1
|
Wu S, Chen X, Chen Y, Li C, Yang R, Zhang T, Ma J. Genetic characteristics associated with isolated Microtia revealed through whole exome sequencing of 201 pedigrees. Hum Mol Genet 2025:ddaf063. [PMID: 40275486 DOI: 10.1093/hmg/ddaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Microtia is one of the most common congenital craniofacial malformations, characterized by the maldevelopment of the external and middle ear. While numerous genes have been implicated in syndromic forms of microtia, the genetic underpinnings of isolated microtia remain poorly understood. In this study, we conducted whole exome sequencing (WES) on 201 pedigrees with isolated microtia to investigate its genetic basis. Bioinformatics analysis identified 1362 deleterious variants corresponding to 332 candidate genes, including 40 previously associated with microtia-related phenotypes. Among these, variants in FOXI3, the most frequently identified pathogenic gene for isolated microtia so far, were detected. Remarkably, the remaining 39 genes, which have been recognized as pathogenic in syndromes with microtia, are also suggested to play a role in isolated microtia. However, the precise molecular mechanisms by which these genes contribute to microtia remain to be elucidated. Furthermore, through protein-protein interaction network analysis, functional annotation, and zebrafish expression profiling, we identified two novel genes, MCM2 and BDNF, as the most promising contributors to the pathogenesis of isolated microtia. Our findings, based on the largest WES study of isolated microtia pedigrees to date, provide new insights into the genetic architecture of isolated microtia and suggest promising avenues for future research.
Collapse
Affiliation(s)
- Siyi Wu
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Xin Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Ying Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Chenlong Li
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Run Yang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
- Institute of Medical Genetics & Genomics, Fudan University, No. 131 Dong'an Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
2
|
Klem JR, Schwantes-An TH, Abreu M, Suttie M, Gray R, Vo HDL, Conley G, Foroud TM, Wetherill L, Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD), Lovely CB. Mutations in the bone morphogenetic protein signaling pathway sensitize zebrafish and humans to ethanol-induced jaw malformations. Dis Model Mech 2025; 18:dmm052223. [PMID: 40067253 PMCID: PMC12010914 DOI: 10.1242/dmm.052223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Fetal alcohol spectrum disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Signaling via bone morphogenetic protein (Bmp) is a key regulatory step of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish carrying mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating that ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. By integrating FASD patient data, we provide the first evidence that variants of the human Bmp receptor gene BMPR1B associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD.
Collapse
Affiliation(s)
- John R. Klem
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 40202, USA
| | - Marco Abreu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 40202, USA
| | - Michael Suttie
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
- Big Data Institute, University of Oxford, Oxford OX3 7LF, UK
| | - Raèden Gray
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| | - Hieu D. L. Vo
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| | - Grace Conley
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 40202, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 40202, USA
| | | | - C. Ben Lovely
- University of Louisville School of Medicine, Department of Biochemistry and Molecular Genetics, Alcohol Research Center, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Chen X, Yang R, Zhang T, Ma J. The novel role of foxi3 in zebrafish mandibular development. Cells Dev 2025:204016. [PMID: 40024378 DOI: 10.1016/j.cdev.2025.204016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Recent studies have identified pathogenic variants in the FOXI3 gene associated with craniofacial microsomia pedigrees. In zebrafish, the foxi1 gene is considered a functional homolog of the mouse Foxi3. However, research on foxi3a and foxi3b, which display homologous genes in the naming of FOXI3 in zebrafish, has predominantly focused on their roles in epidermal ionocyte function. Our study reveals that disruption of foxi3a or foxi3b results in a reduced number of cranial neural crest cells (CNCCs) and hypoplastic mandibular cartilage in zebrafish. These findings introduce a new perspective on the functional homologs of FOXI3 and highlight an unrecognized role of foxi3 in zebrafish CNCC and mandibular development.
Collapse
Affiliation(s)
- Xin Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Run Yang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Institute of Medical Genetics & Genomics, Fudan University, Shanghai 200032, China; Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
4
|
Klem JR, Schwantes-An TH, Abreu M, Suttie M, Gray R, Vo H, Conley G, Foroud TM, Wetherill L, Lovely CB. Mutations in the Bone Morphogenetic Protein signaling pathway sensitize zebrafish and humans to ethanol-induced jaw malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546932. [PMID: 37425959 PMCID: PMC10327032 DOI: 10.1101/2023.06.28.546932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Bmp signaling is a key regulator of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. Integrating FASD patient data, we provide the first evidence that variants in the human Bmp receptor gene BMPR1B associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD. Summary Statement In this study, we apply a unique combination of zebrafish-based approaches and human genetic and facial dysmorphology analyses to resolve the cellular mechanisms driven by the ethanol-sensitive Bmp pathway.
Collapse
|
5
|
Wang G, Du Y, Cui X, Xu T, Li H, Dong M, Li W, Li Y, Cai W, Xu J, Li S, Yang X, Wu Y, Chen H, Li X. Directed differentiation of human embryonic stem cells into parathyroid cells and establishment of parathyroid organoids. Cell Prolif 2024; 57:e13634. [PMID: 38494923 PMCID: PMC11294423 DOI: 10.1111/cpr.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Differentiation of human embryonic stem cells (hESCs) into human embryonic stem cells-derived parathyroid-like cells (hESC-PT) has clinical significance in providing new therapies for congenital and acquired parathyroid insufficiency conditions. However, a highly reproducible, well-documented method for parathyroid differentiation remains unavailable. By imitating the natural process of parathyroid embryonic development, we proposed a new hypothesis about the in vitro differentiation of parathyroid-like cells. Transcriptome, differentiation marker protein detection and parathyroid hormone (PTH) secretion assays were performed after the completion of differentiation. To optimize the differentiation protocol and further improve the differentiation rate, we designed glial cells missing transcription factor 2 (GCM2) overexpression lentivirus transfection assays and constructed hESCs-derived parathyroid organoids. The new protocol enabled hESCs to differentiate into hESC-PT. HESC-PT cells expressed PTH, GCM2 and CaSR proteins, low extracellular calcium culture could stimulate hESC-PT cells to secrete PTH. hESC-PT cells overexpressing GCM2 protein secreted PTH earlier than their counterpart hESC-PT cells. Compared with the two-dimensional cell culture environment, hESCs-derived parathyroid organoids secreted more PTH. Both GCM2 lentiviral transfection and three-dimensional cultures could make hESC-PT cells functionally close to human parathyroid cells. Our study demonstrated that hESCs could differentiate into hESC-PT in vitro, which paves the road for applying the technology to treat hypoparathyroidism and introduces new approaches in the field of regenerative medicine.
Collapse
Affiliation(s)
- Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Li
- Department of Clinical and Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenjun Cai
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yonglin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Incardona JP, Linbo TL, Cameron JR, Scholz NL. Structure-activity relationships for alkyl-phenanthrenes support two independent but interacting synergistic models for PAC mixture potency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170544. [PMID: 38309367 DOI: 10.1016/j.scitotenv.2024.170544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Multiple lines of evidence at whole animal, cellular and molecular levels implicate polycyclic aromatic compounds (PACs) with three rings as drivers of crude oil toxicity to developing fish. Phenanthrene (P0) and its alkylated homologs (C1- through C4-phenanthrenes) comprise the most prominent subfraction of tricyclic PACs in crude oils. Among this family, P0 has been studied intensively, with more limited detail available for the C4-phenanthrene 1-methyl-7-isopropyl-phenanthrene (1-M,7-IP, or retene). While both compounds are cardiotoxic, P0 impacts embryonic cardiac function and development through direct blockade of K+ and Ca2+ currents that regulate cardiomyocyte contractions. In contrast, 1-M,7-IP dysregulates aryl hydrocarbon receptor (AHR) activation in developing ventricular cardiomyocytes. Although no other compounds have been assessed in detail across the larger family of alkylated phenanthrenes, increasing alkylation might be expected to shift phenanthrene family member activity from K+/Ca2+ ion current blockade to AHR activation. Using embryos of two distantly related fish species, zebrafish and Atlantic haddock, we tested 14 alkyl-phenanthrenes in both acute and latent developmental cardiotoxicity assays. All compounds were cardiotoxic, and effects were resolved into impacts on multiple, highly specific aspects of heart development or function. Craniofacial defects were clearly linked to developmental cardiotoxicity. Based on these findings, we suggest a novel framework to delineate the developmental toxicity of petrogenic PAC mixtures in fish, which incorporates multi-mechanistic pathways that produce interactive synergism at the organ level. In addition, relationships among measured embryo tissue concentrations, cytochrome P4501A mRNA induction, and cardiotoxic responses suggest a two-compartment toxicokinetic model that independently predicts high potency of PAC mixtures through classical metabolic synergism. These two modes of synergism, specific to the sub-fraction of phenanthrenes, are sufficient to explain the high embryotoxic potency of crude oils, independent of as-yet unmeasured compounds in these complex environmental mixtures.
Collapse
Affiliation(s)
- John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA.
| | - Tiffany L Linbo
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA
| | - James R Cameron
- Saltwater, Inc., Under Contract to Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA
| |
Collapse
|
7
|
Anselmi C, Fuller GK, Stolfi A, Groves AK, Manni L. Sensory cells in tunicates: insights into mechanoreceptor evolution. Front Cell Dev Biol 2024; 12:1359207. [PMID: 38550380 PMCID: PMC10973136 DOI: 10.3389/fcell.2024.1359207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates, the sister group of vertebrates, offer a unique perspective for evolutionary developmental studies (Evo-Devo) due to their simple anatomical organization. Moreover, the separation of tunicates from vertebrates predated the vertebrate-specific genome duplications. As adults, they include both sessile and pelagic species, with very limited mobility requirements related mainly to water filtration. In sessile species, larvae exhibit simple swimming behaviors that are required for the selection of a suitable substrate on which to metamorphose. Despite their apparent simplicity, tunicates display a variety of mechanoreceptor structures involving both primary and secondary sensory cells (i.e., coronal sensory cells). This review encapsulates two decades of research on tunicate mechanoreception focusing on the coronal organ's sensory cells as prime candidates for understanding the evolution of vertebrate hair cells of the inner ear and the lateral line organ. The review spans anatomical, cellular and molecular levels emphasizing both similarity and differences between tunicate and vertebrate mechanoreception strategies. The evolutionary significance of mechanoreception is discussed within the broader context of Evo-Devo studies, shedding light on the intricate pathways that have shaped the sensory system in chordates.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| | - Gwynna K. Fuller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
8
|
Xing X, Zeng Z, Wang Y, Pan B, Huang X. Identification of potential molecular mechanism related to craniofacial dysmorphism caused by FOXI3 deficiency. Mol Genet Genomic Med 2024; 12:e2411. [PMID: 38433559 PMCID: PMC10910234 DOI: 10.1002/mgg3.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Hemifacial macrosomia (HFM, OMIM 164210) is a complex and highly heterogeneous disease. FORKHEAD BOX I3 (FOXI3) is a susceptibility gene for HFM, and mice with loss of function of Foxi3 did exhibit a phenotype similar to craniofacial dysmorphism. However, the specific pathogenesis of HFM caused by FOXI3 deficiency remains unclear till now. METHOD In this study, we first constructed a Foxi3 deficiency (Foxi3-/- ) mouse model to verify the craniofacial phenotype of Foxi3-/- mice, and then used RNAseq data for gene differential expression analysis to screen candidate pathogenic genes, and conducted gene expression verification analysis using quantitative real-time PCR. RESULTS By observing the phenotype of Foxi3-/- mice, we found that craniofacial dysmorphism was present. The results of comprehensive bioinformatics analysis suggested that the craniofacial dysmorphism caused by Foxi3 deficiency may be involved in the PI3K-Akt signaling pathway. Quantitative real-time PCR results showed that the expression of PI3K-Akt signaling pathway-related gene Akt2 was significantly increased in Foxi3-/- mice. CONCLUSION The craniofacial dysmorphism caused by the deficiency of Foxi3 may be related to the expression of Akt2 and PI3K-Akt signaling pathway. This study laid a foundation for understanding the function of FOXI3 and the pathogenesis and treatment of related craniofacial dysmorphism caused by FOXI3 dysfunction.
Collapse
Affiliation(s)
- Xiao‐Liang Xing
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese MedicineHunan University of MedicineChangshaChina
| | - Ziqiang Zeng
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese MedicineHunan University of MedicineChangshaChina
| | - Yana Wang
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xueshuang Huang
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese MedicineHunan University of MedicineChangshaChina
| |
Collapse
|
9
|
Rees JM, Palmer MA, Gillis JA. Fgf signalling is required for gill slit formation in the skate, Leucoraja erinacea. Dev Biol 2024; 506:85-94. [PMID: 38040078 PMCID: PMC11195640 DOI: 10.1016/j.ydbio.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
The gill slits of fishes develop from an iterative series of pharyngeal endodermal pouches that contact and fuse with surface ectoderm on either side of the embryonic head. We find in the skate (Leucoraja erinacea) that all gill slits form via a stereotypical sequence of epithelial interactions: 1) endodermal pouches approach overlying surface ectoderm, with 2) focal degradation of ectodermal basement membranes preceding endoderm-ectoderm contact; 3) endodermal pouches contact and intercalate with overlying surface ectoderm, and finally 4) perforation of a gill slit occurs by epithelial remodelling, without programmed cell death, at the site of endoderm-ectoderm intercalation. Skate embryos express Fgf8 and Fgf3 within developing pharyngeal epithelia during gill slit formation. When we inhibit Fgf signalling by treating skate embryos with the Fgf receptor inhibitor SU5402 we find that endodermal pouch formation, basement membrane degradation and endodermal-ectodermal intercalation are unaffected, but that epithelial remodelling and gill slit perforation fail to occur. These findings point to a role for Fgf signalling in epithelial remodelling during gill slit formation in the skate and, more broadly, to an ancestral role for Fgf signalling during pharyngeal pouch epithelial morphogenesis in vertebrate embryos.
Collapse
Affiliation(s)
- Jenaid M Rees
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michael A Palmer
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, UK; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
10
|
Griffin C, Saint-Jeannet JP. In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives. Dev Biol 2024; 506:20-30. [PMID: 38052294 PMCID: PMC10843546 DOI: 10.1016/j.ydbio.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia. To study cranial placodes and their derivatives and generate cells for therapeutic purposes, several groups have turned to in vitro derivation of placodal cells from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs). In this review, we summarize the signaling cues and mechanisms involved in cranial placode induction, specification, and differentiation in vivo, and discuss how this knowledge has informed protocols to derive cranial placodes in vitro. We also discuss the benefits and limitations of these protocols, and the potential of in vitro cranial placode modeling in regenerative medicine to treat cranial placode-related pathologies.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
11
|
Ankamreddy H, Thawani A, Birol O, Zhang H, Groves AK. Foxi3 GFP and Foxi3 CreER mice allow identification and lineage labeling of pharyngeal arch ectoderm and endoderm, and tooth and hair placodes. Dev Dyn 2023; 252:1462-1470. [PMID: 37543988 PMCID: PMC10841876 DOI: 10.1002/dvdy.645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND FOXI3 is a forkhead family transcription factor that is expressed in the progenitors of craniofacial placodes, epidermal placodes, and the ectoderm and endoderm of the pharyngeal arch region. Loss of Foxi3 in mice and pathogenic Foxi3 variants in dogs and humans cause a variety of craniofacial defects including absence of the inner ear, severe truncations of the jaw, loss or reduction in external and middle ear structures, and defects in teeth and hair. RESULTS To allow for the identification, isolation, and lineage tracing of Foxi3-expressing cells in developing mice, we targeted the Foxi3 locus to create Foxi3GFP and Foxi3CreER mice. We show that Foxi3GFP mice faithfully recapitulate the expression pattern of Foxi3 mRNA at all ages examined, and Foxi3CreER mice can trace the derivatives of pharyngeal arch ectoderm and endoderm, the pharyngeal pouches and clefts that separate each arch, and the derivatives of hair and tooth placodes. CONCLUSIONS Foxi3GFP and Foxi3CreER mice are new tools that will be of use in identifying and manipulating pharyngeal arch ectoderm and endoderm and hair and tooth placodes.
Collapse
Affiliation(s)
- Harinarayana Ankamreddy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Current Address: Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, Chennai. 603203
| | - Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
- Current Address: Georgia Institute of Technology, Atlanta, GA
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
12
|
Thawani A, Maunsell HR, Zhang H, Ankamreddy H, Groves AK. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border. Development 2023; 150:dev202047. [PMID: 37756587 PMCID: PMC10617604 DOI: 10.1242/dev.202047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Helen R. Maunsell
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Zbasnik N, Fish JL. Fgf8 regulates first pharyngeal arch segmentation through pouch-cleft interactions. Front Cell Dev Biol 2023; 11:1186526. [PMID: 37287454 PMCID: PMC10242020 DOI: 10.3389/fcell.2023.1186526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: The pharyngeal arches are transient developmental structures that, in vertebrates, give rise to tissues of the head and neck. A critical process underlying the specification of distinct arch derivatives is segmentation of the arches along the anterior-posterior axis. Formation of ectodermal-endodermal interfaces is a key mediator of this process, and although it is essential, mechanisms regulating the establishment of these interfaces vary between pouches and between taxa. Methods: Here, we focus on the patterning and morphogenesis of epithelia associated with the first pharyngeal arch, the first pharyngeal pouch (pp1) and the first pharyngeal cleft (pc1), and the role of Fgf8 dosage in these processes in the mouse model system. Results: We find that severe reductions of Fgf8 levels disrupt both pp1 and pc1 development. Notably, out-pocketing of pp1 is largely robust to Fgf8 reductions, however, pp1 extension along the proximal-distal axis fails when Fgf8 is low. Our data indicate that Fgf8 is required for specification of regional identity in both pp1 and pc1, for localized changes in cell polarity, and for elongation and extension of both pp1 and pc1. Discussion: Based on Fgf8-mediated changes in tissue relationships between pp1 and pc1, we hypothesize that extension of pp1 requires physical interaction with pc1. Overall, our data indicate a critical role for the lateral surface ectoderm in segmentation of the first pharyngeal arch that has previously been under-appreciated.
Collapse
|
14
|
Mao K, Borel C, Ansar M, Jolly A, Makrythanasis P, Froehlich C, Iwaszkiewicz J, Wang B, Xu X, Li Q, Blanc X, Zhu H, Chen Q, Jin F, Ankamreddy H, Singh S, Zhang H, Wang X, Chen P, Ranza E, Paracha SA, Shah SF, Guida V, Piceci-Sparascio F, Melis D, Dallapiccola B, Digilio MC, Novelli A, Magliozzi M, Fadda MT, Streff H, Machol K, Lewis RA, Zoete V, Squeo GM, Prontera P, Mancano G, Gori G, Mariani M, Selicorni A, Psoni S, Fryssira H, Douzgou S, Marlin S, Biskup S, De Luca A, Merla G, Zhao S, Cox TC, Groves AK, Lupski JR, Zhang Q, Zhang YB, Antonarakis SE. FOXI3 pathogenic variants cause one form of craniofacial microsomia. Nat Commun 2023; 14:2026. [PMID: 37041148 PMCID: PMC10090152 DOI: 10.1038/s41467-023-37703-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.
Collapse
Affiliation(s)
- Ke Mao
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
| | - Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
- Jules-Gonin Eye Hospital, Department of Ophthalmology, University of Lausanne, 1004, Lausanne, Switzerland
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland
- Laboratory of Medical Genetics, Medical School, University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Bingqing Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Xiaopeng Xu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xavier Blanc
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland
| | - Hao Zhu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Qi Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China
| | - Fujun Jin
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Harinarayana Ankamreddy
- Department of Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, Tamilnadu, 603203, India
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongyuan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaogang Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Peiwei Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland
| | - Sohail Aziz Paracha
- Anatomy Department, Khyber Medical University Institute of Medical Sciences (KIMS), Kohat, Pakistan
| | - Syed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences (KIMS), DHQ Hospital KDA, Kohat, Pakistan
| | - Valentina Guida
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Daniela Melis
- Department of Medicine, Surgery, and Dentistry, Università University degli of Studi di Salerno, Salerno, Italy
| | - Bruno Dallapiccola
- Medical Genetics and Rare Disease Research Division, Pediatric Cardiology, Medical Genetics Laboratory, Neuropsychiatry, Scientific Rectorate, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Antonio Novelli
- Sezione di Genetica Medica, Ospedale 'Bambino Gesù', Rome, Italy
| | - Monia Magliozzi
- Sezione di Genetica Medica, Ospedale 'Bambino Gesù', Rome, Italy
| | - Maria Teresa Fadda
- Department of Maxillo-Facial Surgery, Policlinico Umberto I, Rome, Italy
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research, Lausanne University, Epalinges, 1066, Switzerland
| | - Gabriella Maria Squeo
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Giorgia Mancano
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Giulia Gori
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Milena Mariani
- Pediatric Department, ASST Lariana, Santa Anna General Hospital, Como, Italy
| | - Angelo Selicorni
- Pediatric Department, ASST Lariana, Santa Anna General Hospital, Como, Italy
| | - Stavroula Psoni
- Laboratory of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Helen Fryssira
- Laboratory of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Sofia Douzgou
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Sandrine Marlin
- Centre de Référence Surdités Génétiques, Hôpital Necker, Institut Imagine, Paris, France
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tuebingen, Tuebingen, 72076, Germany
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Shouqin Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Timothy C Cox
- Departments of Oral & Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Andrew K Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qingguo Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100144, China.
| | - Yong-Biao Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, 1211, Switzerland.
- Medigenome, Swiss Institute of Genomic Medicine, 1207, Geneva, Switzerland.
- iGE3 Institute of Genetics and Genomes in Geneva, Geneva, Switzerland.
| |
Collapse
|
15
|
Quiat D, Timberlake AT, Curran JJ, Cunningham ML, McDonough B, Artunduaga MA, DePalma SR, Duenas-Roque MM, Gorham JM, Gustafson JA, Hamdan U, Hing AV, Hurtado-Villa P, Nicolau Y, Osorno G, Pachajoa H, Porras-Hurtado GL, Quintanilla-Dieck L, Serrano L, Tumblin M, Zarante I, Luquetti DV, Eavey RD, Heike CL, Seidman JG, Seidman CE. Damaging variants in FOXI3 cause microtia and craniofacial microsomia. Genet Med 2023; 25:143-150. [PMID: 36260083 PMCID: PMC9885525 DOI: 10.1016/j.gim.2022.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. METHODS We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. RESULTS We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. CONCLUSION Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.
Collapse
Affiliation(s)
- Daniel Quiat
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA; Department of Genetics, Harvard Medical School, Boston, MA
| | - Andrew T Timberlake
- Hansjörg Wyss Department of Plastic and Reconstructive Surgery, NYU Langone Medical Center, New York, NY
| | | | - Michael L Cunningham
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA
| | | | | | | | | | | | - Jonas A Gustafson
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Anne V Hing
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA
| | | | | | - Gabriel Osorno
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Harry Pachajoa
- Servicio de Genética Médica, Fundación Valle del Lili, Cali, Colombia; Centro de Investigación en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | | | - Lourdes Quintanilla-Dieck
- Department of Otolaryngology Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | | | | | - Ignacio Zarante
- Human Genomics Institute, Pontificia Universidad Javeriana, Bogotá, Colombia; Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Daniela V Luquetti
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA
| | - Roland D Eavey
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN.
| | - Carrie L Heike
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA.
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA; Cardiovascular Division, Brigham and Women's Hospital, Boston, MA; Howard Hughes Medical Institute, Chevy Chase, MD.
| |
Collapse
|
16
|
Ghosh R, Bosticardo M, Singh S, Similuk M, Delmonte OM, Pala F, Peng C, Jodarski C, Keller MD, Chinn IK, Groves AK, Notarangelo LD, Walkiewicz MA, Chinen J, Bundy V. FOXI3 haploinsufficiency contributes to low T-cell receptor excision circles and T-cell lymphopenia. J Allergy Clin Immunol 2022; 150:1556-1562. [PMID: 35987349 PMCID: PMC9742176 DOI: 10.1016/j.jaci.2022.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Newborn screening can identify neonatal T-cell lymphopenia through detection of a low number of copies of T-cell receptor excision circles in dried blood spots collected at birth. After a positive screening result, further diagnostic testing is required to determine whether the subject has severe combined immunodeficiency or other causes of T-cell lymphopenia. Even after thorough evaluation, approximately 15% of children with a positive result of newborn screening for T-cell receptor excision circles remain genetically undiagnosed. Identifying the underlying genetic etiology is necessary to guide subsequent clinical management and family planning. OBJECTIVE We sought to elucidate the genetic basis of patients with T-cell lymphopenia without an apparent genetic diagnosis. METHODS We used clinical genomic testing as well as functional and immunologic assays to identify and elucidate the genetic and mechanistic basis of T-cell lymphopenia. RESULTS We report 2 unrelated individuals with nonsevere T-cell lymphopenia and abnormal T-cell receptor excision circles who harbor heterozygous loss-of-function variants in forkhead box I3 transcription factor (FOXI3). CONCLUSION Our findings support the notion that haploinsufficiency of FOXI3 results in T-cell lymphopenia with variable expressivity and that FOXI3 may be a key modulator of thymus development.
Collapse
Affiliation(s)
- Rajarshi Ghosh
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institutes of Health, Bethesda, Md
| | - Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, Tex
| | - Morgan Similuk
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institutes of Health, Bethesda, Md
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institutes of Health, Bethesda, Md
| | - Christine Peng
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Colleen Jodarski
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Ivan K Chinn
- Division of Immunology, Allergy, and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institutes of Health, Bethesda, Md.
| | - Magdalena A Walkiewicz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Javier Chinen
- Division of Immunology, Allergy, and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, The Woodlands, Tex.
| | - Vanessa Bundy
- Clinical Development, Immunology, Janssen Research and Development, Spring House, Pa.
| |
Collapse
|
17
|
Anderson RH, Bamforth SD. Morphogenesis of the Mammalian Aortic Arch Arteries. Front Cell Dev Biol 2022; 10:892900. [PMID: 35620058 PMCID: PMC9127140 DOI: 10.3389/fcell.2022.892900] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
The major vessels in mammals that take blood away from the heart and deliver it to the arms and the head take their origin from the aortic arch and are derived from the arteries formed within the embryonic pharyngeal arches. These pharyngeal arch arteries, initially symmetrical, form in a cranial to caudal sequence within the pharyngeal mesenchyme. They then undergo a complex process of remodeling to produce the asymmetrical brachiocephalic arteries as seen in the adult. A complex interaction between the tissues of the pharyngeal arches and the genes they express is required to ensure that arterial formation and remodeling is able to proceed normally. If this process is disrupted, life-threatening congenital cardiovascular malformations can occur, such as interruption of the aortic arch, isolation of individual arteries, or so-called vascular rings. Here, using state-of-the-art imaging techniques, we describe the morphogenesis of the arteries in humans and mice and the cardiovascular defects in the Tbx1 mutant mouse model. We provide details of the process of remodeling, clarifying also the morphogenesis of the external carotid artery and the so-called "migration" of the left subclavian artery.
Collapse
|
18
|
Goida J, Pilmane M. The Evaluation of FGFR1, FGFR2 and FOXO1 in Orofacial Cleft Tissue. CHILDREN 2022; 9:children9040516. [PMID: 35455561 PMCID: PMC9032315 DOI: 10.3390/children9040516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022]
Abstract
Although cleft lip with or without cleft palate (CL/P) is one of the most common congenital anomalies worldwide, the morphopathogenesis of non-syndromic orofacial clefts is still unclear. Many candidate genes have been proposed to play a causal role; however, only a few have been confirmed, leaving many still to be assessed. Taking into account the significance of FGFR1, FGFR2 and FOXO1 in embryogenesis, the aim of this work was to detect and compare the three candidate genes in cleft-affected lip and palatine tissue. Ten soft tissue samples were taken during cheiloplasty and veloplasty. The signals of the candidate genes were visualized using chromogenic in situ hybridization and analyzed using a semi-quantitative method. No statistically important difference in the distribution of FGFR1, FGFR2 and FOXO1 between neither the patients’ lip and vomer mucosa nor the control group was observed. Statistically significant very strong and strong correlations were found between genes in the lip and palatine tissue. The expression of FGFR1, FGFR2 and FOXO1 in cleft-affected lip and palatine tissue seems to be highly individual. Numerous intercorrelations between the genes do not exclude their role in the possible complex morphopathogenesis of orofacial clefts.
Collapse
|
19
|
Jin S, Jeon H, Choe CP. Expression and Functional Analysis of cofilin1-like in Craniofacial Development in Zebrafish. Dev Reprod 2022; 26:23-36. [PMID: 35528320 PMCID: PMC9042393 DOI: 10.12717/dr.2022.26.1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Pharyngeal pouches, a series of outgrowths of the pharyngeal endoderm, are a key
epithelial structure governing facial skeleton development in vertebrates. Pouch
formation is achieved through collective cell migration and rearrangement of
pouch-forming cells controlled by actin cytoskeleton dynamics. While essential
transcription factors and signaling molecules have been identified in pouch
formation, regulators of actin cytoskeleton dynamics have not been reported yet
in any vertebrates. Cofilin1-like (Cfl1l) is a fish-specific member of the
Actin-depolymerizing factor (ADF)/Cofilin family, a critical regulator of actin
cytoskeleton dynamics in eukaryotic cells. Here, we report the expression and
function of cfl1l in pouch development in zebrafish. We first
showed that fish cfl1l might be an ortholog of vertebrate
adf, based on phylogenetic analysis of vertebrate
adf and cfl genes. During pouch formation,
cfl1l was expressed sequentially in the developing pouches
but not in the posterior cell mass in which future pouch-forming cells are
present. However, pouches, as well as facial cartilages whose development is
dependent upon pouch formation, were unaffected by loss-of-function mutations in
cfl1l. Although it could not be completely ruled out a
possibility of a genetic redundancy of Cfl1l with other Cfls, our results
suggest that the cfl1l expression in the developing pouches
might be dispensable for regulating actin cytoskeleton dynamics in pouch-forming
cells.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.,Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
20
|
Jin S, Na H, Jeon H, Park J, Choe CP. egfl6 expression in the pharyngeal pouch is dispensable for craniofacial development. Anim Cells Syst (Seoul) 2021; 25:255-263. [PMID: 34745432 PMCID: PMC8567925 DOI: 10.1080/19768354.2021.1970018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epidermal growth factor-like domain multiple 6 (Egfl6) is a basement membrane protein and plays an important role in hair follicle morphogenesis, angiogenesis, notochord development in vertebrates. Although egfl6 expression in the developing head was observed in zebrafish, its role for craniofacial development and the determination of the pharyngeal region expressing egfl6, have not been reported yet. Here, we report the expression patterns and function of egfl6 in craniofacial development in zebrafish. egfl6 was expressed sequentially in the developing pharyngeal pouches that are key epithelial structures governing the development of the vertebrate head. However, loss-of-function mutations in egfl6 did not cause any craniofacial defects, including the pouches as well as the thymus and facial cartilages whose development is contingent upon appropriate pouch formation. egfl6 was unlikely redundant with egfl7 expressed in a distinct pharyngeal region from that of egfl6 in craniofacial development because reduction of egfl7 with a MO in egfl6 mutants did not affect craniofacial development. In addition, we found that egfl6 carried an endogenous start loss mutation in the wild-type Tübingen strain, implying egfl6 would be a non-functional gene. Taken all together, we suggest that egfl6 expression in the pharyngeal pouches is not required for craniofacial development in zebrafish.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Hyejee Na
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jangwon Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea.,Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
21
|
Sendell-Price AT, Ruegg KC, Robertson BC, Clegg SM. An island-hopping bird reveals how founder events shape genome-wide divergence. Mol Ecol 2021; 30:2495-2510. [PMID: 33826187 DOI: 10.1111/mec.15898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
When populations colonize new areas, both strong selection and strong drift can be experienced due to novel environments and small founding populations, respectively. Empirical studies have predominantly focused on the phenotype when assessing the role of selection, and limited neutral-loci when assessing founder-induced loss of diversity. Consequently, the extent to which processes interact to influence evolutionary trajectories is difficult to assess. Genomic-level approaches provide the opportunity to simultaneously consider these processes. Here, we examine the roles of selection and drift in shaping genomic diversity and divergence in historically documented sequential island colonizations by the silvereye (Zosterops lateralis). We provide the first empirical demonstration of the rapid appearance of highly diverged genomic regions following population founding, the position of which are highly idiosyncratic. As these regions rarely contained loci putatively under selection, it is most likely that these differences arise via the stochastic nature of the founding process. However, selection is required to explain rapid evolution of larger body size in insular silvereyes. Reconciling our genomic data with these phenotypic patterns suggests there may be many genomic routes to the island phenotype, which vary across populations. Finally, we show that accelerated divergence associated with multiple founding steps is the product of genome-wide rather than localized differences, and that diversity erodes due to loss of rare alleles. However, even multiple founder events do not result in divergence and diversity levels seen in evolutionary older subspecies, and therefore do not provide a shortcut to speciation as proposed by founder-effect speciation models.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| | - Kristen C Ruegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Environmental Futures Research Institute, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
22
|
Goliusova DV, Klementieva NV, Panova AV, Mokrysheva NG, Kiselev SL. The Role of Genetic Factors in Endocrine Tissues Development and Its Regulation In Vivo and In Vitro. RUSS J GENET+ 2021; 57:273-281. [DOI: 10.1134/s102279542103008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/05/2023]
|
23
|
Sun R, Lü W, Liu Z, Yang Y, Wang X, Zhao X, Fu S, Dai W, Huang C, Diao D. FOXI1 inhibits gastric cancer cell proliferation by activating miR-590/ATF3 axis via integrating ChIP-seq and RNA-seq data. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:34-45. [PMID: 33610681 DOI: 10.1016/j.pbiomolbio.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
FOXI1 plays a key role in the development of gastric cancer. However, the whole genome FOXI1 binding sites and its target genes are unclear. In the present study, we used ChIP-seq and RNA-seq technologies to identify the target gene of FOXI1. Firstly, ChIP-seq data showed that, 4476 unique peaks in the genome region were captured. Most of these binding peaks are located in introns or intergenic regions. We annotated all the peaks to the nearest gene and identified 404 genes as FOXI1 binding genes. KEGG and GO analysis showed that FOXI1 binding gene to be correlated with the cellular process, cell part, cell, binding, single-organism process. Further, we performed FOXI1-overexpressed RNA-seq experiment. We comprehensively analyzed the ChIP-seq and RNA-seq data and take the intersection of two databases, several genes were identified. ATF3 was selected from the intersection since ATF3 was the most enriched mRNA after FOXI1 overexpressed. ChIP-qPCR and luciferase report gene were used to validate that ATF3 was target gene of FOXI1. Intriguely, ATF3 protein was significantly downregulated after FOXI1 overexpressed. We found FOXI1 can also bind to the promoter of miR-590 and active it which directly target ATF3. The binding site between FOXI1 and miR-590 was verified by ChIP-qPCR and luciferase report gene, and the target relationship between miR-590 and ATF3 was confirmed by dual-luciferase reporter gene. In conclusion, our data identified the genome binding sites of FOXI1, and provide evidence that FOXI1 inhibits gastric cancer cell proliferation by activating miR-590/ATF3 axis.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Weidong Lü
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Zhigang Liu
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Yang Yang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Xinliang Zhao
- Department of General Thoracic Surgery, 521 Ordnance Hospital, 12 Zhangba East Road, Xi'an, Shaanxi, PR China
| | - Shufeng Fu
- Medical College of Xianyang Vocational and Technical College, 1 Tongyi Road, Xi'an, Shaanxi, PR China
| | - Wei Dai
- Department of Emergency, Shaanxi Provincial People's Hospital, 256, Youyi West Road, Xi'an, Shaanxi, PR China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China.
| | - Dongmei Diao
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, PR China.
| |
Collapse
|
24
|
Xu J, Wang K, Zhang Z, Xue D, Li W, Pan Z. The Role of Forkhead Box Family in Bone Metabolism and Diseases. Front Pharmacol 2021; 12:772237. [PMID: 35153742 PMCID: PMC8832510 DOI: 10.3389/fphar.2021.772237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (Fox) family, an evolutionarily conserved family of transcription factors carrying the "Forkhead" motif, plays an indispensable role in human health and disease. Fox family genes are involved in cell differentiation, proliferation and apoptosis, embryonic development, aging, glucose and lipid metabolism, and immune regulation. The regulatory role of the Fox family in the context of bone metabolism and orthopedic diseases is an emerging research hotspot. In this review, we highlight the major molecular mechanisms underlying the regulatory role of Fox factors in bone metabolism, bone development, bone homeostasis, and bone diseases associated with inhibition or upregulation of Fox factors. In addition, we discuss the emerging evidence in the realm of Fox factor-based therapeutics.
Collapse
Affiliation(s)
- Jianxiang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Kanbin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Deting Xue, ; Weixu Li, ; Zhijun Pan,
| | - Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Deting Xue, ; Weixu Li, ; Zhijun Pan,
| | - Zhijun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Deting Xue, ; Weixu Li, ; Zhijun Pan,
| |
Collapse
|
25
|
Atukorala ADS, Ratnayake RK. Cellular and molecular mechanisms in the development of a cleft lip and/or cleft palate; insights from zebrafish (Danio rerio). Anat Rec (Hoboken) 2020; 304:1650-1660. [PMID: 33099891 DOI: 10.1002/ar.24547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Human cleft lip and/or palate (CLP) are immediately recognizable congenital abnormalities of the face. Lip and palate develop from facial primordia through the coordinated activities of ectodermal epithelium and neural crest cells (NCCs) derived from ectomesenchyme tissue. Subtle changes in the regulatory mechanisms of NCC or ectodermal epithelial cells can result in CLP. Genetic and environmental contributions or a combination of both play a significant role in the progression of CLP. Model organisms provide us with a wealth of information in understanding the pathophysiology and genetic etiology of this complex disease. Small teleost, zebrafish (Danio rerio) is one of the popular model in craniofacial developmental biology. The short generation time and large number of optically transparent, easily manipulated embryos increase the value of zebrafish to identify novel candidate genes and gene regulatory networks underlying craniofacial development. In addition, it is widely used to identify the mechanisms of environmental teratogens and in therapeutic drug screening. Here, we discuss the value of zebrafish as a model to understand epithelial and NCC induced ectomesenchymal cell activities during early palate morphogenesis and robustness of the zebrafish in modern research on identifying the genetic and environmental etiological factors of CLP.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Rady Faculty of Health Sciences, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Kumar Ratnayake
- Rady Faculty of Health Sciences, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Ankamreddy H, Bok J, Groves AK. Uncovering the secreted signals and transcription factors regulating the development of mammalian middle ear ossicles. Dev Dyn 2020; 249:1410-1424. [PMID: 33058336 DOI: 10.1002/dvdy.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
The mammalian middle ear comprises a chain of ossicles, the malleus, incus, and stapes that act as an impedance matching device during the transmission of sound from the tympanic membrane to the inner ear. These ossicles are derived from cranial neural crest cells that undergo endochondral ossification and subsequently differentiate into their final functional forms. Defects that occur during middle ear development can result in conductive hearing loss. In this review, we summarize studies describing the crucial roles played by signaling molecules such as sonic hedgehog, bone morphogenetic proteins, fibroblast growth factors, notch ligands, and chemokines during the differentiation of neural crest into the middle ear ossicles. In addition to these cell-extrinsic signals, we also discuss studies on the function of transcription factor genes such as Foxi3, Tbx1, Bapx1, Pou3f4, and Gsc in regulating the development and morphology of the middle ear ossicles.
Collapse
Affiliation(s)
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Stothard CA, Mazzotta S, Vyas A, Schneider JE, Mohun TJ, Henderson DJ, Phillips HM, Bamforth SD. Pax9 and Gbx2 Interact in the Pharyngeal Endoderm to Control Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7020020. [PMID: 32466118 PMCID: PMC7344924 DOI: 10.3390/jcdd7020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
The correct formation of the aortic arch arteries depends on a coordinated and regulated gene expression profile within the tissues of the pharyngeal arches. Perturbation of the gene regulatory networks in these tissues results in congenital heart defects affecting the arch arteries and the outflow tract of the heart. Aberrant development of these structures leads to interruption of the aortic arch and double outlet right ventricle, abnormalities that are a leading cause of morbidity in 22q11 Deletion Syndrome (DS) patients. We have recently shown that Pax9 functionally interacts with the 22q11DS gene Tbx1 in the pharyngeal endoderm for 4th pharyngeal arch artery morphogenesis, with double heterozygous mice dying at birth with interrupted aortic arch. Mice lacking Pax9 die perinatally with complex cardiovascular defects and in this study we sought to validate further potential genetic interacting partners of Pax9, focussing on Gbx2 which is down-regulated in the pharyngeal endoderm of Pax9-null embryos. Here, we describe the Gbx2-null cardiovascular phenotype and demonstrate a genetic interaction between Gbx2 and Pax9 in the pharyngeal endoderm during cardiovascular development.
Collapse
Affiliation(s)
- Catherine A. Stothard
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Silvia Mazzotta
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Arjun Vyas
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | | | | | - Deborah J. Henderson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Helen M. Phillips
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
| | - Simon D. Bamforth
- Newcastle University Biosciences Institute, Centre for Life, Newcastle-upon-Tyne NE1 3BZ, UK; (C.A.S.); (S.M.); (A.V.); (D.J.H.); (H.M.P.)
- Correspondence: ; Tel.: +44-191-241-8764
| |
Collapse
|
28
|
Bernstock JD, Totten AH, Elkahloun AG, Johnson KR, Hurst AC, Goldman F, Groves AK, Mikhail FM, Atkinson TP. Recurrent microdeletions at chromosome 2p11.2 are associated with thymic hypoplasia and features resembling DiGeorge syndrome. J Allergy Clin Immunol 2019; 145:358-367.e2. [PMID: 31600545 DOI: 10.1016/j.jaci.2019.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Thymic hypoplasia/aplasia occurs as a part of DiGeorge syndrome, which has several known genetic causes, and with loss-of-function mutations in forkhead box N1 (FOXN1). OBJECTIVE We sought to determine the cause of selective T-cell lymphopenia with inverted kappa/lambda ratio in several kindreds. METHODS Patients were identified through newborn screening for severe combined immunodeficiency using the T-cell receptor excision circle assay. Those found to have selective T-cell lymphopenia underwent testing with chromosomal microarray analysis. Three-week-old mice heterozygous for a loss-of-function mutation in forkhead box I3 (FOXI3), a candidate gene within the common deleted region found in patients, were compared with wild-type littermates. Assessments included body and organ weights, flow cytometric analysis of thymocytes and splenocytes, and histologic/transcriptomic analyses of thymic tissue. RESULTS Five kindreds with similar immunophenotypes that included selective T-cell lymphopenia had overlapping microdeletions at chromosome 2p11.2 that spanned FOXI3 and, in most cases, the immunoglobulin kappa light chain locus. Studies in a mouse knockout strain for FOXI3 revealed smaller body weights and relatively lower thymus weights in heterozygous compared with wild-type animals. Histology and flow cytometry on spleens and thymi from 3-week-old pups for T- and B-cell subsets and epithelial cells did not show any significant qualitative or quantitative differences. Transcriptomic analysis of thymic RNA revealed divergence in global transcriptomic signatures, and Ingenuity Pathway Analysis revealed predicted dysfunction in epithelial adherens junctions. CONCLUSIONS Microdeletions at chromosome 2p11.2 are associated with T-cell lymphopenia and probable thymic hypoplasia in human subjects, and haploinsufficiency for FOXI3, a candidate gene within the deleted region, is the likely underlying cause.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Arthur H Totten
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Abdel G Elkahloun
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Kory R Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md
| | - Anna C Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Ala
| | - Frederick Goldman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Andrew K Groves
- Department of Neuroscience and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Ala
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala.
| |
Collapse
|
29
|
Yang B, Fu L, Xu S, Xiao J, Li Z, Liu Y. A nomogram based on a gene signature for predicting the prognosis of patients with head and neck squamous cell carcinoma. Int J Biol Markers 2019; 34:309-317. [PMID: 31452437 DOI: 10.1177/1724600819865745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors. The purpose of this study was to establish and validate a gene-expression-based prognostic signature in non-metastatic patients with HNSCC. MATERIALS AND METHODS All the patients were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We randomly divided the GSE65858 samples into 70% (training cohort, n = 190) and 30% (internal validation cohort, n = 72). A total of 36 samples collected from the TCGA HNSCC databases were selected as an independent external validation cohort. The oligo package in R was used to normalize the raw data before analysis. Data characteristics were extracted, and a gene signature was built via the least absolute shrinkage and selection operator regression model. The predictive model was developed by multivariable Cox regression analysis. T stage, N stage, human papilloma virus status, and the gene signature were incorporated in this predictive model, which was shown as a nomogram. Calibration and discrimination were performed to assess the performance of the nomogram. The clinical utility of this nomogram was assessed by the decision curve analysis. RESULTS Overall, 2001 significant messenger RNAs in HNSCC samples were identified compared with normal samples. The gene signature contained seven genes and significantly correlated with overall survival. The gene signature was also significant in subgroup analysis of the primary cohort. The calibration was plotted in the external cohort (C-index 0.90, 95% CI 0.85, 0.95) compared with the training (C-index 0.76, 95% CI 0.73, 0.79) and internal (C-index 0.71, 95% CI 0.66, 0.77) cohorts. In clinic, a decision curve analysis demonstrated that the model including the prognostic gene signature score status was better than that without it. CONCLUSION This study developed and validated a predictive model, which can promote the individualized prediction of overall survival in non-metastatic patients with HNSCC.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Medical Record Management Center, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.,Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Lingyu Fu
- Medical Record Management Center, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shan Xu
- Department of ENT, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Hasten E, Morrow BE. Tbx1 and Foxi3 genetically interact in the pharyngeal pouch endoderm in a mouse model for 22q11.2 deletion syndrome. PLoS Genet 2019; 15:e1008301. [PMID: 31412026 PMCID: PMC6709926 DOI: 10.1371/journal.pgen.1008301] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/26/2019] [Accepted: 07/10/2019] [Indexed: 11/18/2022] Open
Abstract
We investigated whether Tbx1, the gene for 22q11.2 deletion syndrome (22q11.2DS) and Foxi3, both required for segmentation of the pharyngeal apparatus (PA) to individual arches, genetically interact. We found that all Tbx1+/-;Foxi3+/- double heterozygous mouse embryos had thymus and parathyroid gland defects, similar to those in 22q11.2DS patients. We then examined Tbx1 and Foxi3 heterozygous, null as well as conditional Tbx1Cre and Sox172A-iCre/+ null mutant embryos. While Tbx1Cre/+;Foxi3f/f embryos had absent thymus and parathyroid glands, Foxi3-/- and Sox172A-iCre/+;Foxi3f/f endoderm conditional mutant embryos had in addition, interrupted aortic arch type B and retroesophageal origin of the right subclavian artery, which are all features of 22q11.2DS. Tbx1Cre/+;Foxi3f/f embryos had failed invagination of the third pharyngeal pouch with greatly reduced Gcm2 and Foxn1 expression, thereby explaining the absence of thymus and parathyroid glands. Immunofluorescence on tissue sections with E-cadherin and ZO-1 antibodies in wildtype mouse embryos at E8.5-E10.5, revealed that multilayers of epithelial cells form where cells are invaginating as a normal process. We noted that excessive multilayers formed in Foxi3-/-, Sox172A-iCre/+;Foxi3f/f as well as Tbx1 null mutant embryos where invagination should have occurred. Several genes expressed in the PA epithelia were downregulated in both Tbx1 and Foxi3 null mutant embryos including Notch pathway genes Jag1, Hes1, and Hey1, suggesting that they may, along with other genes, act downstream to explain the observed genetic interaction. We found Alcam and Fibronectin extracellular matrix proteins were reduced in expression in Foxi3 null but not Tbx1 null embryos, suggesting that some, but not all of the downstream mechanisms are shared.
Collapse
Affiliation(s)
- Erica Hasten
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
31
|
Manocha S, Farokhnia N, Khosropanah S, Bertol JW, Santiago J, Fakhouri WD. Systematic review of hormonal and genetic factors involved in the nonsyndromic disorders of the lower jaw. Dev Dyn 2019; 248:162-172. [PMID: 30576023 DOI: 10.1002/dvdy.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mandibular disorders are among the most common birth defects in humans, yet the etiological factors are largely unknown. Most of the neonates affected by mandibular abnormalities have a sequence of secondary anomalies, including airway obstruction and feeding problems, that reduce the quality of life. In the event of lacking corrective surgeries, patients with mandibular congenital disorders suffer from additional lifelong problems such as sleep apnea and temporomandibular disorders, among others. The goal of this systematic review is to gather evidence on hormonal and genetic factors that are involved in signaling pathways and interactions that are potentially associated with the nonsyndromic mandibular disorders. We found that members of FGF and BMP pathways, including FGF8/10, FGFR2/3, BMP2/4/7, BMPR1A, ACVR1, and ACVR2A/B, have a prominent number of gene-gene interactions among all identified genes in this review. Gene ontology of the 154 genes showed that the functional gene sets are involved in all aspects of cellular processes and organogenesis. Some of the genes identified by the genome-wide association studies of common mandibular disorders are involved in skeletal formation and growth retardation based on animal models, suggesting a potential direct role as genetic risk factors in the common complex jaw disorders. Developmental Dynamics 248:162-172, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Srishti Manocha
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nadia Farokhnia
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sepideh Khosropanah
- Ostrow School of Dentistry, University of Southern California, California, Los Angeles
| | - Jessica W Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Joel Santiago
- Pró-Reitoria de Pesquisa e Pós-graduação (PRPPG), Universidade do Sagrado Coração, Jardim Brasil, Bauru, Sao Paulo, Brazil
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
32
|
Singh S, Jangid RK, Crowder A, Groves AK. Foxi3 transcription factor activity is mediated by a C-terminal transactivation domain and regulated by the Protein Phosphatase 2A (PP2A) complex. Sci Rep 2018; 8:17249. [PMID: 30467319 PMCID: PMC6250667 DOI: 10.1038/s41598-018-35390-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 01/20/2023] Open
Abstract
The Forkhead box (FOX) family consists of at least 19 subgroups of transcription factors which are characterized by the presence of an evolutionary conserved ‘forkhead’ or ‘winged-helix’ DNA-binding domain. Despite having a conserved core DNA binding domain, FOX proteins display remarkable functional diversity and are involved in many developmental and cell specific processes. In the present study, we focus on a poorly characterized member of the Forkhead family, Foxi3, which plays a critical role in the development of the inner ear and jaw. We show that Foxi3 contains at least two important functional domains, a nuclear localization sequence (NLS) and a C-terminal transactivation domain (TAD), and that it directly binds its targets in a sequence specific manner. We also show that the transcriptional activity of Foxi3 is regulated by phosphorylation, and that the activity of Foxi3 can be attenuated by its physical interaction with the protein phosphatase 2A (PP2A) complex.
Collapse
Affiliation(s)
- Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rahul K Jangid
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Alyssa Crowder
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Jin S, O J, Stellabotte F, Choe CP. Foxi1 promotes late-stage pharyngeal pouch morphogenesis through ectodermal Wnt4a activation. Dev Biol 2018; 441:12-18. [PMID: 29932895 DOI: 10.1016/j.ydbio.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/26/2022]
Abstract
The pharyngeal pouches are a series of epithelial outgrowths of the foregut endoderm. Pharyngeal pouches segment precursors of the vertebrate face into pharyngeal arches and pattern the facial skeleton. These pouches fail to develop normally in zebrafish foxi1 mutants, yet the role Foxi1 plays in pouch development remains to be determined. Here we show that ectodermal Foxi1 acts downstream of Fgf8a during the late stage of pouch development to promote rearrangement of pouch-forming cells into bilayers. During this phase, foxi1 and wnt4a are coexpressed in the facial ectoderm and their expression is expanded in fgf8a mutants. foxi1 expression is unaffected in wnt4a mutants; conversely, ectodermal wnt4a expression is abolished in foxi1 mutants. Consistent with this, foxi1 mutant pouch and facial skeletal defects resemble those of wnt4a mutants. These findings suggest that ectodermal Foxi1 mediates late-stage pouch morphogenesis through wnt4a expression. We therefore propose that Fox1 activation of Wnt4a in the ectoderm signals the epithelial stabilization of pouch-forming cells during late-stage of pouch morphogenesis.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jiyun O
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Frank Stellabotte
- School of Allied Health, Business, and STEM, Middlesex Community College, Middletown, CT 06457, USA
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
34
|
Mukherjee A, Hollern DP, Williams OG, Rayburn TS, Byrd WA, Yates C, Jones JD. A Review of FOXI3 Regulation of Development and Possible Roles in Cancer Progression and Metastasis. Front Cell Dev Biol 2018; 6:69. [PMID: 30018953 PMCID: PMC6038025 DOI: 10.3389/fcell.2018.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Development and cancer share a variety of functional traits such as EMT, cell migration, angiogenesis, and tissue remodeling. In addition, many cellular signaling pathways are noted to coordinate developmental processes and facilitate aspects of tumor progression. The Forkhead box superfamily of transcription factors consists of a highly conserved DNA binding domain, which binds to specific DNA sequences and play significant roles during adult tissue homoeostasis and embryogenesis including development, differentiation, metabolism, proliferation, apoptosis, migration, and invasion. Interestingly, various studies have implicated the role of key Fox family members such as FOXP, FOXO, and FOXA during cancer initiation and metastases. FOXI3, a member of the Forkhead family affects embryogenesis, development, and bone remodeling; however, no studies have reported a role in cancer. In this review, we summarize the role of FOXI3 in embryogenesis and bone development and discuss its potential involvement in cancer progression with a focus on the bone metastasis. Moreover, we hypothesize possible mechanisms underlying the role of FOXI3 in the development of solid tumor bone metastasis.
Collapse
Affiliation(s)
- Angana Mukherjee
- Department of Biological Sciences, Troy University, Troy, AL, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | | | - Tyeler S Rayburn
- Department of Biological Sciences, Troy University, Troy, AL, United States
| | - William A Byrd
- Department of Biological Sciences, Troy University, Troy, AL, United States
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Jacqueline D Jones
- Department of Biological Sciences, Troy University, Troy, AL, United States.,Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States.,Department of Nursing and Allied Health, Troy University, Troy, AL, United States
| |
Collapse
|
35
|
Fakhouri WD, Metwalli K, Naji A, Bakhiet S, Quispe-Salcedo A, Nitschke L, Kousa YA, Schutte BC. Intercellular Genetic Interaction Between Irf6 and Twist1 during Craniofacial Development. Sci Rep 2017; 7:7129. [PMID: 28769044 PMCID: PMC5540929 DOI: 10.1038/s41598-017-06310-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/08/2017] [Indexed: 01/06/2023] Open
Abstract
Interferon Regulatory Factor 6 (IRF6) and TWIST1 are transcription factors necessary for craniofacial development. Human genetic studies showed that mutations in IRF6 lead to cleft lip and palate and mandibular abnormalities. In the mouse, we found that loss of Irf6 causes craniosynostosis and mandibular hypoplasia. Similarly, mutations in TWIST1 cause craniosynostosis, mandibular hypoplasia and cleft palate. Based on this phenotypic overlap, we asked if Irf6 and Twist1 interact genetically during craniofacial formation. While single heterozygous mice are normal, double heterozygous embryos (Irf6+/−; Twist1+/−) can have severe mandibular hypoplasia that leads to agnathia and cleft palate at birth. Analysis of spatiotemporal expression showed that Irf6 and Twist1 are found in different cell types. Consistent with the intercellular interaction, we found reduced expression of Endothelin1 (EDN1) in mandible and transcription factors that are critical for mandibular patterning including DLX5, DLX6 and HAND2, were also reduced in mesenchymal cells. Treatment of mandibular explants with exogenous EDN1 peptides partially rescued abnormalities in Meckel’s cartilage. In addition, partial rescue was observed when double heterozygous embryos also carried a null allele of p53. Considering that variants in IRF6 and TWIST1 contribute to human craniofacial defects, this gene-gene interaction may have implications on craniofacial disorders.
Collapse
Affiliation(s)
- Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, TX, 77054, USA. .,Department of Pediatrics, Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA. .,Graduate School of Biomedical Sciences, University of Texas Health Science Center and MD Anderson Cancer Center at Houston, TX, 77030, USA.
| | - Kareem Metwalli
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, TX, 77054, USA
| | - Ali Naji
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, TX, 77054, USA
| | - Sarah Bakhiet
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, TX, 77054, USA
| | - Angela Quispe-Salcedo
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, TX, 77054, USA.,Department of Basic Science, School of Dentistry, National University of San Marcos (UNMSM), Lima, Peru
| | - Larissa Nitschke
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Youssef A Kousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA.,Pediatric Residency Program, Children's National Health System, Washington, DC, 20010, USA
| | - Brian C Schutte
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA.,Pediatrics and Human Development, Michigan State University, East Lansing, MI, 48823, USA
| |
Collapse
|
36
|
Lei L, Zhenzhong L, Lin L, Bo P. Uncovering the pathogenesis of microtia using bioinformatics approach. Int J Pediatr Otorhinolaryngol 2017; 99:30-35. [PMID: 28688561 DOI: 10.1016/j.ijporl.2017.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/07/2017] [Accepted: 05/20/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Bioinformatics is widely used in the field of cancer research, but in the research of pathogenesis of congenital malformations the situation is different. The aim of this study was to explore the underlying mechanism using bioinformatics approach. METHODS The data were available from Mouse Genome Informatics and Pubmed. Protein-protein interaction (PPI) network of pathogenic genes was conducted using STRING. Gene ontology and pathway enrichment analyses were also performed to pathogenic genes. RESULTS Total 63 genes were identified as pathogenic genes in the study. The PPI networks for pathogenic genes were constructed, which contained 62 nodes and 228 edges with PAX6, FGFR1 and CTNNB1 as the hub genes. All the genes were linked to 921 pathways in biological processes, 31 pathways in cell component, 41 pathways in molecular function, and 76 pathways in the KEGG. These genes were discovered significantly enriched in embryonic organ development, ear morphogenesis, ear development, and regulation of RNA synthesis and processing. CONCLUSIONS bioinformatics methods were utilized to analysis pathogenic genes involved in microtia development, including pathogenic genes identifying, PPI network construction and functional analysis. And we also predicted that several potential mechanisms might contribute to occurrence of microtia by disturbing GO terms and pathways. This approach could be useful for the study of the etiology and pathogenesis of microtia.
Collapse
Affiliation(s)
- Liu Lei
- Department of Burns and Plastic Surgery, Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China.
| | - Liu Zhenzhong
- Department of Burns and Plastic Surgery, Second Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Lin Lin
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Pan Bo
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, People's Republic of China
| |
Collapse
|
37
|
Sun R, Liu Z, Tong D, Yang Y, Guo B, Wang X, Zhao L, Huang C. miR-491-5p, mediated by Foxi1, functions as a tumor suppressor by targeting Wnt3a/β-catenin signaling in the development of gastric cancer. Cell Death Dis 2017; 8:e2714. [PMID: 28358374 PMCID: PMC5386537 DOI: 10.1038/cddis.2017.134] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
Accumulated evidence has suggested that microRNAs (miRNAs) have an important role in tumor development and progression by regulating diverse signaling pathways. However, the precise role of miRNAs in gastric cancer (GC) has not been elucidated. In this study, we describe the function and regulation network of miR-491-5p in GC. miR-491-5p is frequently downregulated in GC tissues compared with adjacent non-cancerous tissues. Forced expression of miR-491-5p significantly inhibits proliferation and colony formation, and promotes apoptosis in GC cells. Through bioinformatic analysis and luciferase assays, we confirm that miR-491-5p targets Wnt3a. Silencing Wnt3a inhibits cell proliferation and induces apoptosis. Similarly, restoration of Wnt3a counteracts the effects of miR-491-5p expression. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-491-5p is regulated by Foxi1, which binds to its promoter and activates miR-491-5p expression. In conclusion, to the best of our knowledge, our findings are the first to demonstrate that Foxi1 is a key player in the transcriptional control of miR-491-5p and that miR-491-5p acts as an anti-oncogene by targeting Wnt3a/β-catenin signaling in GC. Our study reveals that Foxi1/miR-491-5p/Wnt3a/β-catenin signaling is critical in the progression of GC. Targeting the pathway described in this study may open up new prospects to restrict the progression of GC.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Zhigang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Dongdong Tong
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Yang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Guo
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Lingyu Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
38
|
Sørhus E, Incardona JP, Furmanek T, Goetz GW, Scholz NL, Meier S, Edvardsen RB, Jentoft S. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. eLife 2017; 6:e20707. [PMID: 28117666 PMCID: PMC5302885 DOI: 10.7554/elife.20707] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Bergen, Norway
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | - Giles W Goetz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
39
|
Shirokova V, Biggs LC, Jussila M, Ohyama T, Groves AK, Mikkola ML. Foxi3 Deficiency Compromises Hair Follicle Stem Cell Specification and Activation. Stem Cells 2016; 34:1896-908. [PMID: 26992132 DOI: 10.1002/stem.2363] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 02/27/2016] [Indexed: 01/16/2023]
Abstract
The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ (HG). Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here, we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary HG marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary HG activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. Stem Cells 2016;34:1896-1908.
Collapse
Affiliation(s)
- Vera Shirokova
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Leah C Biggs
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria Jussila
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Takahiro Ohyama
- Department of Otolaryngology - Head & Neck Surgery and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew K Groves
- Program in Developmental Biology, Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Marja L Mikkola
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Singh S, Groves AK. The molecular basis of craniofacial placode development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:363-76. [PMID: 26952139 DOI: 10.1002/wdev.226] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 12/20/2022]
Abstract
The sensory organs of the vertebrate head originate from simple ectodermal structures known as cranial placodes. All cranial placodes derive from a common domain adjacent to the neural plate, the preplacodal region, which is induced at the border of neural and non-neural ectoderm during gastrulation. Induction and specification of the preplacodal region is regulated by the fibroblast growth factor, bone morphogenetic protein, WNT, and retinoic acid signaling pathways, and characterized by expression of the EYA and SIX family of transcriptional regulators. Once the preplacodal region is specified, different combinations of local signaling molecules and placode-specific transcription factors, including competence factors, promote the induction of individual cranial placodes along the neural axis of the head region. In this review, we summarize the steps of cranial placode development and discuss the roles of the main signaling molecules and transcription factors that regulate these steps during placode induction, specification, and development. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
41
|
Abstract
The mammalian ear is a complex structure divided into three main parts: the outer; middle; and inner ear. These parts are formed from all three germ layers and neural crest cells, which have to integrate successfully in order to form a fully functioning organ of hearing. Any defect in development of the outer and middle ear leads to conductive hearing loss, while defects in the inner ear can lead to sensorineural hearing loss. This review focuses on the development of the parts of the ear involved with sound transduction into the inner ear, and the parts largely ignored in the world of hearing research: the outer and middle ear. The published data on the embryonic origin, signalling, genetic control, development and timing of the mammalian middle and outer ear are reviewed here along with new data showing the Eustachian tube cartilage is of dual embryonic origin. The embryonic origin of some of these structures has only recently been uncovered (Science, 339, 2013, 1453; Development, 140, 2013, 4386), while the molecular mechanisms controlling the growth, structure and integration of many outer and middle ear components are hardly known. The genetic analysis of outer and middle ear development is rather limited, with a small number of genes often affecting either more than one part of the ear or having only very small effects on development. This review therefore highlights the necessity for further research into the development of outer and middle ear structures, which will be important for the understanding and treatment of conductive hearing loss.
Collapse
Affiliation(s)
- Neal Anthwal
- Craniofacial Development and Stem Cell BiologyKing's College LondonLondonUK
| | - Hannah Thompson
- Craniofacial Development and Stem Cell BiologyKing's College LondonLondonUK
| |
Collapse
|
42
|
Voutilainen M, Lindfors PH, Trela E, Lönnblad D, Shirokova V, Elo T, Rysti E, Schmidt-Ullrich R, Schneider P, Mikkola ML. Ectodysplasin/NF-κB Promotes Mammary Cell Fate via Wnt/β-catenin Pathway. PLoS Genet 2015; 11:e1005676. [PMID: 26581094 PMCID: PMC4651331 DOI: 10.1371/journal.pgen.1005676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/26/2015] [Indexed: 11/18/2022] Open
Abstract
Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants. Mammary glands are the most characteristic feature of all mammals. The successful growth and function of the mammary glands is vital for the survival of offspring since the secreted milk is the main nutritional source of a new-born. Ectodysplasin (Eda) is a signaling molecule that regulates the formation of skin appendages such as hair, teeth, feathers, scales, and several glands in all vertebrates studied so far. In humans, mutations in the EDA gene cause a congenital disorder characterized by sparse hair, missing teeth, and defects in exocrine glands including the breast. We have previously shown that excess Eda induces formation of supernumerary mammary glands in mice. Here, we show that Eda leads to extra mammary gland formation also in the neck, a region previously not thought to harbor capacity to support mammary development. Using Eda loss- and gain-of-function mouse models and transcriptional profiling we identify the downstream mediators of Eda. The presence of extra nipples is a fairly common developmental abnormality in humans. We suggest that misregulation of Eda or its effectors might account for some of these malformations. Further, the number and location of the mammary glands vary widely between different species. Tinkering with the Eda pathway activity could provide an evolutionary means to modulate the number of mammary glands.
Collapse
Affiliation(s)
- Maria Voutilainen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Päivi H. Lindfors
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ewelina Trela
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Darielle Lönnblad
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Vera Shirokova
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Teresa Elo
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Elisa Rysti
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Marja L. Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
43
|
Birol O, Ohyama T, Edlund RK, Drakou K, Georgiades P, Groves AK. The mouse Foxi3 transcription factor is necessary for the development of posterior placodes. Dev Biol 2015; 409:139-151. [PMID: 26550799 DOI: 10.1016/j.ydbio.2015.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023]
Abstract
The inner ear develops from the otic placode, one of the cranial placodes that arise from a region of ectoderm adjacent to the anterior neural plate called the pre-placodal domain. We have identified a Forkhead family transcription factor, Foxi3, that is expressed in the pre-placodal domain and down-regulated when the otic placode is induced. We now show that Foxi3 mutant mice do not form otic placodes as evidenced by expression changes in early molecular markers and the lack of thickened placodal ectoderm, an otic cup or otocyst. Some preplacodal genes downstream of Foxi3-Gata3, Six1 and Eya1-are not expressed in the ectoderm of Foxi3 mutant mice, and the ectoderm exhibits signs of increased apoptosis. We also show that Fgf signals from the hindbrain and cranial mesoderm, which are necessary for otic placode induction, are received by pre-placodal ectoderm in Foxi3 mutants, but do not initiate otic induction. Finally, we show that the epibranchial placodes that develop in close proximity to the otic placode and the mandibular division of the trigeminal ganglion are missing in Foxi3 mutants. Our data suggest that Foxi3 is necessary to prime pre-placodal ectoderm for the correct interpretation of inductive signals for the otic and epibranchial placodes.
Collapse
Affiliation(s)
- Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Takahiro Ohyama
- USC Caruso Department of Otolaryngology - Head & Neck Surgery, Keck Medicine of USC, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA; Zilkha Neurogenetic Institute, Keck Medicine of USC, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA
| | - Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Katerina Drakou
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Pantelis Georgiades
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Neurosc ience, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Jussila M, Aalto AJ, Sanz Navarro M, Shirokova V, Balic A, Kallonen A, Ohyama T, Groves AK, Mikkola ML, Thesleff I. Suppression of epithelial differentiation by Foxi3 is essential for molar crown patterning. Development 2015; 142:3954-63. [PMID: 26450968 DOI: 10.1242/dev.124172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/27/2015] [Indexed: 12/27/2022]
Abstract
Epithelial morphogenesis generates the shape of the tooth crown. This is driven by patterned differentiation of cells into enamel knots, root-forming cervical loops and enamel-forming ameloblasts. Enamel knots are signaling centers that define the positions of cusp tips in a tooth by instructing the adjacent epithelium to fold and proliferate. Here, we show that the forkhead-box transcription factor Foxi3 inhibits formation of enamel knots and cervical loops and thus the differentiation of dental epithelium in mice. Conditional deletion of Foxi3 (Foxi3 cKO) led to fusion of molars with abnormally patterned shallow cusps. Foxi3 was expressed in the epithelium, and its expression was reduced in the enamel knots and cervical loops and in ameloblasts. Bmp4, a known inducer of enamel knots and dental epithelial differentiation, downregulated Foxi3 in wild-type teeth. Using genome-wide gene expression profiling, we showed that in Foxi3 cKO there was an early upregulation of differentiation markers, such as p21, Fgf15 and Sfrp5. Different signaling pathway components that are normally restricted to the enamel knots were expanded in the epithelium, and Sostdc1, a marker of the intercuspal epithelium, was missing. These findings indicated that the activator-inhibitor balance regulating cusp patterning was disrupted in Foxi3 cKO. In addition, early molar bud morphogenesis and, in particular, formation of the suprabasal epithelial cell layer were impaired. We identified keratin 10 as a marker of suprabasal epithelial cells in teeth. Our results suggest that Foxi3 maintains dental epithelial cells in an undifferentiated state and thereby regulates multiple stages of tooth morphogenesis.
Collapse
Affiliation(s)
- Maria Jussila
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Anne J Aalto
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Maria Sanz Navarro
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Vera Shirokova
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Anamaria Balic
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Aki Kallonen
- Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 64, Helsinki 00014, Finland
| | - Takahiro Ohyama
- Department of Otolaryngology, Head & Neck Surgery and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA
| | - Andrew K Groves
- Program in Developmental Biology, Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Marja L Mikkola
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Irma Thesleff
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| |
Collapse
|
45
|
Gou Y, Zhang T, Xu J. Transcription Factors in Craniofacial Development: From Receptor Signaling to Transcriptional and Epigenetic Regulation. Curr Top Dev Biol 2015; 115:377-410. [PMID: 26589933 DOI: 10.1016/bs.ctdb.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Craniofacial morphogenesis is driven by spatial-temporal terrains of gene expression, which give rise to stereotypical pattern formation. Transcription factors are key cellular components that control these gene expressions. They are information hubs that integrate inputs from extracellular factors and environmental cues, direct epigenetic modifications, and define transcriptional status. These activities allow transcription factors to confer specificity and potency to transcription regulation during development.
Collapse
Affiliation(s)
- Yongchao Gou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA; State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA.
| |
Collapse
|
46
|
Fritzsch B, Pan N, Jahan I, Elliott KL. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res 2015; 361:7-24. [PMID: 25381571 PMCID: PMC4426086 DOI: 10.1007/s00441-014-2031-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 01/21/2023]
Abstract
The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. The mammalian ear also develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Development of the OC from a uniform sheet of ectoderm requires unparalleled precision in the topological developmental engineering of four different general cell types, namely sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. Moreover, the OC receives unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents and requires neural-crest-derived Schwann cells to form myelin and neural-crest-derived cells to induce the stria vascularis. This transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGNs), while simultaneously transforming the flat epithelium into a tube, the cochlear duct, housing the OC. In addition to the cellular and conformational changes forming the cochlear duct with the OC, changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. We review molecular developmental data, generated predominantly in mice, in order to integrate the well-described expression changes of transcription factors and their actions, as revealed in mutants, in the formation of SGNs and OC in the correct position and orientation with suitable innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge might guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body for the reconstitution of hearing in a rapidly growing population of aging people suffering from hearing loss.
Collapse
Affiliation(s)
- Bernd Fritzsch
- College of Liberal Arts and Sciences, Department of Biology, University of Iowa, 143 BB, 123 Jefferson Avenue, Iowa City, IA 52242, USA,
| | | | | | | |
Collapse
|
47
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
48
|
Tfap2a promotes specification and maturation of neurons in the inner ear through modulation of Bmp, Fgf and notch signaling. PLoS Genet 2015; 11:e1005037. [PMID: 25781991 PMCID: PMC4364372 DOI: 10.1371/journal.pgen.1005037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/28/2015] [Indexed: 11/23/2022] Open
Abstract
Neurons of the statoacoustic ganglion (SAG) transmit auditory and vestibular information from the inner ear to the hindbrain. SAG neuroblasts originate in the floor of the otic vesicle. New neuroblasts soon delaminate and migrate towards the hindbrain while continuing to proliferate, a phase known as transit amplification. SAG cells eventually come to rest between the ear and hindbrain before terminally differentiating. Regulation of these events is only partially understood. Fgf initiates neuroblast specification within the ear. Subsequently, Fgf secreted by mature SAG neurons exceeds a maximum threshold, serving to terminate specification and delay maturation of transit-amplifying cells. Notch signaling also limits SAG development, but how it is coordinated with Fgf is unknown. Here we show that transcription factor Tfap2a coordinates multiple signaling pathways to promote neurogenesis in the zebrafish inner ear. In both zebrafish and chick, Tfap2a is expressed in a ventrolateral domain of the otic vesicle that includes neurogenic precursors. Functional studies were conducted in zebrafish. Loss of Tfap2a elevated Fgf and Notch signaling, thereby inhibiting SAG specification and slowing maturation of transit-amplifying cells. Conversely, overexpression of Tfap2a inhibited Fgf and Notch signaling, leading to excess and accelerated SAG production. However, most SAG neurons produced by Tfap2a overexpression died soon after maturation. Directly blocking either Fgf or Notch caused less dramatic acceleration of SAG development without neuronal death, whereas blocking both pathways mimicked all observed effects of Tfap2a overexpression, including apoptosis of mature neurons. Analysis of genetic mosaics showed that Tfap2a acts non-autonomously to inhibit Fgf. This led to the discovery that Tfap2a activates expression of Bmp7a, which in turn inhibits both Fgf and Notch signaling. Blocking Bmp signaling reversed the effects of overexpressing Tfap2a. Together, these data support a model in which Tfap2a, acting through Bmp7a, modulates Fgf and Notch signaling to control the duration, amount and speed of SAG neural development. Neurons of the statoacoustic ganglion (SAG) transmit impulses from the inner ear necessary for hearing and balance. SAG cells exhibit a complex pattern of development, regulation of which remains poorly understood. Here we show that transcription factor Tfap2a coordinates multiple cell signaling pathways needed to regulate the quantity and pace of SAG neuron production. SAG progenitors originate within the developing inner ear and then migrate out of the ear towards the hindbrain before forming mature neurons. We showed previously that Fgf initiates formation of SAG progenitors in the inner ear, but rising levels of Fgf signaling eventually terminate this process. Elevated Fgf also stimulates proliferation of SAG progenitors outside the ear and delays their maturation. Notch signaling is also known to limit SAG development. Tfap2a governs the strength of Fgf and Notch signaling by activating expression of Bmp7a, which inhibits Fgf and Notch. Together these signals stabilize the pool of SAG progenitors outside the ear by equalizing rates of maturation and proliferation. This balance is critical for sustained accumulation of SAG neurons during larval growth as well as regeneration following neural damage. These findings could inform development of stem cell therapies to correct auditory neuropathies in humans.
Collapse
|
49
|
Tassano E, Jagannathan V, Drögemüller C, Leoni M, Hytönen MK, Severino M, Gimelli S, Cuoco C, Di Rocco M, Sanio K, Groves AK, Leeb T, Gimelli G. Congenital aural atresia associated with agenesis of internal carotid artery in a girl with a FOXI3 deletion. Am J Med Genet A 2015; 167A:537-44. [PMID: 25655429 DOI: 10.1002/ajmg.a.36895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/31/2014] [Indexed: 11/11/2022]
Abstract
We report on the molecular characterization of a microdeletion of approximately 2.5 Mb at 2p11.2 in a female baby with left congenital aural atresia, microtia, and ipsilateral internal carotid artery agenesis. The deletion was characterized by fluorescence in situ hybridization, array comparative genomic hybridization, and whole genome re-sequencing. Among the genes present in the deleted region, we focused our attention on the FOXI3 gene. Foxi3 is a member of the Foxi class of Forkhead transcription factors. In mouse, chicken and zebrafish Foxi3 homologues are expressed in the ectoderm and endoderm giving rise to elements of the jaw as well as external, middle and inner ear. Homozygous Foxi3-/- mice have recently been generated and show a complete absence of the inner, middle, and external ears as well as severe defects in the jaw and palate. Recently, a 7-bp duplication within exon 1 of FOXI3 that produces a frameshift and a premature stop codon was found in hairless dogs. Mild malformations of the outer auditory canal (closed ear canal) and ear lobe have also been noted in a fraction of FOXI3 heterozygote Peruvian hairless dogs. Based on the phenotypes of Foxi3 mutant animals, we propose that FOXI3 may be responsible for the phenotypic features of our patient. Further characterization of the genomic region and the analysis of similar patients may help to demonstrate this point.
Collapse
|
50
|
Juraver-Geslin HA, Durand BC. Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis 2015; 53:203-24. [PMID: 25619400 DOI: 10.1002/dvg.22844] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022]
Abstract
Despite its tremendous complexity, the vertebrate nervous system emerges from a homogenous layer of neuroepithelial cells, the neural plate. Its formation relies on the time- and space-controlled progression of developmental programs. Apoptosis is a biological process that removes superfluous and potentially dangerous cells and is implemented through the activation of a molecular pathway conserved during evolution. Apoptosis and an unconventional function of one of its main effectors, caspase-3, contribute to the patterning and growth of the neuroepithelium. Little is known about the intrinsic and extrinsic cues controlling activities of the apoptotic machinery during development. The BarH-like (Barhl) proteins are homeodomain-containing transcription factors. The observations in Caenorhabditis elegans, Xenopus, and mice document that Barhl proteins act in cell survival and as cell type-specific regulators of a caspase-3 function that limits neural progenitor proliferation. In this review, we discuss the roles and regulatory modes of the apoptotic machinery in the development of the neural plate. We focus on the Barhl2, the Sonic Hedgehog, and the Wnt pathways and their activities in neural progenitor survival and proliferation.
Collapse
Affiliation(s)
- Hugo A Juraver-Geslin
- Department of Basic Science, Craniofacial Biology, College of Dentistry, New York University, New York, New York
| | | |
Collapse
|