1
|
Kawasaki M, Kawasaki K, Sari FT, Kudo T, Nihara J, Kitamura M, Nagai T, Utama V, Ishida Y, Meguro F, Kesuma A, Fujita A, Nishimura T, Kogure Y, Maruyama S, Tanuma JI, Kakihara Y, Maeda T, Ghafoor S, Khonsari RH, Corre P, Sharpe PT, Cobourne M, Franco B, Ohazama A. Cell-cell interaction determines cell fate of mesoderm-derived cell in tongue development through Hh signaling. eLife 2024; 13:e85042. [PMID: 39392396 PMCID: PMC11469673 DOI: 10.7554/elife.85042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Dysfunction of primary cilia leads to genetic disorder, ciliopathies, which shows various malformations in many vital organs such as brain. Multiple tongue deformities including cleft, hamartoma, and ankyloglossia are also seen in ciliopathies, which yield difficulties in fundamental functions such as mastication and vocalization. Here, we found these tongue anomalies in mice with mutation of ciliary protein. Abnormal cranial neural crest-derived cells (CNCC) failed to evoke Hh signal for differentiation of mesoderm-derived cells into myoblasts, which resulted in abnormal differentiation of mesoderm-derived cells into adipocytes. The ectopic adipose subsequently arrested tongue swelling formation. Ankyloglossia was caused by aberrant cell migration due to lack of non-canonical Wnt signaling. In addition to ciliopathies, these tongue anomalies are often observed as non-familial condition in human. We found that these tongue deformities could be reproduced in wild-type mice by simple mechanical manipulations to disturb cellular processes which were disrupted in mutant mice. Our results provide hints for possible future treatment in ciliopathies.
Collapse
Affiliation(s)
- Maiko Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Finsa Tisna Sari
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takehisa Kudo
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Jun Nihara
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Madoka Kitamura
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takahiro Nagai
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Vanessa Utama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Yoko Ishida
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Fumiya Meguro
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Alex Kesuma
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Akira Fujita
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takayuki Nishimura
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Yuan Kogure
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Satoshi Maruyama
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Jun-ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Sarah Ghafoor
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Roman H Khonsari
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Pierre Corre
- Service de Chirurgie Maxillofaciale et tomatology, Centre Hospitalier Universitaire de Nantes,1 place Alexis Ricordeau 44000NantesFrance
| | - Paul T Sharpe
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Martyn Cobourne
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics, Department of Translational Medical Sciences, Federico II University of Naples, ItalyNaplesItaly
- Scuola Superiore Meridionale, School for Advanced Studies, Genomics and Experimental Medicine program,NaplesItaly
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| |
Collapse
|
2
|
Wang L, Li J. Morphogenesis of fungiform papillae in developing miniature pigs. Heliyon 2024; 10:e24953. [PMID: 38314265 PMCID: PMC10837543 DOI: 10.1016/j.heliyon.2024.e24953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Fungiform papillae contain taste buds and play a critical role in mastication and the gustatory system. In this study, we report a series of sequential observations of organogenesis of fungiform papillae in miniature pigs, as well as changes in the expression of BMP2, BMP4, Wnt5a, Sox2, and Notch1 signaling pathway components. Design In this study, we investigated the spatiotemporal expression patterns of BMP, Wnt, Sox2 and Notch in the fungiform papillae of miniature pigs at the bud stage (E40), cap stage (E50) and bell stage (E60). Pregnant miniature pigs were obtained, and the samples were processed for histological staining. Immunohistochemistry and real-time PCR were used to detect the mRNA and protein expression levels of BMP2, BMP4, Wnt5a, Sox2, and Notch1. Results At E40, fungiform papillae were present on the anterior two-thirds of the tongue in a specific array and pattern. The fungiform papillae were enlarged and basically developed at E50 and were largest at the earlier stage (E60). Most of the BMP2 was concentrated in the epithelial layer and the connective tissue core of the fungal papilloma and gradually accumulated from E40-E60. BMP-4 was weakly expressed in the fungiform papillae epithelia, but BMP-4-positive cells were also observed in the developing tongue muscle at E50 and E60. Wnt5a-positive cells were observed in the fungiform papillae epithelia and developing tongue muscle at all three time points. Sox2-positive cells were observed only in fungiform papillae epithelial cells, and Notch1-positive cells could not be detected. Conclusions This study provides primary data regarding the morphogenesis and expression of developmental signals in the fungiform papillae of miniature pigs, establishing a foundation for further research in both this model and humans.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, China
| |
Collapse
|
3
|
Ishan M, Wang Z, Zhao P, Yao Y, Stice SL, Wells L, Mishina Y, Liu HX. Taste papilla cell differentiation requires the regulation of secretory protein production by ALK3-BMP signaling in the tongue mesenchyme. Development 2023; 150:dev201838. [PMID: 37680190 PMCID: PMC10560570 DOI: 10.1242/dev.201838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Taste papillae are specialized organs, each of which comprises an epithelial wall hosting taste buds and a core of mesenchymal tissue. In the present study, we report that during early taste papilla development in mouse embryos, bone morphogenetic protein (BMP) signaling mediated by type 1 receptor ALK3 in the tongue mesenchyme is required for epithelial Wnt/β-catenin activity and taste papilla differentiation. Mesenchyme-specific knockout (cKO) of Alk3 using Wnt1-Cre and Sox10-Cre resulted in an absence of taste papillae at E12.0. Biochemical and cell differentiation analyses demonstrated that mesenchymal ALK3-BMP signaling governed the production of previously unappreciated secretory proteins, i.e. it suppressed those that inhibit and facilitated those that promote taste papilla differentiation. Bulk RNA-sequencing analysis revealed many more differentially expressed genes (DEGs) in the tongue epithelium than in the mesenchyme in Alk3 cKO versus control. Moreover, we detected downregulated epithelial Wnt/β-catenin signaling and found that taste papilla development in the Alk3 cKO was rescued by the GSK3β inhibitor LiCl, but not by Wnt3a. Our findings demonstrate for the first time the requirement of tongue mesenchyme in taste papilla cell differentiation.
Collapse
Affiliation(s)
- Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Zhonghou Wang
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Yao Yao
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Steven L. Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Rhee YH, Choi YH, Hu AC, Lee MY, Ahn JC, Kim S, Mo JH, Woo SH, Chung PS. Role of Transient Receptor Potential Vanilloid 1 in Sonic Hedgehog-Dependent Taste Bud Differentiation. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010075. [PMID: 36676024 PMCID: PMC9862146 DOI: 10.3390/life13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Taste bud cell differentiation is extremely important for taste sensation. Immature taste bud cells cannot function during taste perception transmission to the nerve. In this study, we investigated whether hedgehog signaling affected taste bud cell differentiation and whether transient receptor potential vanilloid 1 (TRPV1) played a key role in dry mouth. The induction of dry mouth due to salivary gland resection (SGR) was confirmed on the basis of reduced salivation and disrupted fungiform papillae. The expression of keratin 8 (K8) of taste bud cells, neurofilament (NF), sonic hedgehog (Shh), and glioma-associated oncogene homolog 1 (Gli1) around taste bud cells was downregulated; however, the expression of TRPV1, P2X purinoceptor 3 (P2X3), and hematopoietic stem cell factor (c-Kit) was upregulated at the NF ends in the dry mouth group. To investigate the effect of TRPV1 defect on dry mouth, we induced dry mouth in the TRPV-/- group. The K8, NF, and P2X3 expression patterns were the same in the TRPV1 wild-type and TRPV1-/- dry mouth groups. However, Shh and c-Kit expression decreased regardless of dry mouth in the case of TRPV1 deficiency. These results indicated that TRPV1 positively regulated proliferation during taste bud cell injury by blocking the Shh/Gli1 pathway. In addition, not only cell proliferation but also differentiation of taste bud cells could not be regulated under TRPV1-deficiency conditions. Thus, TRPV1 positively regulates taste bud cell innervation and differentiation; this finding could be valuable in the clinical treatment of dry mouth-related taste dysfunction.
Collapse
Affiliation(s)
- Yun-Hee Rhee
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
| | - Young-Hoon Choi
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
| | - Allison C. Hu
- Beckman Laser Institute and Medical Clinic, University of California Irvine, 1002 Health Sciences Rd., Irvine, CA 92697, USA
| | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Chul Ahn
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Sehwan Kim
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Ji-Hun Mo
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Zhang W, Yu J, Fu G, Li J, Huang H, Liu J, Yu D, Qiu M, Li F. ISL1/SHH/CXCL12 signaling regulates myogenic cell migration during mouse tongue development. Development 2022; 149:277065. [DOI: 10.1242/dev.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT
Migration of myoblasts derived from the occipital somites is essential for tongue morphogenesis. However, the molecular mechanisms of myoblast migration remain elusive. In this study, we report that deletion of Isl1 in the mouse mandibular epithelium leads to aglossia due to myoblast migration defects. Isl1 regulates the expression pattern of chemokine ligand 12 (Cxcl12) in the first branchial arch through the Shh/Wnt5a cascade. Cxcl12+ mesenchymal cells in Isl1ShhCre embryos were unable to migrate to the distal region, but instead clustered in a relatively small proximal domain of the mandible. CXCL12 serves as a bidirectional cue for myoblasts expressing its receptor CXCR4 in a concentration-dependent manner, attracting Cxcr4+ myoblast invasion at low concentrations but repelling at high concentrations. The accumulation of Cxcl12+ mesenchymal cells resulted in high local concentrations of CXCL12, which prevented Cxcr4+ myoblast invasion. Furthermore, transgenic activation of Ihh alleviated defects in tongue development and rescued myoblast migration, confirming the functional involvement of Hedgehog signaling in tongue development. In summary, this study provides the first line of genetic evidence that the ISL1/SHH/CXCL12 axis regulates myoblast migration during tongue development.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jiaojiao Yu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Guoquan Fu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Huarong Huang
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Department of Environmental Sciences, College of Environmental and Resource Sciences, Zhejiang University 2 , Hangzhou 310058 , People's Republic of China
| | - Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University 3 , Hangzhou 310018 , People's Republic of China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Feixue Li
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| |
Collapse
|
6
|
Asada N, Suzuki K, Sunohara M. Spatiotemporal distribution analyses of Wnt5a ligand and its receptors Ror2, Frizzled2, and Frizzled5 during tongue muscle development in prenatal mice. Ann Anat 2022; 245:152017. [DOI: 10.1016/j.aanat.2022.152017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
7
|
Barlow LA. The sense of taste: Development, regeneration, and dysfunction. WIREs Mech Dis 2022; 14:e1547. [PMID: 34850604 PMCID: PMC11152580 DOI: 10.1002/wsbm.1547] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Gustation or the sense of taste is a primary sense, which functions as a gatekeeper for substances that enter the body. Animals, including humans, ingest foods that contain appetitive taste stimuli, including those that have sweet, moderately salty and umami (glutamate) components, and tend to avoid bitter-tasting items, as many bitter compounds are toxic. Taste is mediated by clusters of heterogeneous taste receptors cells (TRCs) organized as taste buds on the tongue, and these convey taste information from the oral cavity to higher order brain centers via the gustatory sensory neurons of the seventh and ninth cranial ganglia. One remarkable aspect of taste is that taste perception is mostly uninterrupted throughout life yet TRCs within buds are constantly renewed; every 1-2 months all taste cells have been steadily replaced. In the past decades we have learned a substantial amount about the cellular and molecular regulation of taste bud cell renewal, and how taste buds are initially established during embryogenesis. Here I review more recent findings pertaining to taste development and regeneration, as well as discuss potential mechanisms underlying taste dysfunction that often occurs with disease or its treatment. This article is categorized under: Infectious Diseases > Stem Cells and Development Cancer > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Linda A Barlow
- Department of Cell & Developmental Biology, Graduate Program in Cell Biology, Stem Cells & Development, and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Development and Regeneration of Muscle, Tendon, and Myotendinous Junctions in Striated Skeletal Muscle. Int J Mol Sci 2022; 23:ijms23063006. [PMID: 35328426 PMCID: PMC8950615 DOI: 10.3390/ijms23063006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Owing to a rapid increase in aging population in recent years, the deterioration of motor function in older adults has become an important social problem, and several studies have aimed to investigate the mechanisms underlying muscle function decline. Furthermore, structural maintenance of the muscle–tendon–bone complexes in the muscle attachment sites is important for motor function, particularly for joints; however, the development and regeneration of these complexes have not been studied thoroughly and require further elucidation. Recent studies have provided insights into the roles of mesenchymal progenitors in the development and regeneration of muscles and myotendinous junctions. In particular, studies on muscles and myotendinous junctions have—through the use of the recently developed scRNA-seq—reported the presence of syncytia, thereby suggesting that fibroblasts may be transformed into myoblasts in a BMP-dependent manner. In addition, the high mobility group box 1—a DNA-binding protein found in nuclei—is reportedly involved in muscle regeneration. Furthermore, studies have identified several factors required for the formation of locomotor apparatuses, e.g., tenomodulin (Tnmd) and mohawk (Mkx), which are essential for tendon maturation.
Collapse
|
9
|
Ishan M, Chen G, Yu W, Wang Z, Giovannini M, Cao X, Liu HX. Deletion of Nf2 in neural crest-derived tongue mesenchyme alters tongue shape and size, Hippo signalling and cell proliferation in a region- and stage-specific manner. Cell Prolif 2021; 54:e13144. [PMID: 34697858 PMCID: PMC8666282 DOI: 10.1111/cpr.13144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives The mammalian tongue develops from the branchial arches (1–4) and comprises highly organized tissues compartmentalized by mesenchyme/connective tissue that is largely derived from neural crest (NC). This study aimed to understand the roles of tumour suppressor Neurofibromin 2 (Nf2) in NC‐derived tongue mesenchyme in regulating Hippo signalling and cell proliferation for the proper development of tongue shape and size. Materials and methods Conditional knockout (cKO) of Nf2 in NC cell lineage was generated using Wnt1‐Cre (Wnt1‐Cre/Nf2cKO). Nf2 expression, Hippo signalling activities, cell proliferation and tongue shape and size were thoroughly analysed in different tongue regions and tissue types of Wnt1‐Cre/Nf2cKO and Cre‐/Nf2fx/fx littermates at various stages (E10.5–E18.5). Results In contrast to many other organs in which the Nf2/Hippo pathway activity restrains growth and cell proliferation and as a result, loss of Nf2 decreases Hippo pathway activity and promotes an enlarged organ development, here we report our observations of distinct, tongue region‐ and stage‐specific alterations of Hippo signalling activity and cell proliferation in Nf2cKO in NC‐derived tongue mesenchyme. Compared to Cre−/Nf2fx/fx littermates, Wnt1‐Cre/Nf2cKO depicted a non‐proportionally enlarged tongue (macroglossia) at E12.5–E13.5 and microglossia at later stages (E15.5–E18.5). Specifically, at E12.5 Nf2cKO mutants had a decreased level of Hippo signalling transcription factor Yes‐associated protein (Yap), Yap target genes and cell proliferation anteriorly, while having an increased Yap, Yap target genes and cell proliferation posteriorly, which lead to a tip‐pointed and posteriorly widened tongue. At E15.5, loss of Nf2 in the NC lineage resulted in distinct changes in cell proliferation in different regions, that is, high in epithelium and mesenchyme subjacent to the epithelium, and lower in deeper layers of the mesenchyme. At E18.5, cell proliferation was reduced throughout the Nf2cKO tongue.
Collapse
Affiliation(s)
- Mohamed Ishan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Guiqian Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Wenxin Yu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Zhonghou Wang
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Expression of R-spondins/Lgrs in development of movable craniofacial organs. Gene Expr Patterns 2021; 41:119195. [PMID: 34126267 DOI: 10.1016/j.gep.2021.119195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 01/26/2023]
Abstract
Wnt signaling plays a critical role in the development of many organs, including the major movable craniofacial organs tongue, lip, and eyelid. Four members of the R-spondin family (Rspo1-4) bind to Lgr4/5/6 to regulate the activation of Wnt signaling. However, it is not fully understood how Rspos/Lgrs regulate Wnt signaling during the development of movable craniofacial organs. To address this question, we examined the expression of Rspos, Lgrs, and Axin2 (major mediator of canonical Wnt signaling) during tongue, lip, and eyelid development. The expression of Axin2, Rspos and Lgrs was observed in many similar regions, suggesting that Rspos likely activate canonical Wnt signaling through the Lgr-dependent pathway in these regions. Lgr expression was not detected in regions where Axin2 and Rspos were expressed, suggesting that Rspos might activate canonical Wnt signaling through the Lgr-independent pathway in these regions. In addition, the expression of Rspos and Lgrs were observed in some other regions where Axin2 was not expressed, suggesting the possibility that Rspos and/or Lgrs are involved in non-canonical Wnt signaling or the Wnt-independent pathway. Thus, we identified a dynamic spatiotemporal expression pattern of Rspos and Lgrs during the development of the eyelid, tongue, and lip.
Collapse
|
11
|
Ishan M, Chen G, Sun C, Chen SY, Komatsu Y, Mishina Y, Liu HX. Increased activity of mesenchymal ALK2-BMP signaling causes posteriorly truncated microglossia and disorganization of lingual tissues. Genesis 2020; 58:e23337. [PMID: 31571391 PMCID: PMC6980365 DOI: 10.1002/dvg.23337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
Proper development of taste organs including the tongue and taste papillae requires interactions with the underlying mesenchyme through multiple molecular signaling pathways. The effects of bone morphogenetic proteins (BMPs) and antagonists are profound, however, the tissue-specific roles of distinct receptors are largely unknown. Here, we report that constitutive activation (ca) of ALK2-BMP signaling in the tongue mesenchyme (marked by Wnt1-Cre) caused microglossia-a dramatically smaller and misshapen tongue with a progressively severe reduction in size along the anteroposterior axis and absence of a pharyngeal region. At E10.5, the tongue primordia (branchial arches 1-4) formed in Wnt1-Cre/caAlk2 mutants while each branchial arch responded to elevated BMP signaling distinctly in gene expression of BMP targets (Id1, Snai1, Snai2, and Runx2), proliferation (Cyclin-D1) and apoptosis (p53). Moreover, elevated ALK2-BMP signaling in the mesenchyme resulted in apparent defects of lingual epithelium, muscles, and nerves. In Wnt1-Cre/caAlk2 mutants, a circumvallate papilla was missing and further development of formed fungiform papillae was arrested in late embryos. Our data collectively demonstrate that ALK2-BMP signaling in the mesenchyme plays essential roles in orchestrating various tissues for proper development of the tongue and its appendages in a region-specific manner.
Collapse
Affiliation(s)
- Mohamed Ishan
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia
| | - Guiqian Chen
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia
| | - Chenming Sun
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Hong-Xiang Liu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia
| |
Collapse
|
12
|
Hedgehog Signaling Regulates Taste Organs and Oral Sensation: Distinctive Roles in the Epithelium, Stroma, and Innervation. Int J Mol Sci 2019; 20:ijms20061341. [PMID: 30884865 PMCID: PMC6471208 DOI: 10.3390/ijms20061341] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
The Hedgehog (Hh) pathway has regulatory roles in maintaining and restoring lingual taste organs, the papillae and taste buds, and taste sensation. Taste buds and taste nerve responses are eliminated if Hh signaling is genetically suppressed or pharmacologically inhibited, but regeneration can occur if signaling is reactivated within the lingual epithelium. Whereas Hh pathway disruption alters taste sensation, tactile and cold responses remain intact, indicating that Hh signaling is modality-specific in regulation of tongue sensation. However, although Hh regulation is essential in taste, the basic biology of pathway controls is not fully understood. With recent demonstrations that sonic hedgehog (Shh) is within both taste buds and the innervating ganglion neurons/nerve fibers, it is compelling to consider Hh signaling throughout the tongue and taste organ cell and tissue compartments. Distinctive signaling centers and niches are reviewed in taste papilla epithelium, taste buds, basal lamina, fibroblasts and lamellipodia, lingual nerves, and sensory ganglia. Several new roles for the innervation in lingual Hh signaling are proposed. Hh signaling within the lingual epithelium and an intact innervation each is necessary, but only together are sufficient to sustain and restore taste buds. Importantly, patients who use Hh pathway inhibiting drugs confront an altered chemosensory world with loss of taste buds and taste responses, intact lingual touch and cold sensation, and taste recovery after drug discontinuation.
Collapse
|
13
|
How to make a tongue: Cellular and molecular regulation of muscle and connective tissue formation during mammalian tongue development. Semin Cell Dev Biol 2018; 91:45-54. [PMID: 29784581 DOI: 10.1016/j.semcdb.2018.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/16/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022]
Abstract
The vertebrate tongue is a complex muscular organ situated in the oral cavity and involved in multiple functions including mastication, taste sensation, articulation and the maintenance of oral health. Although the gross embryological contributions to tongue formation have been known for many years, it is only relatively recently that the molecular pathways regulating these processes have begun to be discovered. In particular, there is now evidence that the Hedgehog, TGF-Beta, Wnt and Notch signaling pathways all play an important role in mediating appropriate signaling interactions between the epithelial, cranial neural crest and mesodermal cell populations that are required to form the tongue. In humans, a number of congenital abnormalities that affect gross morphology of the tongue have also been described, occurring in isolation or as part of a developmental syndrome, which can greatly impact on the health and well-being of affected individuals. These anomalies can range from an absence of tongue formation (aglossia) through to diminutive (microglossia), enlarged (macroglossia) or bifid tongue. Here, we present an overview of the gross anatomy and embryology of mammalian tongue development, focusing on the molecular processes underlying formation of the musculature and connective tissues within this organ. We also survey the clinical presentation of tongue anomalies seen in human populations, whilst considering their developmental and genetic etiology.
Collapse
|
14
|
Prochazkova M, Häkkinen TJ, Prochazka J, Spoutil F, Jheon AH, Ahn Y, Krumlauf R, Jernvall J, Klein OD. FGF signaling refines Wnt gradients to regulate the patterning of taste papillae. Development 2017; 144:2212-2221. [PMID: 28506989 DOI: 10.1242/dev.148080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022]
Abstract
The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of Sostdc1 expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes.
Collapse
Affiliation(s)
- Michaela Prochazkova
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA.,Institute of Molecular Genetics of the CAS, v. v. i., Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Prumyslova 595, Vestec 252 42, Czech Republic
| | - Teemu J Häkkinen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki FIN-00014, Finland
| | - Jan Prochazka
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA.,Institute of Molecular Genetics of the CAS, v. v. i., Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Prumyslova 595, Vestec 252 42, Czech Republic
| | - Frantisek Spoutil
- Institute of Molecular Genetics of the CAS, v. v. i., Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Prumyslova 595, Vestec 252 42, Czech Republic
| | - Andrew H Jheon
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jukka Jernvall
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki FIN-00014, Finland
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA .,Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Abstract
The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.
Collapse
Affiliation(s)
- Charlotte M Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109;
| | - Archana Kumari
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
16
|
Honda K, Tomooka Y. Nerve-independent and ectopically additional induction of taste buds in organ culture of fetal tongues. In Vitro Cell Dev Biol Anim 2016; 52:911-919. [PMID: 27368433 DOI: 10.1007/s11626-016-0067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.
Collapse
Affiliation(s)
- Kotaro Honda
- Graduate School of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Yasuhiro Tomooka
- Graduate School of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| |
Collapse
|
17
|
Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds. PLoS One 2016; 11:e0148315. [PMID: 26901525 PMCID: PMC4762545 DOI: 10.1371/journal.pone.0148315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.
Collapse
|
18
|
Boggs K, Venkatesan N, Mederacke I, Komatsu Y, Stice S, Schwabe RF, Mistretta CM, Mishina Y, Liu HX. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate. PLoS One 2016; 11:e0146475. [PMID: 26741369 PMCID: PMC4704779 DOI: 10.1371/journal.pone.0146475] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.
Collapse
Affiliation(s)
- Kristin Boggs
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Nandakumar Venkatesan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Ingmar Mederacke
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Yoshihiro Komatsu
- Department of Pediatrics, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Steve Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| | - Robert F. Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Charlotte M. Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
19
|
Abstract
Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero.
Collapse
Affiliation(s)
- Linda A Barlow
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA; Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA; Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Ophir D Klein
- Departments of Orofacial Sciences and Pediatrics, University of California San Francisco, San Francisco, California, USA; Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Cong W, Liu B, Liu S, Sun M, Liu H, Yang Y, Wang R, Xiao J. Implications of the Wnt5a/CaMKII pathway in retinoic acid-induced myogenic tongue abnormalities of developing mice. Sci Rep 2014; 4:6082. [PMID: 25124193 PMCID: PMC4133706 DOI: 10.1038/srep06082] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/24/2014] [Indexed: 01/26/2023] Open
Abstract
Although proper tongue development is relevant to other structures in the craniofacial region, the molecular details of muscle development in tongue remain poorly understood. Here, we report that pregnant mice treated with retinoic acid (+RA) produce embryos with tongue malformation and a cleft palate. Histological analyses revealed that at E14.5, the tongues of +RA fetuses failed to descend and flatten. Ultrastructural analysis showed that at perinatal stage E18.5, the myofilaments failed to form normal structures of sarcomeres, and arranged disorderly in the genioglossus. The proliferation and levels of myogenic determination markers (Myf5 and MyoD) and myosin in the genioglossus were profoundly reduced. Wnt5a and Camk2d expressions were down-regulated, while levels of Tbx1, Ror2, and PKCδ were up-regulated in the tongues of +RA fetuses. In mock- and Wnt5a-transfected C2C12 (Wnt5a-C2C12) cells, Wnt5a overexpression impaired proliferation, and maintained Myf5 at a relative high level after RA treatment. Furthermore, Wnt5a overexpression positively correlated with levels of Camk2d and Ror2 in C2C12 cells after RA exposure. These data support the hypothesis that the Wnt5a/CaMKII pathway is directly involved in RA-induced hypoplasia and disorder of tongue muscles.
Collapse
Affiliation(s)
- Wei Cong
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Bo Liu
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Mingzhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Han Liu
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yue Yang
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Ru Wang
- Department of Stomatology, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Jing Xiao
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, China
| |
Collapse
|
21
|
Zhu X, Liu Y, Zhao P, Dai Z, Yang X, Li Y, Qiu M, Zhang Z. Gpr177-mediated Wnt Signaling is Required for Fungiform Placode Initiation. J Dent Res 2014; 93:582-8. [PMID: 24736288 DOI: 10.1177/0022034514531985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/24/2014] [Indexed: 11/15/2022] Open
Abstract
Fungiform papillae are formed as patterned rows on the surface of the anterior tongue at early organogenesis and contain one taste bud in each papilla to form one of the important sensory organs. Despite the essential role of Wnt/β-catenin signaling in controlling the development of fungiform taste papillae, the universal function of Wnt ligands in the initiation of the fungiform placode has not been completely elucidated. Here, by Shh (Cre) -mediated oral epithelial deletion of Wntless (Gpr177), a regulator essential for intracellular Wnt trafficking, we demonstrate that an overall function of Wnts is required for initiation of the fungiform placode. Multiple Wnts are expressed in the tongue epithelium at E11.5 before initiation of the fungiform placodes. Epithelial Gpr177 loss-of-function, associated with reduction of canonical Wnt signaling in lingual epithelium as exhibited by a loss of TopGal activity and Axin2 expression, results in the failure of fungiform placode initiation, as assessed by diminished expression of several taste placode molecular markers. Moreover, LiCl treatment of Gpr177 epithelial-deficient tongue explants at E11.5, but not at E12.5, restores tongue placode formation, demonstrating that Wnt ligands in the tongue surface prior to but not after fungiform placode initiation are responsible for fungiform papilla initiation. Epithelium-specific expression of an active β-catenin in the Gpr177-deficient tongue leads to fungiform papillae generation, suggesting that an intra-epithelial response to Wnts is required for placode initiation. Together, these results suggest that Gpr177 controls epithelial initiation of the fungiform placode through signaling via epithelial Wnt ligands.
Collapse
Affiliation(s)
- X Zhu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - Y Liu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - P Zhao
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - Z Dai
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - X Yang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - Y Li
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - M Qiu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - Z Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| |
Collapse
|
22
|
Abstract
Planar cell polarity (PCP), a process controlling coordinated, uniformly polarized cellular behaviors in a field of cells, has been identified to be critically required for many fundamental developmental processes. However, a global directional cue that establishes PCP in a three-dimensional tissue or organ with respect to the body axes remains elusive. In vertebrate, while Wnt-secreted signaling molecules have been implicated in regulating PCP in a β-catenin-independent manner, whether they function permissively or act as a global cue to convey directional information is not clearly defined. In addition, the underlying molecular mechanism by which Wnt signal is transduced to core PCP proteins is largely unknown. In this chapter, I review the roles of Wnt signaling in regulating PCP during vertebrate development and update our knowledge of its regulatory mechanism.
Collapse
Affiliation(s)
- Bo Gao
- National Human Genome Research Institute, Bethesda, Maryland, USA.
| |
Collapse
|