologs inpp5ka and inpp5kb. Here, we show that inpp5ka is the more closely related orthologue to human INPP5K. While both inpp5ka and inpp5kb mRNA expression levels follow a similar trend in the developing head, eyes, and tail, inpp5ka is much more abundantly expressed in these tissues than inpp5kb. In situ hybridization revealed a similar trend, also showing unique localization of inpp5kb in the pineal gland and retina indicating different transcriptional regulation. We also found that inpp5kb has lost its catalytic activity against its preferred substrate, PtdIns(4,5)P2. Since most human mutations are missense changes disrupting phosphatase activity, we propose that loss of inpp5ka alone can be targeted to recapitulate the human presentation. In addition, we show that the function of inpp5kb has diverged from inpp5ka and may play a novel role in the zebrafish.
Collapse
Affiliation(s)
- Dhyanam Shukla
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Brian M Gural
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Edmund S Cauley
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Namarata Battula
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Shorbon Mowla
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Brittany F Karas
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Llion E Roberts
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Luca Cavallo
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Luka Turkalj
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Laura E Swan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
5
|
Zine A, Fritzsch B. Early Steps towards Hearing: Placodes and Sensory Development. Int J Mol Sci 2023; 24:6994. [PMID: 37108158 PMCID: PMC10139157 DOI: 10.3390/ijms24086994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Sensorineural hearing loss is the most prevalent sensory deficit in humans. Most cases of hearing loss are due to the degeneration of key structures of the sensory pathway in the cochlea, such as the sensory hair cells, the primary auditory neurons, and their synaptic connection to the hair cells. Different cell-based strategies to replace damaged inner ear neurosensory tissue aiming at the restoration of regeneration or functional recovery are currently the subject of intensive research. Most of these cell-based treatment approaches require experimental in vitro models that rely on a fine understanding of the earliest morphogenetic steps that underlie the in vivo development of the inner ear since its initial induction from a common otic-epibranchial territory. This knowledge will be applied to various proposed experimental cell replacement strategies to either address the feasibility or identify novel therapeutic options for sensorineural hearing loss. In this review, we describe how ear and epibranchial placode development can be recapitulated by focusing on the cellular transformations that occur as the inner ear is converted from a thickening of the surface ectoderm next to the hindbrain known as the otic placode to an otocyst embedded in the head mesenchyme. Finally, we will highlight otic and epibranchial placode development and morphogenetic events towards progenitors of the inner ear and their neurosensory cell derivatives.
Collapse
Affiliation(s)
- Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Keer S, Cousin H, Jourdeuil K, Neilson KM, Tavares ALP, Alfandari D, Moody SA. Mcrs1 is required for branchial arch and cranial cartilage development. Dev Biol 2022; 489:62-75. [PMID: 35697116 PMCID: PMC10426812 DOI: 10.1016/j.ydbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.
Collapse
Affiliation(s)
- Stephanie Keer
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Helene Cousin
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Karyn Jourdeuil
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Dominique Alfandari
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA.
| |
Collapse
|
7
|
Gur M, Edri T, Moody SA, Fainsod A. Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. Front Cell Dev Biol 2022; 10:857230. [PMID: 35531100 PMCID: PMC9068879 DOI: 10.3389/fcell.2022.857230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid (RA) is a central regulatory signal that controls numerous developmental processes in vertebrate embryos. Although activation of Hox expression is considered one of the earliest functions of RA signaling in the embryo, there is evidence that embryos are poised to initiate RA signaling just before gastrulation begins, and manipulations of the RA pathway have been reported to show gastrulation defects. However, which aspects of gastrulation are affected have not been explored in detail. We previously showed that partial inhibition of RA biosynthesis causes a delay in the rostral migration of some of the earliest involuting cells, the leading edge mesendoderm (LEM) and the prechordal mesoderm (PCM). Here we identify several detrimental gastrulation defects resulting from inhibiting RA biosynthesis by three different treatments. RA reduction causes a delay in the progression through gastrulation as well as the rostral migration of the goosecoid-positive PCM cells. RA inhibition also hampered the elongation of explanted dorsal marginal zones, the compaction of the blastocoel, and the length of Brachet’s cleft, all of which indicate an effect on LEM/PCM migration. The cellular mechanisms underlying this deficit were shown to include a reduced deposition of fibronectin along Brachet’s cleft, the substrate for their migration, as well as impaired separation of the blastocoel roof and involuting mesoderm, which is important for the formation of Brachet’s cleft and successful LEM/PCM migration. We further show reduced non-canonical Wnt signaling activity and altered expression of genes in the Ephrin and PDGF signaling pathways, both of which are required for the rostral migration of the LEM/PCM, following RA reduction. Together, these experiments demonstrate that RA signaling performs a very early function critical for the progression of gastrulation morphogenetic movements.
Collapse
Affiliation(s)
- Michal Gur
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamir Edri
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
- *Correspondence: Sally A. Moody, ; Abraham Fainsod,
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Sally A. Moody, ; Abraham Fainsod,
| |
Collapse
|
8
|
Klein SL, Tavares ALP, Peterson M, Sullivan CH, Moody SA. Repressive Interactions Between Transcription Factors Separate Different Embryonic Ectodermal Domains. Front Cell Dev Biol 2022; 10:786052. [PMID: 35198557 PMCID: PMC8859430 DOI: 10.3389/fcell.2022.786052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The embryonic ectoderm is composed of four domains: neural plate, neural crest, pre-placodal region (PPR) and epidermis. Their formation is initiated during early gastrulation by dorsal-ventral and anterior-posterior gradients of signaling factors that first divide the embryonic ectoderm into neural and non-neural domains. Next, the neural crest and PPR domains arise, either via differential competence of the neural and non-neural ectoderm (binary competence model) or via interactions between the neural and non-neural ectoderm tissues to produce an intermediate neural border zone (NB) (border state model) that subsequently separates into neural crest and PPR. Many previous gain- and loss-of-function experiments demonstrate that numerous TFs are expressed in initially overlapping zones that gradually resolve into patterns that by late neurula stages are characteristic of each of the four domains. Several of these studies suggested that this is accomplished by a combination of repressive TF interactions and competence to respond to local signals. In this study, we ectopically expressed TFs that at neural plate stages are characteristic of one domain in a different domain to test whether they act cell autonomously as repressors. We found that almost all tested TFs caused reduced expression of the other TFs. At gastrulation these effects were strictly within the lineage-labeled cells, indicating that the effects were cell autonomous, i.e., due to TF interactions within individual cells. Analysis of previously published single cell RNAseq datasets showed that at the end of gastrulation, and continuing to neural tube closure stages, many ectodermal cells express TFs characteristic of more than one neural plate stage domain, indicating that different TFs have the opportunity to interact within the same cell. At neurula stages repression was observed both in the lineage-labeled cells and in adjacent cells not bearing detectable lineage label, suggesting that cell-to-cell signaling has begun to contribute to the separation of the domains. Together, these observations directly demonstrate previous suggestions in the literature that the segregation of embryonic ectodermal domains initially involves cell autonomous, repressive TF interactions within an individual cell followed by the subsequent advent of non-cell autonomous signaling to neighbors.
Collapse
Affiliation(s)
- Steven L Klein
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| | - Meredith Peterson
- Department of Biology, State College, Penn State University, University Park, PA, United States
| | | | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., DC, United States
| |
Collapse
|
9
|
McMahon R, Sibbritt T, Aryamanesh N, Masamsetti VP, Tam PPL. Loss of Foxd4 Impacts Neurulation and Cranial Neural Crest Specification During Early Head Development. Front Cell Dev Biol 2022; 9:777652. [PMID: 35178396 PMCID: PMC8843869 DOI: 10.3389/fcell.2021.777652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
The specification of anterior head tissue in the late gastrulation mouse embryo relies on signaling cues from the visceral endoderm and anterior mesendoderm (AME). Genetic loss-of-function studies have pinpointed a critical requirement of LIM homeobox 1 (LHX1) transcription factor in these tissues for the formation of the embryonic head. Transcriptome analysis of embryos with gain-of-function LHX1 activity identified the forkhead box gene, Foxd4, as one downstream target of LHX1 in late-gastrulation E7.75 embryos. Our analysis of single-cell RNA-seq data show Foxd4 is co-expressed with Lhx1 and Foxa2 in the anterior midline tissue of E7.75 mouse embryos, and in the anterior neuroectoderm (ANE) at E8.25 alongside head organizer genes Otx2 and Hesx1. To study the role of Foxd4 during early development we used CRISPR-Cas9 gene editing in mouse embryonic stem cells (mESCs) to generate bi-allelic frameshift mutations in the coding sequence of Foxd4. In an in vitro model of the anterior neural tissues derived from Foxd4-loss of function (LOF) mESCs and extraembryonic endoderm cells, expression of head organizer genes as well as Zic1 and Zic2 was reduced, pointing to a need for FOXD4 in regulating early neuroectoderm development. Mid-gestation mouse chimeras harbouring Foxd4-LOF mESCs displayed craniofacial malformations and neural tube closure defects. Furthermore, our in vitro data showed a loss of FOXD4 impacts the expression of cranial neural crest markers Twist1 and Sox9. Our findings have demonstrated that FOXD4 is essential in the AME and later in the ANE for rostral neural tube closure and neural crest specification during head development.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Tennille Sibbritt
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Nadar Aryamanesh
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| |
Collapse
|
10
|
Umair Z, Kumar V, Goutam RS, Kumar S, Lee U, Kim J. Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos. Mol Cells 2021; 44:723-735. [PMID: 34711690 PMCID: PMC8560583 DOI: 10.14348/molcells.2021.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.
Collapse
Affiliation(s)
- Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
11
|
Coppenrath K, Tavares ALP, Shaidani NI, Wlizla M, Moody SA, Horb M. Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease. Genesis 2021; 59:e23453. [PMID: 34664392 DOI: 10.1002/dvg.23453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
The vertebrate Six (Sine oculis homeobox) family of homeodomain transcription factors plays critical roles in the development of several organs. Six1 plays a central role in cranial placode development, including the precursor tissues of the inner ear, as well as other cranial sensory organs and the kidney. In humans, mutations in SIX1 underlie some cases of Branchio-oto-renal (BOR) syndrome, which is characterized by moderate-to-severe hearing loss. We utilized CRISPR/Cas9 technology to establish a six1 mutant line in Xenopus tropicalis that is available to the research community. We demonstrate that at larval stages, the six1-null animals show severe disruptions in gene expression of putative Six1 target genes in the otic vesicle, cranial ganglia, branchial arch, and neural tube. At tadpole stages, six1-null animals display dysmorphic Meckel's, ceratohyal, and otic capsule cartilage morphology. This mutant line will be of value for the study of the development of several organs as well as congenital syndromes that involve these tissues.
Collapse
Affiliation(s)
- Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Marcin Wlizla
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Embryology Department, Charles River Laboratories, Wilmington, Massachusetts, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
12
|
Kumar V, Goutam RS, Umair Z, Park S, Lee U, Kim J. Foxd4l1.1 Negatively Regulates Chordin Transcription in Neuroectoderm of Xenopus Gastrula. Cells 2021; 10:cells10102779. [PMID: 34685759 PMCID: PMC8534798 DOI: 10.3390/cells10102779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the bone morphogenetic proteins (BMPs) is the primary step toward neuroectoderm formation in vertebrates. In this process, the Spemann organizer of the dorsal mesoderm plays a decisive role by secreting several extracellular BMP inhibitors such as Chordin (Chrd). Chrd physically interacts with BMP proteins and inhibits BMP signaling, which triggers the expression of neural-specific transcription factors (TFs), including Foxd4l1.1. Thus, Chrd induces in a BMP-inhibited manner and promotes neuroectoderm formation. However, the regulatory feedback mechanism of Foxd4l1.1 on mesodermal genes expression during germ-layer specification has not been fully elucidated. In this study, we investigated the regulatory mechanism of Foxd4l1.1 on chrd (a mesodermal gene). We demonstrate that Foxd4l1.1 inhibits chrd expression during neuroectoderm formation in two ways: First, Foxd4l1.1 directly binds to FRE (Foxd4l1.1 response elements) within the chrd promoter region to inhibit transcription. Second, Foxd4l1.1 physically interacts with Smad2 and Smad3, and this interaction blocks Smad2 and Smad3 binding to activin response elements (AREs) within the chrd promoter. Site-directed mutagenesis of FRE within the chrd(-2250) promoter completely abolished repressor activity of the Foxd4l1.1. RT-PCR and reporter gene assay results indicate that Foxd4l1.1 strongly inhibits mesoderm- and ectoderm-specific marker genes to maintain neural fate. Altogether, these results suggest that Foxd4l1.1 negatively regulates chrd transcription by dual mechanism. Thus, our study demonstrates the existence of precise reciprocal regulation of chrd transcription during neuroectoderm and mesoderm germ-layer specification in Xenopus embryos.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Correspondence: (U.L.); (J.K.)
| |
Collapse
|
13
|
Tavares ALP, Jourdeuil K, Neilson KM, Majumdar HD, Moody SA. Sobp modulates the transcriptional activation of Six1 target genes and is required during craniofacial development. Development 2021; 148:272053. [PMID: 34414417 DOI: 10.1242/dev.199684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022]
Abstract
Branchio-oto-renal syndrome (BOR) is a disorder characterized by hearing loss, and craniofacial and/or renal defects. Variants in the transcription factor Six1 and its co-factor Eya1, both of which are required for otic development, are linked to BOR. We previously identified Sobp as a potential Six1 co-factor, and SOBP variants in mouse and humans cause otic phenotypes; therefore, we asked whether Sobp interacts with Six1 and thereby may contribute to BOR. Co-immunoprecipitation and immunofluorescence experiments demonstrate that Sobp binds to and colocalizes with Six1 in the cell nucleus. Luciferase assays show that Sobp interferes with the transcriptional activation of Six1+Eya1 target genes. Experiments in Xenopus embryos that either knock down or increase expression of Sobp show that it is required for formation of ectodermal domains at neural plate stages. In addition, altering Sobp levels disrupts otic vesicle development and causes craniofacial cartilage defects. Expression of Xenopus Sobp containing the human variant disrupts the pre-placodal ectoderm similar to full-length Sobp, but other changes are distinct. These results indicate that Sobp modifies Six1 function and is required for vertebrate craniofacial development, and identify Sobp as a potential candidate gene for BOR.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| |
Collapse
|
14
|
Mutations in SIX1 Associated with Branchio-oto-Renal Syndrome (BOR) Differentially Affect Otic Expression of Putative Target Genes. J Dev Biol 2021; 9:jdb9030025. [PMID: 34208995 PMCID: PMC8293042 DOI: 10.3390/jdb9030025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Several single-nucleotide mutations in SIX1 underlie branchio-otic/branchio-oto-renal (BOR) syndrome, but the clinical literature has not been able to correlate different variants with specific phenotypes. We previously assessed whether variants in either the cofactor binding domain (V17E, R110W) or the DNA binding domain (W122R, Y129C) might differentially affect early embryonic gene expression, and found that each variant had a different combination of effects on neural crest and placode gene expression. Since the otic vesicle gives rise to the inner ear, which is consistently affected in BOR, herein we focused on whether the variants differentially affected the otic expression of genes previously found to be likely Six1 targets. We found that V17E, which does not bind Eya cofactors, was as effective as wild-type Six1 in reducing most otic target genes, whereas R110W, W122R and Y129C, which bind Eya, were significantly less effective. Notably, V17E reduced the otic expression of prdm1, whereas R110W, W122R and Y129C expanded it. Since each mutant has defective transcriptional activity but differs in their ability to interact with Eya cofactors, we propose that altered cofactor interactions at the mutated sites differentially interfere with their ability to drive otic gene expression, and these differences may contribute to patient phenotype variability.
Collapse
|
15
|
Onjiko RM, Nemes P, Moody SA. Altering metabolite distribution at Xenopus cleavage stages affects left-right gene expression asymmetries. Genesis 2021; 59:e23418. [PMID: 33826226 DOI: 10.1002/dvg.23418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The left-right (L-R) axis of most bilateral animals is established during gastrulation when a transient ciliated structure creates a directional flow of signaling molecules that establish asymmetric gene expression in the lateral plate mesoderm. However, in some animals, an earlier differential distribution of molecules and cell division patterns initiate or at least influence L-R patterning. Using single-cell high-resolution mass spectrometry, we previously reported a limited number of small molecule (metabolite) concentration differences between left and right dorsal-animal blastomeres of the eight-cell Xenopus embryo. Herein, we examined whether altering the distribution of some of these molecules influenced early events in L-R patterning. Using lineage tracing, we found that injecting right-enriched metabolites into the left cell caused its descendant cells to disperse in patterns that varied from those in control gastrulae; this did not occur when left-enriched metabolites were injected into the right cell. At later stages, injecting left-enriched metabolites into the right cell perturbed the expression of genes known to: (a) be required for the formation of the gastrocoel roof plate (foxj1); (b) lead to the asymmetric expression of Nodal (dand5/coco); or (c) result from asymmetrical nodal expression (pitx2). Despite these perturbations in gene expression, we did not observe heterotaxy in heart or gut looping at tadpole stages. These studies indicate that altering metabolite distribution at cleavage stages at the concentrations tested in this study impacts the earliest steps of L-R gene expression that then can be compensated for during organogenesis.
Collapse
Affiliation(s)
- Rosemary M Onjiko
- Department of Chemistry, The George Washington University, Washington, District of Columbia
| | - Peter Nemes
- Department of Chemistry, The George Washington University, Washington, District of Columbia.,Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland
| | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
16
|
Walsh P, Truong V, Nayak S, Saldías Montivero M, Low WC, Parr AM, Dutton JR. Accelerated differentiation of human pluripotent stem cells into neural lineages via an early intermediate ectoderm population. Stem Cells 2020; 38:1400-1408. [PMID: 32745311 PMCID: PMC7693041 DOI: 10.1002/stem.3260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Differentiation of human pluripotent stem cells (hPSCs) into ectoderm provides neurons and glia useful for research, disease modeling, drug discovery, and potential cell therapies. In current protocols, hPSCs are traditionally differentiated into an obligate rostro-dorsal ectodermal fate expressing PAX6 after 6 to 12 days in vitro when protected from mesendoderm inducers. This rate-limiting step has performed a long-standing role in hindering the development of rapid differentiation protocols for ectoderm-derived cell types, as any protocol requires 6 to 10 days in vitro to simply initiate. Here, we report efficient differentiation of hPSCs into a naive early ectodermal intermediate within 24 hours using combined inhibition of bone morphogenic protein and fibroblast growth factor signaling. The induced population responds immediately to morphogen gradients to upregulate rostro-caudal neurodevelopmental landmark gene expression in a generally accelerated fashion. This method can serve as a new platform for the development of novel, rapid, and efficient protocols for the manufacture of hPSC-derived neural lineages.
Collapse
Affiliation(s)
- Patrick Walsh
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Vincent Truong
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Sushmita Nayak
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Walter C. Low
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ann M. Parr
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - James R. Dutton
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
17
|
Kumar S, Umair Z, Kumar V, Kumar S, Lee U, Kim J. Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos. Sci Rep 2020; 10:16780. [PMID: 33033315 PMCID: PMC7545198 DOI: 10.1038/s41598-020-73662-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Neuroectoderm formation is the first step in development of a proper nervous system for vertebrates. The developmental decision to form a non-neural ectoderm versus a neural one involves the regulation of BMP signaling, first reported many decades ago. However, the precise regulatory mechanism by which this is accomplished has not been fully elucidated, particularly for transcriptional regulation of certain key transcription factors. BMP4 inhibition is a required step in eliciting neuroectoderm from ectoderm and Foxd4l1.1 is one of the earliest neural genes highly expressed in the neuroectoderm and conserved across vertebrates, including humans. In this work, we focused on how Foxd4l1.1 downregulates the neural repressive pathway. Foxd4l1.1 inhibited BMP4/Smad1 signaling and triggered neuroectoderm formation in animal cap explants of Xenopus embryos. Foxd4l1.1 directly bound within the promoter of endogenous neural repressor ventx1.1 and inhibited ventx1.1 transcription. Foxd4l1.1 also physically interacted with Xbra in the nucleus and inhibited Xbra-induced ventx1.1 transcription. In addition, Foxd4l1.1 also reduced nuclear localization of Smad1 to inhibit Smad1-mediated ventx1.1 transcription. Foxd4l1.1 reduced the direct binding of Xbra and Smad1 on ventx1.1 promoter regions to block Xbra/Smad1-induced synergistic activation of ventx1.1 transcription. Collectively, Foxd4l1.1 negatively regulates transcription of a neural repressor ventx1.1 by multiple mechanisms in its exclusively occupied territory of neuroectoderm, and thus leading to primary neurogenesis. In conjunction with the results of our previous findings that ventx1.1 directly represses foxd4l1.1, the reciprocal repression of ventx1.1 and foxd4l1.1 is significant in at least in part specifying the mechanism for the non-neural versus neural ectoderm fate determination in Xenopus embryos.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Santosh Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
18
|
Neilson KM, Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL, Alfandari D, Moody SA. Mcrs1 interacts with Six1 to influence early craniofacial and otic development. Dev Biol 2020; 467:39-50. [PMID: 32891623 DOI: 10.1016/j.ydbio.2020.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022]
Abstract
The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Stephanie Keer
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nicole Bousquet
- Department of Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Olivia Macrorie
- Department of Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kristy L Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | | | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
19
|
Rao C, Malaguti M, Mason JO, Lowell S. The transcription factor E2A drives neural differentiation in pluripotent cells. Development 2020; 147:dev184093. [PMID: 32487737 PMCID: PMC7328008 DOI: 10.1242/dev.184093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
The intrinsic mechanisms that link extracellular signalling to the onset of neural differentiation are not well understood. In pluripotent mouse cells, BMP blocks entry into the neural lineage via transcriptional upregulation of inhibitor of differentiation (Id) factors. We have previously identified the major binding partner of Id proteins in pluripotent cells as the basic helix-loop-helix (bHLH) transcription factor (TF) E2A. Id1 can prevent E2A from forming heterodimers with bHLH TFs or from forming homodimers. Here, we show that overexpression of a forced E2A homodimer is sufficient to drive robust neural commitment in pluripotent cells, even under non-permissive conditions. Conversely, we find that E2A null cells display a defect in their neural differentiation capacity. E2A acts as an upstream activator of neural lineage genes, including Sox1 and Foxd4, and as a repressor of Nodal signalling. Our results suggest a crucial role for E2A in establishing neural lineage commitment in pluripotent cells.
Collapse
Affiliation(s)
- Chandrika Rao
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - John O Mason
- Centre for Discovery Brain Sciences, University of Edinburgh, 15 George Square, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
20
|
Leibovich A, Edri T, Klein SL, Moody SA, Fainsod A. Natural size variation among embryos leads to the corresponding scaling in gene expression. Dev Biol 2020; 462:165-179. [PMID: 32259520 PMCID: PMC8073595 DOI: 10.1016/j.ydbio.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022]
Abstract
Xenopus laevis frogs from laboratory stocks normally lay eggs exhibiting extensive size variability. We find that these initial size differences subsequently affect the size of the embryos prior to the onset of growth, and the size of tadpoles during the growth period. Even though these tadpoles differ in size, their tissues, organs, and structures always seem to be properly proportioned, i.e. they display static allometry. Initial axial patterning events in Xenopus occur in a spherical embryo, allowing easy documentation of their size-dependent features. We examined the size distribution of early Xenopus laevis embryos and measured diameters that differed by about 38% with a median of about 1.43 mm. This range of embryo sizes corresponds to about a 1.9-fold difference in surface area and a 2.6-fold difference in volume. We examined the relationship between embryo size and gene expression and observed a significant correlation between diameter and RNA content during gastrula stages. In addition, we investigated the expression levels of genes that pattern the mesoderm, induce the nervous system and mediate the progression of ectodermal cells to neural precursors in large and small embryos. We found that most of these factors were expressed at levels that scaled with the different embryo sizes and total embryo RNA content. In agreement with the changes in transcript levels, the expression domains in larger embryos increased proportionally with the increase in surface area, maintaining their relative expression domain size in relation to the total size of the embryo. Thus, our study identified a mechanism for adapting gene expression domains to embryo size by adjusting the transcript levels of the genes regulating mesoderm induction and patterning. In the neural plate, besides the scaling of the expression domains, we observed similar cell sizes and cell densities in small and large embryos suggesting that additional cell divisions took place in large embryos to compensate for the increased size. Our results show in detail the size variability among Xenopus laevis embryos and the transcriptional adaptation to scale gene expression with size. The observations further support the involvement of BMP/ADMP signaling in the scaling process.
Collapse
Affiliation(s)
- Avi Leibovich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Tamir Edri
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Steven L Klein
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
21
|
Solini GE, Pownall ME, Hillenbrand MJ, Tocheny CE, Paudel S, Halleran AD, Bianchi CH, Huyck RW, Saha MS. Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway. Dev Biol 2020; 460:99-107. [PMID: 31899211 PMCID: PMC7263880 DOI: 10.1016/j.ydbio.2019.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/03/2019] [Accepted: 12/24/2019] [Indexed: 11/09/2022]
Abstract
As an essential feature of development, robustness ensures that embryos attain a consistent phenotype despite genetic and environmental variation. The growing number of examples demonstrating that embryos can mount a compensatory response to germline mutations in key developmental genes has heightened interest in the phenomenon of embryonic robustness. While considerable progress has been made in elucidating genetic compensation in response to germline mutations, the diversity, mechanisms, and limitations of embryonic robustness remain unclear. In this work, we have examined whether Xenopus laevis embryos are able to compensate for perturbations of the Notch signaling pathway induced by RNA injection constructs that either upregulate or inhibit this signaling pathway. Consistent with earlier studies, we found that at neurula stages, hyperactivation of the Notch pathway inhibited neural differentiation while inhibition of Notch signaling increases premature differentiation as assayed by neural beta tubulin expression. However, surprisingly, by hatching stages, embryos begin to compensate for these perturbations, and by swimming tadpole stages most embryos exhibited normal neuronal gene expression. Using cell proliferation and TUNEL assays, we show that the compensatory response is, in part, mediated by modulating levels of cell proliferation and apoptosis. This work provides an additional model for addressing the mechanisms of embryonic robustness and of genetic compensation.
Collapse
Affiliation(s)
- Grace E Solini
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Mark E Pownall
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Molly J Hillenbrand
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Claire E Tocheny
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sudip Paudel
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Andrew D Halleran
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Catherine H Bianchi
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Ryan W Huyck
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
22
|
Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM, Moody SA. Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. Dis Model Mech 2020; 13:dmm043489. [PMID: 31980437 PMCID: PMC7063838 DOI: 10.1242/dmm.043489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide mutations in human SIX1 result in amino acid substitutions in either the protein-protein interaction domain or the homeodomain, and cause ∼4% of branchio-otic (BOS) and branchio-oto-renal (BOR) cases. The phenotypic variation between patients with the same mutation, even within affected members of the same family, make it difficult to functionally distinguish between the different SIX1 mutations. We made four of the BOS/BOR substitutions in the Xenopus Six1 protein (V17E, R110W, W122R, Y129C), which is 100% identical to human in both the protein-protein interaction domain and the homeodomain, and expressed them in embryos to determine whether they cause differential changes in early craniofacial gene expression, otic gene expression or otic morphology. We confirmed that, similar to the human mutants, all four mutant Xenopus Six1 proteins access the nucleus but are transcriptionally deficient. Analysis of craniofacial gene expression showed that each mutant causes specific, often different and highly variable disruptions in the size of the domains of neural border zone, neural crest and pre-placodal ectoderm genes. Each mutant also had differential effects on genes that pattern the otic vesicle. Assessment of the tadpole inner ear demonstrated that while the auditory and vestibular structures formed, the volume of the otic cartilaginous capsule, otoliths, lumen and a subset of the hair cell-containing sensory patches were reduced. This detailed description of the effects of BOS/BOR-associated SIX1 mutations in the embryo indicates that each causes subtle changes in gene expression in the embryonic ectoderm and otocyst, leading to inner ear morphological anomalies.
Collapse
Affiliation(s)
- Ankita M Shah
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Patrick Krohn
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Institute of Zoology, University of Hohenheim, Stuttgart 70599, Germany
| | - Aparna B Baxi
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Charles H Sullivan
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Yeshwant R Chillakuru
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
23
|
Sullivan CH, Majumdar HD, Neilson KM, Moody SA. Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation. Dev Biol 2019; 446:68-79. [PMID: 30529252 PMCID: PMC6349505 DOI: 10.1016/j.ydbio.2018.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Abstract
The specialized sensory organs of the vertebrate head are derived from thickened patches of cells in the ectoderm called cranial sensory placodes. The developmental program that generates these placodes and the genes that are expressed during the process have been studied extensively in a number of animals, yet very little is known about how these genes regulate one another. We previously found via a microarray screen that Six1, a known transcriptional regulator of cranial placode fate, up-regulates Irx1 in ectodermal explants. In this study, we investigated the transcriptional relationship between Six1 and Irx1 and found that they reciprocally regulate each other throughout cranial placode and otic vesicle formation. Although Irx1 expression precedes that of Six1 in the neural border zone, its continued and appropriately patterned expression in the pre-placodal region (PPR) and otic vesicle requires Six1. At early PPR stages, Six1 expands the Irx1 domain, but this activity subsides over time and changes to a predominantly repressive effect. Likewise, Irx1 initially expands Six1 expression in the PPR, but later represses it. We also found that Irx1 and Sox11, a known direct target of Six1, reciprocally affect each other. This work demonstrates that the interactions between Six1 and Irx1 are continuous during PPR and placode development and their transcriptional effects on one another change over developmental time.
Collapse
Affiliation(s)
- Charles H Sullivan
- Department of Biology, Grinnell College, Grinnell, IA, 50112, USA; bDepartment of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, N.W., Washington DC 20037, USA
| | - Himani D Majumdar
- bDepartment of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, N.W., Washington DC 20037, USA
| | - Karen M Neilson
- bDepartment of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, N.W., Washington DC 20037, USA
| | - Sally A Moody
- bDepartment of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, N.W., Washington DC 20037, USA.
| |
Collapse
|
24
|
Castro Colabianchi AM, Revinski DR, Encinas PI, Baez MV, Monti RJ, Rodríguez Abinal M, Kodjabachian L, Franchini LF, López SL. Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center. Development 2018; 145:dev.159368. [PMID: 29866901 DOI: 10.1242/dev.159368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Based on functional evidence, we have previously demonstrated that early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of β-catenin by reducing its steady state levels, in a process that does not require β-catenin phosphorylation by glycogen synthase kinase 3β. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a, bmp4 and Ventx genes in the ventral center and the dorsal accumulation of nuclear β-catenin. Knockdown experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of β-catenin to the dorsal side.
Collapse
Affiliation(s)
- Aitana M Castro Colabianchi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Diego R Revinski
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina.,Aix Marseille Université, CNRS, IBDM, 13288 Marseille, France
| | - Paula I Encinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - María Verónica Baez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Renato J Monti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Mateo Rodríguez Abinal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| |
Collapse
|
25
|
Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates. Dev Biol 2017; 429:213-224. [PMID: 28663133 PMCID: PMC5554722 DOI: 10.1016/j.ydbio.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/17/2023]
Abstract
In many animals, maternally synthesized mRNAs are critical for primary germ layer formation. In Xenopus, several maternal mRNAs are enriched in the animal blastomere progenitors of the embryonic ectoderm. We previously identified one of these, WW-domain binding protein 2 N-terminal like (wbp2nl), that others previously characterized as a sperm protein (PAWP) that promotes meiotic resumption. Herein we demonstrate that it has an additional developmental role in regionalizing the embryonic ectoderm. Knock-down of Wbp2nl in the dorsal ectoderm reduced cranial placode and neural crest gene expression domains and expanded neural plate domains; knock-down in ventral ectoderm reduced epidermal gene expression. Conversely, increasing levels of Wbp2nl in the neural plate induced ectopic epidermal and neural crest gene expression and repressed many neural plate and cranial placode genes. The effects in the neural plate appear to be mediated, at least in part, by down-regulating chd, a BMP antagonist. Because the cellular function of Wbp2nl is not known, we mutated several predicted motifs. Expressing mutated proteins in embryos showed that a putative phosphorylation site at Thr45 and an α-helix in the PH-G domain are required to ectopically induce epidermal and neural crest genes in the neural plate. An intact YAP-binding motif also is required for ectopic epidermal gene expression as well as for down-regulating chd. This work reveals novel developmental roles for a cytoplasmic protein that promotes epidermal and neural crest formation at the expense of neural ectoderm.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Paaqua A Grant
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA; Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Himani Datta Majumdar
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Sergey Yaklichkin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Diana Johnson
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
26
|
Abstract
Neural induction is the process through which pluripotent cells are committed to a neural fate. This first step of Central Nervous System formation is triggered by the "Spemann organizer" in amphibians and by homologous embryonic regions in other vertebrates. Studies in classical vertebrate models have produced contrasting views about the molecular nature of neural inducers and no unifying scheme could be drawn. Moreover, how this process evolved in the chordate lineage remains an unresolved issue. In this work, by using graft and micromanipulation experiments, we definitively establish that the dorsal blastopore lip of the cephalochordate amphioxus is homologous to the vertebrate organizer and is able to trigger the formation of neural tissues in a host embryo. In addition, we demonstrate that Nodal/Activin is the main signal eliciting neural induction in amphioxus, and that it also functions as a bona fide neural inducer in the classical vertebrate model Xenopus. Altogether, our results allow us to propose that Nodal/Activin was a major player of neural induction in the ancestor of chordates. This study further reveals the diversity of neural inducers deployed during chordate evolution and advocates against a universally conserved molecular explanation for this process.
Collapse
|
27
|
Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition. PLoS Genet 2017; 13:e1006757. [PMID: 28498870 PMCID: PMC5428918 DOI: 10.1371/journal.pgen.1006757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Zygotic gene expression programs control cell differentiation in vertebrate development. In Xenopus, these programs are initiated by local induction of regulatory genes through maternal signaling activities in the wake of zygotic genome activation (ZGA) at the midblastula transition (MBT). These programs lay down the vertebrate body plan through gastrulation and neurulation, and are accompanied by massive changes in chromatin structure, which increasingly constrain cellular plasticity. Here we report on developmental functions for Brahma related gene 1 (Brg1), a key component of embyronic SWI/SNF chromatin remodeling complexes. Carefully controlled, global Brg1 protein depletion in X. tropicalis and X. laevis causes embryonic lethality or developmental arrest from gastrulation on. Transcriptome analysis at late blastula, before development becomes arrested, indicates predominantly a role for Brg1 in transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE/Nieuwkoop Center) and ventral (BMP/Vent) signaling centers. Moreover, Brg1 is required and sufficient for initiating axial patterning in cooperation with maternal Wnt signaling. In search for a common denominator of Brg1 impact on development, we have quantitatively filtered global mRNA fluctuations at MBT. The results indicate that Brg1 is predominantly required for genes with the highest burst of transcriptional activity. Since this group contains many key developmental regulators, we propose Brg1 to be responsible for raising their expression above threshold levels in preparation for embryonic patterning. Brahma-related-gene-1 (Brg1) is a catalytic subunit of mammalian SWI/SNF chromatin remodeling complexes. Loss of maternal Brg1 protein arrests development in mice at the 2-cell stage, while null homozygotes die at the blastocyst stage. These early requirements have precluded any analysis of Brg1’s embryonic functions. Here we present data from X. laevis and X. tropicalis, which for the first time describe a role for Brg1 during germ layer patterning and axis formation. Brg1-depleted embryos fail to develop past gastrulation. Genome-wide transcriptome analysis at late blastula stage, before the developmental arrest, shows that Brg1 is required predominantly for transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development shortly after midblastula transition. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE and Nieuwkoop center) and ventral (BMP/Vent) signaling centers, being required and sufficient to initiate axial patterning by cooperating with canonical Wnt signaling. Since Brg1-dependent genes share a high burst of transcriptional activation before gastrulation, we propose a systemic role for Brg1 as transcriptional amplifier, which balances the embryonic patterning process.
Collapse
|
28
|
Sherman JH, Karpinski BA, Fralish MS, Cappuzzo JM, Dhindsa DS, Thal AG, Moody SA, LaMantia AS, Maynard TM. Foxd4 is essential for establishing neural cell fate and for neuronal differentiation. Genesis 2017; 55. [PMID: 28316121 DOI: 10.1002/dvg.23031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/21/2023]
Abstract
Many molecular factors required for later stages of neuronal differentiation have been identified; however, much less is known about the early events that regulate the initial establishment of the neuroectoderm. We have used an in vitro embryonic stem cell (ESC) differentiation model to investigate early events of neuronal differentiation and to define the role of mouse Foxd4, an ortholog of a forkhead-family transcription factor central to Xenopus neural plate/neuroectodermal precursor development. We found that Foxd4 is a necessary regulator of the transition from pluripotent ESC to neuroectodermal stem cell, and its expression is necessary for neuronal differentiation. Mouse Foxd4 expression is not only limited to the neural plate but it is also expressed and apparently functions to regulate neurogenesis in the olfactory placode. These in vitro results suggest that mouse Foxd4 has a similar function to its Xenopus ortholog; this was confirmed by successfully substituting murine Foxd4 for its amphibian counterpart in overexpression experiments. Thus, Foxd4 appears to regulate the initial steps in establishing neuroectodermal precursors during initial development of the nervous system.
Collapse
Affiliation(s)
- Jonathan H Sherman
- Department of Neurological Surgery, George Washington University Hospital, Washington, District of Columbia.,Institute for Neuroscience, George Washington University, Washington, District of Columbia
| | - Beverly A Karpinski
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | - Matthew S Fralish
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | | | | | - Arielle G Thal
- George Washington University SMHS, Washington, District of Columbia
| | - Sally A Moody
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Anatomy and Regenerative Biology, George Washington University SMHS, Washington, District of Columbia
| | - Anthony S LaMantia
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | - Thomas M Maynard
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| |
Collapse
|
29
|
Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Moody SA. Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. Dev Biol 2017; 421:171-182. [PMID: 27940157 PMCID: PMC5221411 DOI: 10.1016/j.ydbio.2016.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Genevieve Abbruzzesse
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kristy Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Vanessa Bartolo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Patrick Krohn
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
30
|
Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM, Maynard TM, Mood K, Daar IO, Moody SA. Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm. Genesis 2016; 54:334-49. [PMID: 27092474 PMCID: PMC4912902 DOI: 10.1002/dvg.22943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 01/23/2023]
Abstract
The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn, and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activities are required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased the expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologs of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. genesis 54:334-349, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shailly Gaur
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Max Mandelbaum
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Mona Herold
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Himani Datta Majumdar
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | | | - Kathy Mood
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Ira O. Daar
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
- George Washington University Institute for Neuroscience
| |
Collapse
|
31
|
Chen C, Jin J, Lee GA, Silva E, Donoghue M. Cross-species functional analyses reveal shared and separate roles for Sox11 in frog primary neurogenesis and mouse cortical neuronal differentiation. Biol Open 2016; 5:409-17. [PMID: 26962049 PMCID: PMC4890661 DOI: 10.1242/bio.015404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A well-functioning brain requires production of the correct number and types of cells during development; cascades of transcription factors are essential for cellular coordination. Sox proteins are transcription factors that affect various processes in the development of the nervous system. Sox11, a member of the SoxC family, is expressed in differentiated neurons and supports neuronal differentiation in several systems. To understand how generalizable the actions of Sox11 are across phylogeny, its function in the development of the frog nervous system and the mouse cerebral cortex were compared. Expression of Sox11 is largely conserved between these species; in the developing frog, Sox11 is expressed in the neural plate, neural tube and throughout the segmented brain, while in the mouse cerebral cortex, Sox11 is expressed in differentiated zones, including the preplate, subplate, marginal zone and cortical plate. In both frog and mouse, data demonstrate that Sox11 supports a role in promoting neuronal differentiation, with Sox11-positive cells expressing pan-neural markers and becoming morphologically complex. However, frog and mouse Sox11 cannot substitute for one another; a functional difference likely reflected in sequence divergence. Thus, Sox11 appears to act similarly in subserving neuronal differentiation but is species-specific in frog neural development and mouse corticogenesis. Summary: Sox11 acts to designate neurons in both mouse and frog brains, but orthologs are not functionally redundant. These data show evolutionary conservation of Sox11 function with molecular divergence.
Collapse
Affiliation(s)
- Chao Chen
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| | - Jing Jin
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| | - Garrett A Lee
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| | - Elena Silva
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| | - Maria Donoghue
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| |
Collapse
|
32
|
Klein SL, Moody SA. Early neural ectodermal genes are activated by Siamois and Twin during blastula stages. Genesis 2015; 53:308-20. [PMID: 25892704 PMCID: PMC8943805 DOI: 10.1002/dvg.22854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
BMP signaling distinguishes between neural and non-neural fates by activating epidermis-specific transcription and repressing neural-specific transcription. The neural ectoderm forms after the Organizer secrets antagonists that prevent these BMP-mediated activities. However, it is not known whether neural genes also are transcriptionally activated. Therefore, we tested the ability of nine Organizer transcription factors to ectopically induce the expression of four neural ectodermal genes in epidermal precursors. We found evidence for two pathways: Foxd4 and Sox11 were only induced by Sia and Twn, whereas Gmnn and Zic2 were induced by Sia, Twn, as well as seven other Organizer transcription factors. The induction of Foxd4, Gmnn and Zic2 by Sia/Twn was both non-cell autonomous (requiring an intermediate protein) and cell autonomous (direct), whereas the induction of Sox11 required Foxd4 activity. Because direct induction by Sia/Twn could occur endogenously in the dorsal-equatorial blastula cells that give rise to both the Organizer mesoderm and the neural ectoderm, we knocked down Sia/Twn in those cells. This prevented the blastula expression of Foxd4 and Sox11, demonstrating that Sia/Twn directly activate some neural genes before the separation of the Organizer mesoderm and neural ectoderm lineages.
Collapse
Affiliation(s)
- Steven L. Klein
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, Northwest, Washington, DC
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, Northwest, Washington, DC
| |
Collapse
|
33
|
Whittington N, Cunningham D, Le TK, De Maria D, Silva EM. Sox21 regulates the progression of neuronal differentiation in a dose-dependent manner. Dev Biol 2015; 397:237-47. [PMID: 25448693 PMCID: PMC4325979 DOI: 10.1016/j.ydbio.2014.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/12/2014] [Indexed: 12/27/2022]
Abstract
Members of the SoxB transcription factor family play critical roles in the regulation of neurogenesis. The SoxB1 proteins are required for the induction and maintenance of a proliferating neural progenitor population in numerous vertebrates, however the role of the SoxB2 protein, Sox21, is less clear due to conflicting results. To clarify the role of Sox21 in neurogenesis, we examined its function in the Xenopus neural plate. Here we report that misexpression of Sox21 expands the neural progenitor domain, and represses neuron formation by binding to Neurogenin (Ngn2) and blocking its function. Conversely, we found that Sox21 is also required for neuron formation, as cells lacking Sox21 undergo cell death and thus are unable to differentiate. Together our data indicate that Sox21 plays more than one role in neurogenesis, where a threshold level is required for cell viability and normal differentiation of neurons, but a higher concentration of Sox21 inhibits neuron formation and instead promotes progenitor maintenance.
Collapse
Affiliation(s)
- Niteace Whittington
- Department of Biology, Georgetown University, 37th and O Streets NW, Regents Hall 408, Washington, DC 20057, USA.
| | - Doreen Cunningham
- Department of Biology, Georgetown University, 37th and O Streets NW, Regents Hall 408, Washington, DC 20057, USA.
| | - Thien-Kim Le
- Department of Biology, Georgetown University, 37th and O Streets NW, Regents Hall 408, Washington, DC 20057, USA.
| | - David De Maria
- Department of Biology, Georgetown University, 37th and O Streets NW, Regents Hall 408, Washington, DC 20057, USA.
| | - Elena M Silva
- Department of Biology, Georgetown University, 37th and O Streets NW, Regents Hall 408, Washington, DC 20057, USA.
| |
Collapse
|
34
|
Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA. Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. Dev Dyn 2014; 244:181-210. [PMID: 25403746 DOI: 10.1002/dvdy.24229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/03/2014] [Accepted: 11/12/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Six1 plays an important role in the development of several vertebrate organs, including cranial sensory placodes, somites, and kidney. Although Six1 mutations cause one form of branchio-otic syndrome (BOS), the responsible gene in many patients has not been identified; genes that act downstream of Six1 are potential BOS candidates. RESULTS We sought to identify novel genes expressed during placode, somite and kidney development by comparing gene expression between control and Six1-expressing ectodermal explants. The expression patterns of 19 of the significantly up-regulated and 11 of the significantly down-regulated genes were assayed from cleavage to larval stages. A total of 28/30 genes are expressed in the otocyst, a structure that is functionally disrupted in BOS, and 26/30 genes are expressed in the nephric mesoderm, a structure that is functionally disrupted in the related branchio-otic-renal (BOR) syndrome. We also identified the chick homologues of five genes and show that they have conserved expression patterns. CONCLUSIONS Of the 30 genes selected for expression analyses, all are expressed at many of the developmental times and appropriate tissues to be regulated by Six1. Many have the potential to play a role in the disruption of hearing and kidney function seen in BOS/BOR patients.
Collapse
Affiliation(s)
- Bo Yan
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | | | |
Collapse
|
35
|
Lee HK, Lee HS, Moody SA. Neural transcription factors: from embryos to neural stem cells. Mol Cells 2014; 37:705-12. [PMID: 25234468 PMCID: PMC4213760 DOI: 10.14348/molcells.2014.0227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 01/01/2023] Open
Abstract
The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University, Daegu 702-702,
Korea
| | - Hyun-Shik Lee
- ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University, Daegu 702-702,
Korea
| | | |
Collapse
|
36
|
Yoon J, Kim JH, Kim SC, Park JB, Lee JY, Kim J. PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos. Mol Cells 2014; 37:220-5. [PMID: 24608799 PMCID: PMC3969042 DOI: 10.14348/molcells.2014.2302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 01/21/2023] Open
Abstract
Suppression of bone morphogenetic protein (BMP) signaling induces neural induction in the ectoderm of developing embryos. BMP signaling inhibits eural induction via the expression of various neural suppressors. Previous research has demonstrated that the ectopic expression of dominant negative BMP receptors (DNBR) reduces the expression of target genes down-stream of BMP and leads to neural induction. Additionally, gain-of-function experiments have shown that BMP downstream target genes such as MSX1, GATA1b and Vent are involved in the suppression of neural induction. For example, the Vent1/2 genes are involved in the suppression of Geminin and Sox3 expression in the neural ectodermal region of embryos. In this paper, we investigated whether PV.1, a BMP downstream target gene, negatively regulates the expression of FoxD5b, which plays a role in maintaining a neural progenitor population. A promoter assay and a cyclohexamide experiment demonstrated that PV.1 negatively regulates FoxD5b expression.
Collapse
Affiliation(s)
- Jaeho Yoon
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 200-702,
Korea
| | - Jung-Ho Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 200-702,
Korea
| | - Sung Chan Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 200-702,
Korea
| | - Jae-Bong Park
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 200-702,
Korea
| | - Jae-Yong Lee
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 200-702,
Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 200-702,
Korea
| |
Collapse
|
37
|
Full transcriptome analysis of early dorsoventral patterning in zebrafish. PLoS One 2013; 8:e70053. [PMID: 23922899 PMCID: PMC3726443 DOI: 10.1371/journal.pone.0070053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway.
Collapse
|
38
|
Janesick A, Abbey R, Chung C, Liu S, Taketani M, Blumberg B. ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis. Development 2013; 140:3095-106. [PMID: 23824578 DOI: 10.1242/dev.093716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells in the developing neural tissue demonstrate an exquisite balance between proliferation and differentiation. Retinoic acid (RA) is required for neuronal differentiation by promoting expression of proneural and neurogenic genes. We show that RA acts early in the neurogenic pathway by inhibiting expression of neural progenitor markers Geminin and Foxd4l1, thereby promoting differentiation. Our screen for RA target genes in early Xenopus development identified Ets2 Repressor Factor (Erf) and the closely related ETS repressors Etv3 and Etv3-like (Etv3l). Erf and Etv3l are RA responsive and inhibit the action of ETS genes downstream of FGF signaling, placing them at the intersection of RA and growth factor signaling. We hypothesized that RA regulates primary neurogenesis by inducing Erf and Etv3l to antagonize proliferative signals. Loss-of-function analysis showed that Erf and Etv3l are required to inhibit proliferation of neural progenitors to allow differentiation, whereas overexpression of Erf led to an increase in the number of primary neurons. Therefore, these RA-induced ETS repressors are key components of the proliferation-differentiation switch during primary neurogenesis in vivo.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | | | | | | | | | | |
Collapse
|
39
|
Moody SA, Klein SL, Karpinski BA, Maynard TM, LaMantia AS. On becoming neural: what the embryo can tell us about differentiating neural stem cells. AMERICAN JOURNAL OF STEM CELLS 2013; 2:74-94. [PMID: 23862097 PMCID: PMC3708510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
THE EARLIEST STEPS OF EMBRYONIC NEURAL DEVELOPMENT ARE ORCHESTRATED BY SETS OF TRANSCRIPTION FACTORS THAT CONTROL AT LEAST THREE PROCESSES: the maintenance of proliferative, pluripotent precursors that expand the neural ectoderm; their transition to neurally committed stem cells comprising the neural plate; and the onset of differentiation of neural progenitors. The transition from one step to the next requires the sequential activation of each gene set and then its down-regulation at the correct developmental times. Herein, we review how these gene sets interact in a transcriptional network to regulate these early steps in neural development. A key gene in this regulatory network is FoxD4L1, a member of the forkhead box (Fox) family of transcription factors. Knock-down experiments in Xenopus embryos show that FoxD4L1 is required for the expression of the other neural transcription factors, whereas increased FoxD4L1 levels have three different effects on these genes: up-regulation of neural ectoderm precursor genes; transient down-regulation of neural plate stem cell genes; and down-regulation of neural progenitor differentiation genes. These different effects indicate that FoxD4L1 maintains neural ectodermal precursors in an immature, proliferative state, and counteracts premature neural stem cell and neural progenitor differentiation. Because it both up-regulates and down-regulates genes, we characterized the regions of the FoxD4L1 protein that are specifically involved in these transcriptional functions. We identified a transcriptional activation domain in the N-terminus and at least two domains in the C-terminus that are required for transcriptional repression. These functional domains are highly conserved in the mouse and human homologues. Preliminary studies of the related FoxD4 gene in cultured mouse embryonic stem cells indicate that it has a similar role in promoting immature neural ectodermal precursors and delaying neural progenitor differentiation. These studies in Xenopus embryos and mouse embryonic stem cells indicate that FoxD4L1/FoxD4 has the important function of regulating the balance between the genes that expand neural ectodermal precursors and those that promote neural stem/progenitor differentiation. Thus, regulating the level of expression of FoxD4 may be important in stem cell protocols designed to create immature neural cells for therapeutic uses.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
- Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| | - Steven L Klein
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| | - Beverley A Karpinski
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| | - Thomas M Maynard
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
- Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| | - Anthony-Samuel LaMantia
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
- Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences2300 I (eye) Street, N.W., Washington, D.C. 20037, USA
| |
Collapse
|
40
|
Klein SL, Neilson KM, Orban J, Yaklichkin S, Hoffbauer J, Mood K, Daar IO, Moody SA. Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes. PLoS One 2013; 8:e61845. [PMID: 23610594 PMCID: PMC3627651 DOI: 10.1371/journal.pone.0061845] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/15/2013] [Indexed: 12/11/2022] Open
Abstract
FoxD4L1 is a forkhead transcription factor that expands the neural ectoderm by down-regulating genes that promote the onset of neural differentiation and up-regulating genes that maintain proliferative neural precursors in an immature state. We previously demonstrated that binding of Grg4 to an Eh-1 motif enhances the ability of FoxD4L1 to down-regulate target neural genes but does not account for all of its repressive activity. Herein we analyzed the protein sequence for additional interaction motifs and secondary structure. Eight conserved motifs were identified in the C-terminal region of fish and frog proteins. Extending the analysis to mammals identified a high scoring motif downstream of the Eh-1 domain that contains a tryptophan residue implicated in protein-protein interactions. In addition, secondary structure prediction programs predicted an α-helical structure overlapping with amphibian-specific Motif 6 in Xenopus, and similarly located α-helical structures in other vertebrate FoxD proteins. We tested functionality of this site by inducing a glutamine-to-proline substitution expected to break the predicted α-helical structure; this significantly reduced FoxD4L1’s ability to repress zic3 and irx1. Because this mutation does not interfere with Grg4 binding, these results demonstrate that at least two regions, the Eh-1 motif and a more C-terminal predicted α-helical/Motif 6 site, additively contribute to repression. In the N-terminal region we previously identified a 14 amino acid motif that is required for the up-regulation of target genes. Secondary structure prediction programs predicted a short β-strand separating two acidic domains. Mutant constructs show that the β-strand itself is not required for transcriptional activation. Instead, activation depends upon a glycine residue that is predicted to provide sufficient flexibility to bring the two acidic domains into close proximity. These results identify conserved predicted motifs with secondary structures that enable FoxD4L1 to carry out its essential functions as both a transcriptional repressor and activator of neural genes.
Collapse
Affiliation(s)
- Steven L. Klein
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Karen M. Neilson
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - John Orban
- Institute for Bioscience and Biotechnology Research, Department of Chemistry and Biochemistry, University of Maryland, Rockville, Maryland, United States of America
| | - Sergey Yaklichkin
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jennifer Hoffbauer
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Kathy Mood
- Laboratory of Cell and Developmental Signaling, NIH, NCI-Frederick, Frederick, Maryland, United States of America
| | - Ira O. Daar
- Laboratory of Cell and Developmental Signaling, NIH, NCI-Frederick, Frederick, Maryland, United States of America
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
41
|
Kuo CL, Lam CM, Hewitt JE, Scotting PJ. Formation of the embryonic organizer is restricted by the competitive influences of Fgf signaling and the SoxB1 transcription factors. PLoS One 2013; 8:e57698. [PMID: 23469052 PMCID: PMC3585176 DOI: 10.1371/journal.pone.0057698] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
The organizer is one of the earliest structures to be established during vertebrate development and is crucial to subsequent patterning of the embryo. We have previously shown that the SoxB1 transcription factor, Sox3, plays a central role as a transcriptional repressor of zebrafish organizer gene expression. Recent data suggest that Fgf signaling has a positive influence on organizer formation, but its role remains to be fully elucidated. In order to better understand how Fgf signaling fits into the complex regulatory network that determines when and where the organizer forms, the relationship between the positive effects of Fgf signaling and the repressive effects of the SoxB1 factors must be resolved. This study demonstrates that both fgf3 and fgf8 are required for expression of the organizer genes, gsc and chd, and that SoxB1 factors (Sox3, and the zebrafish specific factors, Sox19a and Sox19b) can repress the expression of both fgf3 and fgf8. However, we also find that these SoxB1 factors inhibit the expression of gsc and chd independently of their repression of fgf expression. We show that ectopic expression of organizer genes induced solely by the inhibition of SoxB1 function is dependent upon the activation of fgf expression. These data allow us to describe a comprehensive signaling network in which the SoxB1 factors restrict organizer formation by inhibiting Fgf, Nodal and Wnt signaling, as well as independently repressing the targets of that signaling. The organizer therefore forms only where Nodal-induced Fgf signaling overlaps with Wnt signaling and the SoxB1 proteins are absent.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
| | - Chi Man Lam
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
| | - Jane E. Hewitt
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
| | - Paul J. Scotting
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Grant PA, Herold MB, Moody SA. Blastomere explants to test for cell fate commitment during embryonic development. J Vis Exp 2013:4458. [PMID: 23381620 PMCID: PMC3582656 DOI: 10.3791/4458] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fate maps, constructed from lineage tracing all of the cells of an embryo, reveal which tissues descend from each cell of the embryo. Although fate maps are very useful for identifying the precursors of an organ and for elucidating the developmental path by which the descendant cells populate that organ in the normal embryo, they do not illustrate the full developmental potential of a precursor cell or identify the mechanisms by which its fate is determined. To test for cell fate commitment, one compares a cell's normal repertoire of descendants in the intact embryo (the fate map) with those expressed after an experimental manipulation. Is the cell's fate fixed (committed) regardless of the surrounding cellular environment, or is it influenced by external factors provided by its neighbors? Using the comprehensive fate maps of the Xenopus embryo, we describe how to identify, isolate and culture single cleavage stage precursors, called blastomeres. This approach allows one to assess whether these early cells are committed to the fate they acquire in their normal environment in the intact embryo, require interactions with their neighboring cells, or can be influenced to express alternate fates if exposed to other types of signals.
Collapse
Affiliation(s)
- Paaqua A Grant
- Department of Biological Sciences, The George Washington University, USA
| | | | | |
Collapse
|
43
|
Beccari L, Marco-Ferreres R, Bovolenta P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 2012; 130:95-111. [PMID: 23111324 DOI: 10.1016/j.mod.2012.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/09/2012] [Indexed: 01/19/2023]
Abstract
The vertebrate forebrain or prosencephalon is patterned at the beginning of neurulation into four major domains: the telencephalic, hypothalamic, retinal and diencephalic anlagen. These domains will then give rise to the majority of the brain structures involved in sensory integration and the control of higher intellectual and homeostatic functions. Understanding how forebrain pattering arises has thus attracted the interest of developmental neurobiologists for decades. As a result, most of its regulators have been identified and their hierarchical relationship is now the object of active investigation. Here, we summarize the main morphogenetic pathways and transcription factors involved in forebrain specification and propose the backbone of a possible gene regulatory network (GRN) governing its specification, taking advantage of the GRN principles elaborated by pioneer studies in simpler organisms. We will also discuss this GRN and its operational logic in the context of the remarkable morphological and functional diversification that the forebrain has undergone during evolution.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c/Nicolas Cabrera, 1, Madrid 28049, Spain
| | | | | |
Collapse
|
44
|
Marchini S, Poynor E, Barakat RR, Clivio L, Cinquini M, Fruscio R, Porcu L, Bussani C, D'Incalci M, Erba E, Romano M, Cattoretti G, Katsaros D, Koff A, Luzzatto L. The zinc finger gene ZIC2 has features of an oncogene and its overexpression correlates strongly with the clinical course of epithelial ovarian cancer. Clin Cancer Res 2012; 18:4313-24. [PMID: 22733541 DOI: 10.1158/1078-0432.ccr-12-0037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Epithelial ovarian tumors (EOT) are among the most lethal of malignancies in women. We have previously identified ZIC2 as expressed at a higher level in samples of a malignant form (MAL) of EOT than in samples of a form with low malignant potential (LMP). We have now investigated the role of ZIC2 in driving tumor growth and its association with clinical outcomes. EXPERIMENTAL DESIGN ZIC2 expression levels were analyzed in two independent tumor tissue collections of LMP and MAL. In vitro experiments aimed to test the role of ZIC2 as a transforming gene. Cox models were used to correlate ZIC2 expression with clinical endpoints. RESULTS ZIC2 expression was about 40-fold in terms of mRNA and about 17-fold in terms of protein in MAL (n = 193) versus LMP (n = 39) tumors. ZIC2 mRNA levels were high in MAL cell lines but undetectable in LMP cell lines. Overexpression of ZIC2 was localized to the nucleus. ZIC2 overexpression increases the growth rate and foci formation of NIH3T3 cells and stimulates anchorage-independent colony formation; downregulation of ZIC2 decreases the growth rate of MAL cell lines. Zinc finger domains 1 and 2 are required for transforming activity. In stage I MAL, ZIC2 expression was significantly associated with overall survival in both univariate (P = 0.046) and multivariate model (P = 0.049). CONCLUSIONS ZIC2, a transcription factor related to the sonic hedgehog pathway, is a strong discriminant between MAL and LMP tumors: it may be a major determinant of outcome of EOTs.
Collapse
Affiliation(s)
- Sergio Marchini
- Department of Oncology, Mario Negri Gynecological Oncology Group, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA. Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Dev Biol 2012; 365:363-75. [PMID: 22425621 DOI: 10.1016/j.ydbio.2012.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 03/01/2012] [Accepted: 03/04/2012] [Indexed: 01/20/2023]
Abstract
FoxD4/5, a forkhead transcription factor, plays a critical role in establishing and maintaining the embryonic neural ectoderm. It both up-regulates genes that maintain a proliferative, immature neural ectoderm and down-regulates genes that promote the transition to a differentiating neural plate. We constructed deletion and mutant versions of FoxD4/5 to determine which domains are functionally responsible for these opposite activities, which regulate the critical developmental transition of neural precursors to neural progenitors to differentiating neural plate cells. Our results show that up-regulation of genes that maintain immature neural precursors (gem, zic2) requires the Acidic blob (AB) region in the N-terminal portion of the protein, indicating that the AB is the transactivating domain. Additionally, down-regulation of those genes that promote the transition to neural progenitors (sox) and those that lead to neural differentiation (zic, irx) involves: 1) an interaction with the Groucho co-repressor at the Eh-1 motif in the C-terminus; and 2) sequence downstream of this motif. Finally, the ability of FoxD4/5 to induce the ectopic expression of neural precursor genes in the ventral ectoderm also involves both the AB region and the Eh-1 motif; FoxD4/5 accomplishes ectopic neural induction by both activating neural precursor genes and repressing BMP signaling and epidermal genes. This study identifies the specific, conserved domains of the FoxD4/5 protein that allow this single transcription factor to regulate a network of genes that controls the transition of a proliferative neural ectodermal population to a committed neural plate population poised to begin differentiation.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington DC, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rogers CD, Ferzli GS, Casey ES. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module. BMC DEVELOPMENTAL BIOLOGY 2011; 11:74. [PMID: 22172147 PMCID: PMC3271986 DOI: 10.1186/1471-213x-11-74] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/15/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes. Although additional signals may be involved in neural induction and patterning, here we focus on the roles of BMP inhibition and FGF8a. RESULTS To address the question of necessity and sufficiency of BMP inhibition and FGF signaling, we compared the temporal expression of the five earliest genes expressed in the neuroectoderm and determined their requirements for induction at the onset of neural plate formation in Xenopus. Our results demonstrate that the onset and peak of expression of the genes vary and that they have different regulatory requirements and are therefore unlikely to share a conserved neural induction regulatory module. Even though all require inhibition of BMP for expression, some also require FGF signaling; expression of the early-onset pan-neural genes sox2 and foxd5α requires FGF signaling while other early genes, sox3, geminin and zicr1 are induced by BMP inhibition alone. CONCLUSIONS We demonstrate that BMP inhibition and FGF signaling induce neural genes independently of each other. Together our data indicate that although the spatiotemporal expression patterns of early neural genes are similar, the mechanisms involved in their expression are distinct and there are different signaling requirements for the expression of each gene.
Collapse
Affiliation(s)
- Crystal D Rogers
- Department of Biology, Georgetown University, Washington DC, USA
| | - George S Ferzli
- Department of Biology, Georgetown University, Washington DC, USA
| | - Elena S Casey
- Department of Biology, Georgetown University, Washington DC, USA
| |
Collapse
|
47
|
Yan B, Neilson KM, Moody SA. Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. Dev Dyn 2011; 239:3467-80. [PMID: 21069826 DOI: 10.1002/dvdy.22485] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FoxD4L1/D5 is a forkhead transcription factor that functions as both a transcriptional activator and repressor. FoxD4L1/D5 acts upstream of several other neural transcription factors to maintain neural fate, regulate neural plate patterning, and delay the expression of neural differentiation factors. To identify a more complete list of downstream genes that participate in these earliest steps of neural ectodermal development, we carried out a microarray analysis comparing gene expression in control animal cap ectodermal explants (ACs), which will form epidermis, to that in FoxD4L1/D5-expressing ACs. Forty-four genes were tested for validation by RT-PCR of ACs and/or in situ hybridization assays in embryos; 86% of those genes up-regulated and 100% of those genes down-regulated in the microarray were altered accordingly in one of these independent assays. Eleven of these 44 genes are of unknown function, and we provide herein their developmental expression patterns to begin to reveal their roles in ectodermal development.
Collapse
Affiliation(s)
- Bo Yan
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | | | |
Collapse
|
48
|
Archer TC, Jin J, Casey ES. Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis. Dev Biol 2010; 350:429-40. [PMID: 21147085 DOI: 10.1016/j.ydbio.2010.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022]
Abstract
Sox1, Sox2 and Sox3, the three members of the SoxB1 subgroup of transcription factors, have similar sequences, expression patterns and overexpression phenotypes. Thus, it has been suggested that they have redundant roles in the maintenance of neural stem cells in development. However, the long-term effect of overexpression or their function in combination with their putative co-factor Oct4 has not been tested. Here, we show that overexpression of sox1, sox2, sox3 or oct91, the Xenopus homologue of Oct4, results in the same phenotype: an expanded neural plate at the expense of epidermis and delayed neurogenesis. However, each of these proteins induced a unique profile of neural markers and the combination of Oct91 with each SoxB1 protein had different effects, as did continuous misexpression of the proteins. Overexpression studies indicate that Oct91 preferentially cooperates with Sox2 to maintain neural progenitor marker expression, while knockdown of Oct91 inhibits neural induction driven by either Sox2 or Sox3. Continuous expression of Sox1 and Sox2 in transgenic embryos represses neuron differentiation and inhibits anterior development while increasing cell proliferation. Constitutively active Sox3, however, leads to increased apoptosis suggesting that it functions as a tumor suppressor. While the SoxB1s have overlapping functions, they are not strictly redundant as they induce different sets of genes and are likely to partner with different proteins to maintain progenitor identity.
Collapse
Affiliation(s)
- Tenley C Archer
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | | | | |
Collapse
|
49
|
Wang X, Björklund S, Wasik AM, Grandien A, Andersson P, Kimby E, Dahlman-Wright K, Zhao C, Christensson B, Sander B. Gene expression profiling and chromatin immunoprecipitation identify DBN1, SETMAR and HIG2 as direct targets of SOX11 in mantle cell lymphoma. PLoS One 2010; 5:e14085. [PMID: 21124928 PMCID: PMC2989913 DOI: 10.1371/journal.pone.0014085] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/03/2010] [Indexed: 01/09/2023] Open
Abstract
The SRY (sex determining region Y)-box 11 (SOX11) gene, located on chromosome 2p25, encodes for a transcription factor that is involved in tissue remodeling during embryogenesis and is crucial for neurogenesis. The role for SOX11 in hematopoiesis has not yet been defined. Two genes under direct control of SOX11 are the class- III β-tubulin gene (TUBB3) in neural cells and the transcription factor TEA domain family member 2 (TEAD2) in neural and mesenchymal progenitor cells. Normal, mature lymphocytes lack SOX11 but express SOX4, another member of the same group of SOX transcription factors. We and others recently identified SOX11 as aberrantly expressed in mantle cell lymphoma (MCL). Since SOX11 is variably expressed in MCL it may not be essential for tumorigenesis, but may carry prognostic information. Currently, no specific functional effects have been linked to SOX11 expression in MCL and it is not known which genes are under influence of SOX11 in lymphoma. In this study we found variable expression of SOX11, SOX4 and SOX12 mRNA in mantle cell lymphoma cell lines. Downregulation of SOX11 expression by siRNA verified that SOX11 controlled the expression of the gene TUBB3 in the MCL cell line Granta 519. Furthermore we identified, by global gene expression analysis, 26 new target genes influenced by siRNA SOX11 downmodulation. Among these genes, DBN1, SETMAR and HIG2 were found to be significantly correlated to SOX11 expression in two cohorts of primary mantle cell lymphomas. Chromatin immunoprecipitation (ChIP) analysis showed that these genes are direct targets of the SOX11 protein. In spite of almost complete downregulation of the SOX11 protein no significant effects on Granta 519 cell proliferation or survival in short term in vitro experiments was found. In summary we have identified a number of genes influenced by SOX11 expression in MCL cell lines and primary MCL. Among these genes, DBN1, SETMAR and HIG2 are direct transcriptional targets of the SOX11 protein.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Stefan Björklund
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Agata M. Wasik
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Alf Grandien
- Center for Infectious Medicine and Center for Experimental Hematology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Division of Hematology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Patrik Andersson
- Department of Hematology, Stockholm South Hospital, Stockholm, Sweden
| | - Eva Kimby
- Department of Medicine, Division of Hematology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Stockholm, Sweden
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Stockholm, Sweden
| | - Birger Christensson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
50
|
Rogers C, Moody SA, Casey E. Neural induction and factors that stabilize a neural fate. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:249-62. [PMID: 19750523 PMCID: PMC2756055 DOI: 10.1002/bdrc.20157] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neural ectoderm of vertebrates forms when the bone morphogenetic protein (BMP) signaling pathway is suppressed. Herein, we review the molecules that directly antagonize extracellular BMP and the signaling pathways that further contribute to reduce BMP activity in the neural ectoderm. Downstream of neural induction, a large number of "neural fate stabilizing" (NFS) transcription factors are expressed in the presumptive neural ectoderm, developing neural tube and ultimately in neural stem cells. Herein, we review what is known about their activities during normal development to maintain a neural fate and regulate neural differentiation. Further elucidation of how the NFS genes interact to regulate neural specification and differentiation should ultimately prove useful for regulating the expansion and differentiation of neural stem and progenitor cells.
Collapse
Affiliation(s)
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University
| | - Elena Casey
- Department of Biology, Georgetown University
| |
Collapse
|