1
|
Okun SA, Lu D, Sew K, Subramaniam A, Lockwood WW. MET Activation in Lung Cancer and Response to Targeted Therapies. Cancers (Basel) 2025; 17:281. [PMID: 39858062 PMCID: PMC11764361 DOI: 10.3390/cancers17020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The hepatocyte growth factor receptor (MET) is a receptor tyrosine kinase (RTK) that mediates the activity of a variety of downstream pathways upon its activation. These pathways regulate various physiological processes within the cell, including growth, survival, proliferation, and motility. Under normal physiological conditions, this allows MET to regulate various development and regenerative processes; however, mutations resulting in aberrant MET activity and the consequent dysregulation of downstream signaling can contribute to cellular pathophysiology. Mutations within MET have been identified in a variety of cancers and have been shown to mediate tumorigenesis by increasing RTK activity and downstream signaling. In lung cancer specifically, a number of patients have been identified as possessing MET alterations, commonly receptor amplification (METamp) or splice site mutations resulting in loss of exon 14 (METex14). Due to MET's role in mediating oncogenesis, it has become an attractive clinical target and has led to the development of various targeted therapies, including MET tyrosine kinase inhibitors (TKIs). Unfortunately, these TKIs have demonstrated limited clinical efficacy, as patients often present with either primary or acquired resistance to these therapies. Mechanisms of resistance vary but often occur through off-target or bypass mechanisms that render downstream signaling pathways insensitive to MET inhibition. This review provides an overview of the therapeutic landscape for MET-positive cancers and explores the various mechanisms that contribute to therapeutic resistance in these cases.
Collapse
Affiliation(s)
- Sarah Anna Okun
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Lu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Katherine Sew
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Asha Subramaniam
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Department of Pathology and Laboratory Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - William W. Lockwood
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
García-Sancha N, Corchado-Cobos R, Blanco-Gómez A, Cunillera Puértolas O, Marzo-Castillejo M, Castillo-Lluva S, Alonso-López D, De Las Rivas J, Pozo J, Orfao A, Valero-Juan L, Patino-Alonso C, Perera D, Venkitaraman AR, Mao JH, Chang H, Mendiburu-Eliçabe M, González-García P, Caleiras E, Peset I, Cenador MBG, García-Criado FJ, Pérez-Losada J. Cabergoline as a Novel Strategy for Post-Pregnancy Breast Cancer Prevention in Mice and Human. RESEARCH SQUARE 2024:rs.3.rs-3854490. [PMID: 38405932 PMCID: PMC10889045 DOI: 10.21203/rs.3.rs-3854490/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Post-pregnancy breast cancer often carries a poor prognosis, posing a major clinical challenge. The increasing trend of later-life pregnancies exacerbates this risk, highlighting the need for effective chemoprevention strategies. Current options, limited to selective estrogen receptor modulators, aromatase inhibitors, or surgical procedures, offer limited efficacy and considerable side effects. Here, we report that cabergoline, a dopaminergic agonist, reduces the risk of breast cancer post-pregnancy in a Brca1/P53-deficient mouse model, with implications for human breast cancer prevention. We show that a single dose of cabergoline administered post-pregnancy significantly delayed the onset and reduced the incidence of breast cancer in Brca1/P53-deficient mice. Histological analysis revealed a notable acceleration in post-lactational involution over the short term, characterized by increased apoptosis and altered gene expression related to ion transport. Over the long term, histological changes in the mammary gland included a reduction in the ductal component, decreased epithelial proliferation, and a lower presence of recombinant Brca1/P53 target cells, which are precursors of tumors. These changes serve as indicators of reduced breast cancer susceptibility. Additionally, RNA sequencing identified gene expression alterations associated with decreased proliferation and mammary gland branching. Our findings highlight a mechanism wherein cabergoline enhances the protective effect of pregnancy against breast cancer by potentiating postlactational involution. Notably, a retrospective cohort study in women demonstrated a markedly lower incidence of post-pregnancy breast cancer in those treated with cabergoline compared to a control group. Our work underscores the importance of enhancing postlactational involution as a strategy for breast cancer prevention, and identifies cabergoline as a promising, low-risk option in breast cancer chemoprevention. This strategy has the potential to revolutionize breast cancer prevention approaches, particularly for women at increased risk due to genetic factors or delayed childbirth, and has wider implications beyond hereditary breast cancer cases.
Collapse
Affiliation(s)
| | | | | | - Oriol Cunillera Puértolas
- Unitat de Suport a la Recerca Metropolitana Sud, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), L'Hospitalet de LL
| | - Mercè Marzo-Castillejo
- Unitat de Suport a la Recerca - IDIAP Jordi Gol. Direcció d'Atenció Primària Costa de Ponent, Institut Català de la Salut
| | | | - Diego Alonso-López
- Cancer Research Center (CIC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL)
| | - Javier De Las Rivas
- Cancer Research Center (IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Cientificas & University of Salamanca
| | - Julio Pozo
- Servicio de Citometría, Departamento de Medicina, Biomedical Research Networking Centre on Cancer CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, and Instituto de Biolog
| | | | - Luis Valero-Juan
- Departamento de Ciencias Biomédicas y del Diagnóstico. Universidad de Salamanca
| | | | - David Perera
- The Medical Research Council Cancer Unit, University of Cambridge
| | | | | | | | | | | | | | - Isabel Peset
- Spanish National Cancer Research Centre (CNIO), Madrid
| | | | | | | |
Collapse
|
3
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
4
|
Chen J, Sun T, You Y, Lin B, Wu B, Wu J. Genome-wide identification of potential odontogenic genes involved in the dental epithelium-mesenchymal interaction during early odontogenesis. BMC Genomics 2023; 24:163. [PMID: 37013486 PMCID: PMC10069120 DOI: 10.1186/s12864-023-09140-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Epithelium-mesenchymal interactions are involved in odontogenic processes. Previous studies have focused on the intracellular signalling regulatory network in tooth development, but the functions of extracellular regulatory molecules have remained unclear. This study aims to explore the gene profile of extracellular proteoglycans and their glycosaminoglycan chains potentially involved in dental epithelium-mesenchymal interactions using high-throughput sequencing to provide new understanding of early odontogenesis. RESULTS Whole transcriptome profiles of the mouse dental epithelium and mesenchyme were investigated by RNA sequencing (RNA-seq). A total of 1,281 and 1,582 differentially expressed genes were identified between the dental epithelium and mesenchyme at E11.5 and E13.5, respectively. Enrichment analysis showed that extracellular regions and ECM-receptor interactions were significantly enriched at both E11.5 and E13.5. Polymerase chain reaction analysis confirmed that the extracellular proteoglycan family exhibited distinct changes during epithelium-mesenchymal interactions. Most proteoglycans showed higher transcript levels in the dental mesenchyme, whereas only a few were upregulated in the epithelium at both stages. In addition, 9 proteoglycans showed dynamic expression changes between these two tissue compartments. Gpc4, Sdc2, Spock2, Dcn and Lum were expressed at higher levels in the dental epithelium at E11.5, whereas their expression was significantly higher in the dental mesenchyme at E13.5, which coincides with the odontogenic potential shift. Moreover, the glycosaminoglycan biosynthetic enzymes Ext1, Hs3st1/5, Hs6st2/3, Ndst3 and Sulf1 also exhibited early upregulation in the epithelium but showed markedly higher expression in the mesenchyme after the odontogenic potential shift. CONCLUSION This study reveals the dynamic expression profile of extracellular proteoglycans and their biosynthetic enzymes during the dental epithelium-mesenchymal interaction. This study offers new insight into the roles of extracellular proteoglycans and their distinct sulfation underlying early odontogenesis.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yan You
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Binbin Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China.
- Southern Medical University- Shenzhen Stomatology Hospital (Pingshan), ShenZhen, 518118, China.
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
5
|
Yoshitake R, Chang G, Saeki K, Ha D, Wu X, Wang J, Chen S. Single-Cell Transcriptomics Identifies Heterogeneity of Mouse Mammary Gland Fibroblasts With Distinct Functions, Estrogen Responses, Differentiation Processes, and Crosstalks With Epithelium. Front Cell Dev Biol 2022; 10:850568. [PMID: 35300413 PMCID: PMC8923650 DOI: 10.3389/fcell.2022.850568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Fibroblasts have been shown to be one of the essential players for mammary gland organization. Here, we identify two major types of mouse mammary gland fibroblasts through single-cell RNA sequencing analysis: Dpp4 + fibroblasts and Dpp4 - fibroblasts. Each population exhibits unique functional characteristics as well as discrete localization in normal mouse mammary glands. Remarkably, estrogen, a crucial mediator of mammary gland organization, alters the gene expression profiles of fibroblasts in a population-specific manner, without distinct activation of estrogen receptor signaling. Further integrative analysis with the inclusion of five other publicly available datasets reveals a directional differentiation among the mammary gland fibroblast populations. Moreover, the combination with the mouse mammary epithelium atlas allows us to infer multiple potential interactions between epithelial cells and fibroblasts in mammary glands. This study provides a comprehensive view of mouse mammary gland fibroblasts at the single-cell level.
Collapse
Affiliation(s)
- Ryohei Yoshitake
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Kohei Saeki
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States.,Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
6
|
Marques C, Reis CA, Vivès RR, Magalhães A. Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Front Oncol 2021; 11:778752. [PMID: 34858858 PMCID: PMC8632541 DOI: 10.3389/fonc.2021.778752] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Heparan Sulfate Proteoglycans (HSPGs) are important cell surface and Extracellular Matrix (ECM) maestros involved in the orchestration of multiple cellular events in physiology and pathology. These glycoconjugates bind to various bioactive proteins via their Heparan Sulfate (HS) chains, but also through the protein backbone, and function as scaffolds for protein-protein interactions, modulating extracellular ligand gradients, cell signalling networks and cell-cell/cell-ECM interactions. The structural features of HS chains, including length and sulfation patterns, are crucial for the biological roles displayed by HSPGs, as these features determine HS chains binding affinities and selectivity. The large HS structural diversity results from a tightly controlled biosynthetic pathway that is differently regulated in different organs, stages of development and pathologies, including cancer. This review addresses the regulatory mechanisms underlying HS biosynthesis, with a particular focus on the catalytic activity of the enzymes responsible for HS glycan sequences and sulfation motifs, namely D-Glucuronyl C5-Epimerase, N- and O-Sulfotransferases. Moreover, we provide insights on the impact of different HS structural epitopes over HSPG-protein interactions and cell signalling, as well as on the effects of deregulated expression of HS modifying enzymes in the development and progression of cancer. Finally, we discuss the clinical potential of HS biosynthetic enzymes as novel targets for therapy, and highlight the importance of developing new HS-based tools for better patients' stratification and cancer treatment.
Collapse
Affiliation(s)
- Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | | | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
8
|
Sumbal J, Budkova Z, Traustadóttir GÁ, Koledova Z. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. J Mammary Gland Biol Neoplasia 2020; 25:273-288. [PMID: 33210256 DOI: 10.1007/s10911-020-09468-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
3D cell culture methods have been an integral part of and an essential tool for mammary gland and breast cancer research for half a century. In fact, mammary gland researchers, who discovered and deciphered the instructive role of extracellular matrix (ECM) in mammary epithelial cell functional differentiation and morphogenesis, were the pioneers of the 3D cell culture techniques, including organoid cultures. The last decade has brought a tremendous increase in the 3D cell culture techniques, including modifications and innovations of the existing techniques, novel biomaterials and matrices, new technological approaches, and increase in 3D culture complexity, accompanied by several redefinitions of the terms "3D cell culture" and "organoid". In this review, we provide an overview of the 3D cell culture and organoid techniques used in mammary gland biology and breast cancer research. We discuss their advantages, shortcomings and current challenges, highlight the recent progress in reconstructing the complex mammary gland microenvironment in vitro and ex vivo, and identify the missing 3D cell cultures, urgently needed to aid our understanding of mammary gland development, function, physiology, and disease, including breast cancer.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Gunnhildur Ásta Traustadóttir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
9
|
Sato H, Imamura R, Suga H, Matsumoto K, Sakai K. Cyclic Peptide-Based Biologics Regulating HGF-MET. Int J Mol Sci 2020; 21:ijms21217977. [PMID: 33121208 PMCID: PMC7662982 DOI: 10.3390/ijms21217977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Using a random non-standard peptide integrated discovery system, we obtained cyclic peptides that bind to hepatocyte growth factor (HGF) or mesenchymal-epithelial transition factor. (MET) HGF-inhibitory peptide-8 (HiP-8) selectively bound to two-chain active HGF, but not to single-chain precursor HGF. HGF showed a dynamic change in its molecular shape in atomic force microscopy, but HiP-8 inhibited dynamic change in the molecular shape into a static status. The inhibition of the molecular dynamics of HGF by HiP-8 was associated with the loss of the ability to bind MET. HiP-8 could selectively detect active HGF in cancer tissues, and active HGF probed by HiP-8 showed co-localization with activated MET. Using HiP-8, cancer tissues with active HGF could be detected by positron emission tomography. HiP-8 seems to be applicable for the diagnosis and treatment of cancers. In contrast, based on the receptor dimerization as an essential process for activation, the cross-linking of the cyclic peptides that bind to the extracellular region of MET successfully generated an artificial ligand to MET. The synthetic MET agonists activated MET and exhibited biological activities which were indistinguishable from the effects of HGF. MET agonists composed of cyclic peptides can be manufactured by chemical synthesis but not recombinant protein expression, and thus are expected to be new biologics that are applicable to therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Correspondence:
| |
Collapse
|
10
|
Clegg J, Koch MK, Thompson EW, Haupt LM, Kalita-de Croft P, Bray LJ. Three-Dimensional Models as a New Frontier for Studying the Role of Proteoglycans in the Normal and Malignant Breast Microenvironment. Front Cell Dev Biol 2020; 8:569454. [PMID: 33163489 PMCID: PMC7581852 DOI: 10.3389/fcell.2020.569454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) provides cues to direct mammogenesis, tumourigenesis and metastatic processes. Over the past several decades, two-dimensional (2D) culture models have been invaluable in furthering our understanding of the tumor microenvironment (TME), however, they still do not accurately emulate the associated biological complexities. In contrast, three-dimensional (3D) culture models provide a more physiologically relevant platform to study relevant physicochemical signals, stromal-epithelial cell interactions, vascular and immune components, and cell-ECM interactions in the human breast microenvironment. A common thread that may weave these multiple interactions are the proteoglycans (PGs), a prominent family of molecules in breast tissue. This review will discuss how these PGs contribute to the breast cancer TME and provide a summary of the traditional and emerging technologies that have been utilized to better understand the role of PGs during malignant transformation. Furthermore, this review will emphasize the differences that PGs exhibit between normal tissues and tumor ECM, providing a rationale for the investigation of underexplored roles of PGs in breast cancer progression using state-of-the-art 3D culture models.
Collapse
Affiliation(s)
- Julien Clegg
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Maria K Koch
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Larisa M Haupt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Centre for Genomics and Personalized Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, QLD, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,Faculty of Science and Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Fu NY, Nolan E, Lindeman GJ, Visvader JE. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol Rev 2019; 100:489-523. [PMID: 31539305 DOI: 10.1152/physrev.00040.2018] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammary gland is a highly dynamic organ that undergoes profound changes within its epithelium during puberty and the reproductive cycle. These changes are fueled by dedicated stem and progenitor cells. Both short- and long-lived lineage-restricted progenitors have been identified in adult tissue as well as a small pool of multipotent mammary stem cells (MaSCs), reflecting intrinsic complexity within the epithelial hierarchy. While unipotent progenitor cells predominantly execute day-to-day homeostasis and postnatal morphogenesis during puberty and pregnancy, multipotent MaSCs have been implicated in coordinating alveologenesis and long-term ductal maintenance. Nonetheless, the multipotency of stem cells in the adult remains controversial. The advent of large-scale single-cell molecular profiling has revealed striking changes in the gene expression landscape through ontogeny and the presence of transient intermediate populations. An increasing number of lineage cell-fate determination factors and potential niche regulators have now been mapped along the hierarchy, with many implicated in breast carcinogenesis. The emerging diversity among stem and progenitor populations of the mammary epithelium is likely to underpin the heterogeneity that characterizes breast cancer.
Collapse
Affiliation(s)
- Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma Nolan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Koledova Z, Sumbal J. FGF signaling in mammary gland fibroblasts regulates multiple fibroblast functions and mammary epithelial morphogenesis. Development 2019; 146:dev.185306. [DOI: 10.1242/dev.185306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor (FGF) signaling is crucial for mammary gland development. While multiple roles for FGF signaling in the epithelium were described, the function of FGF signaling in mammary stroma has not been elucidated. In this study, we investigated FGF signaling in mammary fibroblasts. We found that mammary fibroblasts express FGF receptors FGFR1 and FGFR2 and respond to FGF ligands. In particular, FGF2 and FGF9 induce sustained ERK1/2 signaling and promote fibroblast proliferation and migration in 2D. Intriguingly, only FGF2 induces fibroblast migration in 3D extracellular matrix (ECM) through regulation of actomyosin cytoskeleton and promotes force-mediated collagen remodeling by mammary fibroblasts. Moreover, FGF2 regulates production of ECM proteins by mammary fibroblasts, including collagens, fibronectin, osteopontin, and matrix metalloproteinases. Finally, using organotypic 3D co-cultures we show that FGF2 and FGF9 signaling in mammary fibroblasts enhances fibroblast-induced branching of mammary epithelium by modulating paracrine signaling and that knockdown of Fgfr1 and Fgfr2 in mammary fibroblasts reduces branching of mammary epithelium. Our results demonstrate a pleiotropic role for FGF signaling in mammary fibroblasts with implications for regulation of mammary stromal functions and epithelial branching morphogenesis.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| | - Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| |
Collapse
|
13
|
The role of SDF1 in prostate epithelial morphogenesis. J Cell Physiol 2018; 234:6886-6897. [DOI: 10.1002/jcp.27447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/27/2018] [Indexed: 11/07/2022]
|
14
|
Activated HGF-c-Met Axis in Head and Neck Cancer. Cancers (Basel) 2017; 9:cancers9120169. [PMID: 29231907 PMCID: PMC5742817 DOI: 10.3390/cancers9120169] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly morbid disease. Recent developments including Food and Drug Administration (FDA) approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met) and its ligand hepatocyte growth factor (HGF) are overexpressed in head and neck squamous cell carcinoma (HNSCC); and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K) alpha serine/threonine-protein kinase (Akt), mitogen activate protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes.
Collapse
|
15
|
Kato T. Biological roles of hepatocyte growth factor-Met signaling from genetically modified animals. Biomed Rep 2017; 7:495-503. [PMID: 29188052 DOI: 10.3892/br.2017.1001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/26/2017] [Indexed: 12/29/2022] Open
Abstract
Hepatocyte growth factor (HGF) is produced by stromal and mesenchymal cells, and it stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its cognate receptor, Met. The HGF-Met signaling pathway contributes in a paracrine manner to the development of epithelial organs, exerts regenerative effects on the epithelium, and promotes the regression of fibrosis in numerous organs. Additionally, the HGF-Met signaling pathway is correlated with the biology of cancer types, neurons and immunity. In vivo analyses using genetic modification have markedly increased the profound understanding of the HGF-Met system in basic biology and its clinical applications. HGF and Met knockout (KO) mice are embryonically lethal. Therefore, amino acids in multifunctional docking sites of Met have been exchanged with specific binding motifs for downstream adaptor molecules in order to investigate the signaling potential of the HGF-Met signaling pathway. Conditional Met KO mice were generated using Cre-loxP methodology and characterization of these mice indicated that the HGF-Met signaling pathway is essential in regeneration, protection, and homeostasis in various tissue types and cells. Furthermore, the results of studies using HGF-overexpressing mice have indicated the therapeutic potential of HGF for various types of disease and injury. In the present review, the phenotypes of Met gene-modified mice are summarized.
Collapse
Affiliation(s)
- Takashi Kato
- Urologic Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Boyango I, Barash U, Fux L, Naroditsky I, Ilan N, Vlodavsky I. Targeting heparanase to the mammary epithelium enhances mammary gland development and promotes tumor growth and metastasis. Matrix Biol 2017; 65:91-103. [PMID: 28916201 DOI: 10.1016/j.matbio.2017.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
Heparanase is an endoglucuronidase that uniquely cleaves the heparan sulfate side chains of heparan sulfate proteoglycans. This activity ultimately alters the structural integrity of the ECM and basement membrane that becomes more prone to cellular invasion by metastatic cancer cells and cells of the immune system. In addition, enzymatically inactive heparanase was found to facilitate the proliferation and survival of cancer cells by activation of signaling molecules such as Akt, Src, signal transducer and activation of transcription (Stat), and epidermal growth factor receptor. This function is thought to be executed by the C-terminal domain of heparanase (8c), because over expression of this domain in cancer cells accelerated signaling cascades and tumor growth. We have used the regulatory elements of the mouse mammary tumor virus (MMTV) to direct the expression heparanase and the C-domain (8c) to the mammary gland epithelium of transgenic mice. Here, we report that mammary gland branching morphogenesis is increased in MMTV-heparanase and MMTV-8c mice, associating with increased Akt, Stat5 and Src phosphorylation. Furthermore, we found that the growth of tumors generated by mouse breast cancer cells and the resulting lung metastases are enhanced in MMTV-heparanase mice, thus supporting the notion that heparanase contributed by the tumor microenvironment (i.e., normal mammary epithelium) plays a decisive role in tumorigenesis. Remarkably, MMTV-8c mice develop spontaneous tumors in their mammary and salivary glands. Although this occurs at low rates and requires long latency, it demonstrates decisively the pro-tumorigenic capacity of heparanase signaling.
Collapse
Affiliation(s)
- Ilanit Boyango
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Uri Barash
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Liat Fux
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Inna Naroditsky
- Department of Pathology, Ramabm Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| |
Collapse
|
17
|
He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet 2017; 13:e1006992. [PMID: 28859094 PMCID: PMC5597256 DOI: 10.1371/journal.pgen.1006992] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/13/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meina Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shenfei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- * E-mail: ,
| |
Collapse
|
18
|
Patel VN, Pineda DL, Hoffman MP. The function of heparan sulfate during branching morphogenesis. Matrix Biol 2017; 57-58:311-323. [PMID: 27609403 PMCID: PMC5329135 DOI: 10.1016/j.matbio.2016.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
Branching morphogenesis is a fundamental process in the development of diverse epithelial organs such as the lung, kidney, liver, pancreas, prostate, salivary, lacrimal and mammary glands. A unifying theme during organogenesis is the importance of epithelial cell interactions with the extracellular matrix (ECM) and growth factors (GFs). The diverse developmental mechanisms giving rise to these epithelial organs involve many organ-specific GFs, but a unifying paradigm during organogenesis is the regulation of GF activity by heparan sulfates (HS) on the cell surface and in the ECM. This primarily involves the interactions of GFs with the sulfated side-chains of HS proteoglycans. HS is one of the most diverse biopolymers and modulates GF binding and signaling at the cell surface and in the ECM of all tissues. Here, we review what is known about how HS regulates branching morphogenesis of epithelial organs with emphasis on the developing salivary gland, which is a classic model to investigate epithelial-ECM interactions. We also address the structure, biosynthesis, turnover and function of HS during organogenesis. Understanding the regulatory mechanisms that control HS dynamics may aid in the development of therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dallas L Pineda
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
19
|
McBryan J, Howlin J. Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models. Methods Mol Biol 2017; 1501:77-114. [PMID: 27796948 DOI: 10.1007/978-1-4939-6475-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 25 years, the combination of increasingly sophisticated gene targeting technology with transplantation techniques has allowed researchers to address a wide array of questions about postnatal mammary gland development. These in turn have significantly contributed to our knowledge of other branched epithelial structures. This review chapter highlights a selection of the mouse models exhibiting a pubertal mammary gland phenotype with a focus on how they have contributed to our overall understanding of in vivo mammary morphogenesis. We discuss mouse models that have enabled us to assign functions to particular genes and proteins and, more importantly, have determined when and where these factors are required for completion of ductal outgrowth and branch patterning. The reason for the success of the mouse mammary gland model is undoubtedly the suitability of the postnatal mammary gland to experimental manipulation. The gland itself is very amenable to investigation and the combination of genetic modification with accessibility to the tissue has allowed an impressive number of studies to inform biology. Excision of the rudimentary epithelial structure postnatally allows genetically modified tissue to be readily transplanted into wild type stroma or vice versa, and has thus defined the contribution of each compartment to particular phenotypes. Similarly, whole gland transplantation has been used to definitively discern local effects from indirect systemic effects of various growth factors and hormones. While appreciative of the power of these tools and techniques, we are also cognizant of some of their limitations, and we discuss some shortcomings and future strategies that can overcome them.
Collapse
Affiliation(s)
- Jean McBryan
- Department of Molecular Medicine Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland
| | - Jillian Howlin
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Building 404:B2, Scheelevägen 2, 223 81, Lund, Sweden.
| |
Collapse
|
20
|
Ghiselli G, Maccarana M. Drugs affecting glycosaminoglycan metabolism. Drug Discov Today 2016; 21:1162-9. [PMID: 27217160 DOI: 10.1016/j.drudis.2016.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 01/02/2023]
Abstract
Glycosaminoglycans (GAGs) are charged polysaccharides ubiquitously present at the cell surface and in the extracellular matrix. GAGs are crucial for cellular homeostasis, and their metabolism is altered during pathological processes. However, little consideration has been given to the regulation of the GAG milieu through pharmacological interventions. In this review, we provide a classification of small molecules affecting GAG metabolism based on their mechanism of action. Furthermore, we present evidence to show that clinically approved drugs affect GAG metabolism and that this could contribute to their therapeutic benefit.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl, Parco Scientifico Silvano Fumero, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy.
| | - Marco Maccarana
- Department of Experimental Medical Science, Biomedical Center C12, Lund University, Tornavägen 10, SE-221 84 Lund, Sweden
| |
Collapse
|
21
|
Cozzo AJ, Sundaram S, Zattra O, Qin Y, Freemerman AJ, Essaid L, Darr DB, Montgomery SA, McNaughton KK, Ezzell JA, Galanko JA, Troester MA, Makowski L. cMET inhibitor crizotinib impairs angiogenesis and reduces tumor burden in the C3(1)-Tag model of basal-like breast cancer. SPRINGERPLUS 2016; 5:348. [PMID: 27057482 PMCID: PMC4799044 DOI: 10.1186/s40064-016-1920-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022]
Abstract
Epidemiologic studies have associated obesity with increased risk of the aggressive basal-like breast cancer (BBC) subtype. Hepatocyte growth factor (HGF) signaling through its receptor, cMET, is elevated in obesity and is a pro-tumorigenic pathway strongly associated with BBC. We previously reported that high fat diet (HFD) elevated HGF, cMET, and phospho-cMET in normal mammary gland, with accelerated tumor development, compared to low fat diet (LFD)-fed lean controls in a murine model of BBC. We also showed that weight loss resulted in a significant reversal of HFD-induced effects on latency and elevation of HGF/cMET signaling in normal mammary and cMET in normal mammary and tumors. Here, we sought to inhibit BBC tumor progression in LFD- and HFD-fed C3(1)-Tag BBC mice using a small molecule cMET inhibitor, and began crizotinib treatment (50 mg/kg body weight by oral gavage) upon identification of the first palpable tumor. We next investigated if administering crizotinib in a window prior to tumor development would inhibit or delay BBC tumorigenesis. Treatment: Crizotinib significantly reduced mean tumor burden by 27.96 and 37.29 %, and mean tumor vascularity by 35.04 and 33.52 %, in our LFD- and HFD-fed C3(1)-Tag BBC mice, respectively. Prevention: Crizotinib significantly accelerated primary tumor progression in both diet groups but had no effect on total tumor progression or total tumor burden. In sum, cMET inhibition by crizotinib limited tumor development and microvascular density in basal-like tumor-bearing mice but did not appear to be an effective preventive agent for BBC.
Collapse
Affiliation(s)
- Alyssa J Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Sneha Sundaram
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ottavia Zattra
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Yuanyuan Qin
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Alex J Freemerman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Luma Essaid
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Kirk K McNaughton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - J Ashley Ezzell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Joseph A Galanko
- Nutrition Obesity Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.,Nutrition Obesity Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
22
|
Chen T, Yuan SJ, Wang J, Hu W. Mechanism of QHF-cisplatin against hepatocellular carcinoma in a mouse model. World J Gastroenterol 2015; 21:10126-10136. [PMID: 26401077 PMCID: PMC4572793 DOI: 10.3748/wjg.v21.i35.10126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/25/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of QHF-cisplatin on H22 hepatocellular carcinoma (HCC) and their mechanisms of action.
METHODS: Sixty BALB/c mice were randomly divided into a model group (n = 48) and a normal control group (n = 12). An HCC xenograft tumor was created by injecting H22 cells directly into the liver parenchyma of the mice. The 48 BALB/c mice in the model group were randomly divided into four groups: QHF, DDP (cisplatin), QHF plus DDP, and model control. The inhibitory effects of these drugs on tumor growth were evaluated by calculating the rate of tumor growth inhibition. The mice were examined by observing their general condition, body weight and survival time. Changes in tumor tissue were observed under an optical microscope. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) and α-fetoprotein (AFP) levels in serum were measured. Hepatocyte growth factor (HGF), c-mesenchymal-epithelial transition (c-Met) factor, phosphorylated (p)-c-Met, p38, p-p38, extracellular signal-regulated kinase (ERK), p-ERK and vascular endothelial growth factor (VEGF) levels were evaluated in tumor and liver tissues using western blotting.
RESULTS: Compared with the DDP group, a lower incidence of toxic reactions and a higher survival time were observed in the QHF plus DDP group. Tumor weight was significantly lower in the QHF, DDP and QHF plus DDP groups than in the model control group (0.24 ± 0.07, 0.18 ± 0.03 and 0.14 ± 0.01 g vs 0.38 ± 0.05 g, respectively), and the differences were statistically significant (P < 0.01). The rate of tumor growth inhibition in the QHF, DDP and QHF plus DDP groups was 38.7%, 52.6% and 63.5%, respectively. AST, ALT and AFP levels in serum were significantly lower in the QHF, DDP and QHF plus DDP groups compared to the model control group (P < 0.05). Similarly, HGF, p-c-Met, p-p38, p-ERK and VEGF levels in tumor tissue were significantly lower in the QHF, DDP and QHF plus DDP groups (P < 0.05).
CONCLUSION: QHF and DDP have an antiangiogenic effect on H22 HCC in mice. QHF inhibits tumor growth via blocking the HGF/c-Met signaling pathway, inhibiting p38, ERK and VEGF signaling.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Biomarkers, Tumor/blood
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cisplatin/pharmacology
- Drugs, Chinese Herbal/pharmacology
- Epithelial-Mesenchymal Transition/drug effects
- Female
- Liver Neoplasms, Experimental/blood
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Male
- Mice, Inbred BALB C
- Signal Transduction/drug effects
- Time Factors
- Tumor Burden/drug effects
Collapse
|
23
|
Di-Cicco A, Petit V, Chiche A, Bresson L, Romagnoli M, Orian-Rousseau V, Vivanco MDM, Medina D, Faraldo MM, Glukhova MA, Deugnier MA. Paracrine Met signaling triggers epithelial-mesenchymal transition in mammary luminal progenitors, affecting their fate. eLife 2015; 4. [PMID: 26165517 PMCID: PMC4498445 DOI: 10.7554/elife.06104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/11/2015] [Indexed: 12/13/2022] Open
Abstract
HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persistent HGF treatment stimulates the clonogenic activity of ICAM1-positive luminal progenitors, controlling their survival and proliferation, and leads to the expression of basal cell characteristics, including stem cell potential. This is accompanied by the induction of Snai1 and Snai2, two major transcription factors triggering epithelial–mesenchymal transition, the repression of the luminal-regulatory genes Elf5 and Hey1, and claudin down-regulation. Our data strongly indicate that paracrine Met signaling can control the function of luminal progenitors and modulate their fate during mammary development and tumorigenesis. DOI:http://dx.doi.org/10.7554/eLife.06104.001 Throughout the life of a female mammal, the mammary glands undergo different phases of development to prepare for, and adapt to, feeding offspring. Luminal cells line the inside of branch-like structures throughout the mammary gland and are responsible for producing milk. When the mammary gland grows, new luminal cells develop from a kind of cell called luminal progenitor cells. However, these progenitor cells are also thought to be the source of certain types of breast cancer. Recently, it has been suggested that luminal progenitor cells display a receptor protein called Met on their surface. When Met and ‘co-receptor’ proteins bind to a molecule called HGF, this triggers a cascade of signals that can cause certain cells to change their properties. This is known as the epithelial–mesenchymal transition. Although this transition is important for new tissues to develop, it can also result in cancerous tumors forming if it is not correctly controlled. Luminal cells do not produce HGF themselves, which suggests that Met signaling in these cells is triggered by the HGF released from neighboring cells. However, neither the mechanisms behind this signaling nor the effects of signaling on the luminal progenitor cells are well understood. Di-Cicco et al. set out to identify where Met, its co-receptors and HGF are located in the mouse mammary gland during different phases of development. This revealed that one of the co-receptors—called ICAM-1—can be used as a marker to identify certain types of luminal progenitor cell. Di-Cicco et al. found that these progenitor cells display Met on their surface, and other types of mammary cell—called stromal cells and myoepithelial cells—produce HGF. When exposed to HGF, luminal progenitor cells grown in culture in the laboratory proliferated and went through the epithelial–mesenchymal transition. These findings suggest that myoepithelial and stromal cells regulate luminal progenitor cells by producing HGF to activate Met signaling in these cells. Such interactions could be of great importance during mammary development and tumorigenesis. The next big challenge will be to determine the circumstances under which luminal progenitor cells stimulated by HGF can give rise to breast cancers. This work will allow us to better define the cell population that should be targeted by anti-cancer drugs. DOI:http://dx.doi.org/10.7554/eLife.06104.002
Collapse
Affiliation(s)
- Amandine Di-Cicco
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Valérie Petit
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Aurélie Chiche
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Laura Bresson
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Mathilde Romagnoli
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | | | | | | | - Marisa M Faraldo
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Marina A Glukhova
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Marie-Ange Deugnier
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
24
|
Hayashida A, Amano S, Gallo RL, Linhardt RJ, Liu J, Park PW. 2-O-Sulfated Domains in Syndecan-1 Heparan Sulfate Inhibit Neutrophil Cathelicidin and Promote Staphylococcus aureus Corneal Infection. J Biol Chem 2015; 290:16157-67. [PMID: 25931123 PMCID: PMC4481216 DOI: 10.1074/jbc.m115.660852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 11/06/2022] Open
Abstract
Ablation of syndecan-1 in mice is a gain of function mutation that enables mice to significantly resist infection by several bacterial pathogens. Syndecan-1 shedding is induced by bacterial virulence factors, and inhibition of shedding attenuates bacterial virulence, whereas administration of purified syndecan-1 ectodomain enhances virulence, suggesting that bacteria subvert syndecan-1 ectodomains released by shedding for their pathogenesis. However, the pro-pathogenic functions of syndecan-1 ectodomain have yet to be clearly defined. Here, we examined how syndecan-1 ectodomain enhances Staphylococcus aureus virulence in injured mouse corneas. We found that syndecan-1 ectodomain promotes S. aureus corneal infection in an HS-dependent manner. Surprisingly, we found that this pro-pathogenic activity is dependent on 2-O-sulfated domains in HS, indicating that the effects of syndecan-1 ectodomain are structure-based. Our results also showed that purified syndecan-1 ectodomain and heparan compounds containing 2-O-sulfate motifs inhibit S. aureus killing by antimicrobial factors secreted by degranulated neutrophils, but does not affect intracellular phagocytic killing by neutrophils. Immunodepletion of antimicrobial factors with staphylocidal activities demonstrated that CRAMP, a cationic antimicrobial peptide, is primarily responsible for S. aureus killing among other factors secreted by degranulated neutrophils. Furthermore, we found that purified syndecan-1 ectodomain and heparan compounds containing 2-O-sulfate units potently and specifically inhibit S. aureus killing by synthetic CRAMP. These results provide compelling evidence that a specific subclass of sulfate groups, and not the overall charge of HS, permits syndecan-1 ectodomains to promote S. aureus corneal infection by inhibiting a key arm of neutrophil host defense.
Collapse
Affiliation(s)
| | - Shiro Amano
- From the Division of Respiratory Diseases and
| | - Richard L Gallo
- Division of Dermatology, University of California San Diego, La Jolla, California 92093
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, and
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pyong Woo Park
- From the Division of Respiratory Diseases and Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
25
|
Gomes AM, Bhat R, Correia AL, Mott JD, Ilan N, Vlodavsky I, Pavão MS, Bissell M. Mammary Branching Morphogenesis Requires Reciprocal Signaling by Heparanase and MMP-14. J Cell Biochem 2015; 116:1668-79. [DOI: 10.1002/jcb.25127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Angélica Maciel Gomes
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley California 94720
- Programa de Glicobiologia; Instituto de Bioquímica Médica and Hospital Universitário Clementino Fraga Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro 21941-913 Brazil
| | - Ramray Bhat
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley California 94720
| | - Ana Luísa Correia
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley California 94720
| | - Joni D. Mott
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley California 94720
| | - Neta Ilan
- Cancer and Vascular Biology Research Center; Rappaport Faculty of Medicine; Technion 9649, 31096 Haifa Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center; Rappaport Faculty of Medicine; Technion 9649, 31096 Haifa Israel
| | - Mauro S.G. Pavão
- Programa de Glicobiologia; Instituto de Bioquímica Médica and Hospital Universitário Clementino Fraga Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro 21941-913 Brazil
| | - Mina Bissell
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley California 94720
| |
Collapse
|
26
|
Vasconcelos AC, Wagner VP, Meurer L, Vargas PA, de Souza LB, Fonseca FP, Squarize CH, Castilho RM, Martins MD. Immunoprofile of c-MET/PI3K signaling in human salivary gland tumors. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:238-47. [PMID: 26117810 DOI: 10.1016/j.oooo.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 04/08/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the expression pattern of proteins in the HGF/c-MET/PI3K signaling pathway in salivary gland tumors (SGTs) and to correlate the findings with the proliferative index and clinical parameters. STUDY DESIGN We assembled tissue microarrays (TMAs) of 108 cases of SGTs, including 69 cases of pleomorphic adenoma (PA), 24 cases of adenoid cystic carcinoma (AdCC), and 15 cases of mucoepidermoid carcinoma (MEC). An immunohistochemical analysis of hepatocyte growth factor (HGF), MET phosphorylation (p-MET), protein kinase B (AKT) phosphorylation (p-AKT), and Ki-67 proteins was performed. RESULTS Benign and malignant SGTs presented similar scores of HGF-positive cells (P = .36), whereas, malignant SGTs exhibited higher levels of p-MET (P = .001) and p-AKT (P = .001) than benign SGTs. No correlation of HGF, p-MET, or p-AKT expression was observed with clinical parameters. PA had a lower proliferative index than either AdCC (P = .001) or MEC (P = .001). CONCLUSIONS The salivary gland carcinomas exhibited increased activation of the HGF pathway, as evidenced by the phosphorylation of the MET receptor, and increased activation of the PI3K pathway, as indicated by p-AKT. These data suggest that the HGF/c-MET/PI3K signaling pathway is active in SGTs, especially in malignant neoplasms.
Collapse
Affiliation(s)
- Artur Cunha Vasconcelos
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vivian Petersen Wagner
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luise Meurer
- Department of Pathology, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Porto Alegre, Rio Grande do Sul, RS, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
27
|
Casbas-Hernandez P, D'Arcy M, Roman-Perez E, Brauer HA, McNaughton K, Miller SM, Chhetri RK, Oldenburg AL, Fleming JM, Amos KD, Makowski L, Troester MA. Role of HGF in epithelial-stromal cell interactions during progression from benign breast disease to ductal carcinoma in situ. Breast Cancer Res 2014; 15:R82. [PMID: 24025166 PMCID: PMC3978616 DOI: 10.1186/bcr3476] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 07/16/2013] [Indexed: 12/17/2022] Open
Abstract
Introduction Basal-like and luminal breast cancers have distinct stromal–epithelial interactions, which play a role in progression to invasive cancer. However, little is known about how stromal–epithelial interactions evolve in benign and pre-invasive lesions. Methods To study epithelial–stromal interactions in basal-like breast cancer progression, we cocultured reduction mammoplasty fibroblasts with the isogenic MCF10 series of cell lines (representing benign/normal, atypical hyperplasia, and ductal carcinoma in situ). We used gene expression microarrays to identify pathways induced by coculture in premalignant cells (MCF10DCIS) compared with normal and benign cells (MCF10A and MCF10AT1). Relevant pathways were then evaluated in vivo for associations with basal-like subtype and were targeted in vitro to evaluate effects on morphogenesis. Results Our results show that premalignant MCF10DCIS cells express characteristic gene expression patterns of invasive basal-like microenvironments. Furthermore, while hepatocyte growth factor (HGF) secretion is upregulated (relative to normal, MCF10A levels) when fibroblasts are cocultured with either atypical (MCF10AT1) or premalignant (MCF10DCIS) cells, only MCF10DCIS cells upregulated the HGF receptor MET. In three-dimensional cultures, upregulation of HGF/MET in MCF10DCIS cells induced morphological changes suggestive of invasive potential, and these changes were reversed by antibody-based blocking of HGF signaling. These results are relevant to in vivo progression because high expression of a novel MCF10DCIS-derived HGF signature was correlated with the basal-like subtype, with approximately 86% of basal-like cancers highly expressing the HGF signature, and because high expression of HGF signature was associated with poor survival. Conclusions Coordinated and complementary changes in HGF/MET expression occur in epithelium and stroma during progression of pre-invasive basal-like lesions. These results suggest that targeting stroma-derived HGF signaling in early carcinogenesis may block progression of basal-like precursor lesions.
Collapse
|
28
|
Gurusamy D, Ruiz-Torres SJ, Johnson AL, Smith DA, Waltz SE. Hepatocyte growth factor-like protein is a positive regulator of early mammary gland ductal morphogenesis. Mech Dev 2014; 133:11-22. [PMID: 25049204 DOI: 10.1016/j.mod.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/15/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The Ron receptor tyrosine kinase regulates multiple cellular processes and is important during mammary gland development and tumor progression. Hepatocyte growth factor-like protein [HGFL] is the only known ligand for the Ron receptor and recent studies have identified major roles for HGFL during breast cancer metastasis. Understanding the functional importance HGFL during mammary gland development will provide significant insights onto its contribution during tumor development and metastasis. In this study, we assessed the role of HGFL during postnatal mammary gland development using mice that were either proficient [HGFL +/+] or deficient [HGFL-/-] for HGFL. Postnatal ductal morphology and stromal cell associations were analyzed at multiple time points through puberty until adulthood. HGFL deficiency resulted in several mammary gland developmental defects including smaller terminal end buds [TEBs], significantly fewer TEBs, and delayed ductal outgrowth during early puberty. Additionally, HGFL deficient animals exhibited significantly altered TEB epithelial cell turnover with decreased proliferation and increased apoptosis coupled with decreased TEB diameter. Macrophage recruitment to the TEBs was also significantly decreased in the HGFL-/- mice compared to controls. Moreover, the levels of STAT3 mRNA as well as the phosphorylation status of this protein were lower in the HGFL-/- mammary glands compared to controls. Taken together, our data provide the first evidence for HGFL as a positive regulator of mammary gland ductal morphogenesis by controlling overall epithelial cell turnover, macrophage recruitment, and STAT3 activation in the developing mammary gland. With a function in early mammary gland development, HGFL represents a potential target for the development of novel breast cancer therapies.
Collapse
Affiliation(s)
- Devikala Gurusamy
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Sasha J Ruiz-Torres
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Abby L Johnson
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Dana A Smith
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA; Research Service, Cincinnati Veterans Hospital Medical Center, Cincinnati, OH 45267-0521, USA.
| |
Collapse
|
29
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
30
|
Campbell JJ, Hume RD, Watson CJ. Engineering Mammary Gland in Vitro Models for Cancer Diagnostics and Therapy. Mol Pharm 2014; 11:1971-81. [DOI: 10.1021/mp500121c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan J. Campbell
- Department
of Materials Science and Metallurgy, University of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K
| | - Robert D. Hume
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| | - Christine J. Watson
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| |
Collapse
|
31
|
Nigam SK, Bush KT. Growth factor-heparan sulfate "switches" regulating stages of branching morphogenesis. Pediatr Nephrol 2014; 29:727-35. [PMID: 24488503 DOI: 10.1007/s00467-013-2725-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 11/27/2022]
Abstract
The development of branched epithelial organs, such as the kidney, mammary gland, lung, pancreas, and salivary gland, is dependent upon the involvement and interaction of multiple regulatory/modulatory molecules, including soluble growth factors, extracellular matrix components, and their receptors. How the function of these molecules is coordinated to bring about the morphogenetic events that regulate iterative tip-stalk generation (ITSG) during organ development remains to be fully elucidated. A common link to many growth factor-dependent morphogenetic pathways is the involvement of variably sulfated heparan sulfates (HS), the glycosaminoglycan backbone of heparan sulfate proteoglycans (HSPG) on extracellular surfaces. Genetic deletions of HS biosynthetic enzymes (e.g., C5-epimerase, Hs2st), as well as considerable in vitro data, indicate that variably sulfated HS are essential for kidney development, particularly in Wolffian duct budding and early ureteric bud (UB) branching. A role for selective HS modifications by enzymes (e.g., Ext, Ndst, Hs2st) in stages of branching morphogenesis is also strongly supported for mammary gland ductal branching, which is dependent upon a set of growth factors similar to those involved in UB branching. Taken together, these studies provide support for the notion that the specific spatio-temporal HS binding of growth factors during the development of branched epithelial organs (such as the kidney, mammary gland, lung and salivary gland) regulates these complex processes by potentially acting as "morphogenetic switches" during the various stages of budding, branching, and other developmental events central to epithelial organogenesis. It may be that two or more growth factor-selective HS interactions constitute a functionally equivalent morphogenetic switch; this may help to explain the paucity of severe branching phenotypes with individual growth factor knockouts.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Medicine, University of California, La Jolla, San Diego, CA, 92093-0693, USA,
| | | |
Collapse
|
32
|
Nigam SK. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs? Stem Cells Transl Med 2013; 2:993-1000. [PMID: 24191267 DOI: 10.5966/sctm.2013-0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Branching morphogenesis is critical to the development of organs such as kidney, lung, mammary gland, prostate, pancreas, and salivary gland. Essentially, an epithelial bud becomes an iterative tip-stalk generator (ITSG) able to form a tree of branching ducts and/or tubules. In different organs, branching morphogenesis is governed by similar sets of genes. Epithelial branching has been recapitulated in vitro (or ex vivo) using three-dimensional cell culture and partial organ culture systems, and several such systems relevant to kidney tissue engineering are discussed here. By adapting systems like these it may be possible to harness the power inherent in the ITSG program to propagate and engineer epithelial tissues and organs. It is also possible to conceive of a universal ITSG capable of propagation that may, by recombination with organ-specific mesenchymal cells, be used for engineering many organ-like tissues similar to the organ from which the mesenchyme cells were derived, or toward which they are differentiated (from stem cells). The three-dimensional (3D) branched epithelial structure could act as a dynamic branching cellular scaffold to establish the architecture for the rest of the tissue. Another strategy-that of recombining propagated organ-specific ITSGs in 3D culture with undifferentiated mesenchymal stem cells-is also worth exploring. If feasible, such engineered tissues may be useful for the ex vivo study of drug toxicity, developmental biology, and physiology in the laboratory. Over the long term, they have potential clinical applications in the general fields of transplantation, regenerative medicine, and bioartificial medical devices to aid in the treatment of chronic kidney disease, diabetes, and other diseases.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, and Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
33
|
Heparan sulfate and heparanase as modulators of breast cancer progression. BIOMED RESEARCH INTERNATIONAL 2013; 2013:852093. [PMID: 23984412 PMCID: PMC3747466 DOI: 10.1155/2013/852093] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/04/2013] [Indexed: 12/16/2022]
Abstract
Breast cancer is defined as a cancer originating in tissues of the breast, frequently in ducts and lobules. During the last 30 years, studies to understand the biology and to treat breast tumor improved patients' survival rates. These studies have focused on genetic components involved in tumor progression and on tumor microenvironment. Heparan sulfate proteoglycans (HSPGs) are involved in cell signaling, adhesion, extracellular matrix assembly, and growth factors storage. As a central molecule, HSPG regulates cell behavior and tumor progression. HS accompanied by its glycosaminoglycan counterparts regulates tissue homeostasis and cancer development. These molecules present opposite effects according to tumor type or cancer model. Studies in this area may contribute to unveil glycosaminoglycan activities on cell dynamics during breast cancer exploring these polysaccharides as antitumor agents. Heparanase is a potent tumor modulator due to its protumorigenic, proangiogenic, and prometastatic activities. Several lines of evidence indicate that heparanase is upregulated in all human sarcomas and carcinomas. Heparanase seems to be related to several aspects regulating the potential of breast cancer metastasis. Due to its multiple roles, heparanase is seen as a target in cancer treatment. We will describe recent findings on the function of HSPGs and heparanase in breast cancer behavior and progression.
Collapse
|
34
|
Daley WP, Yamada KM. Cell–ECM Interactions and the Regulation of Epithelial Branching Morphogenesis. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Otto B, Streichert T, Wegwitz F, Gevensleben H, Klätschke K, Wagener C, Deppert W, Tolstonog GV. Transcription factors link mouse WAP-T mammary tumors with human breast cancer. Int J Cancer 2012; 132:1311-22. [DOI: 10.1002/ijc.27941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
|
36
|
Bush KT, Crawford BE, Garner OB, Nigam KB, Esko JD, Nigam SK. N-sulfation of heparan sulfate regulates early branching events in the developing mammary gland. J Biol Chem 2012; 287:42064-70. [PMID: 23060443 DOI: 10.1074/jbc.m112.423327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Branching morphogenesis, a fundamental process in the development of epithelial organs (e.g. breast, kidney, lung, salivary gland, prostate, pancreas), is in part dependent on sulfation of heparan sulfate proteoglycans. Proper sulfation is mediated by biosynthetic enzymes, including exostosin-2 (Ext2), N-deacetylase/N-sulfotransferases and heparan sulfate O-sulfotransferases. Recent conditional knockouts indicate that whereas primary branching is dependent on heparan sulfate, other stages are dependent upon selective addition of N-sulfate and/or 2-O sulfation (Crawford, B .E., Garner, O. B., Bishop, J. R., Zhang, D. Y., Bush, K. T., Nigam, S. K., and Esko, J. D. (2010) PLoS One 5, e10691; Garner, O .B., Bush, K. T., Nigam, S .K., Yamaguchi, Y., Xu, D., Esko, J. D., and Nigam, S. K. (2011) Dev. Biol. 355, 394-403). Here, we analyzed the effect of deleting both Ndst2 and Ndst1. Whereas deletion of Ndst1 has no major effect on primary or secondary branching, deletion of Ndst2 appears to result in a mild increase in branching. When both genes were deleted, ductal growth was variably diminished (likely due to variable Cre-recombinase activity), but an overabundance of branched structures was evident irrespective of the extent of gland growth or postnatal age. "Hyperbranching" is an unusual phenotype. The effects on N-sulfation and growth factor binding were confirmed biochemically. The results indicate that N-sulfation or a factor requiring N-sulfation regulates primary and secondary branching events in the developing mammary gland. Together with previous work, the data indicate that different stages of ductal branching and lobuloalveolar formation are regulated by distinct sets of heparan sulfate biosynthetic enzymes in an appropriate growth factor context.
Collapse
Affiliation(s)
- Kevin T Bush
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
37
|
Otto B, Gruner K, Heinlein C, Wegwitz F, Nollau P, Ylstra B, Pantel K, Schumacher U, Baumbusch LO, Martin-Subero JI, Siebert R, Wagener C, Streichert T, Deppert W, Tolstonog GV. Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression. Int J Cancer 2012; 132:1300-10. [DOI: 10.1002/ijc.27783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/03/2012] [Indexed: 12/15/2022]
|
38
|
Maina JN. Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 2012; 9:16. [PMID: 22871018 PMCID: PMC3502106 DOI: 10.1186/1742-9994-9-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023] Open
Abstract
Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature's astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park 2006, P,O, Box 524, Johannesburg, South Africa.
| |
Collapse
|
39
|
Boudreau A, van't Veer LJ, Bissell MJ. An "elite hacker": breast tumors exploit the normal microenvironment program to instruct their progression and biological diversity. Cell Adh Migr 2012; 6:236-48. [PMID: 22863741 DOI: 10.4161/cam.20880] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the "War on Cancer" in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a "rogue hacker"--one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its "security vulnerabilities" may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology--albeit imbalanced and exaggerated--is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment-a recurring theme that could potentially be exploited therapeutically.
Collapse
Affiliation(s)
- Aaron Boudreau
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | | | | |
Collapse
|
40
|
Long-range mechanical force enables self-assembly of epithelial tubular patterns. Proc Natl Acad Sci U S A 2012; 109:5576-82. [PMID: 22427356 DOI: 10.1073/pnas.1114781109] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enabling long-range transport of molecules, tubules are critical for human body homeostasis. One fundamental question in tubule formation is how individual cells coordinate their positioning over long spatial scales, which can be as long as the sizes of tubular organs. Recent studies indicate that type I collagen (COL) is important in the development of epithelial tubules. Nevertheless, how cell-COL interactions contribute to the initiation or the maintenance of long-scale tubular patterns is unclear. Using a two-step process to quantitatively control cell-COL interaction, we show that epithelial cells developed various patterns in response to fine-tuned percentages of COL in ECM. In contrast with conventional thoughts, these patterns were initiated and maintained by traction forces created by cells but not diffusive factors secreted by cells. In particular, COL-dependent transmission of force in the ECM led to long-scale (up to 600 μm) interactions between cells. A mechanical feedback effect was encountered when cells used forces to modify cell positioning and COL distribution and orientations. Such feedback led to a bistability in the formation of linear, tubule-like patterns. Using micro-patterning technique, we further show that the stability of tubule-like patterns depended on the lengths of tubules. Our results suggest a mechanical mechanism that cells can use to initiate and maintain long-scale tubular patterns.
Collapse
|
41
|
McCarthy KJ, Wassenhove-McCarthy DJ. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:3-21. [PMID: 22258721 PMCID: PMC3351113 DOI: 10.1017/s1431927611012682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The glomerular basement membrane and its associated cells are critical elements in the renal ultrafiltration process. Traditionally the anionic charge associated with several carbohydrate moieties in the glomerular basement membrane are thought to form a charge selective barrier that restricts the transmembrane flux of anionic proteins across the glomerular basement membrane into the urinary space. The charge selective function, along with the size selective component of the basement membrane, serves to limit the efflux of plasma proteins from the capillary lumen. Heparan sulfate glycosaminoglycans are anionically charged carbohydrate structures attached to proteoglycan core proteins and have a role in establishing the charge selective function of the glomerular basement membrane. Although there are a large number of studies in the literature that support this concept, the results of several recent studies using molecular genetic approaches to minimize the anionic charge of the glomerular basement membrane would suggest that the role of heparan sulfate glycosaminoglycans in the glomerular capillary wall are still not yet entirely resolved, suggesting that this research area still requires new and novel exploration.
Collapse
Affiliation(s)
- Kevin J McCarthy
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
42
|
Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004952. [PMID: 21690215 DOI: 10.1101/cshperspect.a004952] [Citation(s) in RCA: 1098] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
43
|
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein-heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level.
Collapse
Affiliation(s)
- Stephane Sarrazin
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|