1
|
Wen H, Chandrasekaran P, Jin A, Pankin J, Lu M, Liberti DC, Zepp JA, Jain R, Morrisey EE, Michki SN, Frank DB. A spatiotemporal cell atlas of cardiopulmonary progenitor cell allocation during development. Cell Rep 2025; 44:115513. [PMID: 40178979 PMCID: PMC12103214 DOI: 10.1016/j.celrep.2025.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
The heart and lung co-orchestrate their development during organogenesis. The mesoderm surrounding both the developing heart and anterior foregut endoderm provides instructive cues guiding cardiopulmonary development. Additionally, it serves as a source of cardiopulmonary progenitor cells (CPPs) expressing Wnt2 that give rise to both cardiac and lung mesodermal cell lineages. Despite the mesoderm's critical importance to both heart and lung development, mechanisms guiding CPP specification are unclear. To address this, we lineage traced Wnt2+ CPPs at E8.5 and performed single-cell RNA sequencing on collected progeny across the developmental lifespan. Using computational analyses, we created a CPP-derived cell atlas that revealed a previously underappreciated spectrum of CPP-derived cell lineages, including all lung mesodermal lineages, ventricular cardiomyocytes, and epicardial and pericardial cells. By integrating spatial mapping with computational cell trajectory analysis and transcriptional profiling, we have provided a potential molecular and cellular roadmap for cardiopulmonary development.
Collapse
Affiliation(s)
- Hongbo Wen
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Prashant Chandrasekaran
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Annabelle Jin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Josh Pankin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - MinQi Lu
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Derek C Liberti
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Jarod A Zepp
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Medicine, Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvia N Michki
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA.
| | - David B Frank
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
3
|
Lv H, Qian X, Tao Z, Shu J, Shi D, Yu J, Fan G, Qian Q, Shen L, Lu B. HOXA5-induced lncRNA DNM3OS promotes human embryo lung fibroblast fibrosis via recruiting EZH2 to epigenetically suppress TSC2 expression. J Thorac Dis 2024; 16:1234-1246. [PMID: 38505042 PMCID: PMC10944743 DOI: 10.21037/jtd-23-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an unrepairable disease that results in lung dysfunction and decreased quality of life. Prevention of pulmonary fibrosis is challenging, while its pathogenesis remains largely unknown. Herein, we investigated the effect and mechanism of long non-coding RNA (lncRNA) DNM3OS/Antisense RNA in the pathogenesis of pulmonary fibrosis. Methods EdU (5-ethynyl-2'-deoxyuridine) and wound healing assays were employed to evaluate the role of DNM3OS on cell proliferation and migration. Western blot detected the proteins expressions of alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin. The interactions among genes were evaluated by RNA pull-down, luciferase reporter, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and chromatin Isolation by RNA purification (ChIRP) assays. Results DNM3OS was upregulated by transforming growth factor beta 1 (TGF-β1) in a dose- and time-dependent manner. DNM3OS knockdown repressed the growth and migration of lung fibroblast, and fibrotic gene expression (CoL1α1, CoL3α1, α-SMA, vimentin, and fibronectin), while suppression of TSC2 accelerated the above process. DNM3OS recruited EZH2 to the promoter region of TSC2, increased the occupancy of EZH2 and H3K27me3, and thereby suppressed the expression of TSC2. HOXA5 promoted the transcription of DNM3OS. Conclusions HOXA5-induced DNM3OS promoted the proliferation, migration, and expression of fibrosis-related genes in human embryo lung fibroblast via recruiting EZH2 to epigenetically suppress the expression of TSC2.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Zhengzheng Tao
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Jun Shu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Dongfang Shi
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Jing Yu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Luhong Shen
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| |
Collapse
|
4
|
Chen SY, Liu FC. The Fgf9-Nolz1-Wnt2 axis regulates morphogenesis of the lung. Development 2023; 150:dev201827. [PMID: 37497597 DOI: 10.1242/dev.201827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream β-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.
Collapse
Affiliation(s)
- Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
5
|
Goodwin K, Nelson CM. Analysis of Cre lines for targeting embryonic airway smooth muscle. Dev Biol 2023; 496:63-72. [PMID: 36706974 PMCID: PMC10041960 DOI: 10.1016/j.ydbio.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
During development of the embryonic mouse lung, the pulmonary mesenchyme differentiates into smooth muscle that wraps around the airway epithelium. Inhibiting smooth muscle differentiation leads to cystic airways, while enhancing it stunts epithelial branching. These findings support a conceptual model wherein the differentiation of smooth muscle sculpts the growing epithelium into branches at precise positions and with stereotyped morphologies. Unfortunately, most approaches to manipulate the differentiation of airway smooth muscle rely on pharmacological or physical perturbations that are conducted ex vivo. Here, we explored the use of diphtheria toxin-based genetic ablation strategies to eliminate airway smooth muscle in the embryonic mouse lung. Surprisingly, neither airway smooth muscle wrapping nor epithelial branching were affected in embryos in which the expression of diphtheria toxin or its receptor were driven by several different smooth muscle-specific Cre lines. Close examination of spatial patterns of Cre activity in the embryonic lung revealed that none of these commonly used Cre lines target embryonic airway smooth muscle robustly or specifically. Our findings demonstrate the need for airway smooth muscle-specific Cre lines that are active in the embryonic lung, and serve as a resource for researchers contemplating the use of these commonly used Cre lines for studying embryonic airway smooth muscle.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
6
|
Sountoulidis A, Marco Salas S, Braun E, Avenel C, Bergenstråhle J, Theelke J, Vicari M, Czarnewski P, Liontos A, Abalo X, Andrusivová Ž, Mirzazadeh R, Asp M, Li X, Hu L, Sariyar S, Martinez Casals A, Ayoglu B, Firsova A, Michaëlsson J, Lundberg E, Wählby C, Sundström E, Linnarsson S, Lundeberg J, Nilsson M, Samakovlis C. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat Cell Biol 2023; 25:351-365. [PMID: 36646791 PMCID: PMC9928586 DOI: 10.1038/s41556-022-01064-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/23/2022] [Indexed: 01/18/2023]
Abstract
The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
Collapse
Affiliation(s)
- Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Christophe Avenel
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jonas Theelke
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marco Vicari
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Liontos
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xesus Abalo
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Žaneta Andrusivová
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michaela Asp
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sanem Sariyar
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Burcu Ayoglu
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Alexandra Firsova
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden.
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden.
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW To provide an update on the current understanding of the role of wingless/integrase-1 (Wnt) signaling in pediatric allergic asthma and other pediatric lung diseases. RECENT FINDINGS The Wnt signaling pathway is critical for normal lung development. Genetic and epigenetic human studies indicate a link between Wnt signaling and the development and severity of asthma in children. Mechanistic studies using animal models of allergic asthma demonstrate a key role for Wnt signaling in allergic airway inflammation and remodeling. More recently, data on bronchopulmonary dysplasia (BPD) pathogenesis points to the Wnt signaling pathway as an important regulator. SUMMARY Current data indicates that the Wnt signaling pathway is an important mediator in allergic asthma and BPD pathogenesis. Further studies are needed to characterize the roles of individual Wnt signals in childhood disease, and to identify potential novel therapeutic targets to slow or prevent disease processes.
Collapse
Affiliation(s)
- Nooralam Rai
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Jeanine D’Armiento
- Department of Anesthesiology, Medicine, and Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
8
|
Receptor tyrosine kinase inhibitors negatively impact on pro-reparative characteristics of human cardiac progenitor cells. Sci Rep 2022; 12:10132. [PMID: 35710779 PMCID: PMC9203790 DOI: 10.1038/s41598-022-13203-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinase inhibitors improve cancer survival but their cardiotoxicity requires investigation. We investigated these inhibitors’ effects on human cardiac progenitor cells in vitro and rat heart in vivo. We applied imatinib, sunitinib or sorafenib to human cardiac progenitor cells, assessing cell viability, proliferation, stemness, differentiation, growth factor production and second messengers. Alongside, sunitinib effects were assessed in vivo. Inhibitors decreased (p < 0.05) cell viability, at levels equivalent to ‘peak’ (24 h; imatinib: 91.5 ± 0.9%; sunitinib: 83.9 ± 1.8%; sorafenib: 75.0 ± 1.6%) and ‘trough’ (7 days; imatinib: 62.3 ± 6.2%; sunitinib: 86.2 ± 3.5%) clinical plasma levels, compared to control (100% viability). Reduced (p < 0.05) cell cycle activity was seen with imatinib (29.3 ± 4.3% cells in S/G2/M-phases; 50.3 ± 5.1% in control). Expression of PECAM-1, Nkx2.5, Wnt2, linked with cell differentiation, were decreased (p < 0.05) 2, 2 and 6-fold, respectively. Expression of HGF, p38 and Akt1 in cells was reduced (p < 0.05) by sunitinib. Second messenger (p38 and Akt1) blockade affected progenitor cell phenotype, reducing c-kit and growth factor (HGF, EGF) expression. Sunitinib for 9 days (40 mg/kg, i.p.) in adult rats reduced (p < 0.05) cardiac ejection fraction (68 ± 2% vs. baseline (83 ± 1%) and control (84 ± 4%)) and reduced progenitor cell numbers. Receptor tyrosine kinase inhibitors reduce cardiac progenitor cell survival, proliferation, differentiation and reparative growth factor expression.
Collapse
|
9
|
Goodwin K, Jaslove JM, Tao H, Zhu M, Hopyan S, Nelson CM. Patterning the embryonic pulmonary mesenchyme. iScience 2022; 25:103838. [PMID: 35252804 PMCID: PMC8889149 DOI: 10.1016/j.isci.2022.103838] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
Smooth muscle guides the morphogenesis of several epithelia during organogenesis, including the mammalian airways. However, it remains unclear how airway smooth muscle differentiation is spatiotemporally patterned and whether it originates from transcriptionally distinct mesenchymal progenitors. Using single-cell RNA-sequencing of embryonic mouse lungs, we show that the pulmonary mesenchyme contains a continuum of cell identities, but no transcriptionally distinct progenitors. Transcriptional variability correlates with spatially distinct sub-epithelial and sub-mesothelial mesenchymal compartments that are regulated by Wnt signaling. Live-imaging and tension-sensors reveal compartment-specific migratory behaviors and cortical forces and show that sub-epithelial mesenchyme contributes to airway smooth muscle. Reconstructing differentiation trajectories reveals early activation of cytoskeletal and Wnt signaling genes. Consistently, Wnt activation induces the earliest stages of smooth muscle differentiation and local accumulation of mesenchymal F-actin, which influences epithelial morphology. Our single-cell approach uncovers the principles of pulmonary mesenchymal patterning and identifies a morphogenetically active mesenchymal layer that sculpts the airway epithelium. The embryonic lung mesenchyme is organized into spatially distinct compartments Migratory behaviors and cortical forces differ between compartments Diffusion analysis recapitulates airway smooth muscle differentiation The early stages of smooth muscle differentiation influence airway branching
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M. Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto M5G 1X8, Canada
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Corresponding author
| |
Collapse
|
10
|
Sun X, Perl AK, Li R, Bell SM, Sajti E, Kalinichenko VV, Kalin TV, Misra RS, Deshmukh H, Clair G, Kyle J, Crotty Alexander LE, Masso-Silva JA, Kitzmiller JA, Wikenheiser-Brokamp KA, Deutsch G, Guo M, Du Y, Morley MP, Valdez MJ, Yu HV, Jin K, Bardes EE, Zepp JA, Neithamer T, Basil MC, Zacharias WJ, Verheyden J, Young R, Bandyopadhyay G, Lin S, Ansong C, Adkins J, Salomonis N, Aronow BJ, Xu Y, Pryhuber G, Whitsett J, Morrisey EE. A census of the lung: CellCards from LungMAP. Dev Cell 2022; 57:112-145.e2. [PMID: 34936882 PMCID: PMC9202574 DOI: 10.1016/j.devcel.2021.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.
Collapse
Affiliation(s)
- Xin Sun
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Anne-Karina Perl
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Rongbo Li
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheila M Bell
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Eniko Sajti
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jennifer Kyle
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laura E Crotty Alexander
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge A Masso-Silva
- Deparment of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Kitzmiller
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gail Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Laboratories, Seattle Children's Hospital, OC.8.720, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Yina Du
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Michael P Morley
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Valdez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haoze V Yu
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kang Jin
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric E Bardes
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jarod A Zepp
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Terren Neithamer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William J Zacharias
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Internal Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jamie Verheyden
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Randee Young
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sara Lin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bruce J Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yan Xu
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Gloria Pryhuber
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeff Whitsett
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Edward E Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Kiyokawa H, Morimoto M. Molecular crosstalk in tracheal development and its recurrence in adult tissue regeneration. Dev Dyn 2021; 250:1552-1567. [PMID: 33840142 PMCID: PMC8596979 DOI: 10.1002/dvdy.345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The trachea is a rigid air duct with some mobility, which comprises the upper region of the respiratory tract and delivers inhaled air to alveoli for gas exchange. During development, the tracheal primordium is first established at the ventral anterior foregut by interactions between the epithelium and mesenchyme through various signaling pathways, such as Wnt, Bmp, retinoic acid, Shh, and Fgf, and then segregates from digestive organs. Abnormalities in this crosstalk result in lethal congenital diseases, such as tracheal agenesis. Interestingly, these molecular mechanisms also play roles in tissue regeneration in adulthood, although it remains less understood compared with their roles in embryonic development. In this review, we discuss cellular and molecular mechanisms of trachea development that regulate the morphogenesis of this simple tubular structure and identities of individual differentiated cells. We also discuss how the facultative regeneration capacity of the epithelium is established during development and maintained in adulthood.
Collapse
Affiliation(s)
- Hirofumi Kiyokawa
- Laboratory for Lung Development and RegenerationRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and RegenerationRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| |
Collapse
|
12
|
Kishimoto K, Morimoto M. Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies. Development 2021; 148:dev198192. [PMID: 34228796 PMCID: PMC8276987 DOI: 10.1242/dev.198192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
- RIKEN BDR–CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
13
|
Aros CJ, Pantoja CJ, Gomperts BN. Wnt signaling in lung development, regeneration, and disease progression. Commun Biol 2021; 4:601. [PMID: 34017045 PMCID: PMC8138018 DOI: 10.1038/s42003-021-02118-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a vital, intricate system for several important biological processes including mucociliary clearance, airway conductance, and gas exchange. The Wnt signaling pathway plays several crucial and indispensable roles across lung biology in multiple contexts. This review highlights the progress made in characterizing the role of Wnt signaling across several disciplines in lung biology, including development, homeostasis, regeneration following injury, in vitro directed differentiation efforts, and disease progression. We further note uncharted directions in the field that may illuminate important biology. The discoveries made collectively advance our understanding of Wnt signaling in lung biology and have the potential to inform therapeutic advancements for lung diseases. Cody Aros, Carla Pantoja, and Brigitte Gomperts review the key role of Wnt signaling in all aspects of lung development, repair, and disease progression. They provide an overview of recent research findings and highlight where research is needed to further elucidate mechanisms of action, with the aim of improving disease treatments.
Collapse
Affiliation(s)
- Cody J Aros
- UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, USA.,UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Carla J Pantoja
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Division of Pulmonary and Critical Care MedicineDavid Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA. .,Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
15
|
Zepp JA, Morley MP, Loebel C, Kremp MM, Chaudhry FN, Basil MC, Leach JP, Liberti DC, Niethamer TK, Ying Y, Jayachandran S, Babu A, Zhou S, Frank DB, Burdick JA, Morrisey EE. Genomic, epigenomic, and biophysical cues controlling the emergence of the lung alveolus. Science 2021; 371:371/6534/eabc3172. [PMID: 33707239 PMCID: PMC8320017 DOI: 10.1126/science.abc3172] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/16/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
The lung alveolus is the functional unit of the respiratory system required for gas exchange. During the transition to air breathing at birth, biophysical forces are thought to shape the emerging tissue niche. However, the intercellular signaling that drives these processes remains poorly understood. Applying a multimodal approach, we identified alveolar type 1 (AT1) epithelial cells as a distinct signaling hub. Lineage tracing demonstrates that AT1 progenitors align with receptive, force-exerting myofibroblasts in a spatial and temporal manner. Through single-cell chromatin accessibility and pathway expression (SCAPE) analysis, we demonstrate that AT1-restricted ligands are required for myofibroblasts and alveolar formation. These studies show that the alignment of cell fates, mediated by biophysical and AT1-derived paracrine signals, drives the extensive tissue remodeling required for postnatal respiration.
Collapse
Affiliation(s)
- Jarod A. Zepp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.,Co-Corresponding authors: ,
| | - Michael P. Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison M. Kremp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fatima N. Chaudhry
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C. Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - John P. Leach
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek C. Liberti
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Terren K. Niethamer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sowmya Jayachandran
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Apoorva Babu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David B. Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E. Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA.,Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Co-Corresponding authors: ,
| |
Collapse
|
16
|
Riccetti M, Gokey JJ, Aronow B, Perl AKT. The elephant in the lung: Integrating lineage-tracing, molecular markers, and single cell sequencing data to identify distinct fibroblast populations during lung development and regeneration. Matrix Biol 2020; 91-92:51-74. [PMID: 32442602 PMCID: PMC7434667 DOI: 10.1016/j.matbio.2020.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
During lung development, the mesenchyme and epithelium are dependent on each other for instructive morphogenic cues that direct proliferation, cellular differentiation and organogenesis. Specification of epithelial and mesenchymal cell lineages occurs in parallel, forming cellular subtypes that guide the formation of both transitional developmental structures and the permanent architecture of the adult lung. While epithelial cell types and lineages have been relatively well-defined in recent years, the definition of mesenchymal cell types and lineage relationships has been more challenging. Transgenic mouse lines with permanent and inducible lineage tracers have been instrumental in identifying lineage relationships among epithelial progenitor cells and their differentiation into distinct airway and alveolar epithelial cells. Lineage tracing experiments with reporter mice used to identify fibroblast progenitors and their lineage trajectories have been limited by the number of cell specific genes and the developmental timepoint when the lineage trace was activated. In this review, we discuss major developmental mesenchymal lineages, focusing on time of origin, major cell type, and other lineage derivatives, as well as the transgenic tools used to find and define them. We describe lung fibroblasts using function, location, and molecular markers in order to compare and contrast cells with similar functions. The temporal and cell-type specific expression of fourteen "fibroblast lineage" genes were identified in single-cell RNA-sequencing data from LungMAP in the LGEA database. Using these lineage signature genes as guides, we clustered murine lung fibroblast populations from embryonic day 16.5 to postnatal day 28 (E16.5-PN28) and generated heatmaps to illustrate expression of transcription factors, signaling receptors and ligands in a temporal and population specific manner.
Collapse
Affiliation(s)
- Matthew Riccetti
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jason J Gokey
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Bruce Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Anne-Karina T Perl
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
17
|
Conway RF, Frum T, Conchola AS, Spence JR. Understanding Human Lung Development through In Vitro Model Systems. Bioessays 2020; 42:e2000006. [PMID: 32310312 PMCID: PMC7433239 DOI: 10.1002/bies.202000006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Indexed: 12/19/2022]
Abstract
An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.
Collapse
Affiliation(s)
- Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Ansley S Conchola
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48104, USA
| |
Collapse
|
18
|
Unterleuthner D, Neuhold P, Schwarz K, Janker L, Neuditschko B, Nivarthi H, Crncec I, Kramer N, Unger C, Hengstschläger M, Eferl R, Moriggl R, Sommergruber W, Gerner C, Dolznig H. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis 2020; 23:159-177. [PMID: 31667643 PMCID: PMC7160098 DOI: 10.1007/s10456-019-09688-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.
Collapse
Affiliation(s)
- Daniela Unterleuthner
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Patrick Neuhold
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Katharina Schwarz
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Lukas Janker
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Benjamin Neuditschko
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Harini Nivarthi
- Ludwig Boltzmann Institute for Cancer Research, Währinger Straße 13a, 1090, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Ilija Crncec
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8, 1090, Vienna, Austria
- Servier Pharma, Tuškanova 37, 10 000, Zagreb, Croatia
| | - Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
- Department for Companion Animals and Horses, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Christine Unger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8, 1090, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Währinger Straße 13a, 1090, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Wolfgang Sommergruber
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1130, Vienna, Austria
- Biotechnology, University of Applied Sciences, FH Campus Wien, Helmut- Qualtinger-Gasse 2, 1030, Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Cellular crosstalk in the development and regeneration of the respiratory system. Nat Rev Mol Cell Biol 2019; 20:551-566. [PMID: 31217577 DOI: 10.1038/s41580-019-0141-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
The respiratory system, including the peripheral lungs, large airways and trachea, is one of the most recently evolved adaptations to terrestrial life. To support the exchange of respiratory gases, the respiratory system is interconnected with the cardiovascular system, and this interconnective nature requires a complex interplay between a myriad of cell types. Until recently, this complexity has hampered our understanding of how the respiratory system develops and responds to postnatal injury to maintain homeostasis. The advent of new single-cell sequencing technologies, developments in cellular and tissue imaging and advances in cell lineage tracing have begun to fill this gap. The view that emerges from these studies is that cellular and functional heterogeneity of the respiratory system is even greater than expected and also highly adaptive. In this Review, we explore the cellular crosstalk that coordinates the development and regeneration of the respiratory system. We discuss both the classic cell and developmental biology studies and recent single-cell analysis to provide an integrated understanding of the cellular niches that control how the respiratory system develops, interacts with the external environment and responds to injury.
Collapse
|
20
|
Gene Expression Signatures Point to a Male Sex-Specific Lung Mesenchymal Cell PDGF Receptor Signaling Defect in Infants Developing Bronchopulmonary Dysplasia. Sci Rep 2018; 8:17070. [PMID: 30459472 PMCID: PMC6244280 DOI: 10.1038/s41598-018-35256-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Male sex is a risk factor for development of bronchopulmonary dysplasia (BPD), a common chronic lung disease following preterm birth. We previously found that tracheal aspirate mesenchymal stromal cells (MSCs) from premature infants developing BPD show reduced expression of PDGFRα, which is required for normal lung development. We hypothesized that MSCs from male infants developing BPD exhibit a pathologic gene expression profile deficient in PDGFR and its downstream effectors, thereby favoring delayed lung development. In a discovery cohort of 6 male and 7 female premature infants, we analyzed the tracheal aspirate MSCs transcriptome. A unique gene signature distinguished MSCs from male infants developing BPD from all other MSCs. Genes involved in lung development, PDGF signaling and extracellular matrix remodeling were differentially expressed. We sought to confirm these findings in a second cohort of 13 male and 12 female premature infants. mRNA expression of PDGFRA, FGF7, WNT2, SPRY1, MMP3 and FOXF2 were significantly lower in MSCs from male infants developing BPD. In female infants developing BPD, tracheal aspirate levels of proinflammatory CCL2 and profibrotic Galectin-1 were higher compared to male infants developing BPD and female not developing BPD. Our findings support a notion for sex-specific differences in the mechanisms of BPD development.
Collapse
|
21
|
Watson J, Francavilla C. Regulation of FGF10 Signaling in Development and Disease. Front Genet 2018; 9:500. [PMID: 30405705 PMCID: PMC6205963 DOI: 10.3389/fgene.2018.00500] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Fibroblast Growth Factor 10 (FGF10) is a multifunctional mesenchymal-epithelial signaling growth factor, which is essential for multi-organ development and tissue homeostasis in adults. Furthermore, FGF10 deregulation has been associated with human genetic disorders and certain forms of cancer. Upon binding to FGF receptors with heparan sulfate as co-factor, FGF10 activates several intracellular signaling cascades, resulting in cell proliferation, differentiation, and invasion. FGF10 activity is modulated not only by heparan sulfate proteoglycans in the extracellular matrix, but also by hormones and other soluble factors. Despite more than 20 years of research on FGF10 functions, context-dependent regulation of FGF10 signaling specificity remains poorly understood. Emerging modes of FGF10 signaling regulation will be described, focusing on the role of FGF10 trafficking and sub-cellular localization, heparan sulfate proteoglycans, and miRNAs. Systems biology approaches based on quantitative proteomics will be considered for globally investigating FGF10 signaling specificity. Finally, current gaps in our understanding of FGF10 functions, such as the relative contribution of receptor isoforms to signaling activation, will be discussed in the context of genetic disorders and tumorigenesis.
Collapse
Affiliation(s)
- Joanne Watson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
He H, Du F, He Y, Wei Z, Meng C, Xu Y, Zhou H, Wang N, Luo XG, Ma W, Zhang TC. The Wnt-β-catenin signaling regulated MRTF-A transcription to activate migration-related genes in human breast cancer cells. Oncotarget 2018; 9:15239-15251. [PMID: 29632640 PMCID: PMC5880600 DOI: 10.18632/oncotarget.23961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
MRTF-A is a transcriptional co-activator being critical for multiple processes including tissue fibrosis and cancer metastasis. The Rho-actin signaling stimulates the nuclear translocation and transcriptional activity of MRTF-A with little effect on the expression of MRTF-A gene. High expression of MRTF-A was observed in pancreatic cancer tissues and in TGF-β treated breast cancer cells. However, the mechanism for the upregulation of MRTF-A gene remains unclear. In this study, we showed that the transcription of MRTF-A was regulated by the Wnt-β-catenin signaling in breast cancer cells. LiCl treatment, Wnt3a treatment or β-catenin overexpression enhanced the transcription of MRTF-A gene. In agreement, depletion of β-catenin with siRNA diminished MRTF-A transcription. With ChIP assays, β-catenin was identified to interact with the MRTF-A promoter whereby it increased histone H4 acetylation and RNA polymerase II association. Further, results of RT-qPCR and Western-blotting supported that the transcriptional co-activator activity of MRTF-A was controlled by both the Rho-actin and the Wnt-β-catenin signaling pathways. MRTF-A was required for cell migration stimulated by the Wnt-β-catenin signaling. Taken together, our results suggest that MRTF-A integrates the Rho-actin and the Wnt-β-catenin signaling to regulate migration-related genes and consequently increases the mobility of breast cancer cells.
Collapse
Affiliation(s)
- Hongpeng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Fu Du
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yongping He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhaoqiang Wei
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chao Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yuexin Xu
- Department of Pathology, Mentougou Hospital in Beijing, 102300, Beijing, P.R. China
| | - Hao Zhou
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Wenjian Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.,College of Life Sciences, Wuhan University of Science and Technology, 430081, Wuhan, P. R. China
| |
Collapse
|
23
|
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2017; 23:49-62. [PMID: 28890197 DOI: 10.1016/j.drudis.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease of the airways that develops as a consequence of both genetic and environmental factors. This interaction has highlighted genes important in early life, particularly those that control lung development, such as the Wingless/Integrase-1 (WNT) signalling pathway. Although aberrant WNT signalling is involved with an array of human conditions, it has received little attention within the context of asthma. Yet it is highly relevant, driving events involved with inflammation, airway remodelling, and airway hyper-responsiveness (AHR). In this review, we revisit asthma therapeutics by examining whether WNT signalling is a valid therapeutic target for asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands.
| |
Collapse
|
24
|
Hussain M, Xu C, Lu M, Wu X, Tang L, Wu X. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3226-3242. [PMID: 28866134 DOI: 10.1016/j.bbadis.2017.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
Embryonic lung development requires reciprocal endodermal-mesodermal interactions; mediated by various signaling proteins. Wnt/β-catenin is a signaling protein that exhibits the pivotal role in lung development, injury and repair while aberrant expression of Wnt/β-catenin signaling leads to asthmatic airway remodeling: characterized by hyperplasia and hypertrophy of airway smooth muscle cells, alveolar and vascular damage goblet cells metaplasia, and deposition of extracellular matrix; resulting in decreased lung compliance and increased airway resistance. The substantial evidence suggests that Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Here, we summarized the recent advances related to the mechanistic role of Wnt/β-catenin signaling in lung development, consequences of aberrant expression or deletion of Wnt/β-catenin signaling in expansion and progression of asthmatic airway remodeling, and linking early-impaired pulmonary development and airway remodeling later in life. Finally, we emphasized all possible recent potential therapeutic significance and future prospectives, that are adaptable for therapeutic intervention to treat asthmatic airway remodeling.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China
| | - Meiping Lu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Xiling Wu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China.
| | - Lanfang Tang
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| |
Collapse
|
25
|
Landry-Truchon K, Houde N, Boucherat O, Joncas FH, Dasen JS, Philippidou P, Mansfield JH, Jeannotte L. HOXA5 plays tissue-specific roles in the developing respiratory system. Development 2017; 144:3547-3561. [PMID: 28827394 DOI: 10.1242/dev.152686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022]
Abstract
Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.
Collapse
Affiliation(s)
- Kim Landry-Truchon
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Olivier Boucherat
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - France-Hélène Joncas
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| | - Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10036, USA
| | - Polyxeni Philippidou
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10036, USA
| | - Jennifer H Mansfield
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, USA
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU de Québec, L'Hôtel-Dieu de Québec, Québec G1R 3S3, Canada
| |
Collapse
|
26
|
Tsuji M, Morishima M, Shimizu K, Morikawa S, Heglind M, Enerbäck S, Ezaki T, Tamaoki J. Foxc2influences alveolar epithelial cell differentiation during lung development. Dev Growth Differ 2017; 59:501-514. [DOI: 10.1111/dgd.12368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/17/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Mayoko Tsuji
- First Department of Medicine; Tokyo Women's Medical University; Tokyo Japan
| | - Masae Morishima
- Department of Anatomy and Developmental Biology; Tokyo Women's Medical University; Tokyo Japan
| | - Kazuhiko Shimizu
- Department of Anatomy and Developmental Biology; Tokyo Women's Medical University; Tokyo Japan
| | - Shunichi Morikawa
- Department of Anatomy and Developmental Biology; Tokyo Women's Medical University; Tokyo Japan
| | - Mikael Heglind
- Department of Medical Biochemistry and Cell Biology; Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology; Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Taichi Ezaki
- Department of Anatomy and Developmental Biology; Tokyo Women's Medical University; Tokyo Japan
| | - Jun Tamaoki
- First Department of Medicine; Tokyo Women's Medical University; Tokyo Japan
| |
Collapse
|
27
|
Dinh PUC, Cores J, Hensley MT, Vandergriff AC, Tang J, Allen TA, Caranasos TG, Adler KB, Lobo LJ, Cheng K. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies. Respir Res 2017; 18:132. [PMID: 28666430 PMCID: PMC5493087 DOI: 10.1186/s12931-017-0611-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Background Resident stem and progenitor cells have been identified in the lung over the last decade, but isolation and culture of these cells remains a challenge. Thus, although these lung stem and progenitor cells provide an ideal source for stem-cell based therapy, mesenchymal stem cells (MSCs) remain the most popular cell therapy product for the treatment of lung diseases. Surgical lung biopsies can be the tissue source but such procedures carry a high risk of mortality. Methods In this study we demonstrate that therapeutic lung cells, termed “lung spheroid cells” (LSCs) can be generated from minimally invasive transbronchial lung biopsies using a three-dimensional culture technique. The cells were then characterized by flow cytometry and immunohistochemistry. Angiogenic potential was tested by in-vitro HUVEC tube formation assay. In-vivo bio- distribution of LSCs was examined in athymic nude mice after intravenous delivery. Results From one lung biopsy, we are able to derive >50 million LSC cells at Passage 2. These cells were characterized by flow cytometry and immunohistochemistry and were shown to represent a mixture of lung stem cells and supporting cells. When introduced systemically into nude mice, LSCs were retained primarily in the lungs for up to 21 days. Conclusion Here, for the first time, we demonstrated that direct culture and expansion of human lung progenitor cells from pulmonary tissues, acquired through a minimally invasive biopsy, is possible and straightforward with a three-dimensional culture technique. These cells could be utilized in long-term expansion of lung progenitor cells and as part of the development of cell-based therapies for the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0611-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, RB306, Raleigh, NC 27607, NC, USA
| | - Jhon Cores
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC, USA
| | - M Taylor Hensley
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, RB306, Raleigh, NC 27607, NC, USA
| | - Adam C Vandergriff
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC, USA
| | - Junnan Tang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, RB306, Raleigh, NC 27607, NC, USA.,Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tyler A Allen
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, RB306, Raleigh, NC 27607, NC, USA
| | - Thomas G Caranasos
- Divisions of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth B Adler
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, RB306, Raleigh, NC 27607, NC, USA
| | - Leonard J Lobo
- Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, RB306, Raleigh, NC 27607, NC, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC, USA.
| |
Collapse
|
28
|
Yao C, Carraro G, Konda B, Guan X, Mizuno T, Chiba N, Kostelny M, Kurkciyan A, David G, McQualter JL, Stripp BR. Sin3a regulates epithelial progenitor cell fate during lung development. Development 2017; 144:2618-2628. [PMID: 28619823 DOI: 10.1242/dev.149708] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023]
Abstract
Mechanisms that regulate tissue-specific progenitors for maintenance and differentiation during development are poorly understood. Here, we demonstrate that the co-repressor protein Sin3a is crucial for lung endoderm development. Loss of Sin3a in mouse early foregut endoderm led to a specific and profound defect in lung development with lung buds failing to undergo branching morphogenesis and progressive atrophy of the proximal lung endoderm with complete epithelial loss at later stages of development. Consequently, neonatal pups died at birth due to respiratory insufficiency. Further analysis revealed that loss of Sin3a resulted in embryonic lung epithelial progenitor cells adopting a senescence-like state with permanent cell cycle arrest in G1 phase. This was mediated at least partially through upregulation of the cell cycle inhibitors Cdkn1a and Cdkn2c. At the same time, loss of endodermal Sin3a also disrupted cell differentiation of the mesoderm, suggesting aberrant epithelial-mesenchymal signaling. Together, these findings reveal that Sin3a is an essential regulator for early lung endoderm specification and differentiation.
Collapse
Affiliation(s)
- Changfu Yao
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gianni Carraro
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bindu Konda
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiangrong Guan
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Takako Mizuno
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Norika Chiba
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Kostelny
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Adrianne Kurkciyan
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jonathan L McQualter
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
29
|
Liu X, Liu Y, Li X, Zhao J, Geng Y, Ning W. Follistatin like-1 (Fstl1) is required for the normal formation of lung airway and vascular smooth muscle at birth. PLoS One 2017; 12:e0177899. [PMID: 28574994 PMCID: PMC5456059 DOI: 10.1371/journal.pone.0177899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
Fstl1, a secreted protein of the BMP antagonist class, has been implicated in the regulation of lung development and alveolar maturation. Here we generated a Fstl1-lacZ reporter mouse line as well as a Fstl1 knockout allele. We localized Fstl1 transcript in lung smooth muscle cells and identified Fstl1 as essential regulator of lung smooth muscle formation. Deletion of Fstl1 in mice led to postnatal death as a result of respiratory failure due to multiple defects in lung development. Analysis of the mutant phenotype showed impaired airway smooth muscle (SM) manifested as smaller SM line in trachea and discontinued SM surrounding bronchi, which were associated with decreased transcriptional factors myocardin/serum response factor (SRF) and impaired differentiation of SM cells. Fstl1 knockout mice also displayed abnormal vasculature SM manifested as hyperplasia SM in pulmonary artery. This study indicates a pivotal role for Fstl1 in early stage of lung airway smooth muscle development.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Zhao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yan Geng
- Model Animal Research Center, Nanjing University, Nanjing, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
30
|
Chanda D, Kurundkar A, Rangarajan S, Locy M, Bernard K, Sharma NS, Logsdon NJ, Liu H, Crossman DK, Horowitz JC, De Langhe S, Thannickal VJ. Developmental Reprogramming in Mesenchymal Stromal Cells of Human Subjects with Idiopathic Pulmonary Fibrosis. Sci Rep 2016; 6:37445. [PMID: 27869174 PMCID: PMC5116673 DOI: 10.1038/srep37445] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Cellular plasticity and de-differentiation are hallmarks of tissue/organ regenerative capacity in diverse species. Despite a more restricted capacity for regeneration, humans with age-related chronic diseases, such as cancer and fibrosis, show evidence of a recapitulation of developmental gene programs. We have previously identified a resident population of mesenchymal stromal cells (MSCs) in the terminal airways-alveoli by bronchoalveolar lavage (BAL) of human adult lungs. In this study, we characterized MSCs from BAL of patients with stable and progressive idiopathic pulmonary fibrosis (IPF), defined as <5% and ≥10% decline, respectively, in forced vital capacity over the preceding 6-month period. Gene expression profiles of MSCs from IPF subjects with progressive disease were enriched for genes regulating lung development. Most notably, genes regulating early tissue patterning and branching morphogenesis were differentially regulated. Network interactive modeling of a set of these genes indicated central roles for TGF-β and SHH signaling. Importantly, fibroblast growth factor-10 (FGF-10) was markedly suppressed in IPF subjects with progressive disease, and both TGF-β1 and SHH signaling were identified as critical mediators of this effect in MSCs. These findings support the concept of developmental gene re-activation in IPF, and FGF-10 deficiency as a potentially critical factor in disease progression.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ashish Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sunad Rangarajan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan Locy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nirmal S Sharma
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Naomi J Logsdon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
31
|
Snowball J, Ambalavanan M, Sinner D. Studying Wnt Signaling During Patterning of Conducting Airways. J Vis Exp 2016. [PMID: 27805581 DOI: 10.3791/53910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Wnt signaling pathways play critical roles during development of the respiratory tract. Defining precise mechanisms of differentiation and morphogenesis controlled by Wnt signaling is required to understand how tissues are patterned during normal development. This knowledge is also critical to determine the etiology of birth defects such as lung hypoplasia and tracheobronchomalacia. Analysis of earliest stages of development of respiratory tract imposes challenges, as the limited amount of tissue prevents the performance of standard protocols better suited for postnatal studies. In this paper, we discuss methodologies to study cell differentiation and proliferation in the respiratory tract. We describe techniques such as whole mount staining, processing of the tissue for confocal microscopy and immunofluorescence in paraffin sections applied to developing tracheal lung. We also discuss methodologies for the study of tracheal mesenchyme differentiation, in particular cartilage formation. Approaches and techniques discussed in the current paper circumvent the limitation of material while working with embryonic tissue, allowing for a better understanding of the patterning process of developing conducting airways.
Collapse
Affiliation(s)
- John Snowball
- Neonatology and Pulmonary Biology-Perinatal Institute, Cincinnati Children's Hospital Medical Center
| | - Manoj Ambalavanan
- Neonatology and Pulmonary Biology-Perinatal Institute, Cincinnati Children's Hospital Medical Center
| | - Debora Sinner
- Neonatology and Pulmonary Biology-Perinatal Institute, Cincinnati Children's Hospital Medical Center; University of Cincinnati, College of Medicine;
| |
Collapse
|
32
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
33
|
Lüdtke TH, Rudat C, Wojahn I, Weiss AC, Kleppa MJ, Kurz J, Farin HF, Moon A, Christoffels VM, Kispert A. Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Dev Cell 2016; 39:239-253. [PMID: 27720610 DOI: 10.1016/j.devcel.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Numerous signals drive the proliferative expansion of the distal endoderm and the underlying mesenchyme during lung branching morphogenesis, but little is known about how these signals are integrated. Here, we show by analysis of conditional double mutants that the two T-box transcription factor genes Tbx2 and Tbx3 act together in the lung mesenchyme to maintain branching morphogenesis. Expression of both genes depends on epithelially derived Shh signaling, with additional modulation by Bmp, Wnt, and Tgfβ signaling. Genetic rescue experiments reveal that Tbx2 and Tbx3 function downstream of Shh to maintain pro-proliferative mesenchymal Wnt signaling, in part by direct repression of the Wnt antagonists Frzb and Shisa3. In combination with our previous finding that Tbx2 and Tbx3 repress the cell-cycle inhibitors Cdkn1a and Cdkn1b, we conclude that Tbx2 and Tbx3 maintain proliferation of the lung mesenchyme by way of at least two molecular mechanisms: regulating cell-cycle regulation and integrating the activity of multiple signaling pathways.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anne Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.
| |
Collapse
|
34
|
Duan Y, Zhou M, Xiao J, Wu C, Zhou L, Zhou F, Du C, Song Y. Prediction of key genes and miRNAs responsible for loss of muscle force in patients during an acute exacerbation of chronic obstructive pulmonary disease. Int J Mol Med 2016; 38:1450-1462. [PMID: 28025995 PMCID: PMC5065306 DOI: 10.3892/ijmm.2016.2761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to identify genes and microRNAs (miRNAs or miRs) that were abnormally expressed in the vastus lateralis muscle of patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). The gene expression profile of GSE10828 was downloaded from the Gene Expression Omnibus database, and this dataset was comprised of 4 samples from patients with AECOPD and 5 samples from patients with stable COPD. Differentially expressed genes (DEGs) were screened using the Limma package in R. A protein-protein interaction (PPI) network of DEGs was built based on the STRING database. Module analysis of the PPI network was performed using the ClusterONE plugin and functional analysis of DEGs was conducted using DAVID. Additionally, key miRNAs were enriched using gene set enrichment analysis (GSEA) software and a miR-gene regulatory network was constructed using Cytoscape software. In total, 166 up- and 129 downregulated DEGs associated with muscle weakness in AECOPD were screened. Among them, NCL, GOT1, TMOD1, TSPO, SOD2, NCL and PA2G4 were observed in the modules consisting of upregulated or downregulated genes. The upregulated DEGs in modules (including KLF6 and XRCC5) were enriched in GO terms associated with immune system development, whereas the downregulated DEGs were enriched in GO terms associated with cell death and muscle contraction. Additionally, 39 key AECOPD-related miRNAs were also predicted, including miR-1, miR-9 and miR-23a, miR-16 and miR-15a. In conclusion, DEGs (NCL, GOT1, SOD2, KLF6, XRCC5, TSPO and TMOD1) and miRNAs (such as miR-1, miR-9 and miR-23a) may be associated with the loss of muscle force in patients during an acute exacerbation of COPD which also may act as therapeutic targets in the treatment of AECOPD.
Collapse
Affiliation(s)
- Yanhong Duan
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Min Zhou
- Department of Respiratory Medicine, Jinshan Branch of The Sixth People's Hospital of Shanghai, Shanghai 201599, P.R. China
| | - Jian Xiao
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Chaomin Wu
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Lei Zhou
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Feng Zhou
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Chunling Du
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Yuanlin Song
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| |
Collapse
|
35
|
Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches. Int J Mol Sci 2016; 17:ijms17010128. [PMID: 26797607 PMCID: PMC4730369 DOI: 10.3390/ijms17010128] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.
Collapse
|
36
|
Han L, Nasr T, Zorn AM. Mesodermal lineages in the developing respiratory system. TRENDS IN DEVELOPMENTAL BIOLOGY 2016; 9:91-110. [PMID: 34707332 PMCID: PMC8547324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The life-sustaining air-blood interface of the respiratory system requires the exquisite integration of the epithelial lining with the mesenchymal capillary network, all supported by elastic smooth muscle and rigid cartilage keeping the expandable airways open. These intimate tissue interactions originate in the early embryo, where bidirectional paracrine signaling between the endoderm epithelium and adjacent mesoderm orchestrates lung and trachea development and controls the stereotypical branching morphogenesis. Although much attention has focused on how these interactions impact the differentiation of the respiratory epithelium, relatively less is known about the patterning and differentiation of the mesenchyme. Endothelial cells, smooth muscle cells, and chondrocytes together with other types of mesenchymal cells are essential components of a functional respiratory system, and malformation of these cells can lead to various congenital defects. In this review, we summarize the current understanding of mesenchymal development in the fetal trachea and lung, focusing on recent findings from animal models that have begun to shed light on the poorly understood respiratory mesenchyme lineages.
Collapse
|
37
|
Li C, Li M, Li S, Xing Y, Yang CY, Li A, Borok Z, De Langhe S, Minoo P. Progenitors of secondary crest myofibroblasts are developmentally committed in early lung mesoderm. Stem Cells 2015; 33:999-1012. [PMID: 25448080 DOI: 10.1002/stem.1911] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/20/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022]
Abstract
Development of the mammalian lung is predicated on cross-communications between two highly interactive tissues, the endodermally derived epithelium and the mesodermally derived pulmonary mesenchyme. While much attention has been paid for the lung epithelium, the pulmonary mesenchyme, partly due to lack of specific tractable markers remains under-investigated. The lung mesenchyme is derived from the lateral plate mesoderm and is the principal recipient of Hedgehog (Hh) signaling, a morphogenetic network that regulates multiple aspects of embryonic development. Using the Hh-responsive Gli1-cre(ERT2) mouse line, we identified the mesodermal targets of Hh signaling at various time points during embryonic and postnatal lung development. Cell lineage analysis showed these cells serve as progenitors to contribute to multiple lineages of mesodermally derived differentiated cell types that include parenchymal or interstitial myofibroblasts, peribronchial and perivascular smooth muscle as well as rare populations of cells within the mesothelium. Most importantly, Gli1-cre(ERT2) identified the progenitors of secondary crest myofibroblasts, a hitherto intractable cell type that plays a key role in alveolar formation, a vital process about which little is currently known. Transcriptome analysis of Hh-targeted progenitor cells transitioning from the pseudoglandular to the saccular phase of lung development revealed important modulations of key signaling pathways. Among these, there was significant downregulation of canonical WNT signaling. Ectopic stabilization of β-catenin via inactivation of Apc by Gli1-cre(ERT2) expanded the Hh-targeted progenitor pools, which caused the formation of fibroblastic masses within the lung parenchyma. The Gli1-cre(ERT2) mouse line represents a novel tool in the analysis of mesenchymal cell biology and alveolar formation during lung development.
Collapse
Affiliation(s)
- Changgong Li
- Division of Newborn Medicine, Department of Pediatrics, Los Angeles County+University of Southern California Medical Center and Childrens Hospital Los Angeles
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
FGF10: A multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease. Cytokine Growth Factor Rev 2015; 28:63-9. [PMID: 26559461 DOI: 10.1016/j.cytogfr.2015.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022]
Abstract
The FGF family comprises 22 members with diverse functions in development and health. FGF10 specifically activates FGFR2b in a paracrine manner with heparan sulfate as a co-factor. FGF10and FGFR2b are preferentially expressed in the mesenchyme and epithelium, respectively. FGF10 is a mesenchymal signaling molecule in the epithelium. FGF10 knockout mice die shortly after birth due to the complete absence of lungs as well as fore- and hindlimbs. FGF10 is also essential for the development of multiple organs. The phenotypes of Fgf10 knockout mice are very similar to those of FGFR2b knockout mice, indicating that FGF10 acts as a ligand that is specific to FGFR2b in mouse multi-organ development. FGF10 also plays roles in epithelial-mesenchymal transition, the repair of tissue injury, and embryonic stem cell differentiation. In humans, FGF10 loss-of-function mutations result in inherited diseases including aplasia of lacrimal and salivary gland, lacrimo-auriculo-dento-digital syndrome, and chronic obstructive pulmonary disease. FGF10 is also involved in the oncogenicity of pancreatic and breast cancers. Single nucleotide polymorphisms in FGF10 are also potential risk factors for limb deficiencies, cleft lip and palate, and extreme myopia. These findings indicate that FGF10 is a crucial paracrine signal from the mesenchyme to epithelium for development, health, and disease.
Collapse
|
39
|
Song Z, Liu Z, Sun J, Sun FL, Li CZ, Sun JZ, Xu LY. The MRTF-A/B function as oncogenes in pancreatic cancer. Oncol Rep 2015; 35:127-38. [PMID: 26498848 DOI: 10.3892/or.2015.4329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/06/2015] [Indexed: 11/05/2022] Open
Abstract
Despite evidence that MRTF-A/B, co-activators of serum response factor (SRF), promotes tumor cell invasion and metastasis in cancer, there are no studies describing MRTF-A/B in pancreatic cancer. To clarify involvement of MRTF-A/B expression in pancreatic cancer, we used quantitative reverse transcription-polymerase chain reaction and western blot analysis to detect MRTF-A/B in pancreatic cancer, intraductal papillary mucinous neoplasm (IPMN) and non-neoplastic pancreata. MRTF-A/B expression differs significantly between cancer and non-neoplastic tissues as well as between non-neoplastic tissues and IPMN bulk tissues. Next, we studied the roles of MRTF-A/B in vitro. Overexpression of MRTF-A/B promoted epithelial-mesenchymal transition (EMT) and generated stem cell-like cells in normal pancreatic cells. We performed quantitative reverse transcription-polymerase chain reaction to detect the level of MRTF-A/B in 19 pancreatic cancer cell lines. We found that their expression was associated with gemcitabine resistance. Like in normal pancreatic cells, MRTF-A/B also promoted EMT and promoted formation of stem cell-like cells in pancreatic cancer and they could regulate microRNA expression associated with EMT and CICs. Finally, to further demonstrate the roles of MRTF-A/B in vivo, we performed nude mouse model of s.c. xenograft and found that overexpression of MRTF-A and MRTF-B promoted pancreatic cancer growth. Elucidating the roles of MRTF-A/B will help us to further understand molecular basis of the disease and offer new gene targets for effective therapies.
Collapse
Affiliation(s)
- Zhao Song
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jing Sun
- Department of Radiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Feng-Lei Sun
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Chuan-Zhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jiu-Zheng Sun
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Li-You Xu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
40
|
Yokoyama U. Prostaglandin E-mediated molecular mechanisms driving remodeling of the ductus arteriosus. Pediatr Int 2015; 57:820-7. [PMID: 26228894 DOI: 10.1111/ped.12769] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022]
Abstract
The ductus arteriosus (DA), a fetal arterial connection between the pulmonary arteries and aorta, normally closes after birth. Persistent DA patency usually has life-threatening consequences. In certain DA-dependent congenital heart diseases, however, patient survival depends on maintaining DA patency. Complete closure of the DA involves both functional closure, induced by muscle contraction, and anatomical closure, achieved through morphological and molecular remodeling. Anatomical closure of the DA is associated with the formation of intimal thickening, which is characterized by deposition of extracellular matrix in the subendothelial region, sparse elastic fiber formation, and migration of medial smooth muscle cells into the subendothelial space. In addition, fetal molecular remodeling that is suitable for postnatal muscle contraction has been observed in the DA. After the second trimester, high concentration of prostaglandin E2 (PGE2) causes the DA to dilate through the remainder of the fetal period. Emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that, in addition to its vasodilatory effect, this chronic exposure to PGE2 promotes DA-specific anatomical and molecular remodeling through EP4, one of four receptor subtypes for PGE2. Signals that are downstream of PGE2-EP4, such as cyclic AMP (cAMP)-protein kinase A (PKA), exchange protein activated by cAMP (Epac), phospholipase C, and Wnt/β-catenin, may be involved in the regulation of intimal thickening, elastogenesis, and contraction-related genes. Understanding the physiological role of PGE2 in DA remodeling could enable more effective regulation of PDA, both in isolation and in the context of congenital cardiac anomalies.
Collapse
Affiliation(s)
- Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
41
|
DNA methylation, bacteria and airway inflammation: latest insights. Curr Opin Allergy Clin Immunol 2015; 15:27-32. [PMID: 25479316 DOI: 10.1097/aci.0000000000000130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW DNA methylation is an epigenetic mechanism that has been implicated in the pathogenesis of chronic inflammatory diseases by regulating differentiation, proliferation, apoptosis, and activation of immune cells. Changes in the methylation status of relevant genes have been linked to the origin, perpetuation, and severity of airway diseases. The DNA methylation profile can be also modified by the action of viral and bacterial colonization. Bacteria and specially Staphylococcus aureus toxins are recognized inflammatory amplifying factors in both lower and upper airway chronic diseases. This review summarizes the existent knowledge about the role of DNA methylation changes in chronic airway diseases and the contribution of bacterial infection on this event. RECENT FINDINGS It has been demonstrated that changes in DNA methylation, either intrinsic or induced by allergen or infection, may be linked to the pathogenesis of asthma and allergy. These changes in methylation may suppress the production of anti-inflammatory mediators and increase the survival and activation of pro-inflammatory cells, as well as modify the immune response in response to bacterial infection, increasing their survival and pathogenicity within the infected organism. SUMMARY Understanding the intrinsic epigenetic mechanisms, as well as the effect of environment -for example, bacterial infection in the pathogenesis of airways diseases - will greatly improve the management and the diagnosis of these diseases.
Collapse
|
42
|
Snowball J, Ambalavanan M, Whitsett J, Sinner D. Endodermal Wnt signaling is required for tracheal cartilage formation. Dev Biol 2015; 405:56-70. [PMID: 26093309 DOI: 10.1016/j.ydbio.2015.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
Tracheobronchomalacia is a common congenital defect in which the walls of the trachea and bronchi lack of adequate cartilage required for support of the airways. Deletion of Wls, a cargo receptor mediating Wnt ligand secretion, in the embryonic endoderm using ShhCre mice inhibited formation of tracheal-bronchial cartilaginous rings. The normal dorsal-ventral patterning of tracheal mesenchyme was lost. Smooth muscle cells, identified by Acta2 staining, were aberrantly located in ventral mesenchyme of the trachea, normally the region of Sox9 expression in cartilage progenitors. Wnt/β-catenin activity, indicated by Axin2 LacZ reporter, was decreased in tracheal mesenchyme of Wls(f/f);Shh(Cre/+) embryos. Proliferation of chondroblasts was decreased and reciprocally, proliferation of smooth muscle cells was increased in Wls(f/f);Shh(Cre/+) tracheal tissue. Expression of Tbx4, Tbx5, Msx1 and Msx2, known to mediate cartilage and muscle patterning, were decreased in tracheal mesenchyme of Wls(f/f);Shh(Cre/+) embryos. Ex vivo studies demonstrated that Wnt7b and Wnt5a, expressed by the epithelium of developing trachea, and active Wnt/β-catenin signaling are required for tracheal chondrogenesis before formation of mesenchymal condensations. In conclusion, Wnt ligands produced by the tracheal epithelium pattern the tracheal mesenchyme via modulation of gene expression and cell proliferation required for proper tracheal cartilage and smooth muscle differentiation.
Collapse
Affiliation(s)
- John Snowball
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Medical Center Research Foundation, USA
| | - Manoj Ambalavanan
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Medical Center Research Foundation, USA
| | - Jeffrey Whitsett
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Medical Center Research Foundation, USA; University of Cincinnati, College of Medicine, Cincinnati OH 45229, USA
| | - Debora Sinner
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Medical Center Research Foundation, USA; University of Cincinnati, College of Medicine, Cincinnati OH 45229, USA.
| |
Collapse
|
43
|
Chevigny M, Guérin-Montpetit K, Vargas A, Lefebvre-Lavoie J, Lavoie JP. Contribution of SRF, Elk-1, and myocardin to airway smooth muscle remodeling in heaves, an asthma-like disease of horses. Am J Physiol Lung Cell Mol Physiol 2015; 309:L37-45. [PMID: 25979077 DOI: 10.1152/ajplung.00050.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022] Open
Abstract
Myocyte hyperplasia and hypertrophy contribute to the increased mass of airway smooth muscle (ASM) in asthma. Serum-response factor (SRF) is a transcription factor that regulates myocyte differentiation in vitro in vascular and intestinal smooth muscles. When SRF is associated with phosphorylated (p)Elk-1, it promotes ASM proliferation while binding to myocardin (MYOCD) leading to the expression of contractile elements in these tissues. The objective of this study was therefore to characterize the expression of SRF, pElk-1, and MYOCD in ASM cells from central and peripheral airways in heaves, a spontaneously occurring asthma-like disease of horses, and in controls. Six horses with heaves and five aged-matched controls kept in the same environment were studied. Nuclear protein expression of SRF, pElk-1, and MYOCD was evaluated in peripheral airways and endobronchial biopsies obtained during disease remission and after 1 and 30 days of naturally occurring antigenic exposure using immunohistochemistry and immunofluorescence techniques. Nuclear expression of SRF (P = 0.03, remission vs. 30 days) and MYOCD (P = 0.05, controls vs. heaves at 30 days) increased in the peripheral airways of horses with heaves during disease exacerbation, while MYOCD (P = 0.04, remission vs. 30 days) decreased in the central airways of control horses. No changes were observed in the expression of pElk-1 protein in either tissue. In conclusion, SRF and its cofactor MYOCD likely contribute to the hypertrophy of peripheral ASM observed in equine asthmatic airways, while the remodeling of the central airways is more static or involves different transcription factors.
Collapse
Affiliation(s)
- Mylène Chevigny
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Karine Guérin-Montpetit
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Amandine Vargas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Josiane Lefebvre-Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
44
|
Chao CM, El Agha E, Tiozzo C, Minoo P, Bellusci S. A breath of fresh air on the mesenchyme: impact of impaired mesenchymal development on the pathogenesis of bronchopulmonary dysplasia. Front Med (Lausanne) 2015; 2:27. [PMID: 25973420 PMCID: PMC4412070 DOI: 10.3389/fmed.2015.00027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/11/2015] [Indexed: 12/14/2022] Open
Abstract
The early mouse embryonic lung, with its robust and apparently reproducible branching pattern, has always fascinated developmental biologists. They have extensively used this embryonic organ to decipher the role of mammalian orthologs of Drosophila genes in controlling the process of branching morphogenesis. During the early pseudoglandular stage, the embryonic lung is formed mostly of tubes that keep on branching. As the branching takes place, progenitor cells located in niches are also amplified and progressively differentiate along the proximo-distal and dorso-ventral axes of the lung. Such elaborate processes require coordinated interactions between signaling molecules arising from and acting on four functional domains: the epithelium, the endothelium, the mesenchyme, and the mesothelium. These interactions, quite well characterized in a relatively simple lung tubular structure remain elusive in the successive developmental and postnatal phases of lung development. In particular, a better understanding of the process underlying the formation of secondary septa, key structural units characteristic of the alveologenesis phase, is still missing. This structure is critical for the formation of a mature lung as it allows the subdivision of saccules in the early neonatal lung into alveoli, thereby considerably expanding the respiratory surface. Interruption of alveologenesis in preterm neonates underlies the pathogenesis of chronic neonatal lung disease known as bronchopulmonary dysplasia. De novo formation of secondary septae appears also to be the limiting factor for lung regeneration in human patients with emphysema. In this review, we will therefore focus on what is known in terms of interactions between the different lung compartments and discuss the current understanding of mesenchymal cell lineage formation in the lung, focusing on secondary septae formation.
Collapse
Affiliation(s)
- Cho-Ming Chao
- Department of General Pediatrics and Neonatology, University Children's Hospital Giessen , Giessen , Germany ; Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany
| | - Elie El Agha
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Columbia University , New York, NY , USA
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany ; Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA ; Kazan Federal University , Kazan , Russia
| |
Collapse
|
45
|
McCulley D, Wienhold M, Sun X. The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev 2015; 32:98-105. [PMID: 25796078 PMCID: PMC4763935 DOI: 10.1016/j.gde.2015.01.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/22/2022]
Abstract
Each of the steps of respiratory system development relies on intricate interactions and coordinated development of the lung epithelium and mesenchyme. In the past, more attention has been paid to the epithelium than the mesenchyme. The mesenchyme is a source of specification and morphogenetic signals as well as a host of surprisingly complex cell lineages that are critical for normal lung development and function. This review highlights recent research focusing on the mesenchyme that has revealed genetic and epigenetic mechanisms of its development in the context of other cell layers during respiratory lineage specification, branching morphogenesis, epithelial differentiation, lineage distinction, vascular development, and alveolar maturation.
Collapse
Affiliation(s)
- David McCulley
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mark Wienhold
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
46
|
Hashemi Gheinani A, Burkhard FC, Rehrauer H, Aquino Fournier C, Monastyrskaya K. MicroRNA MiR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2 signaling pathway. J Biol Chem 2015; 290:7067-86. [PMID: 25596533 DOI: 10.1074/jbc.m114.618694] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNA miR-199a-5p impairs tight junction formation, leading to increased urothelial permeability in bladder pain syndrome. Now, using transcriptome analysis in urothelial TEU-2 cells, we implicate it in the regulation of cell cycle, cytoskeleton remodeling, TGF, and WNT signaling pathways. MiR-199a-5p is highly expressed in the smooth muscle layer of the bladder, and we altered its levels in bladder smooth muscle cells (SMCs) to validate the pathway analysis. Inhibition of miR-199a-5p with antimiR increased SMC proliferation, reduced cell size, and up-regulated miR-199a-5p targets, including WNT2. Overexpression of WNT2 protein or treating SMCs with recombinant WNT2 closely mimicked the miR-199a-5p inhibition, whereas down-regulation of WNT2 in antimiR-expressing SMCs with shRNA restored cell phenotype and proliferation rates. Overexpression of miR-199a-5p in the bladder SMCs significantly increased cell size and up-regulated SM22, SM α-actin, and SM myosin heavy chain mRNA and protein levels. These changes as well as increased expression of ACTG2, TGFB1I1, and CDKN1A were mediated by up-regulation of the smooth muscle-specific transcriptional activator myocardin at mRNA and protein levels. Myocardin-related transcription factor A downstream targets Id3 and MYL9 were also induced. Up-regulation of myocardin was accompanied by down-regulation of WNT-dependent inhibitory Krüppel-like transcription factor 4 in miR-199a-5p-overexpressing cells. In contrast, Krüppel-like transcription factor 4 was induced in antimiR-expressing cells following the activation of WNT2 signaling, leading to repression of myocardin-dependent genes. MiR-199a-5p plays a critical role in the WNT2-mediated regulation of proliferative and differentiation processes in the smooth muscle and may behave as a key modulator of smooth muscle hypertrophy, which is relevant for organ remodeling.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- From the Urology Research Laboratory, Department Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Fiona C Burkhard
- Department of Urology, University Hospital, 3010 Bern, Switzerland, and
| | | | | | - Katia Monastyrskaya
- From the Urology Research Laboratory, Department Clinical Research, University of Bern, 3010 Bern, Switzerland,
| |
Collapse
|
47
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
48
|
Kumar ME, Bogard PE, Espinoza FH, Menke DB, Kingsley DM, Krasnow MA. Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution. Science 2014; 346:1258810. [PMID: 25395543 DOI: 10.1126/science.1258810] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most vertebrate organs are composed of epithelium surrounded by support and stromal tissues formed from mesenchyme cells, which are not generally thought to form organized progenitor pools. Here, we use clonal cell labeling with multicolor reporters to characterize individual mesenchymal progenitors in the developing mouse lung. We observe a diversity of mesenchymal progenitor populations with different locations, movements, and lineage boundaries. Airway smooth muscle (ASM) progenitors map exclusively to mesenchyme ahead of budding airways. Progenitors recruited from these tip pools differentiate into ASM around airway stalks; flanking stalk mesenchyme can be induced to form an ASM niche by a lateral bud or by an airway tip plus focal Wnt signal. Thus, mesenchymal progenitors can be organized into localized and carefully controlled domains that rival epithelial progenitor niches in regulatory sophistication.
Collapse
Affiliation(s)
- Maya E Kumar
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Patrick E Bogard
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - F Hernán Espinoza
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602-2607, USA. Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - David M Kingsley
- Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Mark A Krasnow
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
49
|
Rankin SA, Thi Tran H, Wlizla M, Mancini P, Shifley ET, Bloor SD, Han L, Vleminckx K, Wert SE, Zorn AM. A Molecular atlas of Xenopus respiratory system development. Dev Dyn 2014; 244:69-85. [PMID: 25156440 DOI: 10.1002/dvdy.24180] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. RESULTS In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/β-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. CONCLUSIONS We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital, and the Department of Pediatrics, College of Medicine University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gunawardhana LP, Gibson PG, Simpson JL, Benton MC, Lea RA, Baines KJ. Characteristic DNA methylation profiles in peripheral blood monocytes are associated with inflammatory phenotypes of asthma. Epigenetics 2014; 9:1302-16. [PMID: 25147914 DOI: 10.4161/epi.33066] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic changes including DNA methylation caused by environmental exposures may contribute to the heterogeneous inflammatory response in asthma. Here we investigate alterations in DNA methylation of purified blood monocytes that are associated with inflammatory phenotypes of asthma. Peripheral blood was collected from adults with eosinophilic asthma (EA; n = 21), paucigranulocytic asthma (PGA; n = 22), neutrophilic asthma (NA; n = 9), and healthy controls (n = 10). Blood monocytes were isolated using ficoll density gradient and immuno-magnetic cell separation. Bisulfite converted genomic DNA was hybridized to Illumina Infinium Methylation27 arrays and analyzed for differential methylation using R/Bioconductor packages; networks of gene interactions were identified using the STRING database. Compared with healthy controls, differentially methylated CpG loci were identified in EA (n = 413), PGA (n = 495), and NA (n = 89). We found that 223, 237, and 72 loci were significantly hypermethylated in EA, PGA, and NA, respectively. Nine genes were common to all three phenotypes and showed increased methylation in asthma. Three pathway networks were identified in EA, involved in purine metabolism, calcium signaling, and ECM-receptor interaction. In PGA, two networks were identified, involved in neuroactive ligand-receptor interaction and ubiquitin mediated proteolysis. In NA, one network was identified involving sFRP1 as a key node, over representing the Wnt signaling pathway. We have identified characteristic alterations in DNA methylation that are associated with inflammatory phenotypes of asthma and may contribute to the disease mechanisms. This network-based characterization may help in the development of epigenetic biomarkers and therapeutic targets for asthma.
Collapse
Affiliation(s)
- Lakshitha P Gunawardhana
- Priority Research Centre for Asthma and Respiratory Disease; Hunter Medical Research Institute; The University of Newcastle; Newcastle, NSW Australia; Department of Respiratory & Sleep Medicine; HMRI; John Hunter Hospital; New Lambton, NSW Australia
| | - Peter G Gibson
- Priority Research Centre for Asthma and Respiratory Disease; Hunter Medical Research Institute; The University of Newcastle; Newcastle, NSW Australia; Department of Respiratory & Sleep Medicine; HMRI; John Hunter Hospital; New Lambton, NSW Australia
| | - Jodie L Simpson
- Priority Research Centre for Asthma and Respiratory Disease; Hunter Medical Research Institute; The University of Newcastle; Newcastle, NSW Australia; Department of Respiratory & Sleep Medicine; HMRI; John Hunter Hospital; New Lambton, NSW Australia
| | - Miles C Benton
- Genomics Research Centre; Institute of Health and Biomedical Innovation; Queensland Institute of Technology; Brisbane, QLD Australia
| | - Rodney A Lea
- Genomics Research Centre; Institute of Health and Biomedical Innovation; Queensland Institute of Technology; Brisbane, QLD Australia
| | - Katherine J Baines
- Priority Research Centre for Asthma and Respiratory Disease; Hunter Medical Research Institute; The University of Newcastle; Newcastle, NSW Australia; Department of Respiratory & Sleep Medicine; HMRI; John Hunter Hospital; New Lambton, NSW Australia
| |
Collapse
|