1
|
Poulin JF, Luppi MP, Hofer C, Caronia G, Hsu PK, Chan CS, Awatramani R. PRISM: A Progenitor-Restricted Intersectional Fate Mapping Approach Redefines Forebrain Lineages. Dev Cell 2021; 53:740-753.e3. [PMID: 32574593 DOI: 10.1016/j.devcel.2020.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/24/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
Lineage tracing aims to identify the progeny of a defined population of dividing progenitor cells, a daunting task in the developing central nervous system where thousands of cell types are generated. In mice, lineage analysis has been accomplished using Cre recombinase to indelibly label a defined progenitor population and its progeny. However, the interpretation of historical recombination events is hampered by the fact that driver genes are often expressed in both progenitors and postmitotic cells. Genetically inducible approaches provide temporal specificity but are afflicted by mosaicism and toxicity. Here, we present PRISM, a progenitor-restricted intersectional fate mapping approach in which Flp recombinase expression is both dependent on Cre and restricted to neural progenitors, thus circumventing the aforementioned confounds. This tool can be used in conjunction with existing Cre lines making it broadly applicable. We applied PRISM to resolve two developmentally important, but contentious, lineages-Shh and Cux2.
Collapse
Affiliation(s)
- Jean-François Poulin
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University Montreal, Quebec H3A 0G4, Canada
| | - Milagros Pereira Luppi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Caitlyn Hofer
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Giuliana Caronia
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pei-Ken Hsu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Ye Y, Kang X, Bailey J, Li C, Hong T. An enriched network motif family regulates multistep cell fate transitions with restricted reversibility. PLoS Comput Biol 2019; 15:e1006855. [PMID: 30845219 PMCID: PMC6424469 DOI: 10.1371/journal.pcbi.1006855] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/19/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Multistep cell fate transitions with stepwise changes of transcriptional profiles are common to many developmental, regenerative and pathological processes. The multiple intermediate cell lineage states can serve as differentiation checkpoints or branching points for channeling cells to more than one lineages. However, mechanisms underlying these transitions remain elusive. Here, we explored gene regulatory circuits that can generate multiple intermediate cellular states with stepwise modulations of transcription factors. With unbiased searching in the network topology space, we found a motif family containing a large set of networks can give rise to four attractors with the stepwise regulations of transcription factors, which limit the reversibility of three consecutive steps of the lineage transition. We found that there is an enrichment of these motifs in a transcriptional network controlling the early T cell development, and a mathematical model based on this network recapitulates multistep transitions in the early T cell lineage commitment. By calculating the energy landscape and minimum action paths for the T cell model, we quantified the stochastic dynamics of the critical factors in response to the differentiation signal with fluctuations. These results are in good agreement with experimental observations and they suggest the stable characteristics of the intermediate states in the T cell differentiation. These dynamical features may help to direct the cells to correct lineages during development. Our findings provide general design principles for multistep cell linage transitions and new insights into the early T cell development. The network motifs containing a large family of topologies can be useful for analyzing diverse biological systems with multistep transitions. The functions of cells are dynamically controlled in many biological processes including development, regeneration and disease progression. Cell fate transition, or the switch of cellular functions, often involves multiple steps. The intermediate stages of the transition provide the biological systems with the opportunities to regulate the transitions in a precise manner. These transitions are controlled by key regulatory genes of which the expression shows stepwise patterns, but how the interactions of these genes can determine the multistep processes was unclear. Here, we present a comprehensive analysis on the design principles of gene circuits that govern multistep cell fate transition. We found a large network family with common structural features that can generate systems with the ability to control three consecutive steps of the transition. We found that this type of networks is enriched in a gene circuit controlling the development of T lymphocyte, a crucial type of immune cells. We performed mathematical modeling using this gene circuit and we recapitulated the stepwise and irreversible loss of stem cell properties of the developing T lymphocytes. Our findings can be useful to analyze a wide range of gene regulatory networks controlling multistep cell fate transitions.
Collapse
Affiliation(s)
- Yujie Ye
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Xin Kang
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Jordan Bailey
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America.,National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee, United States of America
| |
Collapse
|
3
|
Brodski C, Blaess S, Partanen J, Prakash N. Crosstalk of Intercellular Signaling Pathways in the Generation of Midbrain Dopaminergic Neurons In Vivo and from Stem Cells. J Dev Biol 2019; 7:jdb7010003. [PMID: 30650592 PMCID: PMC6473842 DOI: 10.3390/jdb7010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Dopamine-synthesizing neurons located in the mammalian ventral midbrain are at the center stage of biomedical research due to their involvement in severe human neuropsychiatric and neurodegenerative disorders, most prominently Parkinson’s Disease (PD). The induction of midbrain dopaminergic (mDA) neurons depends on two important signaling centers of the mammalian embryo: the ventral midline or floor plate (FP) of the neural tube, and the isthmic organizer (IsO) at the mid-/hindbrain boundary (MHB). Cells located within and close to the FP secrete sonic hedgehog (SHH), and members of the wingless-type MMTV integration site family (WNT1/5A), as well as bone morphogenetic protein (BMP) family. The IsO cells secrete WNT1 and the fibroblast growth factor 8 (FGF8). Accordingly, the FGF8, SHH, WNT, and BMP signaling pathways play crucial roles during the development of the mDA neurons in the mammalian embryo. Moreover, these morphogens are essential for the generation of stem cell-derived mDA neurons, which are critical for the modeling, drug screening, and cell replacement therapy of PD. This review summarizes our current knowledge about the functions and crosstalk of these signaling pathways in mammalian mDA neuron development in vivo and their applications in stem cell-based paradigms for the efficient derivation of these neurons in vitro.
Collapse
Affiliation(s)
- Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany.
| | - Juha Partanen
- Faculty of Biological and Environmental Sciences, FIN00014-University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland.
| | - Nilima Prakash
- Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany.
| |
Collapse
|
4
|
Luan W, Hammond LA, Cotter E, Osborne GW, Alexander SA, Nink V, Cui X, Eyles DW. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon. Mol Neurobiol 2017; 55:2443-2453. [PMID: 28365874 DOI: 10.1007/s12035-017-0497-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023]
Abstract
Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.
Collapse
Affiliation(s)
- Wei Luan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Edmund Cotter
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Geoffrey William Osborne
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | | - Virginia Nink
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Darryl Walter Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Engel M, Do-Ha D, Muñoz SS, Ooi L. Common pitfalls of stem cell differentiation: a guide to improving protocols for neurodegenerative disease models and research. Cell Mol Life Sci 2016; 73:3693-709. [PMID: 27154043 PMCID: PMC5002043 DOI: 10.1007/s00018-016-2265-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells and embryonic stem cells have revolutionized cellular neuroscience, providing the opportunity to model neurological diseases and test potential therapeutics in a pre-clinical setting. The power of these models has been widely discussed, but the potential pitfalls of stem cell differentiation in this research are less well described. We have analyzed the literature that describes differentiation of human pluripotent stem cells into three neural cell types that are commonly used to study diseases, including forebrain cholinergic neurons for Alzheimer's disease, midbrain dopaminergic neurons for Parkinson's disease and cortical astrocytes for neurodegenerative and psychiatric disorders. Published protocols for differentiation vary widely in the reported efficiency of target cell generation. Additionally, characterization of the cells by expression profile and functionality differs between studies and is often insufficient, leading to highly variable protocol outcomes. We have synthesized this information into a simple methodology that can be followed when performing or assessing differentiation techniques. Finally we propose three considerations for future research, including the use of physiological O2 conditions, three-dimensional co-culture systems and microfluidics to control feeding cycles and growth factor gradients. Following these guidelines will help researchers to ensure that robust and meaningful data is generated, enabling the full potential of stem cell differentiation for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Martin Engel
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Dzung Do-Ha
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
6
|
Zhang Q, Chen W, Tan S, Lin T. Stem Cells for Modeling and Therapy of Parkinson's Disease. Hum Gene Ther 2016; 28:85-98. [PMID: 27762639 DOI: 10.1089/hum.2016.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease after Alzheimer's disease, which is characterized by a low level of dopamine being expressing in the striatum and a deterioration of dopaminergic neurons (DAn) in the substantia nigra pars compacta. Generation of PD-derived DAn, including differentiation of human embryonic stem cells, human neural stem cells, human-induced pluripotent stem cells, and direct reprogramming, provides an ideal tool to model PD, creating the possibility of mimicking key essential pathological processes and charactering single-cell changes in vitro. Furthermore, thanks to the understanding of molecular neuropathogenesis of PD and new advances in stem-cell technology, it is anticipated that optimal functionally transplanted DAn with targeted correction and transgene-free insertion will be generated for use in cell transplantation. This review elucidates stem-cell technology for modeling PD and offering desired safe cell resources for cell transplantation therapy.
Collapse
Affiliation(s)
- Qingxi Zhang
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Wanling Chen
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Sheng Tan
- 2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Tongxiang Lin
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,3 Stem Cell Research Center, Fujian Agriculture and Forestry University , Fuzhou, China
| |
Collapse
|
7
|
Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon. eNeuro 2016; 3:eN-NWR-0009-16. [PMID: 27419218 PMCID: PMC4942720 DOI: 10.1523/eneuro.0009-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022] Open
Abstract
Motivated behaviors and many psychopathologies typically involve changes in dopamine release from the projections of the ventral tegmental area (VTA) and/or the substantia nigra pars compacta (SNc). The morphogen Sonic Hedgehog (Shh) specifies fates of midbrain dopamine neurons, but VTA-specific effects of Shh signaling are also being uncovered. In this study, we assessed the role of the Shh receptor Cdon in the development of VTA and SNc dopamine neurons. We find that Cdon is expressed in the proliferating progenitor zone of the embryonic ventral midbrain and that the number of proliferating cells in this region is increased in mouse Cdon(-/-) embryos. Consistent with a role of Shh in the regulation of neuronal proliferation in this region, we find that the number of tyrosine hydroxylase (TH)-positive neurons is increased in the VTA of Cdon(-/-) mice at birth and that this effect endures into adulthood. In contrast, the number of TH-positive neurons in the SNc is not altered in Cdon(-/-) mice at either age. Moreover, adult Cdon(-/-) mice have a greater number of medial prefrontal cortex (mPFC) dopamine presynaptic sites, and increased baseline concentrations of dopamine and dopamine metabolites selectively in this region. Finally, consistent with increased dopamine function in the mPFC, we find that adult Cdon(-/-) mice fail to exhibit behavioral plasticity upon repeated amphetamine treatment. Based on these data, we suggest that Cdon plays an important role encoding the diversity of dopamine neurons in the midbrain, influencing both the development of the mesocortical dopamine pathway and behavioral outputs that involve this neural circuitry.
Collapse
|
8
|
Gazea M, Tasouri E, Tolve M, Bosch V, Kabanova A, Gojak C, Kurtulmus B, Novikov O, Spatz J, Pereira G, Hübner W, Brodski C, Tucker KL, Blaess S. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain. Dev Biol 2015; 409:55-71. [PMID: 26542012 DOI: 10.1016/j.ydbio.2015.10.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023]
Abstract
Midbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia.
Collapse
Affiliation(s)
- Mary Gazea
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany
| | - Evangelia Tasouri
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marianna Tolve
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany
| | - Viktoria Bosch
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany
| | - Anna Kabanova
- Institute of Reconstructive Neurobiology, University of Bonn, 53127 Bonn, Germany
| | - Christian Gojak
- Department of Biophysical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany; Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Bahtiyar Kurtulmus
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Orna Novikov
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Joachim Spatz
- Department of Biophysical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany; Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Gislene Pereira
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Wolfgang Hübner
- Molecular Biophotonics, University of Bielefeld, 33615 Bielefeld, Germany
| | - Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Kerry L Tucker
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; University of New England, College of Osteopathic Medicine, Department of Biomedical Sciences, Center for Excellence in the Neurosciences, Biddeford, ME 04005, USA.
| | - Sandra Blaess
- University of New England, College of Osteopathic Medicine, Department of Biomedical Sciences, Center for Excellence in the Neurosciences, Biddeford, ME 04005, USA.
| |
Collapse
|
9
|
Choe Y, Huynh T, Pleasure SJ. Epithelial cells supply Sonic Hedgehog to the perinatal dentate gyrus via transport by platelets. eLife 2015; 4. [PMID: 26457609 PMCID: PMC4600762 DOI: 10.7554/elife.07834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022] Open
Abstract
Dentate neural stem cells produce neurons throughout life in mammals. Sonic hedgehog (Shh) is critical for maintenance of these cells; however, the perinatal source of Shh is enigmatic. In the present study, we examined the role of Shh expressed by hair follicles (HFs) that expand perinatally in temporal concordance with the proliferation of Shh-responding dentate stem cells. Specific inhibition of Shh from HFs or from epithelial sources in general hindered development of Shh-responding dentate stem cells. We also found that the blood–brain barrier (BBB) of the perinatal dentate gyrus (DG) is leaky with stem cells in the dentate exposed to blood-born factors. In attempting to identify how Shh might be transported in blood, we found that platelets contain epithelial Shh, provide Shh to the perinatal DG and that inhibition of platelet generation reduced hedgehog-responsive dentate stem cells. DOI:http://dx.doi.org/10.7554/eLife.07834.001 Although most of the neurons in the brain have been made by the time we are born, new neurons develop throughout life in part of the brain called the hippocampus. These neurons are thought to help with learning and forming memories. Conditions such as depression and Alzheimer's disease have been linked to not being able to produce enough new neurons. The neurons develop from a pool of stem cells in part of the hippocampus. A protein called Sonic Hedgehog (Shh) helps to ensure there are enough stem cells and control when they develop into new neurons. The brain cells that produce Shh in adult mice do not appear until a week after birth, by which point the stem cells are already present and generating neurons. This has led scientists to question where these cells get Shh from around the time of birth. One idea is that cells outside of the brain contribute the Shh such as hair follicles—the structures that hairs grow out of—in the scalp. Hair follicles produce Shh, develop at around the same time as the brain stem cells, and are known to regulate the development of other nearby stem cells. So, Choe et al. conducted a series of experiments in genetically engineered newborn mice and found that the brain stem cells multiply at around the same time that the hair follicles start to produce Shh. Furthermore, reducing the amount of Shh produced by the hair follicles hampered the growth of these stem cells and caused fewer neurons to develop from the stem cell pool. These results raised the question of how Shh gets from the hair follicles to the stem cell pool in the developing brain. In adult animals, a barrier exists between the brain and the blood supply to protect the brain from infection. However, parts of this barrier are still leaky before birth, which might allow blood cells to carry Shh to the brain. Cloe et al. found that platelets—the blood cells responsible for clotting—are able to carry Shh to the brain stem cell pool. Further experiments showed that preventing platelets from forming caused fewer stem cells to develop. The suggestion that Shh from the epithelium—the tissue layer that hair follicles are found in—is able to signal to the brain during a specific window of time raises several questions that require further study. Does epithelial Shh also signal to other organs during embryonic or postnatal development? Does injury to the nervous system that increases the permeability of the blood–brain barrier lead to the delivery of Shh to the brain via the circulation in adult animals? DOI:http://dx.doi.org/10.7554/eLife.07834.002
Collapse
Affiliation(s)
- Youngshik Choe
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Trung Huynh
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Samuel J Pleasure
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Program in Neuroscience, University of California, San Francisco, San Francisco, United States.,Program in Developmental Stem Cell Biology, University of California, San Francisco, San Francisco, United States.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
10
|
Bodea GO, Blaess S. Establishing diversity in the dopaminergic system. FEBS Lett 2015; 589:3773-85. [PMID: 26431946 DOI: 10.1016/j.febslet.2015.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
Midbrain dopaminergic neurons (MbDNs) modulate cognitive processes, regulate voluntary movement, and encode reward prediction errors and aversive stimuli. While the degeneration of MbDNs underlies the motor defects in Parkinson's disease, imbalances in dopamine levels are associated with neuropsychiatric disorders such as depression, schizophrenia and substance abuse. In recent years, progress has been made in understanding how MbDNs, which constitute a relatively small neuronal population in the brain, can contribute to such diverse functions and dysfunctions. In particular, important insights have been gained regarding the distinct molecular, neurochemical and network properties of MbDNs. How this diversity of MbDNs is established during brain development is only starting to be unraveled. In this review, we summarize the current knowledge on the diversity in MbDN progenitors and differentiated MbDNs in the developing rodent brain. We discuss the signaling pathways, transcription factors and transmembrane receptors that contribute to setting up these diverse MbDN subpopulations. A better insight into the processes that establish diversity in MbDNs will ultimately improve the understanding of the architecture and function of the dopaminergic system in the adult brain.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Madhavan L, Daley BF, Davidson BL, Boudreau RL, Lipton JW, Cole-Strauss A, Steece-Collier K, Collier TJ. Sonic Hedgehog Controls the Phenotypic Fate and Therapeutic Efficacy of Grafted Neural Precursor Cells in a Model of Nigrostriatal Neurodegeneration. PLoS One 2015; 10:e0137136. [PMID: 26340267 PMCID: PMC4560385 DOI: 10.1371/journal.pone.0137136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/12/2015] [Indexed: 02/06/2023] Open
Abstract
The expression of soluble growth and survival promoting factors by neural precursor cells (NPCs) is suggested to be a prominent mechanism underlying the protective and regenerative effects of these cells after transplantation. Nevertheless, how and to what extent specific NPC-expressed factors contribute to therapeutic effects is not well understood. Using RNA silencing, the current study investigated the roles of two donor NPC molecules, namely glial cell-line derived neurotrophic factor (GDNF) and sonic hedgehog (SHH), in the protection of substantia nigra dopamine neurons in rats treated with 6-hydroxydopamine (6-OHDA). Analyses indicate that as opposed to the knock-down of GDNF, SHH inhibition caused a profound decline in nigrostriatal neuroprotection. Further, SHH silencing also curbed endogenous neurogenesis and the migration of host brdU+/dcx+ neural precursors into the striatum, which was present in the animals receiving control or GDNF silenced NPCs. A change in graft phenotype, mainly reflected by a reduced proportion of undifferentiated nestin+ cells, as well as a significantly greater host microglial activity, suggested an important role for these processes in the attenuation of neuroprotection and neurogenesis upon SHH silencing. Overall these studies reveal core mechanisms fundamental to grafted NPC-based therapeutic effects, and delineate the particular contributions of two graft-expressed molecules, SHH and GDNF, in mediating midbrain dopamine neuron protection, and host plasticity after NPC transplantation.
Collapse
Affiliation(s)
- Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, Arizona, 85724, United States of America
- * E-mail:
| | - Brian F. Daley
- Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, 49503, United States of America
| | - Beverly L. Davidson
- Center for Cell and Molecular Therapy, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, United States of America
| | - Ryan L. Boudreau
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Jack W. Lipton
- Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, 49503, United States of America
| | - Allyson Cole-Strauss
- Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, 49503, United States of America
| | - Kathy Steece-Collier
- Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, 49503, United States of America
| | - Timothy J. Collier
- Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, 49503, United States of America
| |
Collapse
|
12
|
Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 2015; 20:974-85. [PMID: 25224259 PMCID: PMC4362800 DOI: 10.1038/mp.2014.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
In schizophrenia, cognitive overload is thought to reflect an inability to suppress non-salient information, a process which is studied using prepulse inhibition (PPI) of the startle response. PPI is reduced in schizophrenia and routinely tested in animal models and preclinical trials of antipsychotic drugs. However, the underlying neuronal circuitry is not well understood. We used a novel genetic screen in larval zebrafish to reveal the molecular identity of neurons that are required for PPI in fish and mice. Ablation or optogenetic silencing of neurons with developmental expression of the transcription factor genomic screen homeobox 1 (gsx1) produced profound defects in PPI in zebrafish, and PPI was similarly impaired in Gsx1 knockout mice. Gsx1-expressing neurons reside in the dorsal brainstem and form synapses closely apposed to neurons that initiate the startle response. Surprisingly, brainstem Gsx1 neurons are primarily glutamatergic despite their role in a functionally inhibitory pathway. As Gsx1 has an important role in regulating interneuron development in the forebrain, these findings reveal a molecular link between control of interneuron specification and circuits that gate sensory information across brain regions.
Collapse
Affiliation(s)
- Sadie A. Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nicole Carrier
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Grace H. Li
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A. Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA,6 Center Drive, Building 6B, Rm 3B308, Bethesda, MD 20892, , tel: 301-402-6018; fax: 301-496-0243
| |
Collapse
|
13
|
Expression Profile of Sonic Hedgehog Pathway Members in the Developing Human Fetal Brain. BIOMED RESEARCH INTERNATIONAL 2015; 2015:494269. [PMID: 26266257 PMCID: PMC4523658 DOI: 10.1155/2015/494269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022]
Abstract
The Sonic Hedgehog (SHH) pathway plays a central role in the developing mammalian CNS. In our study, we aimed to investigate the spatiotemporal SHH pathway expression pattern in human fetal brains. We analyzed 22 normal fetal brains for Shh, Patched, Smoothened, and Gli1-3 expression by immunohistochemistry. In the telencephalon, strongest expression of Shh, Smoothened, and Gli2 was found in the cortical plate (CP) and ventricular zone. Patched was strongly upregulated in the ventricular zone and Gli1 in the CP. In the cerebellum, SHH pathway members were strongly expressed in the external granular layer (EGL). SHH pathway members significantly decreased over time in the ventricular and subventricular zone and in the cerebellar EGL, while increasing levels were found in more superficial telencephalic layers. Our findings show that SHH pathway members are strongly expressed in areas important for proliferation and differentiation and indicate a temporal expression gradient in telencephalic and cerebellar layers probably due to decreased proliferation of progenitor cells and increased differentiation. Our data about the spatiotemporal expression of SHH pathway members in the developing human brain serves as a base for the understanding of both normal and pathological CNS development.
Collapse
|
14
|
Blaess S, Ang SL. Genetic control of midbrain dopaminergic neuron development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:113-34. [PMID: 25565353 DOI: 10.1002/wdev.169] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/31/2014] [Accepted: 11/16/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Midbrain dopaminergic neurons are involved in regulating motor control, reward behavior, and cognition. Degeneration or dysfunction of midbrain dopaminergic neurons is implicated in several neuropsychiatric disorders such as Parkinson's disease, substance use disorders, depression, and schizophrenia. Understanding the developmental processes that generate midbrain dopaminergic neurons will facilitate the generation of dopaminergic neurons from stem cells for cell replacement therapies to substitute degenerating cells in Parkinson's disease patients and will forward our understanding on how functional diversity of dopaminergic neurons in the adult brain is established. Midbrain dopaminergic neurons develop in a multistep process. Following the induction of the ventral midbrain, a distinct dopaminergic progenitor domain is specified and dopaminergic progenitors undergo proliferation, neurogenesis, and differentiation. Subsequently, midbrain dopaminergic neurons acquire a mature dopaminergic phenotype, migrate to their final position and establish projections and connections to their forebrain targets. This review will discuss insights gained on the signaling network of secreted molecules, cell surface receptors, and transcription factors that regulate specification and differentiation of midbrain dopaminergic progenitors and neurons, from the induction of the ventral midbrain to the migration of dopaminergic neurons. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Sandra Blaess
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany
| | | |
Collapse
|
15
|
Kwon YR, Jeong MH, Leem YE, Lee SJ, Kim HJ, Bae GU, Kang JS. The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons. Stem Cell Res 2014; 13:262-74. [PMID: 25117422 DOI: 10.1016/j.scr.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 11/16/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is required for numerous developmental processes including specification of ventral cell types in the central nervous system such as midbrain dopaminergic (DA) neurons. The multifunctional coreceptor Cdo increases the signaling activity of Shh which is crucial for development of forebrain and neural tube. In this study, we investigated the role of Cdo in midbrain DA neurogenesis. Cdo and Shh signaling components are induced during neurogenesis of embryonic stem (ES) cells. Cdo(-/-) ES cells show reduced neuronal differentiation accompanied by increased cell death upon neuronal induction. In addition, Cdo(-/-) ES cells form fewer tyrosine hydroxylase (TH) and microtubule associated protein 2 (MAP2)-positive DA neurons correlating with the decreased expression of key regulators of DA neurogenesis, such as Shh, Neurogenin2, Mash1, Foxa2, Lmx1a, Nurr1 and Pitx3, relative to the Cdo(+/+) ES cells. Consistently, the Cdo(-/-) embryonic midbrain displays a reduction in expression of TH and Nurr1. Furthermore, activation of Shh signaling by treatment with Purmorphamine (Pur) restores the DA neurogenesis of Cdo(-/-) ES cells, suggesting that Cdo is required for the full Shh signaling activation to induce efficient DA neurogenesis.
Collapse
Affiliation(s)
- Yu-Rim Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Myong-Ho Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hyun-Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| |
Collapse
|
16
|
Mesman S, von Oerthel L, Smidt MP. Mesodiencephalic dopaminergic neuronal differentiation does not involve GLI2A-mediated SHH-signaling and is under the direct influence of canonical WNT signaling. PLoS One 2014; 9:e97926. [PMID: 24865218 PMCID: PMC4035267 DOI: 10.1371/journal.pone.0097926] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/27/2014] [Indexed: 12/19/2022] Open
Abstract
Sonic Hedgehog (SHH) and WNT proteins are key regulators in many developmental processes, like embryonic patterning and brain development. In the brain, SHH is expressed in a gradient starting in the floor plate (FP) progressing ventrally in the midbrain, where it is thought to be involved in the development and specification of mesodiencephalic dopaminergic (mdDA) neurons. GLI2A-mediated SHH-signaling induces the expression of Gli1, which is inhibited when cells start expressing SHH themselves. To determine whether mdDA neurons receive GLI2A-mediated SHH-signaling during differentiation, we used a BAC-transgenic mouse model expressing eGFP under the control of the Gli1 promoter. This mouse-model allowed for mapping of GLI2A-mediated SHH-signaling temporal and spatial in the mouse midbrain. Since mdDA neurons are born from E10.5, peaking at E11.0–E12.0, we examined Gli1-eGFP embryos at E11.5, E12.5, and E13.5, indicating whether Gli1 was induced before or during mdDA development and differentiation. Our data indicate that GLI2A-mediated SHH-signaling is not involved in mdDA neuronal differentiation. However, it appears to be involved in the differentiation of neurons which make up a subset of the red nucleus (RN). In order to detect whether mdDA neuronal differentiation may be under the control of canonical WNT-signaling, we used a transgenic mouse-line expressing LacZ under the influence of stable β-catenin. Here, we show that TH+ neurons of the midbrain receive canonical WNT-signaling during differentiation. Therefore, we suggest that early SHH-signaling is indirectly involved in mdDA development through early patterning of the midbrain area, whereas canonical WNT-signaling is directly involved in the differentiation of the mdDA neuronal population.
Collapse
Affiliation(s)
- Simone Mesman
- Swammerdam Institute for Life Sciences, CNS, FNWI University of Amsterdam, Amsterdam, The Netherlands
| | - Lars von Oerthel
- Swammerdam Institute for Life Sciences, CNS, FNWI University of Amsterdam, Amsterdam, The Netherlands
| | - Marten P. Smidt
- Swammerdam Institute for Life Sciences, CNS, FNWI University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Ferent J, Traiffort E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2014; 21:356-71. [PMID: 24743306 DOI: 10.1177/1073858414531457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of the segment polarity gene Hedgehog in Drosophila three decades ago, our knowledge of Hedgehog signaling pathway has considerably improved and paved the way to a wide field of investigations in the developing and adult central nervous system. Its peculiar transduction mechanism together with its implication in tissue patterning, neural stem cell biology, and neural tissue homeostasis make Hedgehog pathway of interest in a high number of normal or pathological contexts. Consistent with its role during brain development, misregulation of Hedgehog signaling is associated with congenital diseases and tumorigenic processes while its recruitment in damaged neural tissue may be part of the repairing process. This review focuses on the most recent data regarding the Hedgehog pathway in the developing and adult central nervous system and also its relevance as a therapeutic target in brain and spinal cord diseases.
Collapse
Affiliation(s)
- Julien Ferent
- IRCM, Molecular Biology of Neural Development, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-Université Paris Sud, Neuroprotection and Neuroregeneration: Small Neuroactive Molecules UMR 788, Le Kremlin-Bicêtre, France
| |
Collapse
|
18
|
Joksimovic M, Awatramani R. Wnt/ -catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J Mol Cell Biol 2013; 6:27-33. [DOI: 10.1093/jmcb/mjt043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
19
|
Yan Y, Shin S, Jha BS, Liu Q, Sheng J, Li F, Zhan M, Davis J, Bharti K, Zeng X, Rao M, Malik N, Vemuri MC. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells. Stem Cells Transl Med 2013; 2:862-70. [PMID: 24113065 DOI: 10.5966/sctm.2013-0080] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.
Collapse
Affiliation(s)
- Yiping Yan
- Primary and Stem Cell Culture Systems, Life Technologies, Frederick, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Thomas MG, Saldanha M, Mistry RJ, Dexter DT, Ramsden DB, Parsons RB. Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling. Cell Death Dis 2013; 4:e669. [PMID: 23764850 PMCID: PMC3702289 DOI: 10.1038/cddis.2013.200] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 01/12/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways.
Collapse
Affiliation(s)
- M G Thomas
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - M Saldanha
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - R J Mistry
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - D T Dexter
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - D B Ramsden
- Department of Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TH, UK
| | - R B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|