1
|
Aughton K, Hattersley J, Coupland SE, Kalirai H. Revealing the structural microenvironment of high metastatic risk uveal melanomas following decellularisation. Sci Rep 2024; 14:26811. [PMID: 39500968 PMCID: PMC11538295 DOI: 10.1038/s41598-024-78171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Uveal melanoma (UM) is a rare aggressive intraocular tumour that spreads most commonly to the liver in tumours with loss of one copy of chromosome 3 (HR-M3); current treatments for metastatic disease remain largely ineffective. Pre-clinical research is increasingly using three-dimensional models that better recapitulate the tumour microenvironment (TME). One aspect of the TME is the acellular extracellular matrix (ECM) that influences cell proliferation, migration and response to therapy. Although commercial matrices are used in culture, the composition and biochemical properties may not be representative of the tumour ECM in vivo. This study identifies UM metastatic risk specific ECM proteins by developing methodology for decellularisation of low- and high- metastatic risk tissue samples (LR-D3 vs. HR-M3). Proteomic analysis revealed a matrisome signature of 34 core ECM and ECM-associated proteins upregulated in HR-M3 UM. Combining additional UM secretome and whole cell iTRAQ proteomic datasets revealed enriched GO and KEGG pathways including 'regulating ECM binding' and 'PI3K/Akt signalling'. Structural analyses of decellularised matrices revealed microarchitecture of differing fibre density and expression differences in collagen 4, collagen 6A1 and nidogen 1, between metastatic risk groups. This approach is a powerful tool for the generation of ECM matrices relevant to high metastatic risk UM.
Collapse
Affiliation(s)
- Karen Aughton
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK.
| | - Joshua Hattersley
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
- Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, 3rd Floor William Henry Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
- Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| |
Collapse
|
2
|
Yoshimaru K, Matsuura T, Uchida Y, Sonoda S, Maeda S, Kajihara K, Kawano Y, Shirai T, Toriigahara Y, Kalim AS, Zhang XY, Takahashi Y, Kawakubo N, Nagata K, Yamaza H, Yamaza T, Taguchi T, Tajiri T. Cutting-edge regenerative therapy for Hirschsprung disease and its allied disorders. Surg Today 2024; 54:977-994. [PMID: 37668735 DOI: 10.1007/s00595-023-02741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Hirschsprung disease (HSCR) and its associated disorders (AD-HSCR) often result in severe hypoperistalsis caused by enteric neuropathy, mesenchymopathy, and myopathy. Notably, HSCR involving the small intestine, isolated hypoganglionosis, chronic idiopathic intestinal pseudo-obstruction, and megacystis-microcolon-intestinal hypoperistalsis syndrome carry a poor prognosis. Ultimately, small-bowel transplantation (SBTx) is necessary for refractory cases, but it is highly invasive and outcomes are less than optimal, despite advances in surgical techniques and management. Thus, regenerative therapy has come to light as a potential form of treatment involving regeneration of the enteric nervous system, mesenchyme, and smooth muscle in affected areas. We review the cutting-edge regenerative therapeutic approaches for managing HSCR and AD-HSCR, including the use of enteric nervous system progenitor cells, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells as cell sources, the recipient intestine's microenvironment, and transplantation methods. Perspectives on the future of these treatments are also discussed.
Collapse
Affiliation(s)
- Koichiro Yoshimaru
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yasuyuki Uchida
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shohei Maeda
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kajihara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Kawano
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Shirai
- Department of Pediatric Surgery, Miyazaki Prefectural Miyazaki Hospital, 5-30 Kitatakamatsu-cho, Miyazaki, Miyazaki, 880-8510, Japan
| | - Yukihiro Toriigahara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Alvin Santoso Kalim
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Xiu-Ying Zhang
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiaki Takahashi
- Department of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Naonori Kawakubo
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kouji Nagata
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Fukuoka College of Health Sciences, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
da Silva MDV, Bacarin CC, Machado CCA, Franciosi A, Mendes JDDL, da Silva Watanabe P, Miqueloto CA, Fattori V, Albarracin OYE, Verri WA, Aktar R, Peiris M, Aziz Q, Blackshaw LA, de Almeida Araújo EJ. Descriptive study of perineuronal net in enteric nervous system of humans and mice. J Neurochem 2024; 168:1956-1972. [PMID: 38970456 DOI: 10.1111/jnc.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
Perineuronal nets (PNN) are highly specialized structures of the extracellular matrix around specific groups of neurons in the central nervous system (CNS). They play functions related to optimizing physiological processes and protection neurons against harmful stimuli. Traditionally, their existence was only described in the CNS. However, there was no description of the presence and composition of PNN in the enteric nervous system (ENS) until now. Thus, our aim was to demonstrate the presence and characterize the components of the PNN in the enteric nervous system. Samples of intestinal tissue from mice and humans were analyzed by RT-PCR and immunofluorescence assays. We used a marker (Wisteria floribunda agglutinin) considered as standard for detecting the presence of PNN in the CNS and antibodies for labeling members of the four main PNN-related protein families in the CNS. Our results demonstrated the presence of components of PNN in the ENS of both species; however its molecular composition is species-specific.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Cristiano Correia Bacarin
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Anelise Franciosi
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Joana Darc de Lima Mendes
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Paulo da Silva Watanabe
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Carlos Alberto Miqueloto
- Laboratory of Enteric Neuroscience, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Rubina Aktar
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Qasim Aziz
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | | |
Collapse
|
4
|
Zhou B, Feng C, Sun S, Chen X, Zhuansun D, Wang D, Yu X, Meng X, Xiao J, Wu L, Wang J, Wang J, Chen K, Li Z, You J, Mao H, Yang S, Zhang J, Jiao C, Li Z, Yu D, Wu X, Zhu T, Yang J, Xiang L, Liu J, Chai T, Shen J, Mao CX, Hu J, Hao X, Xiong B, Zheng S, Liu Z, Feng J. Identification of signaling pathways that specify a subset of migrating enteric neural crest cells at the wavefront in mouse embryos. Dev Cell 2024; 59:1689-1706.e8. [PMID: 38636517 DOI: 10.1016/j.devcel.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
During enteric nervous system (ENS) development, pioneering wavefront enteric neural crest cells (ENCCs) initiate gut colonization. However, the molecular mechanisms guiding their specification and niche interaction are not fully understood. We used single-cell RNA sequencing and spatial transcriptomics to map the spatiotemporal dynamics and molecular landscape of wavefront ENCCs in mouse embryos. Our analysis shows a progressive decline in wavefront ENCC potency during migration and identifies transcription factors governing their specification and differentiation. We further delineate key signaling pathways (ephrin-Eph, Wnt-Frizzled, and Sema3a-Nrp1) utilized by wavefront ENCCs to interact with their surrounding cells. Disruptions in these pathways are observed in human Hirschsprung's disease gut tissue, linking them to ENS malformations. Additionally, we observed region-specific and cell-type-specific transcriptional changes in surrounding gut tissues upon wavefront ENCC arrival, suggesting their role in shaping the gut microenvironment. This work offers a roadmap of ENS development, with implications for understanding ENS disorders.
Collapse
Affiliation(s)
- Bingyan Zhou
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chenzhao Feng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Song Sun
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Didi Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Di Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Handan Mao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiaxin Zhang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chunlei Jiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zhi Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Donghai Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Tianqi Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Lei Xiang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiazhe Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | | | - Juan Shen
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shan Zheng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Mueller JL, Stavely R, Guyer RA, Soos Á, Bhave S, Han C, Hotta R, Nagy N, Goldstein AM. Agrin Inhibition in Enteric Neural Stem Cells Enhances Their Migration Following Colonic Transplantation. Stem Cells Transl Med 2024; 13:490-504. [PMID: 38387006 PMCID: PMC11092276 DOI: 10.1093/stcltm/szae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024] Open
Abstract
Regenerative cell therapy to replenish the missing neurons and glia in the aganglionic segment of Hirschsprung disease represents a promising treatment option. However, the success of cell therapies for this condition are hindered by poor migration of the transplanted cells. This limitation is in part due to a markedly less permissive extracellular environment in the postnatal gut than that of the embryo. Coordinated interactions between enteric neural crest-derived cells (ENCDCs) and their local environment drive migration along the embryonic gut during development of the enteric nervous system. Modifying transplanted cells, or the postnatal extracellular environment, to better recapitulate embryonic ENCDC migration could be leveraged to improve the engraftment and coverage of stem cell transplants. We compared the transcriptomes of ENCDCs from the embryonic intestine to that of postnatal-derived neurospheres and identified 89 extracellular matrix (ECM)-associated genes that are differentially expressed. Agrin, a heparin sulfate proteoglycan with a known inhibitory effect on ENCDC migration, was highly over-expressed by postnatal-derived neurospheres. Using a function-blocking antibody and a shRNA-expressing lentivirus, we show that inhibiting agrin promotes ENCDC migration in vitro and following cell transplantation ex vivo and in vivo. This enhanced migration is associated with an increased proportion of GFAP + cells, whose migration is especially enhanced.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ádám Soos
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Chris Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Nandor Nagy
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Ferenczi S, Mogor F, Takacs P, Kovacs T, Toth VE, Varga ZV, Kovács K, Lohinai Z, Vass KC, Nagy N, Dora D. Depletion of muscularis macrophages ameliorates inflammation-driven dysmotility in murine colitis model. Sci Rep 2023; 13:22451. [PMID: 38105266 PMCID: PMC10725888 DOI: 10.1038/s41598-023-50059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023] Open
Abstract
Previously, the presence of a blood-myenteric plexus barrier and its disruption was reported in experimentally induced colitis via a macrophage-dependent process. The aim of this study is to reveal how myenteric barrier disruption and subsequent neuronal injury affects gut motility in vivo in a murine colitis model. We induced colitis with dextran sulfate sodium (DSS), with the co-administration of liposome-encapsulated clodronate (L-clodronate) to simultaneously deplete blood monocytes contributing to macrophage infiltration in the inflamed muscularis of experimental mice. DSS-treated animals receiving concurrent L-clodronate injection showed significantly decreased blood monocyte numbers and colon muscularis macrophage (MM) density compared to DSS-treated control (DSS-vehicle). DSS-clodronate-treated mice exhibited significantly slower whole gut transit time than DSS-vehicle-treated animals and comparable to that of controls. Experiments with oral gavage-fed Evans-blue dye showed similar whole gut transit times in DSS-clodronate-treated mice as in control animals. Furthermore, qPCR-analysis and immunofluorescence on colon muscularis samples revealed that factors associated with neuroinflammation and neurodegeneration, including Bax1, Hdac4, IL-18, Casp8 and Hif1a are overexpressed after DSS-treatment, but not in the case of concurrent L-clodronate administration. Our findings highlight that MM-infiltration in the muscularis layer is responsible for colitis-associated dysmotility and enteric neuronal dysfunction along with the release of mediators associated with neurodegeneration in a murine experimental model.
Collapse
Affiliation(s)
- Szilamér Ferenczi
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Fruzsina Mogor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Viktoria E Toth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Krisztina Kovács
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Koppány Csaba Vass
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary.
| |
Collapse
|
8
|
Hsu IU, Lin Y, Guo Y, Xu QJ, Shao Y, Wang RL, Yin D, Zhao J, Young LH, Zhao H, Zhang L, Chang RB. Differential developmental blueprints of organ-intrinsic nervous systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571306. [PMID: 38168446 PMCID: PMC10759999 DOI: 10.1101/2023.12.12.571306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The organ-intrinsic nervous system is a major interface between visceral organs and the brain, mediating important sensory and regulatory functions in the body-brain axis and serving as critical local processors for organ homeostasis. Molecularly, anatomically, and functionally, organ-intrinsic neurons are highly specialized for their host organs. However, the underlying mechanism that drives this specialization is largely unknown. Here, we describe the differential strategies utilized to achieve organ-specific organization between the enteric nervous system (ENS) 1 and the intrinsic cardiac nervous system (ICNS) 2 , a neuronal network essential for heart performance but poorly characterized. Integrating high-resolution whole-embryo imaging, single-cell genomics, spatial transcriptomics, proteomics, and bioinformatics, we uncover that unlike the ENS which is highly mobile and colonizes the entire gastrointestinal (GI) tract, the ICNS uses a rich set of extracellular matrix (ECM) genes that match with surrounding heart cells and an intermediate dedicated neuronal progenitor state to stabilize itself for a 'beads-on-the-necklace' organization on heart atria. While ICNS- and ENS-precursors are genetically similar, their differentiation paths are influenced by their host-organs, leading to distinct mature neuron types. Co-culturing ENS-precursors with heart cells shifts their identity towards the ICNS and induces the expression of heart-matching ECM genes. Our cross-organ study thus reveals fundamental principles for the maturation and specialization of organ-intrinsic neurons.
Collapse
|
9
|
Jacobs-Li J, Tang W, Li C, Bronner ME. Single-cell profiling coupled with lineage analysis reveals vagal and sacral neural crest contributions to the developing enteric nervous system. eLife 2023; 12:e79156. [PMID: 37877560 PMCID: PMC10627514 DOI: 10.7554/elife.79156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
During development, much of the enteric nervous system (ENS) arises from the vagal neural crest that emerges from the caudal hindbrain and colonizes the entire gastrointestinal tract. However, a second ENS contribution comes from the sacral neural crest that arises in the caudal neural tube and populates the post-umbilical gut. By coupling single-cell transcriptomics with axial-level-specific lineage tracing in avian embryos, we compared the contributions of embryonic vagal and sacral neural crest cells to the chick ENS and the associated peripheral ganglia (Nerve of Remak and pelvic plexuses). At embryonic day (E) 10, the two neural crest populations form overlapping subsets of neuronal and glia cell types. Surprisingly, the post-umbilical vagal neural crest much more closely resembles the sacral neural crest than the pre-umbilical vagal neural crest. However, some differences in cluster types were noted between vagal and sacral derived cells. Notably, RNA trajectory analysis suggests that the vagal neural crest maintains a neuronal/glial progenitor pool, whereas this cluster is depleted in the E10 sacral neural crest which instead has numerous enteric glia. The present findings reveal sacral neural crest contributions to the hindgut and associated peripheral ganglia and highlight the potential influence of the local environment and/or developmental timing in differentiation of neural crest-derived cells in the developing ENS.
Collapse
Affiliation(s)
- Jessica Jacobs-Li
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Can Li
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
10
|
Montalva L, Cheng LS, Kapur R, Langer JC, Berrebi D, Kyrklund K, Pakarinen M, de Blaauw I, Bonnard A, Gosain A. Hirschsprung disease. Nat Rev Dis Primers 2023; 9:54. [PMID: 37828049 DOI: 10.1038/s41572-023-00465-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Hirschsprung disease (HSCR) is a rare congenital intestinal disease that occurs in 1 in 5,000 live births. HSCR is characterized by the absence of ganglion cells in the myenteric and submucosal plexuses of the intestine. Most patients present during the neonatal period with the first meconium passage delayed beyond 24 h, abdominal distension and vomiting. Syndromes associated with HSCR include trisomy 21, Mowat-Wilson syndrome, congenital central hypoventilation syndrome, Shah-Waardenburg syndrome and cartilage-hair hypoplasia. Multiple putative genes are involved in familial and isolated HSCR, of which the most common are the RET proto-oncogene and EDNRB. Diagnosis consists of visualization of a transition zone on contrast enema and confirmation via rectal biopsy. HSCR is typically managed by surgical removal of the aganglionic bowel and reconstruction of the intestinal tract by connecting the normally innervated bowel down to the anus while preserving normal sphincter function. Several procedures, namely Swenson, Soave and Duhamel procedures, can be undertaken and may include a laparoscopically assisted approach. Short-term and long-term comorbidities include persistent obstructive symptoms, enterocolitis and soiling. Continued research and innovation to better understand disease mechanisms holds promise for developing novel techniques for diagnosis and therapy, and improving outcomes in patients.
Collapse
Affiliation(s)
- Louise Montalva
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France.
- Faculty of Health, Paris-Cité University, Paris, France.
- NeuroDiderot, INSERM UMR1141, Paris, France.
| | - Lily S Cheng
- Division of Paediatric Surgery, Texas Children's Hospital, Houston, TX, USA
- Division of Paediatric Surgery, University of Virginia, Charlottesville, VA, USA
| | - Raj Kapur
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jacob C Langer
- Division of Paediatric Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dominique Berrebi
- Department of Pathology, Robert-Debré and Necker Children's University Hospital, Paris, France
| | - Kristiina Kyrklund
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Mikko Pakarinen
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Ivo de Blaauw
- Department of Surgery, Division of Paediatric Surgery, Radboudumc-Amalia Children's Hospital, Nijmegen, Netherlands
| | - Arnaud Bonnard
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France
- Faculty of Health, Paris-Cité University, Paris, France
- NeuroDiderot, INSERM UMR1141, Paris, France
| | - Ankush Gosain
- Department of Paediatric Surgery, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
11
|
Yang Q, Wang F, Wang Z, Guo J, Chang T, Dalielihan B, Yang G, Lei C, Dang R. mRNA sequencing provides new insights into the pathogenesis of Hirschsprung's disease in mice. Pediatr Surg Int 2023; 39:268. [PMID: 37676292 DOI: 10.1007/s00383-023-05544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE The aim of this study is to use RNA sequencing and RT-qPCR to identify the main susceptibility genes linked to the occurrence and development of Hirschsprung disease in the colonic tissues of EDNRBm1yzcm and wild mice. METHODS RNA was extracted from colon tissues of 3 mutant homozygous mice and 3 wild mice. RNA degradation, contamination concentration, and integrity were then measured. The extracted RNA was then sequenced using the Illumina platform. The obtained sequence data are filtered to ensure data quality and compared to the reference genome for further analysis. DESeq2 was used for gene expression analysis of the raw data. In addition, graphene oxide enrichment analysis and RT-qPCR validation were also performed. RESULTS This study identified 8354 differentially expressed genes in EDNRBm1yzcm and wild mouse colon tissues by RNA sequencing, including 4346 upregulated genes and 4005 downregulated genes. Correspondingly, the results of RT-qPCR analysis showed good correlation with the transcriptome data. In addition, GO and KEGG enrichment results suggested that there were 8103 terms and 320 pathways in all DEGs. When P < 0.05, 1081 GO terms and 320 KEGG pathways reached a significant level. Finally, through the existing studies and the enrichment results of differentially expressed genes, it was determined that axon guidance and the focal adhesion pathway may be closely related to the occurrence of HSCR. CONCLUSIONS This study analyzed and identified the differential genes in colonic tissues between EDNRBm1yzcm mice and wild mice, which provided new insight for further mining the potential pathogenic genes of Hirschsprung's disease.
Collapse
Affiliation(s)
- Qiwen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Jiajun Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Tingjin Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Baligen Dalielihan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi Province, China.
| |
Collapse
|
12
|
Stavely R, Hotta R, Guyer RA, Picard N, Rahman AA, Omer M, Soos A, Szocs E, Mueller J, Goldstein AM, Nagy N. A distinct transcriptome characterizes neural crest-derived cells at the migratory wavefront during enteric nervous system development. Development 2023; 150:dev201090. [PMID: 36779913 PMCID: PMC10108706 DOI: 10.1242/dev.201090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/03/2023] [Indexed: 02/14/2023]
Abstract
Enteric nervous system development relies on intestinal colonization by enteric neural crest-derived cells (ENCDCs). This is driven by a population of highly migratory and proliferative ENCDCs at the wavefront, but the molecular characteristics of these cells are unknown. ENCDCs from the wavefront and the trailing region were isolated and subjected to RNA-seq. Wavefront-ENCDCs were transcriptionally distinct from trailing ENCDCs, and temporal modelling confirmed their relative immaturity. This population of ENCDCs exhibited altered expression of ECM and cytoskeletal genes, consistent with a migratory phenotype. Unlike trailing ENCDCs, the wavefront lacked expression of genes related to neuronal or glial maturation. As wavefront ENCDC genes were associated with migration and developmental immaturity, the genes that remain expressed in later progenitor populations may be particularly pertinent to understanding the maintenance of ENCDC progenitor characteristics. Dusp6 expression was specifically upregulated at the wavefront. Inhibiting DUSP6 activity prevented wavefront colonization of the hindgut, and inhibited the migratory ability of post-colonized ENCDCs from midgut and postnatal neurospheres. These effects were reversed by simultaneous inhibition of ERK signaling, indicating that DUSP6-mediated ERK inhibition is required for ENCDC migration in mouse and chick.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard A. Guyer
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Picard
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A. Rahman
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meredith Omer
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Adam Soos
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Emoke Szocs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Jessica Mueller
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
13
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
14
|
Zhou L, Wang B, Xie H, Du C, Tang J, Tang W. Intrauterine exposure to oxidative stress induces caspase-1-dependent enteric nerve cell pyroptosis. Pediatr Surg Int 2022; 38:1555-1567. [PMID: 35995981 DOI: 10.1007/s00383-022-05199-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE This study determined whether oxidative stress causes the developmental abnormalities of the enteric nervous system during the embryonic period. METHODS Using the test results of tissue specimens of children with Hirschsprung disease (HSCR), we established a pregnant rat model of oxidative stress and a cellular oxidative stress model to conduct related molecular, cellular, and histopathological experiments for exploration and validation. RESULTS The results of the quantitative real-time polymerase chain reaction assay indicated overexpression of pyroptosis markers (NLRP3, ASC, and caspase-1) in HSCR lesions and newborn pups in the oxidative stress group (treated with D-galactose). The expression of cathepsin D was significantly decreased in intestinal tissues of newborn pups in the oxidative stress group compared to the control group. Reactive oxygen species scavengers (N-acetyl-cysteine, NAC), the caspase-1 inhibitor (VX-765), and the NLRP3 siRNA could reverse the release of LDH, decrease the number of propidium iodide stained cells, and reduce the percentage of TUNEL/caspase-3 double-positive cells in the H2O2-treated group. CONCLUSION Oxidative stress can induce the death of enteric nerve cells by activating caspase-1-dependent pyroptosis through NLRP3 inflammasomes, which may contribute to abnormal enteric nervous system development.
Collapse
Affiliation(s)
- Lingling Zhou
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of General Surgery, Children's Hospital of Wujiang District, Suzhou, People's Republic of China
| | - Bingyu Wang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Pediatric Surgery, Huai'an First People's Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Xie
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunxia Du
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Tang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Weibing Tang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
15
|
Indumathi A, Senthilkumar GP, Jayashree K, Ramesh Babu K. Assessment of circulating fibrotic proteins (periostin and tenascin -C) In Type 2 diabetes mellitus patients with and without retinopathy. Endocrine 2022; 76:570-577. [PMID: 35274283 DOI: 10.1007/s12020-022-03027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Diabetic retinopathy is a leading cause of vision impairment. Surging diabetic population and poor visual care raises the need for better diagnostic tools. Hence, it is worthwhile to look for biomarkers associated with the disease pathogenesis. Periostin and tenascin-C are matricellular proteins mediating fibrillogenesis in retinopathy. Their serum levels and association with the presence and severity of retinopathy in diabetics is of importance to be explored. METHODS The study involved two groups of type 2 diabetes patients, 38 controls without retinopathy and 38 cases with retinopathy. We obtained serum sample and performed biochemical autoanalysis for routine parameters. Special parameters periostin, tenascin-C, and C-peptide were estimated by ELISA. RESULTS Periostin and tenascin-C were significantly elevated in the retinopathy group. Periostin progressively increased among subgroups. C-peptide decreased significantly in retinopathy group and had a negative correlation with duration of DM, duration of retinopathy, HbA1c and tenascin-C. We observed a positive correlation for periostin and tenascin-C with duration of diabetes. The AUC for C-peptide was the highest (0.750) amongst our parameters. HOMA 2 (%B) index was significantly lower in retinopathy group. CONCLUSIONS Serum Levels of PO and TnC increased in retinopathy. As the disease advances, periostin level increases, indicating continuing fibrosis and fibrovascular membrane formation. Periostin and tenascin-C increase with duration of retinopathy whereas levels of C-peptide decrease. C-peptide has a better differentiating potential for DR from DM. Reduced insulin production as indicated by declined HOMA 2-%BETA in retinopathy favors hyperglycemia and chronic inflammatory state for the disease progression.
Collapse
Affiliation(s)
- A Indumathi
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Kuppuswamy Jayashree
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - K Ramesh Babu
- Department of Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
16
|
Natarajan D, McCann C, Dattani J, Pachnis V, Thapar N. Multiple Roles of Ret Signalling During Enteric Neurogenesis. Front Mol Neurosci 2022; 15:832317. [PMID: 35694443 PMCID: PMC9186293 DOI: 10.3389/fnmol.2022.832317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
The majority of the enteric nervous system is formed by vagal neural crest cells which enter the foregut and migrate rostrocaudally to colonise the entire length of the gastrointestinal tract. Absence of enteric ganglia from the distal colon are the hallmark of Hirschsprung disease, a congenital disorder characterised by severe intestinal dysmotility. Mutations in the receptor tyrosine kinase RET have been identified in approximately 50% of familial cases of Hirschsprung disease but the cellular processes misregulated in this condition remain unclear. By lineage tracing neural crest cells in mice homozygous for a knock-in allele of Ret (Ret51/51), we demonstrate that normal activity of this receptor is required in vivo for the migration of enteric nervous system progenitors throughout the gut. In mutant mice, progenitors of enteric neurons fail to colonise the distal colon, indicating that failure of colonisation of the distal intestine is a major contributing factor for the pathogenesis of Hirschsprung disease. Enteric nervous system progenitors in the ganglionic proximal guts of mutant mice are also characterised by reduced proliferation and differentiation. These findings suggest that the functional abnormalities in Hirschsprung disease result from a combination of colonic aganglionosis and deficits in neuronal circuitry of more proximal gut segments. The reduced neurogenesis in the gut of Ret51/51 mutants was reproduced in the multilineage enteric nervous system progenitors isolated from these animals. Correction of the molecular defects of such progenitors fully restored their neurogenic potential in culture. These observations enhance our understanding of the pathogenesis of Hirschsprung disease and highlight potential approaches for its treatment.
Collapse
Affiliation(s)
- Dipa Natarajan
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- *Correspondence: Dipa Natarajan,
| | - Conor McCann
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Justine Dattani
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Vassilis Pachnis,
| | - Nikhil Thapar
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Nikhil Thapar,
| |
Collapse
|
17
|
Markel M, Tse WH, DeLeon N, Patel D, Kahnamouizadeh S, Lacher M, Wagner R, Keijzer R. Tenascin C is dysregulated in hypoplastic lungs of miR-200b -/- mice. Pediatr Surg Int 2022; 38:695-700. [PMID: 35235015 DOI: 10.1007/s00383-022-05096-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE We previously demonstrated that absence of miR-200b results in abnormal lung development in congenital diaphragmatic hernia due to imbalance between epithelial and mesenchymal cells. Tenascin C is a highly conserved extracellular matrix protein involved in epithelial to mesenchymal transition, tissue regeneration and lung development. Considering the involvement of Tenascin C and miR-200b and their potential interaction, we aimed to study Tenascin C during lung development in the absence of miR-200b. METHODS We collected lungs of miR-200b-/- mice (male, 8 weeks). We performed Western blot (WB) analysis (N = 6) and immunofluorescence (N = 5) for Tenascin C and alpha smooth muscle actin and RT-qPCR for Tenascin C gene expression (N = 4). RESULTS Using WB analysis, we observed a decreased total protein abundance of Tenascin C in miR-200b-/- lungs (miR-200b+/+: 3.8 × 107 ± 1 × 107; miR-200b-/-: 1.9 × 107 ± 5 × 106; p = 0.002). Immunofluorescence confirmed decreased total Tenascin C in miR-200b-/- lungs. Tenascin C was significantly decreased in the mesenchyme but relatively increased in the airways of mutant lungs. Total lung RNA expression of Tenascin C was higher in miR-200b-/- lungs. CONCLUSION We report dysregulation of Tenascin C in lungs of miR-200b-/- mice. This suggests that absence of miR-200b results in abnormal Tenascin C abundance contributing to the lung hypoplasia observed in miR-200b-/- mice.
Collapse
Affiliation(s)
- Moritz Markel
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.,Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Wai Hei Tse
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Nolan DeLeon
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Daywin Patel
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Shana Kahnamouizadeh
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Richard Wagner
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Richard Keijzer
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.
| |
Collapse
|
18
|
Schaberg E, Götz M, Faissner A. The extracellular matrix molecule tenascin-C modulates cell cycle progression and motility of adult neural stem/progenitor cells from the subependymal zone. Cell Mol Life Sci 2022; 79:244. [PMID: 35430697 PMCID: PMC9013340 DOI: 10.1007/s00018-022-04259-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Adult neurogenesis has been described in two canonical regions of the adult central nervous system (CNS) of rodents, the subgranular zone (SGZ) of the hippocampus and the subependymal zone (SEZ) of the lateral ventricles. The stem cell niche of the SEZ provides a privileged environment composed of a specialized extracellular matrix (ECM) that comprises the glycoproteins tenascin-C (Tnc) and laminin-1 (LN1). In the present study, we investigated the function of these ECM glycoproteins in the adult stem cell niche. Adult neural stem/progenitor cells (aNSPCs) of the SEZ were prepared from wild type (Tnc+/+) and Tnc knockout (Tnc−/−) mice and analyzed using molecular and cell biological approaches. A delayed maturation of aNSPCs in Tnc−/− tissue was reflected by a reduced capacity to form neurospheres in response to epidermal growth factor (EGF). To examine a potential influence of the ECM on cell proliferation, aNSPCs of both genotypes were studied by cell tracking using digital video microscopy. aNSPCs were cultivated on three different substrates, namely, poly-d-lysine (PDL) and PDL replenished with either LN1 or Tnc for up to 6 days in vitro. On each of the three substrates aNSPCs displayed lineage trees that could be investigated with regard to cell cycle length. The latter appeared reduced in Tnc−/− aNSPCs on PDL and LN1 substrates, less so on Tnc that seemed to compensate the absence of the ECM compound to some extent. Close inspection of the lineage trees revealed a subpopulation of late dividing aNSPCslate that engaged into cycling after a notable delay. aNSPCslate exhibited a clearly different morphology, with a larger cell body and conspicuous processes. aNSPCslate reiterated the reduction in cell cycle length on all substrates tested, which was not rescued on Tnc substrates. When the migratory activity of aNSPC-derived progeny was determined, Tnc−/− neuroblasts displayed significantly longer migration tracks. This was traced to an increased rate of migration episodes compared to the wild-type cells that rested for longer time periods. We conclude that Tnc intervenes in the proliferation of aNSPCs and modulates the motility of neuroblasts in the niche of the SEZ.
Collapse
Affiliation(s)
- Elena Schaberg
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, LMU, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Biomedical Center, LMU, Planegg-Martinsried, Germany
- Synergy, Excellence Cluster for Systems Neurology, BMC, LMU, Planegg-Martinsried, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
19
|
Mueller JL, Goldstein AM. The science of Hirschsprung disease: What we know and where we are headed. Semin Pediatr Surg 2022; 31:151157. [PMID: 35690468 DOI: 10.1016/j.sempedsurg.2022.151157] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enteric nervous system (ENS) is a rich network of neurons and glial cells that comprise the gastrointestinal tract's intrinsic nervous system and are responsible for controlling numerous complex functions, including digestion, transit, secretion, barrier function, and maintenance of a healthy microbiome. Development of a functional ENS relies on the coordinated interaction between enteric neural crest-derived cells and their environment as the neural crest-derived cells migrate rostrocaudally along the embryonic gut mesenchyme. Congenital or acquired disruption of ENS development leads to various neurointestinal diseases. Hirschsprung disease is a congenital neurocristopathy, a disease of the neural crest. It is characterized by a variable length of distal colonic aganglionosis due to a failure in enteric neural crest-derived cell proliferation, migration, differentiation, and/or survival. In this review, we will review the science of Hirschsprung disease, targeting an audience of pediatric surgeons. We will discuss the basic biology of normal ENS development, as well as what goes awry in ENS development in Hirschsprung disease. We will review animal models that have been integral to studying this disease, as well as current hot topics and future research, including genetic risk profiling, stem cell therapy, non-invasive diagnostic techniques, single-cell sequencing techniques, and genotype-phenotype correlation.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States.
| |
Collapse
|
20
|
Yasui Y, Yoshizaki H, Kuwahara T, Nishida S, Kohno M, Okajima H. Transplanted neural crest cells migrate toward Auerbach's plexus layer instead of the colon surface in recipient colon pretreated with collagenase and fibronectin. Biochem Biophys Res Commun 2022; 601:116-122. [PMID: 35245740 DOI: 10.1016/j.bbrc.2022.02.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/06/2023]
Abstract
The enteric nervous system (ENS) regulates gastrointestinal motility, secretion, and absorption. Developmental ENS dysplasia causes intestinal ganglion dysfunction, including Hirschsprung's disease. Given their potential ability to replenish insufficient neurons, transplantation of enteric neural cells provides the prospect of a cure. In this study, we used an ex vivo mouse colon transplant model to demonstrate that treatment with collagenase and fibronectin altered the migration of transplanted cells from the direction of the colon surface toward the lumen. Collagenase-treated colons exhibited enhanced expression of type III and VI collagens, which inhibited fibronectin-induced enteric neural crest cell (ENCC) migration. Invasion of neurospheres into colon was dependent on preoperative treatment of recipient colon with collagenase and fibronectin, which enhanced neurosphere motility towards the direction of colon lumen. Infiltration of transplanted ENCCs into the colon increased proportionally to the degree of dedifferentiation of surrounding smooth muscle cells, which was induced in a neurosphere-dependent manner in collagenase-treated colon. Furthermore, induction of GDNF expression, a Ret ligand that promotes enteric neural cell migration, was observed in treated colons. Our results suggest that the environment provided by the extracellular matrix of the colon surface affects the direction of transplanted ENCC migration. Moreover, these findings demonstrating that ENCCs can be accepted by the recipient colon will help to refine current strategies for cell therapy.
Collapse
Affiliation(s)
- Yoshitomo Yasui
- Department of Pediatric Surgery, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Hisayoshi Yoshizaki
- Department of Pediatric Surgery, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan.
| | - Tsuyoshi Kuwahara
- Department of Pediatric Surgery, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Shoichi Nishida
- Department of Pediatric Surgery, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Miyuki Kohno
- Department of Pediatric Surgery, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Hideaki Okajima
- Department of Pediatric Surgery, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| |
Collapse
|
21
|
Loreti M, Sacco A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med 2022; 7:16. [PMID: 35177651 PMCID: PMC8854427 DOI: 10.1038/s41536-022-00204-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle requires a highly orchestrated coordination between multiple cell types and their microenvironment to exert its function and to maintain its homeostasis and regenerative capacity. Over the past decades, significant advances, including lineage tracing and single-cell RNA sequencing, have contributed to identifying multiple muscle resident cell populations participating in muscle maintenance and repair. Among these populations, muscle stem cells (MuSC), also known as satellite cells, in response to stress or injury, are able to proliferate, fuse, and form new myofibers to repair the damaged tissue. These cells reside adjacent to the myofiber and are surrounded by a specific and complex microenvironment, the stem cell niche. Major components of the niche are extracellular matrix (ECM) proteins, able to instruct MuSC behavior. However, during aging and muscle-associated diseases, muscle progressively loses its regenerative ability, in part due to a dysregulation of ECM components. This review provides an overview of the composition and importance of the MuSC microenvironment. We discuss relevant ECM proteins and how their mutations or dysregulation impact young and aged muscle tissue or contribute to diseases. Recent discoveries have improved our knowledge about the ECM composition of skeletal muscle, which has helped to mimic the architecture of the stem cell niche and improved the regenerative capacity of MuSC. Further understanding about extrinsic signals from the microenvironment controlling MuSC function and innovative technologies are still required to develop new therapies to improve muscle repair.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
22
|
Halper J. Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:105-126. [PMID: 34807416 DOI: 10.1007/978-3-030-80614-9_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Collagens are the most abundant components of the extracellular matrix (ECM) and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. It is an insoluble polymer of the monomeric soluble precursor tropoelastin, and the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of transforming growth factors β (TGFβ) through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Many other molecules, though lower in quantity, function as essential, structural and/or functional components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its multidomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin it also binds to a variety of compounds, particularly to various growth factors, and as such, fibrinogen is a player in cardiovascular and extracellular matrix physiology. Laminins contribute to the structure of the ECM and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Fibrillins represent the predominant core of microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide basis for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Latent TGFβ binding proteins (LTBPs) are included here as their structure is similar to fibrillins. Several categories of ECM components described after fibrillins are sub-classified as matricellular proteins, i.e., they are secreted into ECM, but do not provide structure. Rather they interact with cell membrane receptors, collagens, proteases, hormones and growth factors, communicating and directing cell-ECM traffic. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Matrilins have been emerging as a new group of supporting actors, and their role in connective tissue physiology and pathophysiology has not been fully characterized. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.
Collapse
Affiliation(s)
- Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
23
|
Roles of Enteric Neural Stem Cell Niche and Enteric Nervous System Development in Hirschsprung Disease. Int J Mol Sci 2021; 22:ijms22189659. [PMID: 34575824 PMCID: PMC8465795 DOI: 10.3390/ijms22189659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
The development of the enteric nervous system (ENS) is highly modulated by the synchronized interaction between the enteric neural crest cells (ENCCs) and the neural stem cell niche comprising the gut microenvironment. Genetic defects dysregulating the cellular behaviour(s) of the ENCCs result in incomplete innervation and hence ENS dysfunction. Hirschsprung disease (HSCR) is a rare complex neurocristopathy in which the enteric neural crest-derived cells fail to colonize the distal colon. In addition to ENS defects, increasing evidence suggests that HSCR patients may have intrinsic defects in the niche impairing the extracellular matrix (ECM)-cell interaction and/or dysregulating the cellular niche factors necessary for controlling stem cell behaviour. The niche defects in patients may compromise the regenerative capacity of the stem cell-based therapy and advocate for drug- and niche-based therapies as complementary therapeutic strategies to alleviate/enhance niche-cell interaction. Here, we provide a summary of the current understandings of the role of the enteric neural stem cell niche in modulating the development of the ENS and in the pathogenesis of HSCR. Deciphering the contribution of the niche to HSCR may provide important implications to the development of regenerative medicine for HSCR.
Collapse
|
24
|
Stavely R, Bhave S, Ho WLN, Ahmed M, Pan W, Rahman AA, Ulloa J, Bousquet N, Omer M, Guyer R, Nagy N, Goldstein AM, Hotta R. Enteric mesenchymal cells support the growth of postnatal enteric neural stem cells. Stem Cells 2021; 39:1236-1252. [PMID: 33938072 DOI: 10.1002/stem.3388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 01/11/2023]
Abstract
Interplay between embryonic enteric neural stem cells (ENSCs) and enteric mesenchymal cells (EMCs) in the embryonic gut is essential for normal development of the enteric nervous system. Disruption of these interactions underlies the pathogenesis of intestinal aganglionosis in Hirschsprung disease (HSCR). ENSC therapy has been proposed as a possible treatment for HSCR, but whether the survival and development of postnatal-derived ENSCs similarly rely on signals from the mesenchymal environment is unknown and has important implications for developing protocols to expand ENSCs for cell transplantation therapy. Enteric neural crest-derived cells (ENCDCs) and EMCs were cultured from the small intestine of Wnt1-Rosa26-tdTomato mice. EMCs promoted the expansion of ENCDCs 9.5-fold by inducing ENSC properties, including expression of Nes, Sox10, Sox2, and Ngfr. EMCs enhanced the neurosphere-forming ability of ENCDCs, and this persisted after withdrawal of the EMCs. These effects were mediated by paracrine factors and several ligands known to support neural stem cells were identified in EMCs. Using the optimized expansion procedures, neurospheres were generated from small intestine of the Ednrb-/- mouse model of HSCR. These ENSCs had similar proliferative and migratory capacity to Ednrb+/+ ENSCs, albeit neurospheres contained fewer neurons. ENSCs derived from Ednrb-/- mice generated functional neurons with similar calcium responses to Ednrb+/+ ENSCs and survived after transplantation into the aganglionic colon of Ednrb-/- recipients. EMCs act as supporting cells to ENSCs postnatally via an array of synergistically acting paracrine signaling factors. These properties can be leveraged to expand autologous ENSCs from patients with HSCR mutations for therapeutic application.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wing Lam N Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Minhal Ahmed
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- College of Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, People's Republic of China
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica Ulloa
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Bousquet
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meredith Omer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Dynamic integration of enteric neural stem cells in ex vivo organotypic colon cultures. Sci Rep 2021; 11:15889. [PMID: 34354183 PMCID: PMC8342505 DOI: 10.1038/s41598-021-95434-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/26/2021] [Indexed: 11/12/2022] Open
Abstract
Enteric neural stem cells (ENSC) have been identified as a possible treatment for enteric neuropathies. After in vivo transplantation, ENSC and their derivatives have been shown to engraft within colonic tissue, migrate and populate endogenous ganglia, and functionally integrate with the enteric nervous system. However, the mechanisms underlying the integration of donor ENSC, in recipient tissues, remain unclear. Therefore, we aimed to examine ENSC integration using an adapted ex vivo organotypic culture system. Donor ENSC were obtained from Wnt1cre/+;R26RYFP/YFP mice allowing specific labelling, selection and fate-mapping of cells. YFP+ neurospheres were transplanted to C57BL6/J (6–8-week-old) colonic tissue and maintained in organotypic culture for up to 21 days. We analysed and quantified donor cell integration within recipient tissues at 7, 14 and 21 days, along with assessing the structural and molecular consequences of ENSC integration. We found that organotypically cultured tissues were well preserved up to 21-days in ex vivo culture, which allowed for assessment of donor cell integration after transplantation. Donor ENSC-derived cells integrated across the colonic wall in a dynamic fashion, across a three-week period. Following transplantation, donor cells displayed two integrative patterns; longitudinal migration and medial invasion which allowed donor cells to populate colonic tissue. Moreover, significant remodelling of the intestinal ECM and musculature occurred upon transplantation, to facilitate donor cell integration within endogenous enteric ganglia. These results provide critical evidence on the timescale and mechanisms, which regulate donor ENSC integration, within recipient gut tissue, which are important considerations in the future clinical translation of stem cell therapies for enteric disease.
Collapse
|
26
|
Karim A, Tang CSM, Tam PKH. The Emerging Genetic Landscape of Hirschsprung Disease and Its Potential Clinical Applications. Front Pediatr 2021; 9:638093. [PMID: 34422713 PMCID: PMC8374333 DOI: 10.3389/fped.2021.638093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/02/2021] [Indexed: 12/25/2022] Open
Abstract
Hirschsprung disease (HSCR) is the leading cause of neonatal functional intestinal obstruction. It is a rare congenital disease with an incidence of one in 3,500-5,000 live births. HSCR is characterized by the absence of enteric ganglia in the distal colon, plausibly due to genetic defects perturbing the normal migration, proliferation, differentiation, and/or survival of the enteric neural crest cells as well as impaired interaction with the enteric progenitor cell niche. Early linkage analyses in Mendelian and syndromic forms of HSCR uncovered variants with large effects in major HSCR genes including RET, EDNRB, and their interacting partners in the same biological pathways. With the advances in genome-wide genotyping and next-generation sequencing technologies, there has been a remarkable progress in understanding of the genetic basis of HSCR in the past few years, with common and rare variants with small to moderate effects being uncovered. The discovery of new HSCR genes such as neuregulin and BACE2 as well as the deeper understanding of the roles and mechanisms of known HSCR genes provided solid evidence that many HSCR cases are in the form of complex polygenic/oligogenic disorder where rare variants act in the sensitized background of HSCR-associated common variants. This review summarizes the roadmap of genetic discoveries of HSCR from the earlier family-based linkage analyses to the recent population-based genome-wide analyses coupled with functional genomics, and how these discoveries facilitated our understanding of the genetic architecture of this complex disease and provide the foundation of clinical translation for precision and stratified medicine.
Collapse
Affiliation(s)
- Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Center, The University of Hong Kong—Karolinska Institute Collaboration in Regenerative Medicine, Hong Kong, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Center, The University of Hong Kong—Karolinska Institute Collaboration in Regenerative Medicine, Hong Kong, China
| |
Collapse
|
27
|
HGF/MET Axis Induces Tumor Secretion of Tenascin-C and Promotes Stromal Rewiring in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13143519. [PMID: 34298732 PMCID: PMC8305254 DOI: 10.3390/cancers13143519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary It has been previously shown that activation of the MET receptor by its ligand, the hepatocyte growth factor (HGF), modulates the tumor-stroma cross-talk in models of pancreatic cancer. We now wish to cast light on the molecular mechanisms by which this ligand/receptor pair sustains the interaction between cancer cells and the tumor microenviroment. To this end, we compared data obtained by large-scale analysis of gene expression in pancreatic cancer cells grown in the presence of HGF versus cells grown in the presence of HGF and treated with specific inhibitors of HGF/MET signaling. By clustering differentially expressed genes according to functional groups, we identified candidate genes involved in the process. Among these, tenascin C was selected due to its activity in sustaining the malignant phenotype. Our results highlight a new role for tenascin C, which could represent the operative arm through which MET promotes activation of the stromal compartment in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma is an aggressive tumor characterized by the presence of an abundant stromal compartment contributing significantly to the malignant phenotype. Pancreatic stellate cells are peculiar fibroblasts present in the stroma and represent the predominant source of extracellular matrix proteins, pro-inflammatory cytokines, and growth factors, including hepatocyte growth factor (HGF). Exploiting a co-culture system of human pancreatic stellate cells and cancer cells, we demonstrated that fibroblast activation was reduced upon HGF/MET axis inhibition. To unveil the signaling pathways sustaining stroma modulation orchestrated by MET activation in the tumor, we analyzed the gene expression profile in pancreatic cancer cells stimulated with HGF and treated with HGF/MET inhibitors. Transcriptome analysis showed that, among all the genes modulated by HGF, a subset of 125 genes was restored to the basal level following treatment with the inhibitors. By examining these genes via ingenuity pathway analysis, tenascin C emerged as a promising candidate linking MET signaling and tumor microenvironment. MET-dependent tenascin C modulation in pancreatic cancer cells was validated at RNA and protein levels both in vitro and in vivo. In conclusion, this work identifies tenascin C as a gene modulated by MET activation, suggesting a role in MET-mediated tumor-stroma interplay occurring during pancreatic tumor progression.
Collapse
|
28
|
Dora D, Ferenczi S, Stavely R, Toth VE, Varga ZV, Kovacs T, Bodi I, Hotta R, Kovacs KJ, Goldstein AM, Nagy N. Evidence of a Myenteric Plexus Barrier and Its Macrophage-Dependent Degradation During Murine Colitis: Implications in Enteric Neuroinflammation. Cell Mol Gastroenterol Hepatol 2021; 12:1617-1641. [PMID: 34246810 PMCID: PMC8551790 DOI: 10.1016/j.jcmgh.2021.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Neuroinflammation in the gut is associated with many gastrointestinal (GI) diseases, including inflammatory bowel disease. In the brain, neuroinflammatory conditions are associated with blood-brain barrier (BBB) disruption and subsequent neuronal injury. We sought to determine whether the enteric nervous system is similarly protected by a physical barrier and whether that barrier is disrupted in colitis. METHODS Confocal and electron microscopy were used to characterize myenteric plexus structure, and FITC-dextran assays were used to assess for presence of a barrier. Colitis was induced with dextran sulfate sodium, with co-administration of liposome-encapsulated clodronate to deplete macrophages. RESULTS We identified a blood-myenteric barrier (BMB) consisting of extracellular matrix proteins (agrin and collagen-4) and glial end-feet, reminiscent of the BBB, surrounded by a collagen-rich periganglionic space. The BMB is impermeable to the passive movement of 4 kDa FITC-dextran particles. A population of macrophages is present within enteric ganglia (intraganglionic macrophages [IGMs]) and exhibits a distinct morphology from muscularis macrophages, with extensive cytoplasmic vacuolization and mitochondrial swelling but without signs of apoptosis. IGMs can penetrate the BMB in physiological conditions and establish direct contact with neurons and glia. Dextran sulfate sodium-induced colitis leads to BMB disruption, loss of its barrier integrity, and increased numbers of IGMs in a macrophage-dependent process. CONCLUSIONS In intestinal inflammation, macrophage-mediated degradation of the BMB disrupts its physiological barrier function, eliminates the separation of the intra- and extra-ganglionic compartments, and allows inflammatory stimuli to access the myenteric plexus. This suggests a potential mechanism for the onset of neuroinflammation in colitis and other GI pathologies with acquired enteric neuronal dysfunction.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Szilamer Ferenczi
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viktoria E. Toth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zoltan V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ildiko Bodi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Krisztina J. Kovacs
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Allan M. Goldstein, MD, Massachusetts General Hospital, 55 Fruit Street, WRN 1151, Boston, Massachusetts 02114. fax: (617) 726-2167.
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary,Correspondence Address correspondence to: Nandor Nagy, PhD, Semmelweis University, Tuzolto st. 58, Budapest 1094, Hungary. fax: (36) 1-2153064.
| |
Collapse
|
29
|
Vaes N, Schonkeren SL, Rademakers G, Holland AM, Koch A, Gijbels MJ, Keulers TG, de Wit M, Moonen L, Van der Meer JRM, van den Boezem E, Wolfs TGAM, Threadgill DW, Demmers J, Fijneman RJA, Jimenez CR, Vanden Berghe P, Smits KM, Rouschop KMA, Boesmans W, Hofstra RMW, Melotte V. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep 2021; 22:e51913. [PMID: 33890711 PMCID: PMC8183412 DOI: 10.15252/embr.202051913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
The N-Myc Downstream-Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4-/- ) CRC models and an indirect co-culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities. However, combining in vivo, in vitro, and quantitative proteomics data, we uncover that Ndrg4 knockdown is associated with enlarged intestinal adenoma development and that organoid growth is boosted by the Ndrg4-/- ENS cell secretome, which is enriched for Nidogen-1 (Nid1) and Fibulin-2 (Fbln2). Moreover, NID1 and FBLN2 are expressed in enteric neurons, enhance migration capacities of CRC cells, and are enriched in human CRC secretomes. Hence, we provide evidence that the ENS, via loss of Ndrg4, is involved in colorectal pathogenesis and that ENS-derived Nidogen-1 and Fibulin-2 enhance colorectal carcinogenesis.
Collapse
Affiliation(s)
- Nathalie Vaes
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Simone L Schonkeren
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Glenn Rademakers
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Amy M Holland
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Alexander Koch
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Marion J Gijbels
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Molecular GeneticsCardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical CenterAmsterdamThe Netherlands
| | - Tom G Keulers
- Department of RadiotherapyGROW‐School for Oncology and Developmental Biology and Comprehensive Cancer Center Maastricht MUMC+Maastricht UniversityMaastrichtThe Netherlands
| | - Meike de Wit
- Department of Medical Oncology and Oncoproteomics LaboratoryCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Laura Moonen
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jaleesa R M Van der Meer
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Edith van den Boezem
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tim G A M Wolfs
- Department of PediatricsGROW‐School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - David W Threadgill
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterCollege StationTXUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Jeroen Demmers
- Proteomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | | | - Connie R Jimenez
- Department of Medical Oncology and Oncoproteomics LaboratoryCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS) and Translational Research Center for Gastrointestinal Disorders (TARGID)Department of Chronic Diseases, Metabolism and AgeingKU LeuvenLeuvenBelgium
| | - Kim M Smits
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Kasper M A Rouschop
- Department of RadiotherapyGROW‐School for Oncology and Developmental Biology and Comprehensive Cancer Center Maastricht MUMC+Maastricht UniversityMaastrichtThe Netherlands
| | - Werend Boesmans
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Biomedical Research Institute (BIOMED)Hasselt UniversityHasseltBelgium
| | - Robert M W Hofstra
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Veerle Melotte
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
30
|
Li Y, Lv X, Chen H, Zhi Z, Wei Z, Wang B, Zhou L, Li H, Tang W. Peptide Derived from AHNAK Inhibits Cell Migration and Proliferation in Hirschsprung's Disease by Targeting the ERK1/2 Pathway. J Proteome Res 2021; 20:2308-2318. [PMID: 33853325 DOI: 10.1021/acs.jproteome.0c00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hirschsprung's disease (HSCR) is characterized by the lack of ganglion cells in the distal part of the digestive tract. It occurs due to migration disorders of enteric neural crest cells (ENCCs) from 5 to 12 weeks of embryonic development. More and more studies show that HSCR is a result of the interaction of multiple genes and the microenvironments, but its specific pathogenesis has not been fully elucidated. Studies have confirmed that many substances in the intestinal microenvironment, such as laminin and β1-integrin, play a vital regulatory role in cell growth and disease progression. In addition to these high-molecular-weight proteins, research on endogenous polypeptides derived from these proteins has been increasing in recent years. However, it is unclear whether these endogenous peptides have effects on the migration of ENCCs and thus participate in the occurrence of HSCR. Previously, our research group found that compared with the normal intestinal tissue, the expression of AHNAK protein in the stenosed intestinal tissue of HSCR patients was significantly upregulated, and overexpression of AHNAK could inhibit cell migration and proliferation. In this study, endogenous peptides were extracted from the normal control intestinal tissue and the stenosed HSCR intestinal tissue. The endogenous polypeptide expression profile was analyzed by liquid chromatography-mass spectrometry, and multiple peptides derived from AHNAK protein were found. We selected one of them, "EGPEVDVNLPK", for research. Because there is no uniform naming system, this peptide is temporarily named PDAHNAK (peptide derived from AHNAK). This project aims to clarify the potential role of PDAHNAK in the development of HSCR and to further understand its relationship with its precursor protein AHNAK and how they contribute to the development of HSCR.
Collapse
Affiliation(s)
- Yuhan Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiurui Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,School of Medicine & Dentistry, University of Rochester, Rochester 14642, United States
| | - Huan Chen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhonghong Wei
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Binyu Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - LingLing Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
31
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
32
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
33
|
Nagy N, Guyer RA, Hotta R, Zhang D, Newgreen DF, Halasy V, Kovacs T, Goldstein AM. RET overactivation leads to concurrent Hirschsprung disease and intestinal ganglioneuromas. Development 2020; 147:dev190900. [PMID: 32994173 PMCID: PMC7657479 DOI: 10.1242/dev.190900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Appropriately balanced RET signaling is of crucial importance during embryonic neural crest cell migration, proliferation and differentiation. RET deficiency, for example, leads to intestinal aganglionosis (Hirschsprung disease), whereas overactive RET can lead to multiple endocrine neoplasia (MEN) syndromes. Some RET mutations are associated with both intestinal aganglionosis and MEN-associated tumors. This seemingly paradoxical occurrence has led to speculation of a 'Janus mutation' in RET that causes overactivation or impairment of RET activity depending on the cellular context. Using an intestinal catenary culture system to test the effects of GDNF-mediated RET activation, we demonstrate the concurrent development of distal colonic aganglionosis and intestinal ganglioneuromas. Interestingly, the tumors induced by GDNF stimulation contain enteric neuronal progenitors capable of reconstituting an enteric nervous system when transplanted into a normal developmental environment. These results suggest that a Janus mutation may not be required to explain co-existing Hirschsprung disease and MEN-associated tumors, but rather that RET overstimulation alone is enough to cause both phenotypes. The results also suggest that reprogramming tumor cells toward non-pathological fates may represent a possible therapeutic avenue for MEN-associated neoplasms.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dongcheng Zhang
- Neural Crest Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Donald F Newgreen
- Neural Crest Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Viktoria Halasy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
34
|
Pilecki B, Moeller JB. Fungal recognition by mammalian fibrinogen-related proteins. Scand J Immunol 2020; 92:e12925. [PMID: 32614476 DOI: 10.1111/sji.12925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022]
Abstract
Fungi are ubiquitous eukaryotic micro-organisms present in virtually all environmental habitats. Although rarely pathogenic to the healthy population, many fungal species are capable of causing human disease in immunocompromised individuals. Thus, fungal infections remain a significant cause of morbidity and mortality, with rising prevalence accompanying the worldwide increase in immunosuppression-based therapies. Therefore, better understanding of the mutual interactions between the protective host mechanisms and the invading fungi remains of critical importance. The innate immune system constitutes the first line of defence against exogenous insults. The innate antifungal immunity is mediated through recognition of specific pathogen-associated molecular patterns (PAMPs) by a broad panel of host pattern recognition receptors (PRRs), responsible for mounting adequate protective responses. In this review, we describe fungal PAMPs as well as a selection of PRRs able to recognize them. We focus on the members of the fibrinogen-related domain (FReD) protein family that have been shown to recognize fungi-derived molecules: ficolins, fibrinogen C domain containing 1 (FIBCD1) and tenascin-C. We describe their structure, their binding targets and their established as well as putative biological functions related to fungal recognition and immunity.
Collapse
Affiliation(s)
- Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper Bonnet Moeller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
36
|
Fu M, Barlow-Anacker AJ, Kuruvilla KP, Bowlin GL, Seidel CW, Trainor PA, Gosain A. 37/67-laminin receptor facilitates neural crest cell migration during enteric nervous system development. FASEB J 2020; 34:10931-10947. [PMID: 32592286 DOI: 10.1096/fj.202000699r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
Enteric nervous system (ENS) development is governed by interactions between neural crest cells (NCC) and the extracellular matrix (ECM). Hirschsprung disease (HSCR) results from incomplete NCC migration and failure to form an appropriate ENS. Prior studies implicate abnormal ECM in NCC migration failure. We performed a comparative microarray of the embryonic distal hindgut of wild-type and EdnrBNCC-/- mice that model HSCR and identified laminin-β1 as upregulated in EdnrBNCC-/- colon. We identified decreased expression of 37/67 kDa laminin receptor (LAMR), which binds laminin-β1, in human HSCR myenteric plexus and EdnrBNCC-/- NCC. Using a combination of in vitro gut slice cultures and ex vivo organ cultures, we determined the mechanistic role of LAMR in NCC migration. We found that enteric NCC express LAMR, which is downregulated in human and murine HSCR. Binding of LAMR by the laminin-β1 analog YIGSR promotes NCC migration. Silencing of LAMR abrogated these effects. Finally, applying YIGSR to E13.5 EdnrBNCC-/- colon explants resulted in 80%-100% colonization of the hindgut. This study adds LAMR to the large list of receptors through which NCC interact with their environment during ENS development. These results should be used to inform ongoing integrative, regenerative medicine approaches to HSCR.
Collapse
Affiliation(s)
- Ming Fu
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Amanda J Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Korah P Kuruvilla
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | | | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| |
Collapse
|
37
|
Gao N, Hou P, Wang J, Zhou T, Wang D, Zhang Q, Mu W, Lv X, Li A. Increased Fibronectin Impairs the Function of Excitatory/Inhibitory Synapses in Hirschsprung Disease. Cell Mol Neurobiol 2020; 40:617-628. [PMID: 31760535 PMCID: PMC11448818 DOI: 10.1007/s10571-019-00759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Although approximately 50% of cases have a known genetic defect, the precise pathogenesis of Hirschsprung disease (HSCR) is still unclear. We recently reported that expression of fibronectin (FN), which is involved in the migration, colonization, and differentiation of enteric neural crest cells (ENCCs), is increased in aganglionic colonic segments obtained from patients. We hypothesized that abnormally high levels of FN might play a role in the etiology of HSCR. Here, to test this hypothesis, we investigated aganglionic, transitional, and ganglionic colon segments from 63 children with HSCR and distal colon from thirty healthy Wistar rats at embryonic day 20, in addition to in vitro studies with PC12 Adh neural crest cells. We measured the protein and mRNA expression levels of FN, together with a panel of excitatory (VGLUT1, GluA1, GluN1, PSD-95, and NL-1) and inhibitory (GAD67, GABA AR-α1, NL-2, and SLC32) synaptic markers. Expression of all these synaptic markers was significantly decreased in aganglionic colon, compared to ganglionic colon, whereas expression of FN was significantly increased. In a neural crest cell line, PC12 Adh, knockdown of FN with small-interfering RNA increased the expression of synaptic markers. Co-culture of colons from embryonic day 20 rats with RGD recombinant protein, which contains the RGD motif of FN, reduced the expression of excitatory and inhibitory synaptic markers. These results are consistent with the idea that the etiology of HSCR involves aberrant overexpression of FN, which may impair synaptic function and enteric nervous system development, leading to motor dysfunction of intestinal muscles.
Collapse
Affiliation(s)
- Ni Gao
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Peimin Hou
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Jian Wang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Tingting Zhou
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Dongming Wang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qiangye Zhang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Weijing Mu
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiaona Lv
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
38
|
Wu F, Wen Z, Zhi Z, Li Y, Zhou L, Li H, Xu X, Tang W. MPGES-1 derived PGE2 inhibits cell migration by regulating ARP2/3 in the pathogenesis of Hirschsprung disease. J Pediatr Surg 2019; 54:2032-2037. [PMID: 30814036 DOI: 10.1016/j.jpedsurg.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously studied the metabolomics, transcriptomics and proteomics of intestinal tissue of Hirschsprung disease (HSCR) patients; the results suggested that the expression of prostaglandin E2(PGE2), prostaglandin E receptor 2(PTGER2) and microsomal prostaglandin E synthase-1 (mPGES-1) notably increased in HSCR colon tissues. We already verified the differential expression of PGE2/EP2 in HSCR patients; therefore we investigate how mPGES-1 derived PGE2 affects the migration and the potential mechanism in cells, revealing the role of mPGES-1 derived PGE2 in the pathogenesis of Hirschsprung disease. METHODS SH-SY5Y and SK-N-BE2 cell lines were obtained from American Type Culture Collection (ATCC, USA). Prostaglandin E2 and its synthetase inhibitors were purchased from Med Chem Express (MCE, USA). Migration assays were performed with transwell and scratch assays. Cell proliferation was confirmed by CCK8 method. Flow cytometer was used to detect the cell cycle and cell apoptosis. The expressions of mRNA and protein of EP2, ARP2/3 were determined by qRT-PCR and western blot respectively. Immunofluorescence and confocal laser scanning microscopy were used to observe the morphology and function of cytoskeleton. RESULTS MPGES-1 derived PGE2 decreased the relative expression of EP2 and ARP2/3 and caused damage to cytoskeleton. As to cell functions, PGE2 inhibited cell migration while having no effects on the proliferation, cell cycle and apoptosis. By adding mPGES-1 inhibitor MK886 the abnormal expression and damaged cell function were reversed. CONCLUSIONS MPGES-1 derived PGE2 inhibits the cell migration by regulating ARP2/3 complex via prostaglandin E2 receptor. Potential mechanisms are the damage of cytoskeleton and related proteins leading to failure of cell polarize and migration. Here we thoroughly inquire the role mPGES-1 derived PGE2 plays in cell migration which might provide a new thinking in the investigation interrelated to the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Feng Wu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zechao Wen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqun Xu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Abstract
The complexity of morphogenesis poses a fundamental challenge to understanding the mechanisms governing the formation of biological patterns and structures. Over the past century, numerous processes have been identified as critically contributing to morphogenetic events, but the interplay between the various components and aspects of pattern formation have been much harder to grasp. The combination of traditional biology with mathematical and computational methods has had a profound effect on our current understanding of morphogenesis and led to significant insights and advancements in the field. In particular, the theoretical concepts of reaction–diffusion systems and positional information, proposed by Alan Turing and Lewis Wolpert, respectively, dramatically influenced our general view of morphogenesis, although typically in isolation from one another. In recent years, agent-based modeling has been emerging as a consolidation and implementation of the two theories within a single framework. Agent-based models (ABMs) are unique in their ability to integrate combinations of heterogeneous processes and investigate their respective dynamics, especially in the context of spatial phenomena. In this review, we highlight the benefits and technical challenges associated with ABMs as tools for examining morphogenetic events. These models display unparalleled flexibility for studying various morphogenetic phenomena at multiple levels and have the important advantage of informing future experimental work, including the targeted engineering of tissues and organs.
Collapse
|
40
|
Injury and stress responses of adult neural crest-derived cells. Dev Biol 2018; 444 Suppl 1:S356-S365. [DOI: 10.1016/j.ydbio.2018.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
41
|
Nagy N, Barad C, Hotta R, Bhave S, Arciero E, Dora D, Goldstein AM. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development 2018; 145:dev.160317. [PMID: 29678817 DOI: 10.1242/dev.160317] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Csilla Barad
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily Arciero
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
42
|
Zheng Y, Lv X, Wang D, Gao N, Zhang Q, Li A. Down-regulation of fibronectin and the correlated expression of neuroligin in hirschsprung disease. Neurogastroenterol Motil 2017; 29. [PMID: 28656720 DOI: 10.1111/nmo.13134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/22/2017] [Indexed: 12/29/2022]
Abstract
AIM The goal of this study was to investigate the expression of fibronectin (FN) and the correlated abundance of neuroligins (NLs) in the enteric nervous system (ENS) and to find a novel diagnostic marker in the serum of Hirschsprung disease (HSCR) patients. METHODS The expression levels of FN, neuroligin-1 and neuroligin-2 were detected in 114 children with or without HSCR. The expression and localization of the NLs and FN were assessed morphologically by immunohistochemical staining. Western blot analysis and real-time fluorescence quantitative PCR (qPCR) were performed to examine the correlated expression of the NLs and FN in aganglionic, transitional, and normal ganglionic colon tissues. An enzyme-linked immunosorbent assay (ELISA) was performed to evaluate and compare serum FN levels between HSCR and non-HSCRand between long-type HSCR and short-type HSCR. RESULTS These studies showed that both neuroligin-1 and neuroligin-2 were expressed at low levels in aganglionic segments and at intermediate levels in transitional segments compared to their high level of expression in normal tissue. In contrast, FN expression was negatively correlated, with expression in these three samples transitioning from highest to lowest. The serum FN level was higher in HSCR than in non-HSCR, but no significant difference between short-type HSCR and long-type HSCR was observed. CONCLUSION FN affects the expression of both neuroligin-1 and neuroligin-2 in HSCR, which may lead to the hypoplasia of ganglion cells in the ENS. This correlation may play a key role in the pathogenesis, diagnosis, or classification of HSCR.
Collapse
Affiliation(s)
- Y Zheng
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - X Lv
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - D Wang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - N Gao
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Q Zhang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - A Li
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
43
|
Wang Z, Wei Q, Han L, Cao K, Lan T, Xu Z, Wang Y, Gao Y, Xue J, Shan F, Feng J, Xie X. Tenascin-c renders a proangiogenic phenotype in macrophage via annexin II. J Cell Mol Med 2017; 22:429-438. [PMID: 28857429 PMCID: PMC5742692 DOI: 10.1111/jcmm.13332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
Tenascin-c is an extracellular matrix glycoprotein, the expression of which relates to the progression of atherosclerosis, myocardial infarction and heart failure. Annexin II acts as a cell surface receptor of tenascin-c. This study aimed to delineate the role of tenascin-c and annexin II in macrophages presented in atherosclerotic plaque. Animal models with atherosclerotic lesions were established using ApoE-KO mice fed with high-cholesterol diet. The expression of tenascin-c and annexin II in atherosclerotic lesions was determined by qRT-PCR, Western blot and immunohistochemistry analysis. Raw 264.7 macrophages and human primary macrophages were exposed to 5, 10 and 15 μg/ml tenascin-c for 12 hrs. Cell migration as well as the proangiogenic ability of macrophages was examined. Additionally, annexin II expression was delineated in raw 264.7 macrophages under normal condition (20% O2 ) for 12 hrs or hypoxic condition (1% O2 ) for 6-12 hrs. The expression of tenascin-c and annexin II was markedly augmented in lesion aorta. Tenascin-c positively regulated macrophage migration, which was dependent on the expression of annexin II in macrophages. VEGF release from macrophages and endothelial tube induction by macrophage were boosted by tenascin-c and attenuated by annexin II blocking. Furthermore, tenascin-c activated Akt/NF-κB and ERK signalling through annexin II. Lastly, hypoxia conditioning remarkably facilitates annexin II expression in macrophages through hypoxia-inducible factor (HIF)-1α but not HIF-2α. In conclusion, tenascin-c promoted macrophage migration and VEGF expression through annexin II, the expression of which was modulated by HIF-1α.
Collapse
Affiliation(s)
- Zhiyang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Qi Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Liang Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Keqing Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Tianfeng Lan
- Institute of Integrated Medical Information, Xi'an, China
| | - Zhenjie Xu
- Institute of Integrated Medical Information, Xi'an, China
| | - Yingjuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yuan Gao
- Department of Traditional Chinese Medicine, College of Life Science, Northwest University, Xi'an, China
| | - Jing Xue
- Department of Traditional Chinese Medicine, College of Life Science, Northwest University, Xi'an, China
| | - Fei Shan
- Department of Cardiovascular Surgery, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Jun Feng
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.,Institute of Integrated Medical Information, Xi'an, China
| |
Collapse
|
44
|
Graham HK, Maina I, Goldstein AM, Nagy N. Intestinal smooth muscle is required for patterning the enteric nervous system. J Anat 2017; 230:567-574. [PMID: 28116763 DOI: 10.1111/joa.12583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
The development of the enteric nervous system (ENS) and intestinal smooth muscle occurs in a spatially and temporally correlated manner, but how they influence each other is unknown. In the developing mid-gut of the chick embryo, we find that α-smooth muscle actin expression, indicating early muscle differentiation, occurs after the arrival of migrating enteric neural crest-derived cells (ENCCs). In contrast, hindgut smooth muscle develops prior to ENCC arrival. Smooth muscle development is normal in experimentally aganglionic hindguts, suggesting that proper development and patterning of the muscle layers does not rely on the ENS. However, inhibiting early smooth muscle development severely disrupts ENS patterning without affecting ENCC proliferation or apoptosis. Our results demonstrate that early intestinal smooth muscle differentiation is required for patterning the developing ENS.
Collapse
Affiliation(s)
- Hannah K Graham
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivy Maina
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Nagy N, Goldstein AM. Enteric nervous system development: A crest cell's journey from neural tube to colon. Semin Cell Dev Biol 2017; 66:94-106. [PMID: 28087321 DOI: 10.1016/j.semcdb.2017.01.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is comprised of a network of neurons and glial cells that are responsible for coordinating many aspects of gastrointestinal (GI) function. These cells arise from the neural crest, migrate to the gut, and then continue their journey to colonize the entire length of the GI tract. Our understanding of the molecular and cellular events that regulate these processes has advanced significantly over the past several decades, in large part facilitated by the use of rodents, avians, and zebrafish as model systems to dissect the signals and pathways involved. These studies have highlighted the highly dynamic nature of ENS development and the importance of carefully balancing migration, proliferation, and differentiation of enteric neural crest-derived cells (ENCCs). Proliferation, in particular, is critically important as it drives cell density and speed of migration, both of which are important for ensuring complete colonization of the gut. However, proliferation must be tempered by differentiation among cells that have reached their final destination and are ready to send axonal extensions, connect to effector cells, and begin to produce neurotransmitters or other signals. Abnormalities in the normal processes guiding ENCC development can lead to failure of ENS formation, as occurs in Hirschsprung disease, in which the distal intestine remains aganglionic. This review summarizes our current understanding of the factors involved in early development of the ENS and discusses areas in need of further investigation.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
46
|
Stanic K, Saldivia N, Förstera B, Torrejón M, Montecinos H, Caprile T. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development. Front Neuroanat 2016; 10:89. [PMID: 27733818 PMCID: PMC5039192 DOI: 10.3389/fnana.2016.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Extracellular matrix (ECM) molecules are pivotal for central nervous system (CNS) development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axon guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during CNS development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn toward the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons.
Collapse
Affiliation(s)
- Karen Stanic
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Natalia Saldivia
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Benjamín Förstera
- Department of Physiology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Marcela Torrejón
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Hernán Montecinos
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Teresa Caprile
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| |
Collapse
|
47
|
Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev Biol 2016; 417:139-57. [PMID: 27370713 DOI: 10.1016/j.ydbio.2016.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, intestinal aganglionosis) is a multigenic disorder with variable penetrance and severity that has a general population incidence of 1/5000 live births. Studies using animal models have contributed to our understanding of the developmental origins of HSCR and the genetic complexity of this disease. This review summarizes recent progress in understanding control of enteric nervous system (ENS) development through analyses in mouse models. An overview of signaling pathways that have long been known to control the migration, proliferation and differentiation of enteric neural progenitors into and along the developing gut is provided as a framework for the latest information on factors that influence enteric ganglia formation and maintenance. Newly identified genes and additional factors beyond discrete genes that contribute to ENS pathology including regulatory sequences, miRNAs and environmental factors are also introduced. Finally, because HSCR has become a paradigm for complex oligogenic diseases with non-Mendelian inheritance, the importance of gene interactions, modifier genes, and initial studies on genetic background effects are outlined.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM, U955, Equipe 6, F-94000 Creteil, France; Universite Paris-Est, UPEC, F-94000 Creteil, France.
| | - E Michelle Southard-Smith
- Vanderbilt University Medical Center, Department of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
48
|
Heanue TA, Shepherd IT, Burns AJ. Enteric nervous system development in avian and zebrafish models. Dev Biol 2016; 417:129-38. [PMID: 27235814 DOI: 10.1016/j.ydbio.2016.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.
Collapse
Affiliation(s)
| | | | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Spatiotemporal distribution of extracellular matrix changes during mouse duodenojejunal flexure formation. Cell Tissue Res 2016; 365:367-79. [PMID: 27053245 DOI: 10.1007/s00441-016-2390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Although gut flexures characterize gut morphology, the mechanisms underlying flexure formation remain obscure. Previously, we analyzed the mouse duodenojejunal flexure (DJF) as a model for its formation and reported asymmetric morphologies between the inner and outer bending sides of the fetal mouse DJF, implying their contribution to DJF formation. We now present the extracellular matrix (ECM) as an important factor for gut morphogenesis. We investigate ECM distribution during mouse DJF formation by histological techniques. In the intercellular space of the gut wall, high Alcian-Blue positivity for proteoglycans shifted from the outer to the inner side of the gut wall during DJF formation. Immunopositivity for fibronectin, collagen I, or pan-tenascin was higher at the inner than at the outer side. Collagen IV and laminins localized to the epithelial basement membrane. Beneath the mesothelium at the pre-formation stage, collagen IV and laminin immunopositivity showed inverse results, corresponding to the different cellular characteristics at this site. At the post-formation stage, however, laminin positivity beneath the mesothelium was the reverse of that observed during the pre-formation stage. High immunopositivity for collagen IV and laminins at the inner gut wall mesenchyme of the post-formation DJF implied a different blood vessel distribution. We conclude that ECM distribution changes spatiotemporally during mouse DJF formation, indicating ECM association with the establishment of asymmetric morphologies during this process.
Collapse
|
50
|
|