1
|
Guo YH, Yu YB, Wu JJ, Kan YK, Wu X, Wang Z. Curdlan/chitosan NIR-responsive in situ forming gel: An injectable scaffold for the treatment of epiphyseal plate injury. Int J Biol Macromol 2025; 308:142052. [PMID: 40090650 DOI: 10.1016/j.ijbiomac.2025.142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Premature closure of the epiphyseal plate inducing by the formation of bone bridges after epiphyseal plate injury, can lead to limb shortening and angular deformity, causing adverse effects on the growth and development of adolescents. Therefore, preventing the formation of bone bridges has become the primary task for children with epiphyseal plate fractures. In our study, a novel near-infrared (NIR)-responsive bone repair scaffold (CGCB), namely black phosphorus (BP)-loaded in-situ gel based on curdlan (CUD), β-glycerophosphate (GP) and chitosan (CS), was developed. In vitro studies confirmed that the CGCB can promote the differentiation and migration of chondrocytes and has potential cartilage repair ability. A drilled model of epiphyseal plate injury further confirmed that CGCB can promote the repair of epiphyseal plate injury and NIR irradiation combined with CGCB significantly repaired the injury site by increasing expression of Sox9 and Aggrecan. The above findings indicate that the near-infrared (NIR) responsive bone repair scaffold (CGCB) can effectively inhibit bone bridge formation, prevent early closure of the epiphyseal plate, and provide new ideas for repairing epiphyseal plate defects in children.
Collapse
Affiliation(s)
- Yi-Hao Guo
- The First Hospital of China Medical University, Shenyang 110122, China
| | - Yi-Bin Yu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Jia-Jun Wu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Ya-Kun Kan
- The First Hospital of China Medical University, Shenyang 110122, China
| | - Xiao Wu
- He University, Shenyang 110163, China.
| | - Zhuo Wang
- Health Sciences Institute, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
Muthuvel G, Dauber A, Alexandrou E, Tyzinski L, Hwa V, Backeljauw P. Treatment of Short Stature in Aggrecan-deficient Patients With Recombinant Human GH: 3-year Response. J Endocr Soc 2024; 8:bvae177. [PMID: 39502477 PMCID: PMC11535719 DOI: 10.1210/jendso/bvae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 11/08/2024] Open
Abstract
Context Patients with aggrecan (ACAN) deficiency present with dominantly inherited short stature, as well as early-onset joint disease. Objective The objective of this study was to evaluate the efficacy and safety of recombinant human GH (rhGH) on linear growth in ACAN-deficient children. Methods Open-label, single-arm, prospective study over 3 years recruiting 10 treatment-naïve patients with heterozygous mutations in ACAN, age ≥2 years, prepubertal, and normal IGF-I concentration. Patients were treated with rhGH (initially, 50 mcg/kg/day). Main outcomes were change in (Δ) height SD score (HtSDS) and height velocity (HV). Results Ten patients (6 females) enrolled with median chronological age (CA) of 5.6 years (range, 2.4-9.7). Baseline median HtSDS, HV, and bone age/CA were -2.5 (range, -4.3 to -1.1), 5.2 cm/year (range, 3.8 to 7.1), and 1.2 (range, 0.9 to 1.5), respectively. The cumulative median ΔHtSDS over 3 years was +1.21 (range, +0.82 to +1.94). Median HV increased to 8.3 cm/year (range, 7.3-11.2), 7.7 cm/year (range, 5.9-8.8), and 6.8 cm/year (range, 4.9-8.6) during years 1, 2, and 3, respectively. The median Δ predicated adult height was +6.8 cm over 3 years. Four female subjects entered puberty; nevertheless, median Δbone age/CA was -0.1. No adverse events related to rhGH were observed. Conclusion Linear growth improved in a cohort of ACAN-deficient patients treated with rhGH, albeit somewhat attenuated in older participants who entered puberty. Longitudinal follow-up is needed to assess the long-term efficacy of rhGH and adult height outcome.
Collapse
Affiliation(s)
- Gajanthan Muthuvel
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Eirene Alexandrou
- Division of Endocrinology, The University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Leah Tyzinski
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Philippe Backeljauw
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Zhou S, Quan C, Zhang Z, Gong S, Nawaz S, Zhang Y, Kulyar MFEA, Mo Q, Li J. Leucine improves thiram-induced tibial dyschondroplasia and gut microbiota dysbiosis in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116260. [PMID: 38564867 DOI: 10.1016/j.ecoenv.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.
Collapse
Affiliation(s)
- Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Tang W, Wu K, Zhou Q, Tang Y, Fu J, Dong G, Zou C. Genotype and phenotype in patients with ACAN gene variants: Three cases and literature review. Mol Genet Genomic Med 2024; 12:e2439. [PMID: 38613222 PMCID: PMC11015147 DOI: 10.1002/mgg3.2439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE To characterize the phenotype spectrum, diagnosis, and response to growth-promoting therapy in patients with ACAN variants causing familial short stature. METHODS Three families with ACAN variants causing short stature were reported. Similar cases in the literature were summarized, and the genotype and phenotype were analyzed. RESULTS Three novel heterozygous variants, c.757+1G>A, (splicing), c.6229delG, p.(Asp2078Tfs*1), and c.6679C>T, p.(Gln2227*) in the ACAN gene were identified. A total of 314 individuals with heterozygous variants from 105 families and 8 individuals with homozygous variants from 4 families were confirmed to have ACAN variants from literature and our 3 cases. Including our 3 cases, the variants reported comprised 33 frameshift, 39 missense, 23 nonsense, 5 splicing, 4 deletion, and 1 translocation variants. Variation points are scattered throughout the gene, while exons 12, 15, and 10 were most common (25/105, 11/105, and 10/105, respectively). Some identical variants existing in different families could be hot variants, c.532A>T, p.(Asn178Tyr), c.1411C>T, p.(Gln471*), c.1608C>A, p.(Tyr536*), c.2026+1G>A, (splicing), and c.7276G>T, p.(Glu2426*). Short stature, early-onset osteoarthritis, brachydactyly, midfacial hypoplasia, and early growth cessation were the common phenotypic features. The 48 children who received rhGH (and GnRHa) treatment had a significant height improvement compared with before (-2.18 ± 1.06 SD vs. -2.69 ± 0.95 SD, p < 0.001). The heights of children who received rhGH (and GnRHa) treatment were significantly improved compared with those of untreated adults (-2.20 ± 1.10 SD vs. -3.24 ± 1.14 SD, p < 0.001). CONCLUSION Our study achieves a new understanding of the phenotypic spectrum, diagnosis, and management of individuals with ACAN variants. No clear genotype-phenotype relationship of patients with ACAN variants was found. Gene sequencing is necessary to diagnose ACAN variants that cause short stature. In general, appropriate rhGH and/or GnRHa therapy can improve the adult height of affected pediatric patients caused by ACAN variants.
Collapse
Affiliation(s)
- Wei Tang
- Department of PulmonaryChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Ke‐Mi Wu
- Department of PulmonaryChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Qiong Zhou
- Department of PulmonaryChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
- Department of PediatricsHangzhou Children's HospitalHangzhouChina
| | - Yan‐Fei Tang
- Department of PulmonaryChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
- Department of PediatricsJiaxing Second people's HospitalJiaxingChina
| | - Jun‐Fen Fu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Guan‐Ping Dong
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Chao‐Chun Zou
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
6
|
Galetaki DM, Dauber A. C-Type Natriuretic Peptide Analogs: Current and Future Therapeutic Applications. Horm Res Paediatr 2024; 98:51-58. [PMID: 38330932 DOI: 10.1159/000537743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Short stature is one of the most common reasons for referral to a pediatric endocrinologist that can be due to multitude of conditions, including an ever-growing list of genetic etiologies. Despite the numerous different causes, options for medical therapy remain quite limited, with the primary medication available being recombinant human growth hormone. A second option is recombinant insulin-like growth factor 1 (rIGF-1) in select patients with severe primary IGF-1 deficiency. Alternative strategies to increase height have been attempted such as delaying the onset of puberty with a gonadotropin-releasing hormone agonist or delaying epiphyseal fusion with an aromatase inhibitor. However, these options focus on increasing the duration of growth as opposed to directly stimulating growth at the growth plate. SUMMARY Novel approaches to growth promotion have recently been developed, including analogs of C-type natriuretic peptide (CNP). The purpose of this study is to review the function of CNP and its potential use in different conditions. KEY MESSAGES Alterations in the CNP/FGFR3 pathway can lead to multiple defined genetic causes of short stature. The CNP pathway has become the focus for treatment of children with short stature that suffer from such genetic conditions, with promising outcomes.
Collapse
Affiliation(s)
- Despoina M Galetaki
- Division of Endocrinology, Children's National Hospital, Washington, District of Columbia, USA,
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Koosha E, Brenna CTA, Ashique AM, Jain N, Ovens K, Koike T, Kitagawa H, Eames BF. Proteoglycan inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification. Development 2024; 151:dev201716. [PMID: 38117077 PMCID: PMC10820745 DOI: 10.1242/dev.201716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.
Collapse
Affiliation(s)
- Elham Koosha
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Connor T. A. Brenna
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Amir M. Ashique
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Niteesh Jain
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Toshiyasu Koike
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
8
|
Zhao Q, Li Y, Shao Q, Zhang C, Kou S, Yang W, Zhang M, Ban B. Clinical and genetic evaluation of children with short stature of unknown origin. BMC Med Genomics 2023; 16:194. [PMID: 37605180 PMCID: PMC10441754 DOI: 10.1186/s12920-023-01626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Short stature is a common human trait. More severe and/or associated short stature is usually part of the presentation of a syndrome and may be a monogenic disease. The present study aimed to identify the genetic etiology of children with short stature of unknown origin. METHODS A total of 232 children with short stature of unknown origin from March 2013 to May 2020 were enrolled in this study. Whole exome sequencing (WES) was performed for the enrolled patients to determine the underlying genetic etiology. RESULTS We identified pathogenic or likely pathogenic genetic variants in 18 (7.8%) patients. All of these variants were located in genes known to be associated with growth disorders. Five of the genes are associated with paracrine signaling or cartilage extracellular matrix in the growth plate, including NPR2 (N = 1), ACAN (N = 1), CASR (N = 1), COMP (N = 1) and FBN1 (N = 1). Two of the genes are involved in the RAS/MAPK pathway, namely, PTPN11 (N = 6) and NF1 (N = 1). Two genes are associated with the abnormal growth hormone-insulin-like growth factor 1 (GH-IGF1) axis, including GH1 (N = 1) and IGF1R (N = 1). Two mutations are located in PROKR2, which is associated with gonadotropin-releasing hormone deficiency. Mutations were found in the remaining two patients in genes with miscellaneous mechanisms: ANKRD11 (N = 1) and ARID1A (N = 1). CONCLUSIONS The present study identified pathogenic or likely pathogenic genetic variants in eighteen of the 232 patients (7.8%) with short stature of unknown origin. Our findings suggest that in the absence of prominent malformation, genetic defects in hormones, paracrine factors, and matrix molecules may be the causal factors for this group of patients. Early genetic testing is necessary for accurate diagnosis and precision treatment.
Collapse
Affiliation(s)
- Qianqian Zhao
- School of Medicine, Qingdao University, Qingdao, Shandong, 266071, P.R. China
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Qian Shao
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Chuanpeng Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Shuang Kou
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, 999077, P.R. China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
- Chinese Research Center for Behavior Medicine in Growth and Development, 89 Guhuai Road, Jining, Shandong, 272029, P.R. China.
| |
Collapse
|
9
|
Guillán-Fresco M, Franco-Trepat E, Alonso-Pérez A, Jorge-Mora A, López-López V, Pazos-Pérez A, Piñeiro-Ramil M, Gómez R. Formononetin, a Beer Polyphenol with Catabolic Effects on Chondrocytes. Nutrients 2023; 15:2959. [PMID: 37447284 DOI: 10.3390/nu15132959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Beer consumption has been identified as a risk factor for osteoarthritis (OA), a rheumatic disease characterised by cartilage degradation, joint inflammation, and eventual joint failure. One of the main isoflavonoids in beer is formononetin (FNT), an estrogenic compound also found in multiple plants and herbs. In this study, we aimed to investigate the effect of FNT on chondrocyte viability, inflammation, and metabolism. Cells were treated with FNT with or without IL-1β for 48 h and during 7 days of differentiation. Cell viability was determined via MTT assay. Nitrite accumulation was determined by Griess reaction. The expression of genes involved in inflammation and metabolism was determined by RT-PCR. The results revealed that a low concentration of FNT had no deleterious effect on cell viability and decreased the expression of inflammation-related genes. However, our results suggest that FNT overexposure negatively impacts on chondrocytes by promoting catabolic responses. Finally, these effects were not mediated by estrogen receptors (ERs) or aryl hydrocarbon receptor (AhR). In conclusion, factors that favour FNT accumulation, such as long exposure times or metabolic disorders, can promote chondrocyte catabolism. These data may partially explain why beer consumption increases the risk of OA.
Collapse
Affiliation(s)
- María Guillán-Fresco
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Verónica López-López
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - María Piñeiro-Ramil
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Clinical Hospital SERGAS, 15706 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
11
|
Methylphenidate Promotes Premature Growth Plate Closure: In Vitro Evidence. Int J Mol Sci 2023; 24:ijms24044175. [PMID: 36835608 PMCID: PMC9968202 DOI: 10.3390/ijms24044175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
It is well known that patients with attention deficit hyperactivity disorder treated with stimulants, such as methylphenidate hydrochloride (MPH), have reduced height and weight. Even though MPH has an anorexigenic effect, an additional impact of this drug on the growth plate cannot be discarded. In this study, we aimed to determine the cellular effect of MPH on an in vitro growth plate model. We tested the effects of MPH on the viability and proliferation of a prechondrogenic cell line via an MTT assay. In vitro differentiation of this cell line was performed, and cell differentiation was evaluated through the expression of cartilage- and bone-related genes as measured via RT-PCR. MPH did not alter the viability or proliferation of prechondrogenic cells. However, it reduced the expression of cartilage extracellular matrix-related genes (type II collagen and aggrecan) and increased the expression of genes involved in growth plate calcification (Runx2, type I collagen, and osteocalcin) at different phases of their differentiation process. Our results evidence that MPH upregulates genes associated with growth plate hypertrophic differentiation. This may induce premature closure of the growth plate, which would contribute to the growth retardation that has been described to be induced by this drug.
Collapse
|
12
|
Empere M, Wang X, Prein C, Aspberg A, Moser M, Oohashi T, Clausen-Schaumann H, Aszodi A, Alberton P. Aggrecan governs intervertebral discs development by providing critical mechanical cues of the extracellular matrix. Front Bioeng Biotechnol 2023; 11:1128587. [PMID: 36937743 PMCID: PMC10017878 DOI: 10.3389/fbioe.2023.1128587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Aggrecan (ACAN) is localized in the intervertebral disc (IVD) in unique compartment-specific patterns where it contributes to the tissue structure and mechanical function together with collagens. The extracellular matrix (ECM) of the IVD undergoes degenerative changes during aging, misuse or trauma, which inevitably alter the biochemical and biomechanical properties of the tissue. A deeper understanding of these processes can be achieved in genetically engineered mouse models, taking into account the multifaceted aspects of IVD development. In this study, we generated aggrecan insertion mutant mice (Acan iE5/iE5 ) by interrupting exon 5 coding for the G1 domain of ACAN, and analyzed the morphological and mechanical properties of the different IVD compartments during embryonic development. Western blotting using an antibody against the total core protein failed to detect ACAN in cartilage extracts, whereas immunohistochemistry by a G1-specific antibody showed weak signals in vertebral tissues of Acan iE5/iE5 mice. Homozygous mutant mice are perinatally lethal and characterized by short snout, cleft palate and disproportionate dwarfism. Whole-mount skeletal staining and µ-CT analysis of Acan iE5/iE5 mice at embryonic day 18.5 revealed compressed vertebral bodies with accelerated mineralization compared to wild type controls. In Acan iE5/iE5 mice, histochemical staining revealed collapsed extracellular matrix with negligible sulfated glycosaminoglycan content accompanied by a high cellular density. Collagen type II deposition was not impaired in the IVD of Acan iE5/iE5 mice, as shown by immunohistochemistry. Mutant mice developed a severe IVD phenotype with deformed nucleus pulposus and thinned cartilaginous endplates accompanied by a disrupted growth plate structure in the vertebral body. Atomic force microscopy (AFM) imaging demonstrated a denser collagen network with thinner fibrils in the mutant IVD zones compared to wild type. Nanoscale AFM indentation revealed bimodal stiffness distribution attributable to the softer proteoglycan moiety and harder collagenous fibrils of the wild type IVD ECM. In Acan iE5/iE5 mice, loss of aggrecan resulted in a marked shift of the Young's modulus to higher values in all IVD zones. In conclusion, we demonstrated that aggrecan is pivotal for the determination and maintenance of the proper stiffness of IVD and vertebral tissues, which in turn could play an essential role in providing developmental biomechanical cues.
Collapse
Affiliation(s)
- Marta Empere
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Xujia Wang
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Carina Prein
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Anders Aspberg
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society, Martinsried, Germany
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, Munich, Germany
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Attila Aszodi
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Paolo Alberton
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
- *Correspondence: Paolo Alberton,
| |
Collapse
|
13
|
Liu Y, Niu P, Zhou M, Xue H. The role of proteoglycan form of DMP1 in cranial repair. BMC Mol Cell Biol 2022; 23:43. [PMID: 36175851 PMCID: PMC9524138 DOI: 10.1186/s12860-022-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background The cranial region is a complex set of blood vessels, cartilage, nerves and soft tissues. The reconstruction of cranial defects caused by trauma, congenital defects and surgical procedures presents clinical challenges. Our previous data showed that deficiency of the proteoglycan (PG) form of dentin matrix protein 1 (DMP1-PG) could lead to abnormal cranial development. In addition, DMP1-PG was highly expressed in the cranial defect areas. The present study aimed to investigate the potential role of DMP1-PG in intramembranous ossification in cranial defect repair. Methods Mouse cranial defect models were established by using wild- type (WT) and DMP1-PG point mutation mice. Microcomputed tomography (micro-CT) and histological staining were performed to assess the extent of repair. Immunofluorescence assays and real-time quantitative polymerase chain reaction (RT‒qPCR) were applied to detect the differentially expressed osteogenic markers. RNA sequencing was performed to probe the molecular mechanism of DMP1-PG in regulating defect healing. Results A delayed healing process and an abnormal osteogenic capacity of primary osteoblasts were observed in DMP1-PG point mutation mice. Furthermore, impaired inflammatory signaling pathways were detected by using RNA transcription analysis of this model. Conclusions Our data indicate that DMP1-PG is an indispensable positive regulator during cranial defect healing. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00443-4.
Collapse
|
14
|
Weisz-Hubshman M, Egunsula AT, Dawson B, Castellon A, Jiang MM, Chen-Evenson Y, Zhiyin Y, Lee B, Bae Y. DDRGK1 is required for the proper development and maintenance of the growth plate cartilage. Hum Mol Genet 2022; 31:2820-2830. [PMID: 35377455 PMCID: PMC9402238 DOI: 10.1093/hmg/ddac078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function mutations in DDRGK1 have been shown to cause Shohat type spondyloepimetaphyseal dysplasia (SEMD). In zebrafish, loss of function of ddrgk1 leads to defects in early cartilage development. Ddrgk1-/- mice show delayed mesenchymal condensation in the limb buds and early embryonic lethality. Mechanistically, Ddrgk1 interacts with Sox9 and reduces ubiquitin-mediated proteasomal degradation of Sox9 protein. To investigate the cartilage-specific role of DDRGK1, conditional knockout mice were generated by intercrossing Prx1-Cre transgenic mice with Ddrgkfl/fl mice to delete its expression in limb mesenchymal cells. Mutant mice showed progressive severe shortening of the limbs and joint abnormalities. The growth plate showed disorganization with shortened proliferative zone and enlarged hypertrophic zone. In correlation with these findings, Sox9 and Col2a1 protein levels were decreased, while Col10a1 expression was expanded. These data demonstrate the importance of Ddrgk1 during growth plate development. In contrast, deletion of Ddrgk1 with the osteoblast-specific Osteocalcin-Cre and Leptin receptor-Cre lines did not show bone phenotypes, suggesting that the effect on limb development is cartilage-specific. To evaluate the role of DDRGK1 in cartilage postnatal homeostasis, inducible Agc1-CreERT2; Ddrgklfl/fl mice were generated. Mice in which Ddrgk1 was deleted at 3 months of age showed disorganized growth plate, with significant reduction in proteoglycan deposition. These data demonstrate a postnatal requirement for Ddrgk1 in maintaining normal growth plate morphology. Together, these findings highlight the physiological role of Ddrgk1 in the development and maintenance of the growth plate cartilage. Furthermore, these genetic mouse models recapitulate the clinical phenotype of short stature and joint abnormalities observed in patients with Shohat type SEMD.
Collapse
Affiliation(s)
- Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adetutu T Egunsula
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen-Evenson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhiyin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Wu S, Wang C, Cao Q, Zhu Z, Liu Q, Gu X, Zheng B, Zhou W, Jia Z, Gu W, Li X. The Spectrum of ACAN Gene Mutations in a Selected Chinese Cohort of Short Stature: Genotype-Phenotype Correlation. Front Genet 2022; 13:891040. [PMID: 35620465 PMCID: PMC9127616 DOI: 10.3389/fgene.2022.891040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: Mutations in the ACAN gene have been reported to cause short stature. However, the prevalence estimates of pathogenic ACAN variants in individuals with short stature vary, and the correlation between ACAN genotype and clinical phenotype remain to be evaluated. To determine the prevalence of ACAN variants among Chinese people with short stature and analyze the relationship between genotype and main clinical manifestations of short stature and advanced bone age among patients with ACAN variants. Methods: We performed next-generation sequencing-based genetic analyses on 442 individuals with short stature. ACAN variants were summarized, previously reported cases were retrospectively analyzed, and an association analysis between genotype and phenotype was conducted. Result: We identified 15 novel and two recurrent ACAN gene variants in 16 different pedigrees that included index patients with short stature. Among the patients with ACAN variants, 12 of 18 had advanced bone age and 7 of 18 received growth hormone therapy, 5 (71.4%) of whom exhibited variable levels of height standard deviation score improvement. Further analysis showed that patients with ACAN truncating variants had shorter height standard deviation scores (p = 0.0001) and larger bone age–chronological age values (p = 0.0464). Moreover, patients in this Asian population had a smaller mean bone age–chronological age value than those that have been determined in European and American populations (p = 0.0033). Conclusion: Our data suggest that ACAN mutation is a common cause of short stature in China, especially among patients with a family history of short stature but also among those who were born short for their gestational age without a family history. Patients with truncating variants were shorter in height and had more obvious advanced bone age, and the proportion of patients with advanced bone age was lower in this Asian population than in Europe and America.
Collapse
Affiliation(s)
- Su Wu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Cao
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqi Liu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Gu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Cao Y, Guan X, Li S, Wu N, Chen X, Yang T, Yang B, Zhao X. Identification of variants in ACAN and PAPSS2 leading to spondyloepi(meta)physeal dysplasias in four Chinese families. Mol Genet Genomic Med 2022; 10:e1916. [PMID: 35261200 PMCID: PMC9034684 DOI: 10.1002/mgg3.1916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spondyloepi(meta)physeal dysplasias (SE[M]D) are a group of inherited skeletal disorders that mainly affect bone and cartilage, and next‐generation sequencing has aided the detection of genetic defects of such diseases. In this study, we aimed to identify causative variants in four Chinese families associated with SE(M)D. Methods We recruited four unrelated Chinese families all displaying short stature and growth retardation. Clinical manifestations and X‐ray imaging were recorded for all patients. Candidate variants were identified by whole‐exome sequencing (WES) and verified by Sanger sequencing. Pathogenicity was assessed by conservation analysis, 3D protein modeling and in silico prediction, and was confirmed according to American College of Medical Genetics and Genomics. Results Three novel SE(M)D‐related variants c.1090dupG, c.7168 T > G, and c.2947G > C in ACAN, and one reported variant c.712C > T in PAPSS2 were identified. Among them, c.1090dupG in ACAN and c.712C > T in PAPSS2 caused truncated protein and the other two variants led to amino acid alterations. Conservation analysis revealed sites of the two missense variants were highly conserved, and bioinformatic findings confirmed their pathogenicity. 3D modeling of mutant protein encoded by c.7168 T > G(p.Trp2390Gly) in ACAN proved the structural alteration in protein level. Conclusion Our data suggested ACAN is a common pathogenic gene of SE(M)D. This study enriched the genetic background of skeletal dysplasias, and expanded the mutation spectra of ACAN and PAPSS2.
Collapse
Affiliation(s)
- Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin Guan
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiumin Chen
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Muthuvel G, Dauber A, Alexandrou E, Tyzinski L, Andrew M, Hwa V, Backeljauw P. Treatment of Short Stature in Aggrecan-deficient Patients With Recombinant Human Growth Hormone: 1-Year Response. J Clin Endocrinol Metab 2022; 107:e2103-e2109. [PMID: 34922359 PMCID: PMC9432476 DOI: 10.1210/clinem/dgab904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with aggrecan (ACAN) deficiency present with dominantly inherited short stature, often with advanced skeletal maturation and premature growth cessation. There is a paucity of information on the effects of growth-promoting interventions. OBJECTIVE The aim of this study was to evaluate the efficacy and safety of recombinant human growth hormone (rhGH) therapy on linear growth in children with ACAN deficiency. METHODS Open-label, single-arm, prospective study at Cincinnati Children's Hospital Medical Center. Ten treatment-naïve patients were recruited. Inclusion criteria were a confirmed heterozygous mutation in ACAN, age ≥2 years, prepubertal, bone age (BA) ≥chronological age (CA), and normal insulin-like growth factor I concentration. Treatment was with rhGH (50 µg/kg/day) over 1 year. Main outcomes measured were height velocity (HV) and change in (Δ) height SD score (HtSDS). RESULTS Ten patients (6 females) were enrolled with median CA of 5.6 years (range 2.4-9.7). Baseline median HtSDS was -2.5 (range -4.3 to -1.1). Median baseline BA was 6.9 years (range 2.5-10.0), with median BA/CA of 1.2 (range 0.9-1.5). Median pretreatment HV was 5.2 cm/year (range 3.8-7.1), increased to 8.3 cm/year (range 7.3-11.2) after 1 year of therapy (P = .004). Median ΔHtSDS after 1 year was +0.62 (range +0.35 to +1.39) (P = .002). Skeletal maturation did not advance inappropriately (median ΔBA/CA -0.1, P = .09). No adverse events related to rhGH were observed. CONCLUSION Treatment with rhGH improved linear growth in a cohort of patients with short stature due to ACAN deficiency.
Collapse
Affiliation(s)
| | | | - Eirene Alexandrou
- Division of Endocrinology, The University of Iowa Stead Family Children’s Hospital, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Leah Tyzinski
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melissa Andrew
- Division of Endocrinology, Children’s National Hospital, Washington, DC 20010, USA
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Philippe Backeljauw
- Correspondence: Philippe Backeljauw, Division of Endocrinology Cincinnati Children’s Hospital Medical Center 3333 Burnet Avenue, MLC 7012 Cincinnati, OH 45229.
| |
Collapse
|
18
|
Schwartz NB, Domowicz MS. Roles of Chondroitin Sulfate Proteoglycans as Regulators of Skeletal Development. Front Cell Dev Biol 2022; 10:745372. [PMID: 35465334 PMCID: PMC9026158 DOI: 10.3389/fcell.2022.745372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
The extracellular matrix (ECM) is critically important for most cellular processes including differentiation, morphogenesis, growth, survival and regeneration. The interplay between cells and the ECM often involves bidirectional signaling between ECM components and small molecules, i.e., growth factors, morphogens, hormones, etc., that regulate critical life processes. The ECM provides biochemical and contextual information by binding, storing, and releasing the bioactive signaling molecules, and/or mechanical information that signals from the cell membrane integrins through the cytoskeleton to the nucleus, thereby influencing cell phenotypes. Using these dynamic, reciprocal processes, cells can also remodel and reshape the ECM by degrading and re-assembling it, thereby sculpting their environments. In this review, we summarize the role of chondroitin sulfate proteoglycans as regulators of cell and tissue development using the skeletal growth plate model, with an emphasis on use of naturally occurring, or created mutants to decipher the role of proteoglycan components in signaling paradigms.
Collapse
Affiliation(s)
- Nancy B. Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- *Correspondence: Nancy B. Schwartz,
| | - Miriam S. Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
Two Modulators of Skeletal Development: BMPs and Proteoglycans. J Dev Biol 2022; 10:jdb10020015. [PMID: 35466193 PMCID: PMC9036252 DOI: 10.3390/jdb10020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists, such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs functions in cartilage maturation and osteoblast differentiation, highlighting BMP–PG interactions. We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors. This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation and bone formation.
Collapse
|
20
|
Komori T, Ji Y, Pham H, Jani P, Kilts TM, Kram V, Li L, Young MF. Type
VI
collagen regulates endochondral ossification in the temporomandibular joint. JBMR Plus 2022; 6:e10617. [PMID: 35509631 PMCID: PMC9059467 DOI: 10.1002/jbm4.10617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
For many years there has been a keen interest in developing regenerative treatment for temporomandibular joint–osteoarthritis (TMJ‐OA). Currently, there is no consensus treatment due to the limited self‐healing ability of articular cartilage and lack of understanding of the complex mechanisms regulating cartilage development in the TMJ. Endochondral ossification, the process of subchondral bone formation through chondrocyte differentiation, is critical for TMJ growth and development, and is tightly regulated by the composition of the extracellular matrix (ECM). Type VI collagen is a highly expressed ECM component in the TMJ cartilage, yet its specific functions are largely unknown. In this study, we investigated α2(VI)‐deficient (Col6a2‐knockout [KO]) mice, which are unable to secret or incorporate type VI collagen into their ECM. Compared with wild‐type (WT) mice, the TMJ condyles of Col6a2‐KO mice exhibit decreased bone volume/tissue volume (BV/TV) and a larger bone marrow space, suggesting the α2(VI)‐deficient condyles have a failure in endochondral ossification. Differentiating chondrocytes are the main source of bone cells during endochondral ossification. Our study shows there is an increased number of chondrocytes in the proliferative zone and decreased Col10‐expressing chondrocytes in Col6a2‐KO cartilage, all pointing to abnormal chondrocyte differentiation and maturation. In addition, RNA sequencing (RNAseq) analysis identified distinct gene expression profiles related to cell cycle and ECM organization that were altered in the mutant condyles. These data also suggest that bone morphogenetic protein 2 (BMP2) activity was deregulated during chondrocyte differentiation. Immunohistochemical analysis indicated an upregulation of Col2 and Acan expression in Col6a2‐KO cartilage. Moreover, the expression of pSmad1/5/8 and Runx2 was decreased in the Col6a2‐KO cartilage compared with WT controls. Taken together, our data indicate that type VI collagen expressed in the TMJ cartilage is important for endochondral ossification, possibly by modulating the ECM and altering/disrupting signaling pathways important for TMJ chondrocyte differentiation. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Taishi Komori
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Youngmi Ji
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Hai Pham
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Tina M. Kilts
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Li Li
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Marian F. Young
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| |
Collapse
|
21
|
Satoh M, Hasegawa Y. Factors affecting prepubertal and pubertal bone age progression. Front Endocrinol (Lausanne) 2022; 13:967711. [PMID: 36072933 PMCID: PMC9441639 DOI: 10.3389/fendo.2022.967711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Bone age (BA) is a clinical marker of bone maturation which indicates the developmental stage of endochondral ossification at the epiphysis and the growth plate. Hormones that promote the endochondral ossification process include growth hormone, insulin-like growth factor-1, thyroid hormone, estrogens, and androgens. In particular, estrogens are essential for growth plate fusion and closure in both sexes. Bone maturation in female children is more advanced than in male children of all ages. The promotion of bone maturation seen in females before the onset of puberty is thought to be an effect of estrogen because estrogen levels are higher in females than in males before puberty. Sex hormones are essential for bone maturation during puberty. Since females have their pubertal onset about two years earlier than males, bone maturation in females is more advanced than in males during puberty. In the present study, we aimed to review the factors affecting prepubertal and pubertal BA progression, BA progression in children with hypogonadism, and bone maturation and deformities in children with Turner syndrome.
Collapse
Affiliation(s)
- Mari Satoh
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo, Japan
- *Correspondence: Mari Satoh,
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| |
Collapse
|
22
|
Khan S, Sbeity M, Foulquier F, Barré L, Ouzzine M. TMEM165 a new player in proteoglycan synthesis: loss of TMEM165 impairs elongation of chondroitin- and heparan-sulfate glycosaminoglycan chains of proteoglycans and triggers early chondrocyte differentiation and hypertrophy. Cell Death Dis 2021; 13:11. [PMID: 34930890 PMCID: PMC8688514 DOI: 10.1038/s41419-021-04458-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/23/2023]
Abstract
TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFβ and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.
Collapse
Affiliation(s)
- Sajida Khan
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France
| | - Malak Sbeity
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France
| | | | - Lydia Barré
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France
| | - Mohamed Ouzzine
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France.
| |
Collapse
|
23
|
Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol 2021; 9:760532. [PMID: 34917612 PMCID: PMC8669051 DOI: 10.3389/fcell.2021.760532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells maintain a subtle balance between self-renewal and differentiation under the regulatory network supported by both intracellular and extracellular components. Proteoglycans are large glycoproteins present abundantly on the cell surface and in the extracellular matrix where they play pivotal roles in facilitating signaling transduction and maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles and their functions in the regulation of stem cell homeostasis, as well as recent progress and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier or bio-active molecules in bone regeneration.
Collapse
Affiliation(s)
- Jiawen Chen
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Shenzhen Stomatology Hospital, Southern Medical University, Shenzhen, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United states
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Lees-Shepard JB, Flint K, Fisher M, Omi M, Richard K, Antony M, Chen PJ, Yadav S, Threadgill D, Maihle NJ, Dealy CN. Cross-talk between EGFR and BMP signals regulates chondrocyte maturation during endochondral ossification. Dev Dyn 2021; 251:75-94. [PMID: 34773433 DOI: 10.1002/dvdy.438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progressive maturation of growth plate chondrocytes drives long bone growth during endochondral ossification. Signals from the epidermal growth factor receptor (EGFR), and from bone morphogenetic protein-2 (BMP2), are required for normal chondrocyte maturation. Here, we investigated cross-talk between EGFR and BMP2 signals in developing and adult growth plates. RESULTS Using in vivo mouse models of conditional cartilage-targeted EGFR or BMP2 loss, we show that canonical BMP signal activation is increased in the hypertrophic chondrocytes of EGFR-deficient growth plates; whereas EGFR signal activation is increased in the reserve, prehypertrophic and hypertrophic chondrocytes of BMP2-deficient growth plates. EGFR-deficient chondrocytes displayed increased BMP signal activation in vitro, accompanied by increased expression of IHH, COL10A1, and RUNX2. Hypertrophic differentiation and BMP signal activation were suppressed in normal chondrocyte cultures treated with the EGFR ligand betacellulin, effects that were partially blocked by simultaneous treatment with BMP2 or a chemical EGFR antagonist. CONCLUSIONS Cross-talk between EGFR and BMP2 signals occurs during chondrocyte maturation. In the reserve and prehypertrophic zones, BMP2 signals unilaterally suppress EGFR activity; in the hypertrophic zone, EGFR and BMP2 signals repress each other. This cross-talk may play a role in regulating chondrocyte maturation in developing and adult growth plates.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kaitlyn Flint
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Melanie Fisher
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Minoru Omi
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kelsey Richard
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Michelle Antony
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Po Jung Chen
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Sumit Yadav
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - David Threadgill
- Department of Veterinary Pathology, Texas A&M University, College Station, Texas, USA.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Nita J Maihle
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Cell & Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Caroline N Dealy
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, USA.,Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
25
|
Abstract
Osteochondritis dissecans (OCD) is a chronic disease of the articular cartilage characterized by focal lesions of subchondral bone and overlaying cartilage. Through the growing number of reports describing the high prevalence of OCD in some families, the subcategory termed familial OCD (FOCD) was established. With the development of genetic approaches such as genome-wide association studies and sequencing, aggrecan (ACAN) has been identified as one of the genes of interest associated with FOCD. Aggrecan is a crucial protein for the preservation and function of cartilage. However, due to FOCD being characterized relatively recently, there is a paucity of literature on the subject. The purpose of this review is to explore the relationship between ACAN mutations and familial OCD as well as to explore current treatment options and avenues for future research. In vitro and animal studies have shown the importance of ACAN in the preservation of cartilage. However, the only human ACAN mutation related to OCD ever identified is a V2303M mutation in the G3 domain. Multiple treatments have been superficially explored, and some options such as growth hormone (GH) and gonadotrophin-releasing hormone agonists (GnRHa) show potential. Thus, further research on FOCD in needed to identify other ACAN mutations and determine optimal treatment modalities for this patient population.
Collapse
|
26
|
Kim TY, Jang KM, Keum CW, Oh SH, Chung WY. Identification of a heterozygous ACAN mutation in a 15-year-old boy with short stature who presented with advanced bone age: a case report and review of the literature. Ann Pediatr Endocrinol Metab 2020; 25:272-276. [PMID: 32871652 PMCID: PMC7788345 DOI: 10.6065/apem.1938198.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Longitudinal bone growth is primarily mediated by the growth plate, which is a specialized cartilaginous structure. Aggrecan, encoded by ACAN, is a primary proteoglycan component of the extracellular matrix in both the growth plate and articular cartilage. Aggrecanopathies have emerged as a phenotype of genetic skeletal disease in humans. A heterozygous ACAN mutation causes short stature, premature growth cessation, and accelerated bone age maturation. We report the case of a 15-year-old boy with familial short stature, with height of 149 cm (Korean standard deviation score [SDS] of -3.6) and weight of 50.5 kg (-1.48 SDS). He presented with mild midfacial hypoplasia, frontal bossing, a broad chest, and a short neck. The father's and mother's heights were 150 cm (-4.8 SDS) and 153 cm (-1.69 SDS), respectively. The patient's bone age was 2-3 years more advanced than his chronological age, and no endocrine abnormalities were detected. Wholeexome sequencing followed by Sanger sequencing revealed a heterozygous ACAN mutation, c.512C>T (p.Ala171Val), in both the proband and his father. Short stature is generally associated with a delayed bone age, and this case suggests that ACAN mutations may be the most likely etiology among patients with short stature and an advanced bone age and should warrant early treatment.
Collapse
Affiliation(s)
- Tae Youp Kim
- Department of Pediatrics, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyung Mi Jang
- Department of Pediatrics, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Korea,Address for co-correspondence: Kyung Mi Jang, MD, PhD Department of Pediatrics, Yeungnam Universit y Hospital, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea Tel: +82-53-620-3532 Fax: +82-53-629-2252 E-mail:
| | - Chang Won Keum
- Rare Genetic Disease Research Center, 3Billion Inc, Seoul, Korea
| | - Seung Hwan Oh
- Department of Laboratory Medicine, Inje University, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Woo Yeong Chung
- Department of Pediatrics, Inje University, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea,Address for correspondence: Woo Yeong Chung, MD, PhD Department of Pediatrics, Inje University Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea Tel: +82-51-890-6280 Fax: +82-51-897-4012, E-mail:
| |
Collapse
|
27
|
Liang H, Miao H, Pan H, Yang H, Gong F, Duan L, Chen S, Wang L, Zhu H. Growth-Promoting Therapies May Be Useful In Short Stature Patients With Nonspecific Skeletal Abnormalities Caused By Acan Heterozygous Mutations: Six Chinese Cases And Literature Review. Endocr Pract 2020; 26:1255-1268. [PMID: 33471655 DOI: 10.4158/ep-2019-0518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE There are numerous reasons for short stature, including mutations in osteochondral development genes. ACAN, one such osteochondral development gene in which heterozygous mutations can cause short stature, has attracted attention from researchers in recent years. Therefore, we analyzed six cases of short stature with heterozygous ACAN mutations and performed a literature review. METHODS Clinical information and blood samples from 6 probands and their family members were collected after consent forms were signed. Gene mutations in the probands were detected by whole-exome sequencing. Then, we searched the literature, performed statistical analyses, and summarized the characteristics of all reported cases. RESULTS We identified six novel mutations in ACAN: c.1411C>T, c.1817C>A, c.1762C>T, c.2266G>C, c.7469G>A, and c.1733-1G>A. In the literature, more than 200 affected individuals have been diagnosed genetically with a similar condition (height standard deviation score [SDS] -3.14 ± 1.15). Among affected individuals receiving growth-promoting treatment, their height before and after treatment was SDS -2.92±1.07 versus SDS -2.14±1.23 (P<.001). As of July 1, 2019, a total of 57 heterozygous ACAN mutations causing nonsyndromic short stature had been reported, including the six novel mutations found in our study. Approximately half of these mutations can lead to protein truncation. CONCLUSIONS This study used clinical and genetic means to examine the relationship between the ACAN gene and short stature. To some extent, clear diagnosis is difficult, since most of these affected individuals' characteristics are not prominent. Growth-promoting therapies may be beneficial for increasing the height of affected patients. ABBREVIATIONS AI = aromatase inhibitor; ECM = extracellular matrix; GnRHa = gonadotropin-releasing hormone analogue; IQR = interquartile range; MIM = Mendelian Inheritance in Man; PGHD = partial growth hormone deficiency; rhGH = recombinant human growth hormone; SDS = standard deviation score; SGA = small for gestational age; SGHD = severe growth hormone deficiency.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Miao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China..
| |
Collapse
|
28
|
Jahejo AR, Tian WX. Cellular, molecular and genetical overview of avian tibial dyschondroplasia. Res Vet Sci 2020; 135:569-579. [PMID: 33066991 DOI: 10.1016/j.rvsc.2020.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
Tibial dyschondroplasia (TD) is an intractable avian bone disease that causes severe poultry economic losses. The pathogenicity of TD is unknown. Therefore, TD disease has not been evacuated yet. Based on continuous research findings, we have gone through the molecular and cellular insight into the TD and proposed possible pathogenicity for future studies. Immunity and angiogenesis-related genes expressed in the erythrocytes of chicken, influenced the apoptosis of chicken chondrocytes to cause TD. TD could be defined as the irregular, unmineralized and un-vascularized mass of cartilage, which is caused by apoptosis, degeneration and insufficient blood supply at the site of the chicken growth plate. The failure of angiogenesis attributed improper nutrients supply to the chondrocytes; ultimately, bone development stopped, poor calcification of cartilage matrix, and apoptosis of chondrocytes occurred. Recent studies explore potential signaling pathways that regulated TD in broiler chickens, including parathyroid hormone-related peptide (PTHrP), transforming growth factor β (TGF- β)/bone morphogenic proteins (BMPs), and hypoxia-inducible factor (HIF). Several studies have reported many medicines to treat TD. However, recently, rGSTA3 protein (50 μg·kg-1) is considered the most proper TD treatment. The present review has summarized the molecular and cellular insight into the TD, which will help researchers in medicine development to evacuate TD completely.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wen Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
29
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
30
|
Pezoa SA, Artinger KB, Niswander LA. GCN5 acetylation is required for craniofacial chondrocyte maturation. Dev Biol 2020; 464:24-34. [PMID: 32446700 DOI: 10.1016/j.ydbio.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Development of the craniofacial structures requires the precise differentiation of cranial neural crest cells into osteoblasts or chondrocytes. Here, we explore the epigenetic and non-epigenetic mechanisms that are required for the development of craniofacial chondrocytes. We previously demonstrated that the acetyltransferase activity of the highly conserved acetyltransferase GCN5, or KAT2A, is required for murine craniofacial development. We show that Gcn5 is required cell autonomously in the cranial neural crest. Moreover, GCN5 is required for chondrocyte development following the arrival of the cranial neural crest within the pharyngeal arches. Using a combination of in vivo and in vitro inhibition of GCN5 acetyltransferase activity, we demonstrate that GCN5 is a potent activator of chondrocyte maturation, acting to control chondrocyte maturation and size increase during pre-hypertrophic maturation to hypertrophic chondrocytes. Rather than acting as an epigenetic regulator of histone H3K9 acetylation, our findings suggest GCN5 primarily acts as a non-histone acetyltransferase to regulate chondrocyte development. Here, we investigate the contribution of GCN5 acetylation to the activity of the mTORC1 pathway. Our findings indicate that GCN5 acetylation is required for activation of this pathway, either via direct activation of mTORC1 or through indirect mechanisms. We also investigate one possibility of how mTORC1 activity is regulated through RAPTOR acetylation, which is hypothesized to enhance mTORC1 downstream phosphorylation. This study contributes to our understanding of the specificity of acetyltransferases, and the cell type specific roles in which these enzymes function.
Collapse
Affiliation(s)
- Sofia A Pezoa
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program. University of Colorado Anschutz School of Medicine, Aurora, CO, USA, 80045; Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz School of Dentistry, Aurora, CO, USA, 80045
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309.
| |
Collapse
|
31
|
Biochemical characteristics of the chondrocyte-enriched SNORC protein and its transcriptional regulation by SOX9. Sci Rep 2020; 10:7790. [PMID: 32385306 PMCID: PMC7210984 DOI: 10.1038/s41598-020-64640-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/16/2020] [Indexed: 11/08/2022] Open
Abstract
Snorc (Small NOvel Rich in Cartilage) has been identified as a chondrocyte-specific gene in the mouse. Yet little is known about the SNORC protein biochemical properties, and mechanistically how the gene is regulated transcriptionally in a tissue-specific manner. The goals of the present study were to shed light on those important aspects. The chondrocyte nature of Snorc expression was confirmed in mouse and rat tissues, in differentiated (day 7) ATDC5, and in RCS cells where it was constitutive. Topological mapping and biochemical analysis brought experimental evidences that SNORC is a type I protein carrying a chondroitin sulfate (CS) attached to serine 44. The anomalous migration of SNORC on SDS-PAGE was due to its primary polypeptide features, suggesting no additional post-translational modifications apart from the CS glycosaminoglycan. A highly conserved SOX9-binding enhancer located in intron 1 was necessary to drive transcription of Snorc in the mouse, rat, and human. The enhancer was active independently of orientation and whether located in a heterologous promoter or intron. Crispr-mediated inactivation of the enhancer in RCS cells caused reduction of Snorc. Transgenic mice carrying the intronic multimerized enhancer drove high expression of a βGeo reporter in chondrocytes, but not in the hypertrophic zone. Altogether these data confirmed the chondrocyte-specific nature of Snorc and revealed dependency on the intronic enhancer binding of SOX9 for transcription.
Collapse
|
32
|
Jo SY, Domowicz MS, Henry JG, Schwartz NB. The Role of Dot1l in Prenatal and Postnatal Murine Chondrocytes and Trabecular Bone. JBMR Plus 2020; 4:e10254. [PMID: 32083237 PMCID: PMC7017886 DOI: 10.1002/jbm4.10254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis and osteoporosis are widely prevalent and have far-reaching public health implications. There is increasing evidence that epigenetics, in particular, histone 3 lysine 79 methyltransferase DOT1L, plays an important role in the cartilage and bone biology. In this study, we evaluated the role of Dot1l in the articular cartilage, growth plate, and trabecular bone utilizing conditional KO mouse models. We generated chondrocyte-specific constitutive and inducible conditional Dot1l KO mouse lines using Col2a1-Cre and Acan-CreER systems. Prenatal deletion of Dot1l in mouse chondrocytes led to perinatal mortality, accelerated ossification, and dysregulation of Col10a1 expression. Postnatal deletion of Dot1l in mouse chondrocytes resulted in trabecular bone loss decreased extracellular matrix production, and disruption of the growth plate. In addition, pharmacological inhibition of DOT1L in a progeria mouse model partially rescued the abnormal osseous phenotype. In conclusion, Dot1l is important in maintaining the growth plate, extracellular matrix production, and trabecular bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stephanie Y Jo
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of RadiologyUniversity of ChicagoChicagoILUSA
| | | | - Judith G Henry
- Department of PediatricsUniversity of ChicagoChicagoILUSA
| | | |
Collapse
|
33
|
Abstract
The influence of polymer blend coatings on the differentiation of mouse mesenchymal stem cells was investigated. Polymer blending is a common means of producing new coating materials with variable properties. Stem cell differentiation is known to be influenced by both chemical and mechanical properties of the underlying scaffold. We therefore selected to probe the response of stem cells cultured separately on two very different polymers, and then cultured on a 1:1 blend. The response to mechanical properties was probed by culturing the cells on polybutadiene (PB) films, where the film moduli was varied by adjusting film thickness. Cells adjusted their internal structure such that their moduli scaled with the PB films. These cells expressed chondrocyte markers (osterix (OSX), alkaline phosphatase (ALP), collagen X (COL-X), and aggrecan (ACAN)) without mineralizing. In contrast, cells on partially sulfonated polystyrene (PSS28) deposited large amounts of hydroxyapatite and expressed differentiation markers consistent with chondrocyte hypertrophy (OSX, ALP, COL-X, but not ACAN). Cells on phase-segregated PB and PSS28 films differentiated identically to those on PSS28, underscoring the challenges of using polymer templates for cell patterning in tissue engineering.
Collapse
|
34
|
Hodax JK, Quintos JB, Gruppuso PA, Chen Q, Desai S, Jayasuriya CT. Aggrecan is required for chondrocyte differentiation in ATDC5 chondroprogenitor cells. PLoS One 2019; 14:e0218399. [PMID: 31206541 PMCID: PMC6576788 DOI: 10.1371/journal.pone.0218399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022] Open
Abstract
Aggrecan is an integral component of the extracellular matrix in cartilaginous tissues, including the growth plate. Heterozygous defects in the aggrecan gene have been identified as a cause of autosomal dominant short stature, bone age acceleration, and premature growth cessation. The mechanisms accounting for this phenotype remain unknown. We used ATDC5 cells, an established model of chondrogenesis, to evaluate the effects of aggrecan deficiency. ATDC5 aggrecan knockdown cell lines (AggKD) were generated using lentiviral shRNA transduction particles. Cells were stimulated with insulin/transferrin/selenium for up to 21 days to induce chondrogenesis. Control ATDC5 cells showed induction of Col2a1 starting at day 8 and induction of Col10a1 starting at day 12. AggKD cells had significantly reduced expression of Col2a1 and Col10a1 (p<0.0001) with only minimal increases in expression over time, indicating that chondrogenesis was markedly impaired. The induction of Col2a1 and Col10a1 was not rescued by culturing of AggKD cells in wells pre-conditioned with ATDC5 extracellular matrix or in co-culture with wild-type ATDC5 cells. We interpret our studies as indicating that aggrecan has an integral role in chondrogenesis that may be mediated through intracellular mechanisms.
Collapse
Affiliation(s)
- Juanita K. Hodax
- Department of Pediatrics, Division of Pediatric Endocrinology, The Warren Alpert Medical School of Brown University and Hasbro Children’s Hospital, Providence, RI, United States of America
| | - Jose Bernardo Quintos
- Department of Pediatrics, Division of Pediatric Endocrinology, The Warren Alpert Medical School of Brown University and Hasbro Children’s Hospital, Providence, RI, United States of America
| | - Philip A. Gruppuso
- Department of Pediatrics, Division of Pediatric Endocrinology, The Warren Alpert Medical School of Brown University and Hasbro Children’s Hospital, Providence, RI, United States of America
| | - Qian Chen
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Salomi Desai
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Chathuraka T. Jayasuriya
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
35
|
Paganini C, Monti L, Costantini R, Besio R, Lecci S, Biggiogera M, Tian K, Schwartz JM, Huber C, Cormier-Daire V, Gibson BG, Pirog KA, Forlino A, Rossi A. Calcium activated nucleotidase 1 (CANT1) is critical for glycosaminoglycan biosynthesis in cartilage and endochondral ossification. Matrix Biol 2018; 81:70-90. [PMID: 30439444 PMCID: PMC6598859 DOI: 10.1016/j.matbio.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
Abstract
Desbuquois dysplasia type 1 (DBQD1) is a chondrodysplasia caused by mutations in CANT1 gene encoding an ER/Golgi calcium activated nucleotidase 1 that hydrolyses UDP. Here, using Cant1 knock-in and knock-out mice recapitulating DBQD1 phenotype, we report that CANT1 plays a crucial role in cartilage proteoglycan synthesis and in endochondral ossification. Specifically, the glycosaminoglycan synthesis was decreased in chondrocytes from Cant1 knock-out mice and their hydrodynamic size was reduced, whilst the sulfation was increased and the overall proteoglycan secretion was delayed. Interestingly, knock-out chondrocytes had dilated ER cisternae suggesting delayed protein secretion and cellular stress; however, no canonical ER stress response was detected using microarray analysis, Xbp1 splicing and protein levels of BiP and ATF4. The observed proteoglycan defects caused deregulated chondrocyte proliferation and maturation in the growth plate resulting in the reduced skeletal growth. In conclusion, the pathogenic mechanism of DBQD1 comprises deregulated chondrocyte performance due to defective intracellular proteoglycan synthesis and altered proteoglycan properties in the extracellular matrix. Desbuquois dysplasia type 1 (DBQD1) is a recessive skeletal dysplasia caused by mutations in CANT1 gene, a Calcium activated nucleotidase of the ER/Golgi. The Cant1 knock-out mouse recapitulates human DBQD1. Cant1 is critical for different steps of proteoglycan biosynthesis including glycosaminoglycan chain synthesis, length and sulfation. The intracellular GAG synthesis defects cause delayed proteoglycan secretion with ER enlargement. In Cant1 knock-out chondrocytes ER enlargement is not linked to canonical ER stress. The proteoglycan defects cause deregulated chondrocyte proliferation and maturation in the growth plate resulting in reduced skeletal growth.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy; Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Luca Monti
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Silvia Lecci
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology & Biotechnology, University of Pavia, Pavia, Italy
| | - Kun Tian
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Céline Huber
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Beth G Gibson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Katarzyna A Pirog
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Antonella Forlino
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
36
|
Yan J, Li J, Hu J, Zhang L, Wei C, Sultana N, Cai X, Zhang W, Cai CL. Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development. J Biol Chem 2018; 293:9162-9175. [PMID: 29735531 DOI: 10.1074/jbc.ra118.001825] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre (Tbx18Cre/+) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 (Smad4f/f ) in the limbs of mice. We found that the Smad4-deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan, in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 (Runx2), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4-deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia.
Collapse
Affiliation(s)
- Jianyun Yan
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029.,the Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China, and
| | - Jun Li
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jun Hu
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lu Zhang
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Chengguo Wei
- the Renal Division of the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nishat Sultana
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Xiaoqiang Cai
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Weijia Zhang
- the Renal Division of the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Chen-Leng Cai
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
37
|
Andrade AC, Jee YH, Nilsson O. New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth
. Horm Res Paediatr 2018; 88:22-37. [PMID: 28334714 DOI: 10.1159/000455850] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
.
Collapse
Affiliation(s)
- Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Youn Hee Jee
- Section of Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| |
Collapse
|
38
|
Effect of Icariin on Tibial Dyschondroplasia Incidence and Tibial Characteristics by Regulating P2RX7 in Chickens. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6796271. [PMID: 29750168 PMCID: PMC5884288 DOI: 10.1155/2018/6796271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 01/07/2023]
Abstract
Tibial dyschondroplasia (TD) is a disease of rapid growing chickens that occurs in many avian species; it is characterized by nonvascular and nonmineralized growth plates, along with tibia bone deformation and lameness. Icariin is widely used to treat bone diseases in humans, but no report is available regarding the effectiveness of icariin against avian TD. Therefore, this study was designed to determine its effect against TD. For this purpose, a total of 180 broiler chicks were distributed into three groups including control, TD, and icariin group. Control group was given a standard normal diet, while TD and icariin groups received normal standard diet containing 50 mg/kg thiram to induce TD from days 3 to 7 after hatch. After the induction of TD, the chicks of icariin group were fed with standard normal diet by adding 10 mg/kg icariin in water. Then morphological and production parameters analysis of tibial bone indicators, physiological index changes, and gene expression were examined. The results showed that icariin administration not only decreased the mortality but also mitigated the lameness and promoted the angiogenesis, which diminished the TD lesion and significantly increased the expression of P2RX7 (P < 0.05) in TD affected thiram induced chicks. In conclusion, present findings suggest that icariin has a significant role in promoting the recovery of chicken growth plates affected by TD via regulating the P2RX7. Our findings reveal a new target for clinical treatment and prevention of TD in broiler chickens.
Collapse
|
39
|
Zhang H, Mehmood K, Li K, Rehman MU, Jiang X, Huang S, Wang L, Zhang L, Tong X, Nabi F, Yao W, Iqbal MK, Shahzad M, Li J. Icariin Ameliorate Thiram-Induced Tibial Dyschondroplasia via Regulation of WNT4 and VEGF Expression in Broiler Chickens. Front Pharmacol 2018. [PMID: 29527166 PMCID: PMC5829035 DOI: 10.3389/fphar.2018.00123] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tibial dyschondroplasia (TD) is main bone problem in fast growing poultry birds that effect proximal growth plate (GP) of tibia bone. TD is broadly defined as non-vascularized and non-mineralized, and enlarged GP with tibia bone deformation and lameness. Icariin (Epimedium sagittatum) is a traditional Chinese medicine, which is commonly practiced in the treatment of various bone diseases. Recently, many researcher reports about the beneficial effects of icariin in relation to various types of bone conditions but no report is available about promoting effect of icariin against TD. Therefore, current study was conducted to explore the ameliorating effect of icariin in thiram-induced TD chickens. A total of 180 broiler chicks were equally distributed in three groups; control, TD induced by thiram (50 mg/kg), and icariin group (treated with icariin @10 mg/kg). All groups were administered with normal standard diet ad libitum regularly until the end of experiment. The wingless-type member 4 (WNT4) and vascular endothelial growth factor (VEGF) genes and proteins expression were analyzed by quantitative real-time polymerase chain reaction and western blot analysis respectively. Tibial bone parameters, physiological changes in serum, antioxidant enzymes, and chicken growth performance were determined to assess advantage and protective effect of the medicine in broiler chicken. The expression of WNT4 was decreased while VEGF increased significantly (P < 0.05) in TD affected chicks. TD enhanced the GP, lameness, and irregular chondrocytes, while reduced the liver function, antioxidant enzymes in liver, and performance of chickens. Icariin treatment up-regulated WNT4 and down-regulated VEGF gene and protein expressions significantly (P < 0.05), restored the GP width, increased growth performance, corrected liver functions and antioxidant enzymes levels in liver, and mitigated the lameness in broiler chickens. In conclusion, icariin administration recovered GP size, normalized performance and prevented lameness significantly. Therefore, icariin treatments are encouraged to reduce the incidence of TD in broiler chickens.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mujeeb U Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad K Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahzad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, China
| |
Collapse
|
40
|
Tatsi C, Gkourogianni A, Mohnike K, DeArment D, Witchel S, Andrade AC, Markello TC, Baron J, Nilsson O, Jee YH. Aggrecan Mutations in Nonfamilial Short Stature and Short Stature Without Accelerated Skeletal Maturation. J Endocr Soc 2017; 1:1006-1011. [PMID: 29264551 PMCID: PMC5686699 DOI: 10.1210/js.2017-00229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
Aggrecan, a proteoglycan, is an important component of cartilage extracellular matrix, including that of the growth plate. Heterozygous mutations in ACAN, the gene encoding aggrecan, cause autosomal dominant short stature, accelerated skeletal maturation, and joint disease. The inheritance pattern and the presence of bone age equal to or greater than chronological age have been consistent features, serving as diagnostic clues. From family 1, a 6-year-old boy presented with short stature [height standard deviation score (SDS), -1.75] and bone age advanced by 3 years. There was no family history of short stature (height SDS: father, -0.76; mother, 0.7). Exome sequencing followed by Sanger sequencing identified a de novo novel heterozygous frameshift mutation in ACAN (c.6404delC: p.A2135Dfs). From family 2, a 12-year-old boy was evaluated for short stature (height SDS, -3.9). His bone age at the time of genetic evaluation was approximately 1 year less than his chronological age. Family history was consistent with an autosomal dominant inheritance of short stature, with several affected members also showing early-onset osteoarthritis. Exome sequencing, confirmed by Sanger sequencing, identified a novel nonsense mutation in ACAN (c.4852C>T: p.Q1618X), which cosegregated with the phenotype. In conclusion, patients with ACAN mutations may present with nonfamilial short stature and with bone age less than chronological age. These findings expand the known phenotypic spectrum of heterozygous ACAN mutations and indicate that this diagnosis should be considered in children without a family history of short stature and in children without accelerated skeletal maturation.
Collapse
Affiliation(s)
- Christina Tatsi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892
| | - Alexandra Gkourogianni
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 77 Stockholm, Sweden
| | - Klaus Mohnike
- Department of Pediatrics, Otto-von-Guericke-University, 39104 Magdeburg, Germany
| | - Diana DeArment
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of University of Pittsburg Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Selma Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of University of Pittsburg Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Anenisia C. Andrade
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 77 Stockholm, Sweden
| | - Thomas C. Markello
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeffrey Baron
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892
| | - Ola Nilsson
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 77 Stockholm, Sweden
- Department of Medical Sciences, Örebro University, 702 03 Örebro, Sweden
| | - Youn Hee Jee
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Dateki S. ACAN mutations as a cause of familial short stature. Clin Pediatr Endocrinol 2017; 26:119-125. [PMID: 28804204 PMCID: PMC5537209 DOI: 10.1297/cpe.26.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/25/2017] [Indexed: 12/18/2022] Open
Abstract
Aggrecan, encoded by ACAN, is a major proteoglycan component of the
extracellular matrix in the growth plate and articular cartilage. Aggrecan provides the
hydrated gel structure important for the load-bearing properties of joints and plays a key
role in cartilage and bone morphogenesis. At least 25 pathological ACAN
mutations have been identified in patients with highly variable phenotypes of syndromic or
non-syndromic short stature. This review provides an overview of the current understanding
of ACAN and the clinical and genetic findings concerning
aggrecan-associated diseases.
Collapse
Affiliation(s)
- Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
42
|
van der Steen M, Pfundt R, Maas SJWH, Bakker-van Waarde WM, Odink RJ, Hokken-Koelega ACS. ACAN Gene Mutations in Short Children Born SGA and Response to Growth Hormone Treatment. J Clin Endocrinol Metab 2017; 102:1458-1467. [PMID: 27710243 DOI: 10.1210/jc.2016-2941] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Some children born small for gestational age (SGA) show advanced bone age (BA) maturation during growth hormone (GH) treatment. ACAN gene mutations have been described in children with short stature and advanced BA. OBJECTIVE To determine the presence of ACAN gene mutations in short SGA children with advanced BA and assess the response to GH treatment. METHODS BA assessment in 290 GH-treated SGA children. ACAN sequencing in 29 children with advanced BA ≥0.5 years compared with calendar age. RESULTS Four of 29 SGA children with advanced BA had an ACAN gene mutation (13.8%). Mutations were related to additional characteristics: midface hypoplasia (P = 0.003), joint problems (P = 0.010), and broad great toes (P = 0.003). Children with one or fewer additional characteristic had no mutation. Of children with two additional characteristics, 50% had a mutation. Of children with three additional characteristics, 100% had a mutation. All GH-treated children with a mutation received gonadotropin-releasing hormone analog (GnRHa) treatment for 2 years from onset of puberty. At adult height, one girl was 5 cm taller than her mother and one boy was 8 cm taller than his father with the same ACAN gene mutation. CONCLUSION This study expands the differential diagnosis of genetic variants in children born SGA and proposes a clinical scoring system for identifying subjects most likely to have an ACAN gene mutation. ACAN sequencing should be considered in children born SGA with persistent short stature, advanced BA, and midface hypoplasia, joint problems, or broad great toes. Our findings suggest that children with an ACAN gene mutation benefit from GH treatment with 2 years of GnRHa.
Collapse
Affiliation(s)
- Manouk van der Steen
- Dutch Growth Research Foundation, 3001 KB Rotterdam, The Netherlands
- Erasmus University Medical Center-Sophia Children's Hospital, 3015 GJ Rotterdam, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Division of Genome Diagnostics, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Stephan J W H Maas
- Department of Human Genetics, Division of Genome Diagnostics, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Willie M Bakker-van Waarde
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Roelof J Odink
- Department of Pediatrics, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - Anita C S Hokken-Koelega
- Dutch Growth Research Foundation, 3001 KB Rotterdam, The Netherlands
- Erasmus University Medical Center-Sophia Children's Hospital, 3015 GJ Rotterdam, The Netherlands
| |
Collapse
|
43
|
Dateki S, Nakatomi A, Watanabe S, Shimizu H, Inoue Y, Baba H, Yoshiura KI, Moriuchi H. Identification of a novel heterozygous mutation of the Aggrecan gene in a family with idiopathic short stature and multiple intervertebral disc herniation. J Hum Genet 2017; 62:717-721. [PMID: 28331218 DOI: 10.1038/jhg.2017.33] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Aggrecan is a critical proteoglycan component of the extracellular matrix of the growth plates and articular cartilage and has a key role in the biophysical and biomechanical properties of cartilage. Recently, heterozygous mutations in the ACAN gene, which encodes aggrecan, have been identified in patients with short stature and accelerated bone age. We herein report another family with a heterozygous ACAN mutation associated with idiopathic short stature along with accelerated bone age and early-onset herniation of the lumbar discs at the levels of L1/2 through L5/S1. Whole-exome sequencing identified a novel heterozygous frameshift mutation in the ACAN gene (c.1744delT; p.Phe582fs*69) in all of the affected family members but not in the unaffected one, providing further evidence that ACAN haploinsufficiency causes short stature with advanced bone maturation. In addition, we advocate early-onset multiple disc herniation as a novel phenotype associated with ACAN haploinsufficiency.
Collapse
Affiliation(s)
- Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akiko Nakatomi
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Watanabe
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hitomi Shimizu
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Hideo Baba
- Department of Orthopedic Surgery, Nagasaki University Hospital, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Moriuchi
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
44
|
Gkourogianni A, Andrew M, Tyzinski L, Crocker M, Douglas J, Dunbar N, Fairchild J, Funari MFA, Heath KE, Jorge AAL, Kurtzman T, LaFranchi S, Lalani S, Lebl J, Lin Y, Los E, Newbern D, Nowak C, Olson M, Popovic J, Průhová Š, Elblova L, Quintos JB, Segerlund E, Sentchordi L, Shinawi M, Stattin EL, Swartz J, del Angel AG, Cuéllar SD, Hosono H, Sanchez-Lara PA, Hwa V, Baron J, Nilsson O, Dauber A. Clinical Characterization of Patients With Autosomal Dominant Short Stature due to Aggrecan Mutations. J Clin Endocrinol Metab 2017; 102:460-469. [PMID: 27870580 PMCID: PMC5413162 DOI: 10.1210/jc.2016-3313] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Abstract
CONTEXT Heterozygous mutations in the aggrecan gene (ACAN) cause autosomal dominant short stature with accelerated skeletal maturation. OBJECTIVE We sought to characterize the phenotypic spectrum and response to growth-promoting therapies. PATIENTS AND METHODS One hundred three individuals (57 females, 46 males) from 20 families with autosomal dominant short stature and heterozygous ACAN mutations were identified and confirmed using whole-exome sequencing, targeted next-generation sequencing, and/or Sanger sequencing. Clinical information was collected from the medical records. RESULTS Identified ACAN variants showed perfect cosegregation with phenotype. Adult individuals had mildly disproportionate short stature [median height, -2.8 standard deviation score (SDS); range, -5.9 to -0.9] and a history of early growth cessation. The condition was frequently associated with early-onset osteoarthritis (12 families) and intervertebral disc disease (9 families). No apparent genotype-phenotype correlation was found between the type of ACAN mutation and the presence of joint complaints. Childhood height was less affected (median height, -2.0 SDS; range, -4.2 to -0.6). Most children with ACAN mutations had advanced bone age (bone age - chronologic age; median, +1.3 years; range, +0.0 to +3.7 years). Nineteen individuals had received growth hormone therapy with some evidence of increased growth velocity. CONCLUSIONS Heterozygous ACAN mutations result in a phenotypic spectrum ranging from mild and proportionate short stature to a mild skeletal dysplasia with disproportionate short stature and brachydactyly. Many affected individuals developed early-onset osteoarthritis and degenerative disc disease, suggesting dysfunction of the articular cartilage and intervertebral disc cartilage. Additional studies are needed to determine the optimal treatment strategy for these patients.
Collapse
Affiliation(s)
- Alexandra Gkourogianni
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Melissa Andrew
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 70941
| | - Leah Tyzinski
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 70941
| | | | - Jessica Douglas
- Genetics, Boston Children’s Hospital, Boston, Massachusetts 02115
| | - Nancy Dunbar
- Division of Pediatric Endocrinology, Connecticut Children’s Medical Center, Hartford, Connecticut 06106
| | - Jan Fairchild
- Department of Endocrinology and Diabetes, Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
| | - Mariana F. A. Funari
- Unidade de Endocrinologia do Desenvolvimento (LIM/42), Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05508-020, Brazil
| | - Karen E. Heath
- Institute of Medical and Molecular Genetics (INGEMM) and Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, and CIBERER, ISCIII, Madrid 20849, Spain
| | - Alexander A. L. Jorge
- Unidade de Endocrinologia do Desenvolvimento (LIM/42), Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05508-020, Brazil
| | | | - Stephen LaFranchi
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Jan Lebl
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague 11636, Czech Republic
| | - Yuezhen Lin
- Pediatric Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas 77030
| | - Evan Los
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239
| | - Dorothee Newbern
- Division of Endocrinology, Phoenix Children’s Hospital, Phoenix, Arizona 85016
| | - Catherine Nowak
- Genetics, Boston Children’s Hospital, Boston, Massachusetts 02115
| | - Micah Olson
- Division of Endocrinology, Phoenix Children’s Hospital, Phoenix, Arizona 85016
| | - Jadranka Popovic
- Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15237
| | - Štěpánka Průhová
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague 11636, Czech Republic
| | - Lenka Elblova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and University Hospital in Motol, Prague 11636, Czech Republic
| | | | - Emma Segerlund
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 76, Sweden
- Sunderby Hospital, Sunderby 95442, Sweden
| | - Lucia Sentchordi
- Institute of Medical and Molecular Genetics (INGEMM) and Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, and CIBERER, ISCIII, Madrid 20849, Spain
- Department of Pediatrics, Hospital Universitario Infanta Sofia, Madrid 28703, Spain
| | - Marwan Shinawi
- Division of Genetics, Washington University, St. Louis, Missouri 63130
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala 75236, Sweden
| | | | - Ariadna González del Angel
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Insurgentes-Cuicuilco, Coyoacán 04530, México
| | - Sinhué Diaz Cuéllar
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Insurgentes-Cuicuilco, Coyoacán 04530, México
| | - Hidekazu Hosono
- Cottage Children’s Medical Center, Santa Barbara, California 93111
| | - Pedro A. Sanchez-Lara
- Center for Personalized Medicine, Children’s Hospital of Los Angeles, Los Angeles, California 90027
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 70941
| | - Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 76, Sweden
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; and
- Department of Medical Sciences, Örebro University and University Hospital, Örebro 70185, Sweden
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 70941
| |
Collapse
|
45
|
Smpd3 Expression in both Chondrocytes and Osteoblasts Is Required for Normal Endochondral Bone Development. Mol Cell Biol 2016; 36:2282-99. [PMID: 27325675 DOI: 10.1128/mcb.01077-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/06/2016] [Indexed: 01/10/2023] Open
Abstract
Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has been identified to be a key regulator of skeletal development. A homozygous loss-of-function mutation called fragilitas ossium (fro) in the Smpd3 gene causes poor bone and cartilage mineralization resulting in severe congenital skeletal deformities. Here we show that Smpd3 expression in ATDC5 chondrogenic cells is downregulated by parathyroid hormone-related peptide through transcription factor SOX9. Furthermore, we show that transgenic expression of Smpd3 in the chondrocytes of fro/fro mice corrects the cartilage but not the bone abnormalities. Additionally, we report the generation of Smpd3(flox/flox) mice for the tissue-specific inactivation of Smpd3 using the Cre-loxP system. We found that the skeletal phenotype in Smpd3(flox/flox); Osx-Cre mice, in which the Smpd3 gene is ablated in both late-stage chondrocytes and osteoblasts, closely mimics the skeletal phenotype in fro/fro mice. On the other hand, Smpd3(flox/flox); Col2a1-Cre mice, in which the Smpd3 gene is knocked out in chondrocytes only, recapitulate the fro/fro mouse cartilage phenotype. This work demonstrates that Smpd3 expression in both chondrocytes and osteoblasts is required for normal endochondral bone development.
Collapse
|
46
|
Hackett MJ, George GN, Pickering IJ, Eames BF. Chemical Biology in the Embryo: In Situ Imaging of Sulfur Biochemistry in Normal and Proteoglycan-Deficient Cartilage Matrix. Biochemistry 2016; 55:2441-51. [PMID: 26985789 DOI: 10.1021/acs.biochem.5b01136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteoglycans (PGs) are heavily glycosylated proteins that play major structural and biological roles in many tissues. Proteoglycans are abundant in cartilage extracellular matrix; their loss is a main feature of the joint disease osteoarthritis. Proteoglycan function is regulated by sulfation-sulfate ester formation with specific sugar residues. Visualization of sulfation within cartilage matrix would yield vital insights into its biological roles. We present synchrotron-based X-ray fluorescence imaging of developing zebrafish cartilage, providing the first in situ maps of sulfate ester distribution. Levels of both sulfur and sulfate esters decrease as cartilage develops through late phase differentiation (maturation or hypertrophy), suggesting a functional link between cartilage matrix sulfur content and chondrocyte differentiation. Genetic experiments confirm that sulfate ester levels were due to cartilage proteoglycans and support the hypothesis that sulfate ester levels regulate chondrocyte differentiation. Surprisingly, in the PG synthesis mutant, the total level of sulfur was not significantly reduced, suggesting sulfur is distributed in an alternative chemical form during lowered cartilage proteoglycan production. Fourier transform infrared imaging indicated increased levels of protein in the mutant fish, suggesting that this alternative sulfur form might be ascribed to an increased level of protein synthesis in the mutant fish, as part of a compensatory mechanism.
Collapse
Affiliation(s)
- Mark J Hackett
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada.,Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada.,Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
47
|
Brown DS, Eames BF. Emerging tools to study proteoglycan function during skeletal development. Methods Cell Biol 2016; 134:485-530. [PMID: 27312503 DOI: 10.1016/bs.mcb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past 20years, appreciation for the varied roles of proteoglycans (PGs), which are specific types of sugar-coated proteins, has increased dramatically. PGs in the extracellular matrix were long known to impart structural functions to many tissues, especially articular cartilage, which cushions bones and allows mobility at skeletal joints. Indeed, osteoarthritis is a debilitating disease associated with loss of PGs in articular cartilage. Today, however, PGs have a demonstrated role in cell biological processes, such as growth factor signalling, prompting new perspectives on the etiology of PG-associated diseases. Here, we review diseases associated with defects in PG synthesis and sulfation, also highlighting current understanding of the underlying genetics, biochemistry, and cell biology. Since most research has analyzed a class of PGs called heparan sulfate PGs, more attention is paid here to studies of chondroitin sulfate PGs (CSPGs), which are abundant in cartilage. Interestingly, CSPG synthesis is tightly linked to the cell biological processes of secretion and lysosomal degradation, suggesting that these systems may be linked genetically. Animal models of loss of CSPG function have revealed CSPGs to impact skeletal development. Specifically, our work from a mutagenesis screen in zebrafish led to the hypothesis that cartilage PGs normally delay the timing of endochondral ossification. Finally, we outline emerging approaches in zebrafish that may revolutionize the study of cartilage PG function, including transgenic methods and novel imaging techniques. Our recent work with X-ray fluorescent imaging, for example, enables direct correlation of PG function with PG-dependent biological processes.
Collapse
Affiliation(s)
- D S Brown
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B F Eames
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Melrose J, Shu C, Whitelock JM, Lord MS. The cartilage extracellular matrix as a transient developmental scaffold for growth plate maturation. Matrix Biol 2016; 52-54:363-383. [PMID: 26807757 DOI: 10.1016/j.matbio.2016.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The cartilage growth plate is a specialized developmental tissue containing characteristic zonal arrangements of chondrocytes. The proliferative and differentiative states of chondrocytes are tightly regulated at all stages including the initial limb bud and rudiment cartilage stages of development, the establishment of the primary and secondary ossification centers, development of the growth plates and laying down of bone. A multitude of spatio-temporal signals, including transcription factors, growth factors, morphogens and hormones, control chondrocyte maturation and terminal chondrocyte differentiation/hypertrophy, cell death/differentiation, calcification and vascular invasion of the growth plate and bone formation during morphogenetic transition of the growth plate. This involves hierarchical, integrated signaling from growth and factors, transcription factors, mechanosensory cues and proteases in the extracellular matrix to regulate these developmental processes to facilitate progressive changes in the growth plate culminating in bone formation and endochondral ossification. This review provides an overview of selected components which have particularly important roles in growth plate biology including collagens, proteoglycans, glycosaminoglycans, growth factors, proteases and enzymes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cindy Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
| | - John M Whitelock
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Megan S Lord
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
49
|
Gorter J, van Raay JJAM. A suspected genetic form of bilateral osteochondritis dissecans of the knee in a Dutch family. Knee 2015; 22:677-82. [PMID: 26122666 DOI: 10.1016/j.knee.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 04/20/2015] [Accepted: 05/11/2015] [Indexed: 02/02/2023]
Abstract
Osteochondritis dissecans (OCD) mostly has an idiopathic origin, but syndromic and familial forms have been reported. Mutations of the aggrecan (ACAN) and COL9A2 genes are associated with familial OCD, but these patients present with syndromic features. This article describes a mother and a daughter who both have bilateral OCD of the medial femoral condyles, and the monozygotic twin sister of the mother who has confirmed unilateral OCD (and possible bilateral OCD) of the medial femoral condyle. No short stature or any other syndromic features were present. None of the syndromic features associated with ACAN or COL9A2 mutations or any other known syndromes were present in this case. This case suggests a possible unknown genetic anomaly.
Collapse
Affiliation(s)
- J Gorter
- Department of Orthopaedic Surgery, Martini Hospital, Groningen, the Netherlands.
| | - J J A M van Raay
- Department of Orthopaedic Surgery, Martini Hospital, Groningen, the Netherlands.
| |
Collapse
|
50
|
Quintos JB, Guo MH, Dauber A. Idiopathic short stature due to novel heterozygous mutation of the aggrecan gene. J Pediatr Endocrinol Metab 2015; 28:927-32. [PMID: 25741789 PMCID: PMC4501863 DOI: 10.1515/jpem-2014-0450] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/29/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recently, whole exome sequencing identified heterozygous defects in the aggrecan (ACAN) gene in three families with short stature and advanced bone age. OBJECTIVE We report a novel frameshift mutation in ACAN in a family with dominantly inherited short stature, advanced bone age, and premature growth cessation. This is the first case of targeted sequencing of ACAN in this phenotype and confirms that ACAN sequencing is warranted in patients with this rare constellation of findings. RESULTS We present a 5 1/2-year-old male with a family history of short stature in three generations. The maternal grandfather stands 144.5 cm (Ht SDS -4.7), mother 147.7 cm (Ht SDS -2.6), and index case 99.2 cm (Ht SDS -2.7). Our prepubertal patient has significant bone age advancement (bone age 8 years at chronologic age 5 1/2 years) resulting in a poor predicted adult height of 142 cm (Ht SDS -5.1). DNA sequencing identified a novel heterozygous variant in ACAN, which encodes aggrecan, a proteoglycan in the extracellular matrix of growth plate and other cartilaginous tissues. The mutation (p.Gly1797Glyfs*52) results in premature truncation and presumed loss of protein function. CONCLUSION Mutations in the ACAN gene should be included in the differential diagnosis of the child with idiopathic short stature or familial short stature and bone age advancement.
Collapse
Affiliation(s)
- Jose Bernardo Quintos
- Rhode Island Hospital/Hasbro Children's Hospital-The Warren Alpert Medical School of Brown University, Division of Pediatric Endocrinology, 593 Eddy St, MPS2, Providence, RI 02903
| | - Michael H. Guo
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229
| |
Collapse
|