1
|
Tabasi M, Chen N, Sajjan U. Role of Homeobox A1 in Airway Epithelial Generation from Human Airway Basal Cells. Cells 2025; 14:549. [PMID: 40214503 PMCID: PMC11989199 DOI: 10.3390/cells14070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/04/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Airway basal cells from chronic obstructive pulmonary disease patients show a reduction in HOXA1 expression and generate an abnormal airway epithelium. Because the specific role of HOXA1 in airway basal cells is not known, we investigated the contribution of HOXA1 in the generation of the airway epithelium, which depends on basal cell proliferation, polarization, and differentiation. Airway stem cells were transduced with an inducible HOXA1 shRNA lentivector to knock down HOXA1 in either proliferating cells or100% confluent cells. The bronchial epithelium expresses HOXA1 near the basement membrane, likely representing basal cells. HOXA1 knockdown in proliferating basal cells attenuated cell proliferation. HOXA1 knockdown in confluent monolayers of basal cells generated an abnormal airway epithelium characterized by goblet cell hyperplasia and an inflammatory phenotype. Compared to the control, HOXA1 knockdown cells showed a decrease in transepithelial resistance, localization of occludin and E-cadherin to the intercellular junctions, reduced expression of occludin but not E-cadherin, and increased expression of TNF-α. Blocking TNF-α increased the expression of occludin in HOXA1 K/D cells. Based on these results, we conclude that HOXA1 plays an important role in cell proliferation, polarization, and differentiation, which are essential steps in airway epithelial generation. Additionally, HOXA1 may regulate occludin expression by inhibiting TNF-α expression.
Collapse
Affiliation(s)
- Mohsen Tabasi
- Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA; (M.T.); (N.C.)
- Department of Microbiology, Immunology and Inflammation, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA
| | - Nathaniel Chen
- Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA; (M.T.); (N.C.)
| | - Umadevi Sajjan
- Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA; (M.T.); (N.C.)
- Department of Microbiology, Immunology and Inflammation, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University Health System, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Podgrajsek R, Bolha L, Pungert T, Pizem J, Jazbec K, Malicev E, Stimpfel M. Effects of Slow Freezing and Vitrification of Human Semen on Post-Thaw Semen Quality and miRNA Expression. Int J Mol Sci 2024; 25:4157. [PMID: 38673743 PMCID: PMC11050687 DOI: 10.3390/ijms25084157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Semen cryopreservation has played an important role in medically assisted reproduction for decades. In addition to preserving male fertility, it is sometimes used for overcoming logistical issues. Despite its proven clinical usability and safety, there is a lack of knowledge of how it affects spermatozoa at the molecular level, especially in terms of non-coding RNAs. Therefore, we conducted this study, where we compared slow freezing and vitrification of good- and poor-quality human semen samples by analyzing conventional sperm quality parameters, performing functional tests and analyzing the expression of miRNAs. The results revealed that cryopreservation of normozoospermic samples does not alter the maturity of spermatozoa (protamine staining, hyaluronan binding), although cryopreservation can increase sperm DNA fragmentation and lower motility. On a molecular level, we revealed that in both types of cryopreservation, miRNAs from spermatozoa are significantly overexpressed compared to those in the native semen of normozoospermic patients, but in oligozoospermic samples, this effect is observed only after vitrification. Moreover, we show that expression of selected miRNAs is mostly overexpressed in native oligozoospermic samples compared to normozoospermic samples. Conversely, when vitrified normozoospermic and oligozoospermic samples were compared, we determined that only miR-99b-5p was significantly overexpressed in oligozoospermic sperm samples, and when comparing slow freezing, only miR-15b-5p and miR-34b-3p were significantly under-expressed in oligozoospermic sperm samples. Therefore, our results imply that cryopreservation of normozoospermic sperm samples can modulate miRNA expression profiles in spermatozoa to become comparable to those in oligozoospermic samples.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Tjasa Pungert
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
| | - Joze Pizem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.B.); (J.P.)
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
| | - Elvira Malicev
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia; (K.J.); (E.M.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (R.P.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Marchese D, Guislain F, Pringels T, Bridoux L, Rezsohazy R. A poly-histidine motif of HOXA1 is involved in regulatory interactions with cysteine-rich proteins. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194993. [PMID: 37952572 DOI: 10.1016/j.bbagrm.2023.194993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Homopolymeric amino acid repeats are found in about 24 % of human proteins and are over-represented in transcriptions factors and kinases. Although relatively rare, homopolymeric histidine repeats (polyH) are more significantly found in proteins involved in the regulation of embryonic development. To gain a better understanding of the role of polyH in these proteins, we used a bioinformatic approach to search for shared features in the interactomes of polyH-containing proteins in human. Our analysis revealed that polyH protein interactomes are enriched in cysteine-rich proteins and in proteins containing (a) cysteine repeat(s). Focusing on HOXA1, a HOX transcription factor displaying one long polyH motif, we identified that the polyH motif is required for the HOXA1 interaction with such cysteine-rich proteins. We observed a correlation between the length of the polyH repeat and the strength of the HOXA1 interaction with one Cys-rich protein, MDFI. We also found that metal ion chelators disrupt the HOXA1-MDFI interaction supporting that such metal ions are required for the interaction. Furthermore, we identified three polyH interactors which down-regulate the transcriptional activity of HOXA1. Taken together, our data point towards the involvement of polyH and cysteines in regulatory interactions between proteins, notably transcription factors like HOXA1.
Collapse
Affiliation(s)
- Damien Marchese
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Florent Guislain
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Zhou Y, Wu Q, Guo Y. Deciphering the emerging landscape of HOX genes in cardiovascular biology, atherosclerosis and beyond (Review). Int J Mol Med 2024; 53:17. [PMID: 38131178 PMCID: PMC10781420 DOI: 10.3892/ijmm.2023.5341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Atherosclerosis, a dominant driving force underlying multiple cardiovascular events, is an intertwined and chronic inflammatory disease characterized by lipid deposition in the arterial wall, which leads to diverse cardiovascular problems. Despite unprecedented advances in understanding the pathogenesis of atherosclerosis and the substantial decline in cardiovascular mortality, atherosclerotic cardiovascular disease remains a global public health issue. Understanding the molecular landscape of atherosclerosis is imperative in the field of molecular cardiology. Recently, compelling evidence has shown that an important family of homeobox (HOX) genes endows causality in orchestrating the interplay between various cardiovascular biological processes and atherosclerosis. Despite seemingly scratching the surface, such insight into the realization of biology promises to yield extraordinary breakthroughs in ameliorating atherosclerosis. Primarily recapitulated herein are the contributions of HOX in atherosclerosis, including diverse cardiovascular biology, knowledge gaps, remaining challenges and future directions. A snapshot of other cardiovascular biological processes was also provided, including cardiac/vascular development, cardiomyocyte pyroptosis/apoptosis, cardiac fibroblast proliferation and cardiac hypertrophy, which are responsible for cardiovascular disorders. Further in‑depth investigation of HOX promises to provide a potential yet challenging landscape, albeit largely undetermined to date, for partially pinpointing the molecular mechanisms of atherosclerosis. A plethora of new targeted therapies may ultimately emerge against atherosclerosis, which is rapidly underway. However, translational undertakings are crucially important but increasingly challenging and remain an ongoing and monumental conundrum in the field.
Collapse
Affiliation(s)
- Yu Zhou
- Medical College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yingchu Guo
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
5
|
Hu P, Wang B, Jin D, Gu Y, He H, Meng X, Zhu W, Chiang DY, Li W, MacRae CA, Zu Y. Modeling of large-scale hoxbb cluster deletions in zebrafish uncovers a role for segmentation pathways in atrioventricular boundary specification. Cell Mol Life Sci 2023; 80:317. [PMID: 37801106 PMCID: PMC11072906 DOI: 10.1007/s00018-023-04933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/19/2023] [Indexed: 10/07/2023]
Abstract
Hox genes orchestrate the segmental specification of the muscular circulatory system in invertebrates but it has not proven straightforward to decipher segmental parallels in the vertebrate heart. Recently, patients with HOXB gene cluster deletion were found to exhibit abnormalities including atrioventricular canal defects. Using CRISPR, we established a mutant with the orthologous hoxbb cluster deletion in zebrafish. The mutant exhibited heart failure and atrioventricular regurgitation at 5 days. Analyzing the four genes in the hoxbb cluster, isolated deletion of hoxb1b-/- recapitulated the cardiac abnormalities, supporting hoxb1b as the causal gene. Both in situ and in vitro data indicated that hoxb1b regulates gata5 to inhibit hand2 expression and ultimately is required to pattern the vertebrate atrioventricular boundary. Together, these data reveal a role for segmental specification in vertebrate cardiac development and highlight the utility of CRISPR techniques for efficiently exploring the function of large structural genomic lesions.
Collapse
Affiliation(s)
- Peinan Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bingqi Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Dongxu Jin
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yedan Gu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongyang He
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiangli Meng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wandi Zhu
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - David Y Chiang
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Calum A MacRae
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- Cardiovascular Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Han Z, Hu H, Yin M, Lin Y, Yan Y, Han P, Liu B, Jing B. HOXA1 participates in VSMC-to-macrophage-like cell transformation via regulation of NF-κB p65 and KLF4: a potential mechanism of atherosclerosis pathogenesis. Mol Med 2023; 29:104. [PMID: 37528397 PMCID: PMC10394793 DOI: 10.1186/s10020-023-00685-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Macrophage-like transformation of vascular smooth muscle cells (VSMCs) is a risk factor of atherosclerosis (AS) progression. Transcription factor homeobox A1 (HOXA1) plays functional roles in differentiation and development. This study aims to explore the role of HOXA1 in VSMC transformation, thereby providing evidence for the potential mechanism of AS pathogenesis. METHODS High fat diet (HFD)-fed apolipoprotein E knockout (ApoE-/-) mice were applied as an in vivo model to imitate AS, while 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POV-PC)-treated VSMCs were applied as an in vitro model. Recombinant adeno-associated-virus-1 (AAV-1) vectors that express short-hairpin RNAs targeting HOXA1, herein referred as AAV1-shHOXA1, were generated for the loss-of-function experiments throughout the study. RESULTS In the aortic root of AS mice, lipid deposition was severer and HOXA1 expression was higher than the wide-type mice fed with normal diet or HFD. Silencing of HOXA1 inhibited the AS-induced weight gain, inflammatory response, serum and liver lipid metabolism disorder and atherosclerotic plaque formation. Besides, lesions from AS mice with HOXA1 knockdown showed less trans-differentiation of VSMCs to macrophage-like cells, along with a suppression of krüppel-like factor 4 (KLF4) and nuclear factor (NF)-κB RelA (p65) expression. In vitro experiments consistently confirmed that HOXA1 knockdown suppressed lipid accumulation, VSMC-to-macrophage phenotypic switch and inflammation in POV-PC-treated VSMCs. Mechanism investigations further illustrated that HOXA1 transcriptionally activated RelA and KLF4 to participate in the pathological manifestations of VSMCs. CONCLUSIONS HOXA1 participates in AS progression by regulating VSMCs plasticity via regulation of NF-κB p65 and KLF4. HOXA1 has the potential to be a biomarker or therapeutic target for AS.
Collapse
Affiliation(s)
- Zhiyang Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Haidi Hu
- Department of General and Vascular Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - MingZhu Yin
- Department of Dermatology, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
- Human Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Yu Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Yan Yan
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Peng Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bing Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bao Jing
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Odelin G, Faucherre A, Marchese D, Pinard A, Jaouadi H, Le Scouarnec S, Chiarelli R, Achouri Y, Faure E, Herbane M, Théron A, Avierinos JF, Jopling C, Collod-Béroud G, Rezsohazy R, Zaffran S. Variations in the poly-histidine repeat motif of HOXA1 contribute to bicuspid aortic valve in mouse and zebrafish. Nat Commun 2023; 14:1543. [PMID: 36941270 PMCID: PMC10027860 DOI: 10.1038/s41467-023-37110-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Damien Marchese
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Amélie Pinard
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Hager Jaouadi
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | | | | | - Raphaël Chiarelli
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emilie Faure
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Marine Herbane
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Alexis Théron
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - René Rezsohazy
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France.
| |
Collapse
|
8
|
Ito S, Lu HS, Daugherty A, Sawada H. Embryonic Heterogeneity of Smooth Muscle Cells in the Complex Mechanisms of Thoracic Aortic Aneurysms. Genes (Basel) 2022; 13:genes13091618. [PMID: 36140786 PMCID: PMC9498804 DOI: 10.3390/genes13091618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Smooth muscle cells (SMCs) are the major cell type of the aortic wall and play a pivotal role in the pathophysiology of thoracic aortic aneurysms (TAAs). TAAs occur in a region-specific manner with the proximal region being a common location. In this region, SMCs are derived embryonically from either the cardiac neural crest or the second heart field. These cells of distinct origins reside in specific locations and exhibit different biological behaviors in the complex mechanism of TAAs. The purpose of this review is to enhance understanding of the embryonic heterogeneity of SMCs in the proximal thoracic aorta and their functions in TAAs.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Aortic Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-(859)-218-1705
| |
Collapse
|
9
|
Chen S, Shu G, Wang G, Ye J, Xu J, Huang C, Yang S. HOXA1 promotes proliferation and metastasis of bladder cancer by enhancing SMAD3 transcription. Pathol Res Pract 2022; 239:154141. [DOI: 10.1016/j.prp.2022.154141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/28/2022]
|
10
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
11
|
Garcia-Padilla C, Dueñas A, Franco D, Garcia-Lopez V, Aranega A, Garcia-Martinez V, Lopez-Sanchez C. Dynamic MicroRNA Expression Profiles During Embryonic Development Provide Novel Insights Into Cardiac Sinus Venosus/Inflow Tract Differentiation. Front Cell Dev Biol 2022; 9:767954. [PMID: 35087828 PMCID: PMC8787322 DOI: 10.3389/fcell.2021.767954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs have been explored in different organisms and are involved as molecular switches modulating cellular specification and differentiation during the embryonic development, including the cardiovascular system. In this study, we analyze the expression profiles of different microRNAs during early cardiac development. By using whole mount in situ hybridization in developing chick embryos, with microRNA-specific LNA probes, we carried out a detailed study of miR-23b, miR-130a, miR-106a, and miR-100 expression during early stages of embryogenesis (HH3 to HH17). We also correlated those findings with putative microRNA target genes by means of mirWalk and TargetScan analyses. Our results demonstrate a dynamic expression pattern in cardiac precursor cells from the primitive streak to the cardiac looping stages for miR-23b, miR-130a, and miR-106a. Additionally, miR-100 is later detectable during cardiac looping stages (HH15-17). Interestingly, the sinus venosus/inflow tract was shown to be the most representative cardiac area for the convergent expression of the four microRNAs. Through in silico analysis we revealed that distinct Hox family members are predicted to be targeted by the above microRNAs. We also identified expression of several Hox genes in the sinus venosus at stages HH11 and HH15. In addition, by means of gain-of-function experiments both in cardiomyoblasts and sinus venosus explants, we demonstrated the modulation of the different Hox clusters, Hoxa, Hoxb, Hoxc, and Hoxd genes, by these microRNAs. Furthermore, we correlated the negative modulation of several Hox genes, such as Hoxa3, Hoxa4, Hoxa5, Hoxc6, or Hoxd4. Finally, we demonstrated through a dual luciferase assay that Hoxa1 is targeted by miR-130a and Hoxa4 is targeted by both miR-23b and miR-106a, supporting a possible role of these microRNAs in Hox gene modulation during differentiation and compartmentalization of the posterior structures of the developing venous pole of the heart.
Collapse
Affiliation(s)
- Carlos Garcia-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain.,Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Angel Dueñas
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain.,Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, Jaen, Spain.,Fundación Medina, Granada, Spain
| | - Virginio Garcia-Lopez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, Jaen, Spain.,Fundación Medina, Granada, Spain
| | - Virginio Garcia-Martinez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Carmen Lopez-Sanchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| |
Collapse
|
12
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
13
|
Durán Alonso MB, Vendrell V, López-Hernández I, Alonso MT, Martin DM, Giráldez F, Carramolino L, Giovinazzo G, Vázquez E, Torres M, Schimmang T. Meis2 Is Required for Inner Ear Formation and Proper Morphogenesis of the Cochlea. Front Cell Dev Biol 2021; 9:679325. [PMID: 34124068 PMCID: PMC8194062 DOI: 10.3389/fcell.2021.679325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Meis genes have been shown to control essential processes during development of the central and peripheral nervous system. Here we have explored the roles of the Meis2 gene during vertebrate inner ear induction and the formation of the cochlea. Meis2 is expressed in several tissues required for inner ear induction and in non-sensory tissue of the cochlear duct. Global inactivation of Meis2 in the mouse leads to a severely reduced size of the otic vesicle. Tissue-specific knock outs of Meis2 reveal that its expression in the hindbrain is essential for otic vesicle formation. Inactivation of Meis2 in the inner ear itself leads to an aberrant coiling of the cochlear duct. By analyzing transcriptomes obtained from Meis2 mutants and ChIPseq analysis of an otic cell line, we define candidate target genes for Meis2 which may be directly or indirectly involved in cochlear morphogenesis. Taken together, these data show that Meis2 is essential for inner ear formation and provide an entry point to unveil the network underlying proper coiling of the cochlear duct.
Collapse
Affiliation(s)
- María Beatriz Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Victor Vendrell
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Iris López-Hernández
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Donna M. Martin
- Departments of Pediatrics and Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Fernando Giráldez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona, Spain
| | - Laura Carramolino
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Giovanna Giovinazzo
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Enrique Vázquez
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| |
Collapse
|
14
|
Peterson JC, Kelder TP, Goumans MJTH, Jongbloed MRM, DeRuiter MC. The Role of Cell Tracing and Fate Mapping Experiments in Cardiac Outflow Tract Development, New Opportunities through Emerging Technologies. J Cardiovasc Dev Dis 2021; 8:47. [PMID: 33925811 PMCID: PMC8146276 DOI: 10.3390/jcdd8050047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Whilst knowledge regarding the pathophysiology of congenital heart disease (CHDs) has advanced greatly in recent years, the underlying developmental processes affecting the cardiac outflow tract (OFT) such as bicuspid aortic valve, tetralogy of Fallot and transposition of the great arteries remain poorly understood. Common among CHDs affecting the OFT, is a large variation in disease phenotypes. Even though the different cell lineages contributing to OFT development have been studied for many decades, it remains challenging to relate cell lineage dynamics to the morphologic variation observed in OFT pathologies. We postulate that the variation observed in cellular contribution in these congenital heart diseases might be related to underlying cell lineage dynamics of which little is known. We believe this gap in knowledge is mainly the result of technical limitations in experimental methods used for cell lineage analysis. The aim of this review is to provide an overview of historical fate mapping and cell tracing techniques used to study OFT development and introduce emerging technologies which provide new opportunities that will aid our understanding of the cellular dynamics underlying OFT pathology.
Collapse
Affiliation(s)
- Joshua C. Peterson
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
| | - Tim P. Kelder
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
| | - Marie José T. H. Goumans
- Department Cellular and Chemical Biology, Leiden University Medical Center, 2300RC Leiden, The Netherlands;
| | - Monique R. M. Jongbloed
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Marco C. DeRuiter
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
| |
Collapse
|
15
|
Schussler O, Gharibeh L, Mootoosamy P, Murith N, Tien V, Rougemont AL, Sologashvili T, Suuronen E, Lecarpentier Y, Ruel M. Cardiac Neural Crest Cells: Their Rhombomeric Specification, Migration, and Association with Heart and Great Vessel Anomalies. Cell Mol Neurobiol 2021; 41:403-429. [PMID: 32405705 PMCID: PMC11448677 DOI: 10.1007/s10571-020-00863-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Outflow tract abnormalities are the most frequent congenital heart defects. These are due to the absence or dysfunction of the two main cell types, i.e., neural crest cells and secondary heart field cells that migrate in opposite directions at the same stage of development. These cells directly govern aortic arch patterning and development, ascending aorta dilatation, semi-valvular and coronary artery development, aortopulmonary septation abnormalities, persistence of the ductus arteriosus, trunk and proximal pulmonary arteries, sub-valvular conal ventricular septal/rotational defects, and non-compaction of the left ventricle. In some cases, depending on the functional defects of these cells, additional malformations are found in the expected spatial migratory area of the cells, namely in the pharyngeal arch derivatives and cervico-facial structures. Associated non-cardiovascular anomalies are often underestimated, since the multipotency and functional alteration of these cells can result in the modification of multiple neural, epidermal, and cervical structures at different levels. In most cases, patients do not display the full phenotype of abnormalities, but congenital cardiac defects involving the ventricular outflow tract, ascending aorta, aortic arch and supra-aortic trunks should be considered as markers for possible impaired function of these cells. Neural crest cells should not be considered as a unique cell population but on the basis of their cervical rhombomere origins R3-R5 or R6-R7-R8 and specific migration patterns: R3-R4 towards arch II, R5-R6 arch III and R7-R8 arch IV and VI. A better understanding of their development may lead to the discovery of unknown associated abnormalities, thereby enabling potential improvements to be made to the therapeutic approach.
Collapse
Affiliation(s)
- Olivier Schussler
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland.
- Cardiovascular Research Laboratory, Faculty of Medicine of the University of Geneva, Rue Michel Servet 1, 1211, Geneva 4, Switzerland.
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Parmeseeven Mootoosamy
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Nicolas Murith
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Vannary Tien
- Department of Pathology and Immunology, Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | | | - Tornike Sologashvili
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Erik Suuronen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cardiovascular Surgery, University of Ottawa Heart Institute and School of Epidemiology, Ottawa, ON, Canada
| | | | - Marc Ruel
- Department of Cardiovascular Surgery, University of Ottawa Heart Institute and School of Epidemiology, Ottawa, ON, Canada
| |
Collapse
|
16
|
Zhou H, Chen Y, Hu Y, Gao S, Lu W, He Y. Administration of All-Trans Retinoic Acid to Pregnant Sows Improves the Developmental Defects of Hoxa1 -/- Fetal Pigs. Front Vet Sci 2021; 7:618660. [PMID: 33506002 PMCID: PMC7829359 DOI: 10.3389/fvets.2020.618660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Hoxa1 mutation adversely affect fetal pig development, but whether all-trans retinoic acid (ATRA) administration to Hoxa1+/− pregnant sows can improve Hoxa1−/− fetal pig development defects has not been reported. A total of 24 healthy Hoxa1+/− sows were mated with a healthy Hoxa1+/− boar and randomly assigned to one control group and nine experiment groups. ATRA was orally administered to pregnant sows at the doses of 0, 4, 5, or 6 mg/kg maternal body weight on 12, 13, and 14 days post coitum (dpc), respectively, and a total of 146 live piglets were delivered including 37 Hoxa1−/− piglets and 109 non-Hoxa1−/− piglets. Results indicated that Hoxa1−/− piglets delivered by sows in control group had bilateral microtia, canal atresia and ear's internal defects, and had lower birth liveweight and external ear score than non-Hoxa1−/− neonatal piglets (P < 0.05). Maternal administration with ATRA can effectively correct the development defects of Hoxa1−/− fetal pigs, Hoxa1−/− neonatal piglets delivered by sows administered ATRA at a dose of 4 mg/kg body weight on 14 dpc had higher birth liveweight (P > 0.05) and higher scores of external ear (P < 0.05) compared to Hoxa1−/− neonatal piglets from the control group, but had no significantly difference in terms of birth liveweight and external ear integrity than non-Hoxa1−/− piglets from the control group (P > 0.05). The time of ATRA administration significantly affected Hoxa1−/− fetal development (P < 0.05). Administration of ATRA to Hoxa1+/− pregnant sows at 4 mg/kg body weight on 14 dpc can effectively improve the birth liveweight and ear defects of Hoxa1−/− piglets.
Collapse
Affiliation(s)
- Haimei Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China.,Department of Animal Science, Jiangxi Agricultural Engineering College, Zhangshu, China
| | - Yixin Chen
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Yongqiang Hu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Shan Gao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
17
|
Xiong Z, Xia P, Zhu X, Geng J, Wang S, Ye B, Qin X, Qu Y, He L, Fan D, Du Y, Tian Y, Fan Z. Glutamylation of deubiquitinase BAP1 controls self-renewal of hematopoietic stem cells and hematopoiesis. J Exp Med 2020; 217:jem.20190974. [PMID: 31699823 PMCID: PMC7041701 DOI: 10.1084/jem.20190974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/27/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Xiong et al. show that CCP3 performs deglutamylation of BAP1 to stabilize BAP1, which eliminates H2AK119Ub from Hoxa1 promoter and initiates Hoxa1 expression, leading to enhanced HSC self-renewal. All hematopoietic lineages are derived from a limited pool of hematopoietic stem cells (HSCs). Although the mechanisms underlying HSC self-renewal have been extensively studied, little is known about the role of protein glutamylation and deglutamylation in hematopoiesis. Here, we show that carboxypeptidase CCP3 is most highly expressed in BM cells among CCP members. CCP3 deficiency impairs HSC self-renewal and hematopoiesis. Deubiquitinase BAP1 is a substrate for CCP3 in HSCs. BAP1 is glutamylated at Glu651 by TTLL5 and TTLL7, and BAP1-E651A mutation abrogates BAP1 glutamylation. BAP1 glutamylation accelerates its ubiquitination to trigger its degradation. CCP3 can remove glutamylation of BAP1 to promote its stability, which enhances Hoxa1 expression, leading to HSC self-renewal. Bap1E651A mice produce higher numbers of LT-HSCs and peripheral blood cells. Moreover, TTLL5 and TTLL7 deficiencies sustain BAP1 stability to promote HSC self-renewal and hematopoiesis. Therefore, glutamylation and deglutamylation of BAP1 modulate HSC self-renewal and hematopoiesis.
Collapse
Affiliation(s)
- Zhen Xiong
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengyan Xia
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology of Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Geng
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiwen Qin
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Qu
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Luyun He
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dongdong Fan
- Key Laboratory of RNA Biology of Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology of Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Zhao J, He L, Yin L. lncRNA NEAT1 Binds to MiR-339-5p to Increase HOXA1 and Alleviate Ischemic Brain Damage in Neonatal Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:117-127. [PMID: 32163893 PMCID: PMC7066222 DOI: 10.1016/j.omtn.2020.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a major cause of fatality and morbidity in neonates. However, current treatment approaches to alleviate HIBD are not effective. Various studies have highlighted the role of microRNAs (miRNAs) in various biological functions in multiple diseases. This study investigated the role of miR-339-5p in HIBD progression. Neonatal HIBD mouse model was induced by ligation of the right common carotid artery. Neuronal cell model exposed to oxygen-glucose deprivation (OGD) was also established. The miR-339-5p expression in mouse brain tissues and neuronal cells was quantified, and the effects of miR-339-5p on neuronal cell activity and apoptosis induced by hypoxia-ischemia were explored. The overexpression or knockdown of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in hippocampal neurons was used to determine the effect of lncRNA NEAT1 on the expression of miR-339-5p and homeobox A1 (HOXA1) and apoptosis. Short hairpin RNA targeting lncRNA NEAT1 and miR-339-5p antagomir were used in neonatal HIBD mice to identify their roles in HIBD. Our results revealed that miR-339-5p was downregulated in neonatal HIBD mice and neuronal cells exposed to OGD. Downregulated miR-339-5p promoted neuronal cell viability and suppressed apoptosis during hypoxia-ischemia. Moreover, lncRNA NEAT1 competitively bound to miR-339-5p to increase HOXA1 expression and inhibited neuronal cell apoptosis under hypoxic-ischemic conditions. The key observations of the current study present evidence demonstrating that lncRNA NEAT1 upregulated HOXA1 to alleviate HIBD in mice by binding to miR-339-5p.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China.
| | - Ling He
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China
| | - Lingling Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China
| |
Collapse
|
19
|
Su G, Guo D, Chen J, Liu M, Zheng J, Wang W, Zhao X, Yin Q, Zhang L, Zhao Z, Shi J, Lu W. A distal enhancer maintaining Hoxa1 expression orchestrates retinoic acid-induced early ESCs differentiation. Nucleic Acids Res 2020; 47:6737-6752. [PMID: 31147716 PMCID: PMC6649716 DOI: 10.1093/nar/gkz482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Retinoic acid (RA) induces rapid differentiation of embryonic stem cells (ESCs), partly by activating expression of the transcription factor Hoxa1, which regulates downstream target genes that promote ESCs differentiation. However, mechanisms of RA-induced Hoxa1 expression and ESCs early differentiation remain largely unknown. Here, we identify a distal enhancer interacting with the Hoxa1 locus through a long-range chromatin loop. Enhancer deletion significantly inhibited expression of RA-induced Hoxa1 and endoderm master control genes such as Gata4 and Gata6. Transcriptome analysis revealed that RA-induced early ESCs differentiation was blocked in Hoxa1 enhancer knockout cells, suggesting a requirement for the enhancer. Restoration of Hoxa1 expression partly rescued expression levels of ∼40% of genes whose expression changed following enhancer deletion, and ∼18% of promoters of those rescued genes were directly bound by Hoxa1. Our data show that a distal enhancer maintains Hoxa1 expression through long-range chromatin loop and that Hoxa1 directly regulates downstream target genes expression and then orchestrates RA-induced early differentiation of ESCs. This discovery reveals mechanisms of a novel enhancer regulating RA-induced Hoxa genes expression and early ESCs differentiation.
Collapse
Affiliation(s)
- Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Dianhao Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Man Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jian Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Qingqing Yin
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Wange Lu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
20
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Feiner N, Wood NJ. Lizards possess the most complete tetrapod Hox gene repertoire despite pervasive structural changes in Hox clusters. Evol Dev 2019; 21:218-228. [PMID: 31298799 DOI: 10.1111/ede.12300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 06/08/2019] [Indexed: 01/21/2023]
Abstract
Hox genes are a remarkable example of conservation in animal development and their nested expression along the head-to-tail axis orchestrates embryonic patterning. Early in vertebrate history, two duplications led to the emergence of four Hox clusters (A-D) and redundancy within paralog groups has been partially accommodated with gene losses. Here we conduct an inventory of squamate Hox genes using the genomes of 10 lizard and 7 snake species. Although the HoxC1 gene has been hypothesized to be lost in the amniote ancestor, we reveal that it is retained in lizards. In contrast, all snakes lack functional HoxC1 and -D12 genes. Varying levels of degradation suggest differences in the process of gene loss between the two genes. The vertebrate HoxC1 gene is prone to gene loss and its functional domains are more variable than those of other Hox1 genes. We describe for the first time the HoxC1 expression patterns in tetrapods. HoxC1 is broadly expressed during development in the diencephalon, the neural tube, dorsal root ganglia, and limb buds in two lizard species. Our study emphasizes the value of revisiting Hox gene repertoires by densely sampling taxonomic groups and its feasibility owing to growing sequence resources in evaluating gene repertoires across taxa.
Collapse
Affiliation(s)
- Nathalie Feiner
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Biology, Lund University, Lund, Sweden
| | - Natalie J Wood
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
22
|
Dynamic regulation of Nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells. Proc Natl Acad Sci U S A 2018; 114:5838-5845. [PMID: 28584089 DOI: 10.1073/pnas.1610612114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Homeobox a1 (Hoxa1) is one of the most rapidly induced genes in ES cell differentiation and it is the earliest expressed Hox gene in the mouse embryo. In this study, we used genomic approaches to identify Hoxa1-bound regions during early stages of ES cell differentiation into the neuro-ectoderm. Within 2 h of retinoic acid treatment, Hoxa1 is rapidly recruited to target sites that are associated with genes involved in regulation of pluripotency, and these genes display early changes in expression. The pattern of occupancy of Hoxa1 is dynamic and changes over time. At 12 h of differentiation, many sites bound at 2 h are lost and a new cohort of bound regions appears. At both time points the genome-wide mapping reveals that there is significant co-occupancy of Nanog (Nanog homeobox) and Hoxa1 on many common target sites, and these are linked to genes in the pluripotential regulatory network. In addition to shared target genes, Hoxa1 binds to regulatory regions of Nanog, and conversely Nanog binds to a 3' enhancer of Hoxa1 This finding provides evidence for direct cross-regulatory feedback between Hoxa1 and Nanog through a mechanism of mutual repression. Hoxa1 also binds to regulatory regions of Sox2 (sex-determining region Y box 2), Esrrb (estrogen-related receptor beta), and Myc, which underscores its key input into core components of the pluripotential regulatory network. We propose a model whereby direct inputs of Nanog and Hoxa1 on shared targets and mutual repression between Hoxa1 and the core pluripotency network provides a molecular mechanism that modulates the fine balance between the alternate states of pluripotency and differentiation.
Collapse
|
23
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
24
|
Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest. Dev Biol 2018; 444 Suppl 1:S67-S78. [PMID: 29571614 DOI: 10.1016/j.ydbio.2018.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
Abstract
The neural crest is a transient population of cells that forms within the developing central nervous system and migrates away to generate a wide range of derivatives throughout the body during vertebrate embryogenesis. These cells are of evolutionary and clinical interest, constituting a key defining trait in the evolution of vertebrates and alterations in their development are implicated in a high proportion of birth defects and craniofacial abnormalities. In the hindbrain and the adjacent cranial neural crest cells (cNCCs), nested domains of Hox gene expression provide a combinatorial'Hox-code' for specifying regional properties in the developing head. Hox genes have been shown to play important roles at multiple stages in cNCC development, including specification, migration, and differentiation. However, relatively little is known about the underlying gene-regulatory mechanisms involved, both upstream and downstream of Hox genes. Furthermore, it is still an open question as to how the genes of the neural crest GRN are linked to Hox-dependent pathways. In this review, we describe Hox gene expression, function and regulation in cNCCs with a view to integrating these genes within the emerging gene regulatory network for cNCC development. We highlight early roles for Hox1 genes in cNCC specification, proposing that this may be achieved, in part, by regulation of the balance between pluripotency and differentiation in precursor cells within the neuro-epithelium. We then describe what is known about the regulation of Hox gene expression in cNCCs and discuss this from the perspective of early vertebrate evolution.
Collapse
|
25
|
Draime A, Bridoux L, Belpaire M, Pringels T, Degand H, Morsomme P, Rezsohazy R. The O-GlcNAc transferase OGT interacts with and post-translationally modifies the transcription factor HOXA1. FEBS Lett 2018; 592:1185-1201. [PMID: 29465778 DOI: 10.1002/1873-3468.13015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 11/06/2022]
Abstract
HOXA1 belongs to the HOX family of transcription factors which are key regulators of animal development. Little is known about the molecular pathways controlling HOXA1. Recent data from our group revealed distinct partner proteins interacting with HOXA1. Among them, OGT is an O-linked N-acetylglucosamine (O-GlcNAc) transferase modifying a variety of proteins involved in different cellular processes including transcription. Here, we confirm OGT as a HOXA1 interactor, we characterise which domains of HOXA1 and OGT are required for the interaction, and we provide evidence that OGT post-translationally modifies HOXA1. Mass spectrometry experiments indeed reveal that HOXA1 can be phosphorylated on the AGGTVGSPQYIHHSY peptide and that upon OGT expression, the phosphate adduct is replaced by an O-GlcNAc group.
Collapse
Affiliation(s)
- Amandine Draime
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Magali Belpaire
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Molecular Physiology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Molecular Physiology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
26
|
Draime A, Bridoux L, Belpaire M, Pringels T, Tys J, Rezsohazy R. PRDM14, a putative histone methyl-transferase, interacts with and decreases the stability and activity of the HOXA1 transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:534-542. [PMID: 29471045 DOI: 10.1016/j.bbagrm.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
Abstract
Understanding how the activity of transcription factors like HOX proteins is regulated remains a widely open question. In a recent screen for proteins interacting with HOXA1, we identified a PRDM protein family member, PRDM14, which is known to be transiently co-expressed with HOXA1 in epiblast cells before their specification towards somatic versus germ cell fate. Here, we confirm PRDM14 is an interactor of HOXA1 and we identify the homeodomain of HOXA1 as well as the PR domain and Zinc fingers of PRDM14 to be required for the interaction. An 11-His repeat of HOXA1 previously highlighted to contribute to HOXA1-mediated protein-protein interactions is also involved. At a functional level, we provide evidence that HOXA1 displays an unexpectedly long half-life and demonstrate that PRDM14 can reduce the stability and affect the transcriptional activity of HOXA1.
Collapse
Affiliation(s)
- Amandine Draime
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Magali Belpaire
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Janne Tys
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
27
|
Hoxa1 targets signaling pathways during neural differentiation of ES cells and mouse embryogenesis. Dev Biol 2017; 432:151-164. [DOI: 10.1016/j.ydbio.2017.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
|
28
|
Watson C, Leanage G, Makki N, Tvrdik P. Escapees from Rhombomeric Lineage Restriction: Extensive Migration Rostral to the r4/r5 Border of Hox-a3 Expression. Anat Rec (Hoboken) 2017; 300:1838-1846. [PMID: 28667681 DOI: 10.1002/ar.23628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
The rhombomeric compartments of the hindbrain are characterized by lineage restriction; cells born in one compartment generally remain there and do not migrate to neighboring rhombomeres. Two well-known exceptions are the substantial migrations of the pontine nuclei and the mammalian facial nucleus. In this study we used Hoxa3-Cre lineage to permanently mark cells that originate in rhombomeres caudal to r4. We found that cells born caudal to the r4/r5 border migrate forwards to a number of different locations in rhombomeres 1-4; the final locations include the interfascicular trigeminal nucleus, the principal trigeminal nucleus, the pontine nuclei, the reticulotegmental nucleus, the ventral nucleus of the lateral lemniscus, and the lateral and medial vestibular nuclei. We suggest that there are numerous exceptions to the principle of rhombomeric lineage restriction that have previously gone unnoticed. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1838-1846, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charles Watson
- Faculty of Health Sciences, Curtin University, Perth, Australia.,Neurosciences Research Australia, Sydney, Australia
| | - Gayeshika Leanage
- Faculty of Medicine, University of Western Australia, Perth, Australia
| | - Nadja Makki
- Department of Bioengineering and Therapeutic Science, University of California San Francisco, San Francisco, California
| | - Petr Tvrdik
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
29
|
Taminiau A, Draime A, Tys J, Lambert B, Vandeputte J, Nguyen N, Renard P, Geerts D, Rezsöhazy R. HOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-κB pathway in a transcription-independent manner. Nucleic Acids Res 2016; 44:7331-49. [PMID: 27382069 PMCID: PMC5009750 DOI: 10.1093/nar/gkw606] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/24/2016] [Indexed: 11/14/2022] Open
Abstract
HOX proteins define a family of key transcription factors regulating animal embryogenesis. HOX genes have also been linked to oncogenesis and HOXA1 has been described to be active in several cancers, including breast cancer. Through a proteome-wide interaction screening, we previously identified the TNFR-associated proteins RBCK1/HOIL-1 and TRAF2 as HOXA1 interactors suggesting that HOXA1 is functionally linked to the TNF/NF-κB signaling pathway. Here, we reveal a strong positive correlation between expression of HOXA1 and of members of the TNF/NF-κB pathway in breast tumor datasets. Functionally, we demonstrate that HOXA1 can activate NF-κB and operates upstream of the NF-κB inhibitor IκB. Consistently, we next demonstrate that the HOXA1-mediated activation of NF-κB is non-transcriptional and that RBCK1 and TRAF2 influences on NF-κB are epistatic to HOXA1. We also identify an 11 Histidine repeat and the homeodomain of HOXA1 to be required both for RBCK1 and TRAF2 interaction and NF-κB stimulation. Finally, we highlight that activation of NF-κB is crucial for HOXA1 oncogenic activity.
Collapse
Affiliation(s)
- Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Amandine Draime
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Janne Tys
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Barbara Lambert
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Julie Vandeputte
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Nathan Nguyen
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Patricia Renard
- Cellular Biology Research Unit, Université de Namur, Namur 5000, Belgium
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam 3015, The Netherlands
| | - René Rezsöhazy
- Animal Molecular and Cellular Biology Group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
30
|
Riccardi S, Bergling S, Sigoillot F, Beibel M, Werner A, Leighton-Davies J, Knehr J, Bouwmeester T, Parker CN, Roma G, Kinzel B. MiR-210 promotes sensory hair cell formation in the organ of corti. BMC Genomics 2016; 17:309. [PMID: 27121005 PMCID: PMC4848794 DOI: 10.1186/s12864-016-2620-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 04/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background Hearing loss is the most common sensory defect afflicting several hundred million people worldwide. In most cases, regardless of the original cause, hearing loss is related to the degeneration and death of hair cells and their associated spiral ganglion neurons. Despite this knowledge, relatively few studies have reported regeneration of the auditory system. Significant gaps remain in our understanding of the molecular mechanisms underpinning auditory function, including the factors required for sensory cell regeneration. Recently, the identification of transcriptional activators and repressors of hair cell fate has been augmented by the discovery of microRNAs (miRNAs) associated with hearing loss. As miRNAs are central players of differentiation and cell fate, identification of miRNAs and their gene targets may reveal new pathways for hair cell regeneration, thereby providing new avenues for the treatment of hearing loss. Results In order to identify new genetic elements enabling regeneration of inner ear sensory hair cells, next-generation miRNA sequencing (miRSeq) was used to identify the most prominent miRNAs expressed in the mouse embryonic inner ear cell line UB/OC-1 during differentiation towards a hair cell like phenotype. Based on these miRSeq results eight most differentially expressed miRNAs were selected for further characterization. In UB/OC-1, miR-210 silencing in vitro resulted in hair cell marker expression, whereas ectopic expression of miR-210 resulted in new hair cell formation in cochlear explants. Using a lineage tracing mouse model, transdifferentiation of supporting epithelial cells was identified as the likely mechanism for this new hair cell formation. Potential miR-210 targets were predicted in silico and validated experimentally using a miR-trap approach. Conclusion MiRSeq followed by ex vivo validation revealed miR-210 as a novel factor driving transdifferentiation of supporting epithelial cells to sensory hair cells suggesting that miR-210 might be a potential new factor for hearing loss therapy. In addition, identification of inner ear pathways regulated by miR-210 identified potential new drug targets for the treatment of hearing loss. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2620-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina Riccardi
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Sebastian Bergling
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Frederic Sigoillot
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Cambridge, USA
| | - Martin Beibel
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Annick Werner
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Juliet Leighton-Davies
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Judith Knehr
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Tewis Bouwmeester
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Christian N Parker
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Bernd Kinzel
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
31
|
Hox Genes in Cardiovascular Development and Diseases. J Dev Biol 2016; 4:jdb4020014. [PMID: 29615581 PMCID: PMC5831787 DOI: 10.3390/jdb4020014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022] Open
Abstract
Congenital heart defects (CHD) are the leading cause of death in the first year of life. Over the past 20 years, much effort has been focused on unraveling the genetic bases of CHD. In particular, studies in human genetics coupled with those of model organisms have provided valuable insights into the gene regulatory networks underlying CHD pathogenesis. Hox genes encode transcription factors that are required for the patterning of the anterior–posterior axis in the embryo. In this review, we focus on the emerging role of anteriorly expressed Hox genes (Hoxa1, Hoxb1, and Hoxa3) in cardiac development, specifically their contribution to patterning of cardiac progenitor cells and formation of the great arteries. Recent evidence regarding the cooperative regulation of heart development by Hox proteins with members of the TALE-class of homeodomain proteins such as Pbx and Meis transcription factors is also discussed. These findings are highly relevant to human pathologies as they pinpoint new genes that increase susceptibility to cardiac anomalies and provide novel mechanistic insights into CHD.
Collapse
|
32
|
Yuan C, Zhu X, Han Y, Song C, Liu C, Lu S, Zhang M, Yu F, Peng Z, Zhou C. Elevated HOXA1 expression correlates with accelerated tumor cell proliferation and poor prognosis in gastric cancer partly via cyclin D1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:15. [PMID: 26791264 PMCID: PMC4721151 DOI: 10.1186/s13046-016-0294-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND HOXA1 is a member of the Homeobox gene family, which encodes a group of highly conserved transcription factors that are important in embryonic development. However, it has been reported that HOXA1 exhibits oncogenic properties in many malignancies. This study focused on the expression and clinical significance of HOXA1 in gastric cancer (GC). METHODS To assess the mRNA and protein expression of HOXA1 and cyclin D1 in GC tissues, we utilized qRT-PCR and western blotting, respectively. The effects of HOXA1 on GC cell proliferation, migration, and invasion, as well as xenograft tumor formation and the cell cycle were investigated in our established stable HOXA1 knockdown GC cell lines. The protein expression of HOXA1 and cyclin D1 was examined by immunohistochemistry using GC tissue microarrays (TMA) to analyze their relationship on a histological level. The Kaplan-Meier method and cox proportional hazards model were used to analyze the relationship of HOXA1 and cyclin D1 expression with GC clinical outcomes. RESULTS HOXA1 mRNA and protein expression were upregulated in GC tissues. Knockdown of HOXA1 in GC cells not only inhibited cell proliferation, migration, and invasion in vitro but also suppressed xenograft tumor formation in vivo. Moreover, HOXA1 knockdown induced changes in the cell cycle, and HOXA1 knockdown cells were arrested at the G1 phase, the number of cells in S phase was reduced, and the expression of cyclin D1 was decreased. In GC tissues, high cyclin D1 mRNA and protein expression were detected, and a significant correlation was found between the expression of HOXA1 and cyclin D1. Survival analysis indicated that HOXA1 and cyclin D1 expression were significantly associated with disease-free survival (DFS) and overall survival (OS). Interestingly, patients with tumors that were positive for HOXA1 and cyclin D1 expression showed worse prognosis. Multivariate analysis confirmed that the combination of HOXA1 and cyclin D1 was an independent prognostic indicator for OS and DFS. CONCLUSION Our data show that HOXA1 plays a crucial role in GC development and clinical prognosis. HOXA1, alone or combination with cyclin D1, may serve as a novel prognostic biomarker for GC.
Collapse
Affiliation(s)
- Chenwei Yuan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Xingwu Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Yang Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenchen Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Meng Zhang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Fudong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China. .,Department of General Surgery, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang Uyghur Autonomous Region, 844000, P. R. China.
| |
Collapse
|
33
|
Terriente J, Pujades C. Cell segregation in the vertebrate hindbrain: a matter of boundaries. Cell Mol Life Sci 2015; 72:3721-30. [PMID: 26089248 PMCID: PMC11113478 DOI: 10.1007/s00018-015-1953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/06/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
Abstract
Segregating cells into compartments during embryonic development is essential for growth and pattern formation. In the developing hindbrain, boundaries separate molecularly, physically and neuroanatomically distinct segments called rhombomeres. After rhombomeric cells have acquired their identity, interhombomeric boundaries restrict cell intermingling between adjacent rhombomeres and act as signaling centers to pattern the surrounding tissue. Several works have stressed the relevance of Eph/ephrin signaling in rhombomeric cell sorting. Recent data have unveiled the role of this pathway in the assembly of actomyosin cables as an important mechanism for keeping cells from different rhombomeres segregated. In this Review, we will provide a short summary of recent evidences gathered in different systems suggesting that physical actomyosin barriers can be a general mechanism for tissue separation. We will discuss current evidences supporting a model where cell-cell signaling pathways, such as Eph/ephrin, govern compartmental cell sorting through modulation of the actomyosin cytoskeleton and cell adhesive properties to prevent cell intermingling.
Collapse
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
34
|
Labalette C, Wassef MA, Desmarquet-Trin Dinh C, Bouchoucha YX, Le Men J, Charnay P, Gilardi-Hebenstreit P. Molecular dissection of segment formation in the developing hindbrain. Development 2015; 142:185-95. [PMID: 25516974 DOI: 10.1242/dev.109652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although many components of the genetic pathways that provide positional information during embryogenesis have been identified, it remains unclear how these signals are integrated to specify discrete tissue territories. Here, we investigate the molecular mechanisms underlying the formation of one of the hindbrain segments, rhombomere (r) 3, specified by the expression of the gene krox20. Dissecting krox20 transcriptional regulation has identified several input pathways: Hox paralogous 1 (PG1) factors, which both directly activate krox20 and indirectly repress it via Nlz factors, and the molecular components of an Fgf-dependent effector pathway. These different inputs are channelled through a single initiator enhancer element to shape krox20 initial transcriptional response: Hox PG1 and Nlz factors define the anterior-posterior extent of the enhancer's domain of activity, whereas Fgf signalling modulates the magnitude of activity in a spatially uniform manner. Final positioning of r3 boundaries requires interpretation of this initial pattern by a krox20 positive-feedback loop, orchestrated by another enhancer. Overall, this study shows how positional information provided by different patterning mechanisms is integrated through a gene regulatory network involving two cis-acting elements operating on the same gene, thus offering a comprehensive view of the delimitation of a territory.
Collapse
Affiliation(s)
- Charlotte Labalette
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| | - Michel Adam Wassef
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Carole Desmarquet-Trin Dinh
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| | - Yassine Xavier Bouchoucha
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Johan Le Men
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Patrick Charnay
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| | - Pascale Gilardi-Hebenstreit
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| |
Collapse
|
35
|
Willaredt MA, Ebbers L, Nothwang HG. Central auditory function of deafness genes. Hear Res 2014; 312:9-20. [DOI: 10.1016/j.heares.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
|
36
|
Kim H, Ankamreddy H, Lee DJ, Kong KA, Ko HW, Kim MH, Bok J. Pax3 function is required specifically for inner ear structures with melanogenic fates. Biochem Biophys Res Commun 2014; 445:608-14. [PMID: 24565836 DOI: 10.1016/j.bbrc.2014.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Pax3 mutations result in malformed inner ears in Splotch mutant mice and hearing loss in humans with Waardenburg's syndrome type I. In the inner ear, Pax3 is thought to be involved mainly in the development of neural crest. However, recent studies have shown that Pax3-expressing cells contribute extensively to multiple inner ear structures, some of which were considered to be derived from the otic epithelium. To examine the specific functions of Pax3 during inner ear development, fate mapping of Pax3 lineage was performed in the presence or absence of functional Pax3 proteins using Pax3(Cre) knock-in mice bred to Rosa26 reporter (R26R) line. β-gal-positive cells were widely distributed in Pax3(Cre/+); R26R inner ears at embryonic day (E) 15.5, including the endolymphatic duct, common crus, cristae, maculae, cochleovestibular ganglion, and stria vascularis. In the absence of Pax3 in Pax3(Cre/Cre); R26R inner ears, β-gal-positive cells disappeared from regions with melanocytes such as the stria vascularis of the cochlea and dark cells in the vestibule. Consistently, the expression of Dct, a melanoblast marker, was also absent in the mutant inner ears. However, when examined at E11.5, β-gal positive cells were present in Pax3(Cre/Cre) mutant otocysts, whereas Dct expression was absent, suggesting that Pax3 lineage with a melanogenic fate migrated to the inner ear, yet failed to differentiate and survive without Pax3 function. Gross inner ear morphology was generally normal in Pax3(Cre/Cre) mutants, unless neural tube defects extended to the cranial region. Taken together, these results suggest that despite the extensive contribution of Pax3-expressing cells to multiple inner ear tissues, Pax3 function is required specifically for inner ear components with melanogenic fates.
Collapse
Affiliation(s)
- Hongkyung Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Harinarayana Ankamreddy
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Dong Jin Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Kyoung-Ah Kong
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido 410-820, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
37
|
Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK. Evolution of bilaterian central nervous systems: a single origin? EvoDevo 2013; 4:27. [PMID: 24098981 PMCID: PMC3856589 DOI: 10.1186/2041-9139-4-27] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022] Open
Abstract
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon (CNRS UMR5242, UCBL, ENS, INRA 1288), Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
38
|
Soshnikova N, Dewaele R, Janvier P, Krumlauf R, Duboule D. Duplications of hox gene clusters and the emergence of vertebrates. Dev Biol 2013; 378:194-9. [PMID: 23501471 DOI: 10.1016/j.ydbio.2013.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
Abstract
The vertebrate body plan is characterized by an increased complexity relative to that of all other chordates and large-scale gene amplifications have been associated with key morphological innovations leading to their remarkable evolutionary success. Here, we use compound full Hox clusters deletions to investigate how Hox genes duplications may have contributed to the emergence of vertebrate-specific innovations. We show that the combined deletion of HoxA and HoxB leads to an atavistic heart phenotype, suggesting that the ancestral HoxA/B cluster was co-opted to help in diversifying the complex organ in vertebrates. Other phenotypic effects observed seem to illustrate the resurgence of ancestral (plesiomorphic) features. This indicates that the duplications of Hox clusters were associated with the recruitment or formation of novel cis-regulatory controls, which were key to the evolution of many vertebrate features and hence to the evolutionary radiation of this group.
Collapse
Affiliation(s)
- Natalia Soshnikova
- Department of Genetics and Evolution, University of Geneva, Sciences III, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Gahring LC, Enioutina EY, Myers EJ, Spangrude GJ, Efimova OV, Kelley TW, Tvrdik P, Capecchi MR, Rogers SW. Nicotinic receptor alpha7 expression identifies a novel hematopoietic progenitor lineage. PLoS One 2013; 8:e57481. [PMID: 23469197 PMCID: PMC3586088 DOI: 10.1371/journal.pone.0057481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
How inflammatory responses are mechanistically modulated by nicotinic acetylcholine receptors (nAChR), especially by receptors composed of alpha7 (α7) subunits, is poorly defined. This includes a precise definition of cells that express α7 and how these impact on innate inflammatory responses. To this aim we used mice generated through homologous recombination that express an Ires-Cre-recombinase bi-cistronic extension of the endogenous α7 gene that when crossed with a reporter mouse expressing Rosa26-LoxP (yellow fluorescent protein (YFP)) marks in the offspring those cells of the α7 cell lineage (α7lin+). In the adult, on average 20–25 percent of the total CD45+ myeloid and lymphoid cells of the bone marrow (BM), blood, spleen, lymph nodes, and Peyers patches are α7lin+, although variability between litter mates in this value is observed. This hematopoietic α7lin+ subpopulation is also found in Sca1+cKit+ BM cells suggesting the α7 lineage is established early during hematopoiesis and the ratio remains stable in the individual thereafter as measured for at least 18 months. Both α7lin+ and α7lin– BM cells can reconstitute the immune system of naïve irradiated recipient mice and the α7lin+:α7lin– beginning ratio is stable in the recipient after reconstitution. Functionally the α7lin+:α7lin– lineages differ in response to LPS challenge. Most notable is the response to LPS as demonstrated by an enhanced production of IL-12/23(p40) by the α7lin+ cells. These studies demonstrate that α7lin+ identifies a novel subpopulation of bone marrow cells that include hematopoietic progenitor cells that can re-populate an animal’s inflammatory/immune system. These findings suggest that α7 exhibits a pleiotropic role in the hematopoietic system that includes both the direct modulation of pro-inflammatory cell composition and later in the adult the role of modulating pro-inflammatory responses that would impact upon an individual’s lifelong response to inflammation and infection.
Collapse
Affiliation(s)
- Lorise C Gahring
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Administration Medical Center, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu J, Wang B, Chen X, Li H, Wang J, Cheng L, Ma X, Gao B. HOXA1 gene is not potentially related to ventricular septal defect in Chinese children. Pediatr Cardiol 2013; 34:226-30. [PMID: 22777240 DOI: 10.1007/s00246-012-0418-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/21/2012] [Indexed: 11/26/2022]
Abstract
The HOXA1 gene plays a fundamental role in embryonic morphogenesis. Recent studies in humans and mice have indicated that HOXA1 plays a previously unrecognized role in cardiovascular system development. Congenital heart disease (CHD), particularly ventricular septal defect (VSD), might be a clinically isolated manifestation of HOXA1 mutations. The purpose of the present study was to identify potential pathological mutations in the HOXA1 gene in Chinese children with VSD and to gain insight into the etiology of CHD. A total of 340 nonsyndromic VSD patients and 200 normal subjects were sampled. Two exons and the nearby introns of the human HOXA1 gene were amplified using polymerase chain reaction (PCR). The PCR products were purified and directly sequenced. However, no nonsynonymous mutations in the coding regions of the HOXA1 gene were observed: Only two novel synonymous mutations (c.C210T p.His70His, and c.T861A p.Arg287Arg) were found in two patients. Two previously reported single and multiple histidine-deletion variants were identified in both normal and VSD patients. To our knowledge, this is the first study to investigate the role of the HOXA1 gene in CHD. Although our results did not show any pathogenic HOXA1 mutation, our results suggest that VSD might not be a clinically isolated manifestation of HOXA1 mutations.
Collapse
Affiliation(s)
- Jiangyan Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lambert B, Vandeputte J, Remacle S, Bergiers I, Simonis N, Twizere JC, Vidal M, Rezsohazy R. Protein interactions of the transcription factor Hoxa1. BMC DEVELOPMENTAL BIOLOGY 2012; 12:29. [PMID: 23088713 PMCID: PMC3514159 DOI: 10.1186/1471-213x-12-29] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Background Hox proteins are transcription factors involved in crucial processes during animal development. Their mode of action remains scantily documented. While other families of transcription factors, like Smad or Stat, are known cell signaling transducers, such a function has never been squarely addressed for Hox proteins. Results To investigate the mode of action of mammalian Hoxa1, we characterized its interactome by a systematic yeast two-hybrid screening against ~12,200 ORF-derived polypeptides. Fifty nine interactors were identified of which 45 could be confirmed by affinity co-purification in animal cell lines. Many Hoxa1 interactors are proteins involved in cell-signaling transduction, cell adhesion and vesicular trafficking. Forty-one interactions were detectable in live cells by Bimolecular Fluorescence Complementation which revealed distinctive intracellular patterns for these interactions consistent with the selective recruitment of Hoxa1 by subgroups of partner proteins at vesicular, cytoplasmic or nuclear compartments. Conclusions The characterization of the Hoxa1 interactome presented here suggests unexplored roles for Hox proteins in cell-to-cell communication and cell physiology.
Collapse
Affiliation(s)
- Barbara Lambert
- Molecular and Cellular Animal Embryology group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
42
|
New developments in the second heart field. Differentiation 2012; 84:17-24. [DOI: 10.1016/j.diff.2012.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/18/2022]
|
43
|
Sasakura Y, Kanda M, Ikeda T, Horie T, Kawai N, Ogura Y, Yoshida R, Hozumi A, Satoh N, Fujiwara S. Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 2012; 139:2156-60. [PMID: 22573621 DOI: 10.1242/dev.080234] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoic acid (RA)-mediated expression of the homeobox gene Hox1 is a hallmark of the chordate central nervous system (CNS). It has been suggested that the RA-Hox1 network also functions in the epidermal ectoderm of chordates. Here, we show that in the urochordate ascidian Ciona intestinalis, RA-Hox1 in the epidermal ectoderm is necessary for formation of the atrial siphon placode (ASP), a structure homologous to the vertebrate otic placode. Loss of Hox1 function resulted in loss of the ASP, which could be rescued by expressing Hox1 in the epidermis. As previous studies showed that RA directly upregulates Hox1 in the epidermis of Ciona larvae, we also examined the role of RA in ASP formation. We showed that abolishment of RA resulted in loss of the ASP, which could be rescued by forced expression of Hox1 in the epidermis. Our results suggest that RA-Hox1 in the epidermal ectoderm played a key role in the acquisition of the otic placode during chordate evolution.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Choe SK, Nakamura M, Ladam F, Etheridge L, Sagerström CG. A Gal4/UAS system for conditional transgene expression in rhombomere 4 of the zebrafish hindbrain. Dev Dyn 2012; 241:1125-32. [PMID: 22499412 DOI: 10.1002/dvdy.23794] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The zebrafish is well established as a model organism for the study of vertebrate embryogenesis, but transgenic lines enabling restricted gene expression are still lacking for many tissues. RESULTS We first generated the hoxb1a(β-globin):eGFP(um8) line that expresses eGFP in hindbrain rhombomere 4 (r4), as well as in facial motor neurons migrating caudally from r4. Second, we generated the hoxb1a(β-globin) Gal4VP16(um60) line to express the exogenous Gal4VP16 transcription factor in r4. Lastly, we prepared the UAS(β-actin):hoxa3a(um61) line where the hoxa3a gene, which is normally expressed in r5 and r6, is under control of Gal4-regulated UAS elements. Crossing the hoxb1a(β-globin):Gal4VP16(um60) line to the UAS(β-actin):hoxa3a(um61) line drives robust hoxa3a expression in r4. We find that transgenic expression of hoxa3a in r4 does not affect hoxb1a expression, but has variable effects on migration of facial motorneurons and formation of Mauthner neurons. While cases of somatic transgene silencing have been reported in zebrafish, we have not observed such silencing to date, possibly because of our efforts to minimize repetitive sequences in the transgenic constructs. CONCLUSION We have generated three transgenic lines that will be useful for future studies by permitting the labeling of r4-derived cells, as well as by enabling r4-specific expression of various transgenes.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
45
|
Makki N, Capecchi MR. Cardiovascular defects in a mouse model of HOXA1 syndrome. Hum Mol Genet 2011; 21:26-31. [PMID: 21940751 DOI: 10.1093/hmg/ddr434] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Congenital heart disease is one of the most common human birth defects, yet many genes and pathways regulating heart development remain unknown. A recent study in humans revealed that mutations in a single Hox gene, HOXA1 (Athabascan Brainstem Dysgenesis Syndrome, Bosley-Salih-Alorainy Syndrome), can cause severe cardiovascular malformations, some of which are lethal without surgical intervention. Since the discovery of the human syndromes, there have been no reports of any Hox mouse mutants with cardiac defects, hampering studies to explore the developmental causes of the human disease. In this study, we identify severe cardiovascular malformations in a Hox mouse model, which mimic the congenital heart defects in HOXA1 syndrome patients. Hoxa1 null mice show defects such as interrupted aortic arch, aberrant subclavian artery and Tetralogy of Fallot, demonstrating that Hoxa1 is required for patterning of the great arteries and outflow tract of the heart. We show that during early embryogenesis, Hoxa1 is expressed in precursors of cardiac neural crest cells (NCCs), which populate the heart. We further demonstrate that Hoxa1 acts upstream of several genes, important for neural crest specification. Thus, our data allow us to suggest a model in which Hoxa1 regulates heart development through its influence on cardiac NCCs, providing insight into the mechanisms underlying the human disease.
Collapse
Affiliation(s)
- Nadja Makki
- Howard Hughes Medical Institute and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5331, USA
| | | |
Collapse
|
46
|
Choe SK, Zhang X, Hirsch N, Straubhaar J, Sagerström CG. A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of the rhombomere 4 Fgf-signaling center. Dev Biol 2011; 358:356-67. [PMID: 21787765 DOI: 10.1016/j.ydbio.2011.05.676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 01/21/2023]
Abstract
Segmentation of the vertebrate hindbrain into multiple rhombomeres is essential for proper formation of the cerebellum, cranial nerves and cranial neural crest. Paralog group 1 (PG1) hox genes are expressed early in the caudal hindbrain and are required for rhombomere formation. Accordingly, loss of PG1 hox function disrupts development of caudal rhombomeres in model organisms and causes brainstem defects, associated with cognitive impairment, in humans. In spite of this important role for PG1 hox genes, transcriptional targets of PG1 proteins are not well characterized. Here we use ectopic expression together with embryonic dissection to identify novel targets of the zebrafish PG1 gene hoxb1b. Of 100 genes up-regulated by hoxb1b, 54 were examined and 25 were found to represent novel hoxb1b regulated hindbrain genes. The ppp1r14al gene was analyzed in greater detail and our results indicate that Hoxb1b is likely to directly regulate ppp1r14al expression in rhombomere 4. Furthermore, ppp1r14al is essential for establishment of the earliest hindbrain signaling-center in rhombomere 4 by regulating expression of fgf3.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | | | | | |
Collapse
|
47
|
Makki N, Capecchi MR. Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development. Dev Biol 2011; 357:295-304. [PMID: 21784065 DOI: 10.1016/j.ydbio.2011.06.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/10/2011] [Accepted: 06/29/2011] [Indexed: 11/25/2022]
Abstract
Hox genes play a crucial role during embryonic patterning and organogenesis. Of the 39 Hox genes, Hoxa1 is the first to be expressed during embryogenesis and the only anterior Hox gene linked to a human syndrome. Hoxa1 is necessary for the proper development of the brainstem, inner ear and heart in humans and mice; however, almost nothing is known about the molecular downstream targets through which it exerts its function. To gain insight into the transcriptional network regulated by this protein, we performed microarray analysis on tissue microdissected from the prospective rhombomere 3-5 region of Hoxa1 null and wild type embryos. Due to the very early and transient expression of this gene, dissections were performed on early somite stage embryos during an eight-hour time window of development. Our array yielded a list of around 300 genes differentially expressed between the two samples. Many of the identified genes play a role in a specific developmental or cellular process. Some of the validated targets regulate early neural crest induction and specification. Interestingly, three of these genes, Zic1, Hnf1b and Foxd3, were down-regulated in the posterior hindbrain, where cardiac neural crest cells arise, which pattern the outflow tract of the heart. Other targets are necessary for early inner ear development, e.g. Pax8 and Fgfr3 or are expressed in specific hindbrain neurons regulating respiration, e.g. Lhx5. These findings allow us to propose a model where Hoxa1 acts in a genetic cascade upstream of genes controlling specific aspects of embryonic development, thereby providing insight into possible mechanisms underlying the human HoxA1-syndrome.
Collapse
Affiliation(s)
- Nadja Makki
- Howard Hughes Medical Institute and Department of Human Genetics, UT, USA
| | | |
Collapse
|
48
|
Vitobello A, Ferretti E, Lampe X, Vilain N, Ducret S, Ori M, Spetz JF, Selleri L, Rijli FM. Hox and Pbx factors control retinoic acid synthesis during hindbrain segmentation. Dev Cell 2011; 20:469-82. [PMID: 21497760 DOI: 10.1016/j.devcel.2011.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/07/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
In vertebrate embryos, retinoic acid (RA) synthesized in the mesoderm by Raldh2 emanates to the hindbrain neuroepithelium, where it induces anteroposterior (AP)-restricted Hox expression patterns and rhombomere segmentation. However, how appropriate spatiotemporal RA activity is generated in the hindbrain is poorly understood. By analyzing Pbx1/Pbx2 and Hoxa1/Pbx1 null mice, we found that Raldh2 is itself under the transcriptional control of these factors and that the resulting RA-deficient phenotypes can be partially rescued by exogenous RA. Hoxa1-Pbx1/2-Meis2 directly binds a specific regulatory element that is required to maintain normal Raldh2 expression levels in vivo. Mesoderm-specific Xhoxa1 and Xpbx1b knockdowns in Xenopus embryos also result in Xraldh2 downregulation and hindbrain defects similar to mouse mutants, demonstrating conservation of this Hox-Pbx-dependent regulatory pathway. These findings reveal a feed-forward mechanism linking Hox-Pbx-dependent RA synthesis during early axial patterning with the establishment of spatially restricted Hox-Pbx activity in the developing hindbrain.
Collapse
Affiliation(s)
- Antonio Vitobello
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hox genes define distinct progenitor sub-domains within the second heart field. Dev Biol 2011; 353:266-74. [PMID: 21385575 DOI: 10.1016/j.ydbio.2011.02.029] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/22/2011] [Accepted: 02/28/2011] [Indexed: 12/21/2022]
Abstract
Much of the heart, including the atria, right ventricle and outflow tract (OFT) is derived from a progenitor cell population termed the second heart field (SHF) that contributes progressively to the embryonic heart during cardiac looping. Several studies have revealed anterior-posterior patterning of the SHF, since the anterior region (anterior heart field) contributes to right ventricular and OFT myocardium whereas the posterior region gives rise to the atria. We have previously shown that Retinoic Acid (RA) signal participates to this patterning. We now show that Hoxb1, Hoxa1, and Hoxa3, as downstream RA targets, are expressed in distinct sub-domains within the SHF. Our genetic lineage tracing analysis revealed that Hoxb1, Hoxa1 and Hoxa3-expressing cardiac progenitor cells contribute to both atria and the inferior wall of the OFT, which subsequently gives rise to myocardium at the base of pulmonary trunk. By contrast to Hoxb1(Cre), the contribution of Hoxa1-enhIII-Cre and Hoxa3(Cre)-labeled cells is restricted to the distal regions of the OFT suggesting that proximo-distal patterning of the OFT is related to SHF sub-domains characterized by combinatorial Hox genes expression. Manipulation of RA signaling pathways showed that RA is required for the correct deployment of Hox-expressing SHF cells. This report provides new insights into the regulatory gene network in SHF cells contributing to the atria and sub-pulmonary myocardium.
Collapse
|