1
|
Descoteaux AE, Radulovic M, Alburi D, Bradham CA. CMTM4 is an adhesion modulator that regulates skeletal patterning and primary mesenchyme cell migration in sea urchin embryos. Dev Biol 2025; 521:85-95. [PMID: 39947420 PMCID: PMC11909501 DOI: 10.1016/j.ydbio.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
MARVEL proteins, including those of the CMTM gene family, are multi-pass transmembrane proteins that play important roles in vesicular trafficking and cell migration; however, little is understood about their role in development, and their role in skeletal patterning is unexplored. CMTM4 is the only CMTM family member found in the developmental transcriptome of the sea urchin Lytechinus variegatus. Here, we validate that LvCMTM4 is a transmembrane protein and show that perturbation of CMTM4 expression via zygotic morpholino or mRNA injection perturbs skeletal patterning, resulting in loss of secondary skeletal elements and rotational defects. We also demonstrate that normal levels of CMTM4 are required for normal PMC migration and filopodial organization, and that these effects are not due to gross mis-specification of the ectoderm. Finally, we show that CMTM4 is sufficient to mediate mesenchymal cell-cell adhesion. Taken together, these data suggest that CMTM4 controls PMC migration and biomineralization via adhesive regulation during sea urchin skeletogenesis. This is the first discovery of a functionally required adhesive gene in this skeletal patterning system.
Collapse
Affiliation(s)
- Abigail E Descoteaux
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Marko Radulovic
- Department of Biology, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Dona Alburi
- Department of Biology, Boston University, Boston, MA, 02215, United States
| | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States; Program in Bioinformatics, Boston University, Boston, MA, 02215, United States.
| |
Collapse
|
2
|
Jackson EW, Romero E, Kling S, Lee Y, Tjeerdema E, Hamdoun A. Stable germline transgenesis using the Minos Tc1/mariner element in the sea urchin Lytechinus pictus. Development 2024; 151:dev202991. [PMID: 39023164 PMCID: PMC11361634 DOI: 10.1242/dev.202991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Stable transgenesis is a transformative tool in model organism biology. Although the sea urchin is one of the oldest animal models in cell and developmental biology, studies in this animal have largely relied on transient manipulation of wild animals, without a strategy for stable transgenesis. Here, we build on recent progress to develop a more genetically tractable sea urchin species, Lytechinus pictus, and establish a robust transgene integration method. Three commonly used transposons (Minos, Tol2 and piggyBac) were tested for non-autonomous transposition, using plasmids containing a polyubiquitin promoter upstream of a H2B-mCerulean nuclear marker. Minos was the only transposable element that resulted in significant expression beyond metamorphosis. F0 animals were raised to sexual maturity, and spawned to determine germline integration and transgene inheritance frequency, and to characterize expression patterns of the transgene in F1 progeny. The results demonstrate transgene transmission through the germline, the first example of a germline transgenic sea urchin and, indeed, of any echinoderm. This milestone paves the way for the generation of diverse transgenic resources that will dramatically enhance the utility, reproducibility and efficiency of sea urchin research.
Collapse
Affiliation(s)
- Elliot W. Jackson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Emilio Romero
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Svenja Kling
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Evan Tjeerdema
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Telmer CA, Karimi K, Chess MM, Agalakov S, Arshinoff BI, Lotay V, Wang DZ, Chu S, Pells TJ, Vize PD, Hinman VF, Ettensohn CA. Echinobase: a resource to support the echinoderm research community. Genetics 2024; 227:iyae002. [PMID: 38262680 PMCID: PMC11075573 DOI: 10.1093/genetics/iyae002] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Echinobase (www.echinobase.org) is a model organism knowledgebase serving as a resource for the community that studies echinoderms, a phylum of marine invertebrates that includes sea urchins and sea stars. Echinoderms have been important experimental models for over 100 years and continue to make important contributions to environmental, evolutionary, and developmental studies, including research on developmental gene regulatory networks. As a centralized resource, Echinobase hosts genomes and collects functional genomic data, reagents, literature, and other information for the community. This third-generation site is based on the Xenbase knowledgebase design and utilizes gene-centric pages to minimize the time and effort required to access genomic information. Summary gene pages display gene symbols and names, functional data, links to the JBrowse genome browser, and orthology to other organisms and reagents, and tabs from the Summary gene page contain more detailed information concerning mRNAs, proteins, diseases, and protein-protein interactions. The gene pages also display 1:1 orthologs between the fully supported species Strongylocentrotus purpuratus (purple sea urchin), Lytechinus variegatus (green sea urchin), Patiria miniata (bat star), and Acanthaster planci (crown-of-thorns sea star). JBrowse tracks are available for visualization of functional genomic data from both fully supported species and the partially supported species Anneissia japonica (feather star), Asterias rubens (sugar star), and L. pictus (painted sea urchin). Echinobase serves a vital role by providing researchers with annotated genomes including orthology, functional genomic data aligned to the genomes, and curated reagents and data. The Echinoderm Anatomical Ontology provides a framework for standardizing developmental data across the phylum, and knowledgebase content is formatted to be findable, accessible, interoperable, and reusable by the research community.
Collapse
Affiliation(s)
- Cheryl A Telmer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Macie M Chess
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sergei Agalakov
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Bradley I Arshinoff
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Vaneet Lotay
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Dong Zhuo Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Stanley Chu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Sakamoto N, Watanabe K, Awazu A, Yamamoto T. CRISPR-Cas9-Mediated Gene Knockout in a Non-Model Sea Urchin, Heliocidaris crassispina. Zoolog Sci 2024; 41:159-166. [PMID: 38587910 DOI: 10.2108/zs230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 04/10/2024]
Abstract
Sea urchins have been used as model organisms in developmental biology research and the genomes of several sea urchin species have been sequenced. Recently, genome editing technologies have become available for sea urchins, and methods for gene knockout using the CRISPRCas9 system have been established. Heliocidaris crassispina is an important marine fishery resource with edible gonads. Although H. crassispina has been used as a biological research material, its genome has not yet been published, and it is a non-model sea urchin for molecular biology research. However, as recent advances in genome editing technology have facilitated genome modification in non-model organisms, we applied genome editing using the CRISPR-Cas9 system to H. crassispina. In this study, we targeted genes encoding ETS transcription factor (HcEts) and pigmentation-related polyketide synthase (HcPks1). Gene fragments were isolated using primers designed by inter-specific sequence comparisons within Echinoidea. When Ets gene was targeted using two sgRNAs, one successfully introduced mutations and impaired skeletogenesis. In the Pks1 gene knockout, when two sgRNAs targeting the close vicinity of the site corresponding to the target site that showed 100% mutagenesis efficiency of the Pks1 gene in Hemicentrotus pulcherrimus, mutagenesis was not observed. However, two other sgRNAs targeting distant sites efficiently introduced mutations. In addition, Pks1 knockout H. crassispina exhibited an albino phenotype in the pluteus larvae and adult sea urchins after metamorphosis. This indicates that the CRISPRCas9 system can be used to modify the genome of the non-model sea urchin H. crassispina.
Collapse
Affiliation(s)
- Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan,
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kaichi Watanabe
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
5
|
Li R, Xu Y, Wu F, Peng Z, Chan J, Zhang L. Easy-to-Use CRISPR-Cas9 Genome Editing in the Cultured Pacific Abalone ( Haliotis discus hannai). CRISPR J 2024; 7:41-52. [PMID: 38353618 DOI: 10.1089/crispr.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The Pacific abalone is an important aquaculture shellfish and serves as an important model in basic biology study. However, the study of abalone is limited by lack of highly efficient and easy-to-use gene-editing tools. In this paper, we demonstrate efficient gene knockout in Pacific abalone using CRISPR-Cas9. We developed a highly effective microinjection method by nesting fertilized eggs in a low-concentration agarose gel. We identified the cilia developmental gene β-tubulin and light-sensitive transmembrane protein r-opsin as target genes and designed highly specific sgRNAs for modifying their genomic sequences. Sanger sequencing of the genomic regions of β-tubulin and r-opsin genes from injected larvae identified various genomic long-fragment deletions. In situ hybridization showed gene expression patterns of β-tubulin and r-opsin were significantly altered in the mosaic mutants. Knocking out β-tubulin in abalone embryos efficiently affected cilia development. Scanning electron microscopy and swimming behavior assay showed defecting cilia and decreased motility. Moreover, knocking out of r-opsin in abalone embryos effectively affected the expression and development of eyespots. Overall, this work developed an easy-to-use mosaic gene knockout protocol for abalone, which will allow researchers to utilize CRISPR-Cas9 approaches to study unexploited abalone biology and will lead to novel breeding methods for this aquaculture species.
Collapse
Affiliation(s)
- Ruohui Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiulin Chan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
7
|
Hudson J, Egan S. Marine diseases and the Anthropocene: Understanding microbial pathogenesis in a rapidly changing world. Microb Biotechnol 2024; 17:e14397. [PMID: 38217393 PMCID: PMC10832532 DOI: 10.1111/1751-7915.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
Healthy marine ecosystems are paramount for Earth's biodiversity and are key to sustaining the global economy and human health. The effects of anthropogenic activity represent a pervasive threat to the productivity of marine ecosystems, with intensifying environmental stressors such as climate change and pollution driving the occurrence and severity of microbial diseases that can devastate marine ecosystems and jeopardise food security. Despite the potentially catastrophic outcomes of marine diseases, our understanding of host-pathogen interactions remains an understudied aspect of both microbiology and environmental research, especially when compared to the depth of information available for human and agricultural systems. Here, we identify three avenues of research in which we can advance our understanding of marine disease in the context of global change, and make positive steps towards safeguarding marine communities for future generations.
Collapse
Affiliation(s)
- Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
8
|
Yamakawa S, Sasakura Y, Morino Y, Wada H. Detection of TALEN-mediated genome cleavage during the early embryonic stage of the starfish Patiria pectinifera. Dev Dyn 2023; 252:1471-1481. [PMID: 37431812 DOI: 10.1002/dvdy.641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Echinoderms have long been utilized as experimental materials to study the genetic control of developmental processes and their evolution. Among echinoderms, the molecular study of starfish embryos has received considerable attention across research topics such as gene regulatory network evolution and larval regeneration. Recently, experimental techniques to manipulate gene functions have been gradually established in starfish as the feasibility of genome editing methods was reported. However, it is still unclear when these techniques cause genome cleavage during the development of starfish, which is critical to understand the timeframe and applicability of the experiment during early development of starfish. RESULTS We herein reported that gene functions can be analyzed by the genome editing method TALEN in early embryos, such as the blastula of the starfish Patiria pectinifera. We injected the mRNA of TALEN targeting rar, which was previously constructed, into eggs of P. pectinifera and examined the efficiency of genome cleavage through developmental stages from 6 to 48 hours post fertilization. CONCLUSION The results will be key knowledge not only when designing TALEN-based experiments but also when assessing the results.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Watanabe K, Fujita M, Okamoto K, Yoshioka H, Moriwaki M, Tagashira H, Awazu A, Yamamoto T, Sakamoto N. The crucial role of CTCF in mitotic progression during early development of sea urchin. Dev Growth Differ 2023; 65:395-407. [PMID: 37421304 DOI: 10.1111/dgd.12875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
CCCTC-binding factor (CTCF), an insulator protein with 11 zinc fingers, is enriched at the boundaries of topologically associated domains (TADs) in eukaryotic genomes. In this study, we isolated and analyzed the cDNAs encoding HpCTCF, the CTCF homolog in the sea urchin Hemicentrotus pulcherrimus, to investigate its expression patterns and functions during the early development of sea urchin. HpCTCF contains nine zinc fingers corresponding to fingers 2-10 of the vertebrate CTCF. Expression pattern analysis revealed that HpCTCF mRNA was detected at all developmental stages and in the entire embryo. Upon expressing the HpCTCF-GFP fusion protein in early embryos, we observed its uniform distribution within interphase nuclei. However, during mitosis, it disappeared from the chromosomes and subsequently reassembled on the chromosome during telophase. Moreover, the morpholino-mediated knockdown of HpCTCF resulted in mitotic arrest during the morula to blastula stage. Most of the arrested chromosomes were not phospholylated at serine 10 of histone H3, indicating that mitosis was arrested at the telophase by HpCTCF depletion. Furthermore, impaired sister chromatid segregation was observed using time-lapse imaging of HpCTCF-knockdown embryos. Thus, HpCTCF is essential for mitotic progression during the early development of sea urchins, especially during the telophase-to-interphase transition. However, the normal development of pluteus larvae in CRISPR-mediated HpCTCF-knockout embryos suggests that disruption of zygotic HpCTCF expression has little effect on embryonic and larval development.
Collapse
Affiliation(s)
- Kaichi Watanabe
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Megumi Fujita
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuko Okamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hajime Yoshioka
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miki Moriwaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hideki Tagashira
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akinori Awazu
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
10
|
Stracke K, Hejnol A. Marine animal evolutionary developmental biology-Advances through technology development. Evol Appl 2023; 16:580-588. [PMID: 36793684 PMCID: PMC9923486 DOI: 10.1111/eva.13456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Evolutionary developmental biology, the interdisciplinary effort of illuminating the conserved similarities and differences during animal development across all phylogenetic clades, has gained renewed interest in the past decades. As technology (immunohistochemistry, next-generation sequencing, advanced imaging, and computational resources) has advanced, so has our ability of resolving fundamental hypotheses and overcoming the genotype-phenotype gap. This rapid progress, however, has also exposed gaps in the collective knowledge around the choice and representation of model organisms. It has become clear that evo-devo requires a comparative, large-scale approach including marine invertebrates to resolve some of the most urgent questions about the phylogenetic positioning and character traits of the last common ancestors. Many invertebrates at the base of the tree of life inhabit marine environments and have been used for some years due to their accessibility, husbandry, and morphology. Here, we briefly review the major concepts of evolutionary developmental biology and discuss the suitability of established model organisms to address current research questions, before focussing on the importance, application, and state-of-the-art of marine evo-devo. We highlight novel technical advances that progress evo-devo as a whole.
Collapse
Affiliation(s)
- Katharina Stracke
- Department of Biological Sciences, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
| | - Andreas Hejnol
- Department of Biological Sciences, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
- Institute of Systematic Zoology and Evolutionary BiologyFriedrich‐Schiller‐University JenaJenaGermany
| |
Collapse
|
11
|
Oulhen N, Morita S, Warner JF, Wessel G. CRISPR/Cas9 knockin methodology for the sea urchin embryo. Mol Reprod Dev 2023; 90:69-72. [PMID: 36719060 PMCID: PMC9979971 DOI: 10.1002/mrd.23672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Shumpei Morita
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
- Present Address: Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Aomori, 039-3501, Japan
| | - Jacob F. Warner
- Department of Biology and Marine Biology. University of North Carolina Wilmington, Wilmington, NC 28403
| | - Gary Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
12
|
Oulhen N, Pieplow C, Perillo M, Gregory P, Wessel GM. Optimizing CRISPR/Cas9-based gene manipulation in echinoderms. Dev Biol 2022; 490:117-124. [PMID: 35917936 DOI: 10.1016/j.ydbio.2022.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/26/2022]
Abstract
The impact of new technology can be appreciated by how broadly it is used. Investigators that previously relied only on pharmacological approaches or the use of morpholino antisense oligonucleotide (MASO) technologies are now able to apply CRISPR-Cas9 to study biological problems in their model organism of choice much more effectively. The transitions to new CRISPR-based approaches could be enhanced, first, by standardized protocols and education in their applications. Here we summarize our results for optimizing the CRISPR-Cas9 technology in a sea urchin and a sea star, and provide advice on how to set up CRISPR-Cas9 experiments and interpret the results in echinoderms. Our goal through these protocols and sharing examples of success by other labs is to lower the activation barrier so that more laboratories can apply CRISPR-Cas9 technologies in these important animals.
Collapse
Affiliation(s)
- Nathalie Oulhen
- MCB Department, Brown University, Providence, RI, 02906, USA
| | - Cosmo Pieplow
- MCB Department, Brown University, Providence, RI, 02906, USA
| | | | - Pauline Gregory
- MCB Department, Brown University, Providence, RI, 02906, USA
| | - Gary M Wessel
- MCB Department, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
13
|
Vyas H, Schrankel CS, Espinoza JA, Mitchell KL, Nesbit KT, Jackson E, Chang N, Lee Y, Warner J, Reitzel A, Lyons DC, Hamdoun A. Generation of a homozygous mutant drug transporter (ABCB1) knockout line in the sea urchin Lytechinus pictus. Development 2022; 149:275601. [PMID: 35666622 PMCID: PMC9245184 DOI: 10.1242/dev.200644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.
Collapse
Affiliation(s)
- Himanshu Vyas
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Catherine S. Schrankel
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Jose A. Espinoza
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Kasey L. Mitchell
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Katherine T. Nesbit
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Elliot Jackson
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Nathan Chang
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Yoon Lee
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Jacob Warner
- University of North Carolina Wilmington 2 Department of Biology and Marine Biology , , Wilmington, NC 28403-5915 , USA
| | - Adam Reitzel
- University of North Carolina Charlotte 3 Department of Biological Sciences , , Charlotte, NC 28223-0001 , USA
| | - Deirdre C. Lyons
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine 1 , , , La Jolla, CA 92093-0202 , USA
- Scripps Institution of Oceanography 1 , , , La Jolla, CA 92093-0202 , USA
- University of California San Diego 1 , , , La Jolla, CA 92093-0202 , USA
| |
Collapse
|
14
|
Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TCG, Hentschel U. Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biol 2022; 20:100. [PMID: 35524305 PMCID: PMC9077847 DOI: 10.1186/s12915-022-01291-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
- Zoological Institute, University of Kiel, Kiel, Germany.
| | - Manuel Maldonado
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| | | | - Lucía Pita
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | | | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Zoological Institute, University of Kiel, Kiel, Germany
| |
Collapse
|
15
|
Kinjo S, Kiyomoto M, Suzuki H, Yamamoto T, Ikeo K, Yaguchi S. TrBase: A genome and transcriptome database of Temnopleurus reevesii. Dev Growth Differ 2022; 64:210-218. [PMID: 35451498 DOI: 10.1111/dgd.12780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Sea urchins have a long history as model organisms in biology, but their use in genetics is limited because of their long breeding cycle. In sea urchin genetics, genome editing technology was first established in Hemicentrotus pulcherrimus, whose genome has already been published. However, because this species also has a long breeding cycle, new model sea urchins that are more suitable for genetics have been sought. Here, we report a draft genome of another Western Pacific species, Temnopleurus reevesii, which we established as a new model sea urchin recently since this species has a comparable developmental process to other model sea urchins but a short breeding cycle of approximately half a year. The genome of T. reevesii was assembled into 28,742 scaffold sequences with an N50 length of 67.6 kb and an estimated genome size of 905.9 Mb. In the assembled genome, 27,064 genes were identified, 23,624 of which were expressed in at least one of the seven developmental stages. To provide genetic information, we constructed the genome database TrBase (https://cell-innovation.nig.ac.jp/Tree/). We also constructed the Western Pacific Sea Urchin Genome Database (WestPac-SUGDB) (https://cell-innovation.nig.ac.jp/WPAC/) with the aim of establishing a portal site for genetic information on sea urchins in the West Pacific. This site contains genomic information on two species, T. reevesii and H. pulcherrimus, and is equipped with homology search programs for comparing the two datasets. Therefore, TrBase and WestPac-SUGDB are expected to contribute not only to genetic research using sea urchins but also to comparative genomics and evolutionary research.
Collapse
Affiliation(s)
- Sonoko Kinjo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Masato Kiyomoto
- Institute for Marine and Coastal Research, Ochanomizu University, Tateyama, Japan
| | - Haruka Suzuki
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan.,PRESTO, JST, Kawaguchi, Japan
| |
Collapse
|
16
|
Su YH. Dorsal-ventral axis formation in sea urchin embryos. Curr Top Dev Biol 2022; 146:183-210. [PMID: 35152983 DOI: 10.1016/bs.ctdb.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most sea urchin species produce planktonic feeding larvae with distinct dorsal-ventral polarity. Such morphological indicators of polarity arise after gastrulation, when several morphogenesis and cell differentiation events occur differentially along the dorsal-ventral axis. For instance, the gut bends toward the ventral side where the mouth will form, skeletogenesis occurs initially near the ventral side with the forming skeleton extending dorsally, and pigment cells differentiate and embed in the dorsal ectoderm. The patterning mechanisms and gene regulatory networks underlying these events have been extensively studied. Two opposing TGF-β signaling pathways, Nodal and BMP, play key roles in all three germ layers to respectively pattern the sea urchin ventral and dorsal sides. In this chapter, I describe our current understanding of sea urchin dorsal-ventral patterning mechanisms. Additionally, differences in the patterning mechanisms observed in lecithotrophic sea urchins (nonfeeding larvae) and in cidaroid sea urchins are also discussed, along with evolutionary insights gained from comparative analyses.
Collapse
Affiliation(s)
- Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
17
|
Yaguchi S, Yaguchi J. Temnopleurus reevesii as a new sea urchin model in genetics. Dev Growth Differ 2021; 64:59-66. [PMID: 34923630 DOI: 10.1111/dgd.12768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Echinoderms, including sea urchins and starfish, have played important roles in cell, developmental and evolutionary biology research for more than a century. However, since most of them take a long time to mature sexually and their breeding seasons are limited, it has been difficult to obtain subsequent generations in the laboratory, resulting in them not being recognized as model organisms in recent genetics research. To overcome this issue, we maintained and obtained gametes from several nonmodel sea urchins in Japan and finally identified Temnopleurus reevesii as a suitable model for sea urchin genetics. Genomic and transcriptomic information was obtained for this model, and the DNA database TrBase was made publicly available. In this review, we describe how we found this species useful for biological research and show an example of CRISPR/Cas9 based knockout sea urchin.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.,PRESTO, JST, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan
| | - Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| |
Collapse
|
18
|
Yaguchi S, Yaguchi J, Suzuki H, Kinjo S, Kiyomoto M, Ikeo K, Yamamoto T. Establishment of homozygous knock-out sea urchins. Curr Biol 2021; 30:R427-R429. [PMID: 32428469 DOI: 10.1016/j.cub.2020.03.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Yaguchi et al. establish a homozygous knock-out sea urchin line by applying the CRISPR-Cas9 system to a new model species, Temnopleurus reevesii, whose breeding cycle takes about half a year.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan; PRESTO, JST, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan.
| | - Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Haruka Suzuki
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Sonoko Kinjo
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Masato Kiyomoto
- Marine and Coastal Research Center, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
19
|
Wavreil FDM, Poon J, Wessel GM, Yajima M. Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin. Dev Biol 2021; 478:13-24. [PMID: 34147471 DOI: 10.1016/j.ydbio.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
Differential protein regulation is a critical biological process that regulates cellular activity and controls cell fate determination. It is especially important during early embryogenesis when post-transcriptional events predominate differential fate specification in many organisms. Light-induced approaches have been a powerful technology to interrogate protein functions with temporal and spatial precision, even at subcellular levels within a cell by controlling laser irradiation on the confocal microscope. However, application and efficacy of these tools need to be tested for each model system or for the cell type of interest because of the complex nature of each system. Here, we introduce two types of light-induced approaches to track and control proteins at a subcellular level in the developing embryo of the sea urchin. We found that the photoconvertible fluorescent protein Kaede is highly efficient to distinguish pre-existing and newly synthesized proteins with no apparent phototoxicity, even when interrogating proteins associated with the mitotic spindle. Further, chromophore-assisted light inactivation (CALI) using miniSOG successfully inactivated target proteins of interest in the vegetal cortex and selectively delayed or inhibited asymmetric cell division. Overall, these light-induced manipulations serve as important molecular tools to identify protein function for for subcellular interrogations in developing embryos.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Jessica Poon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA.
| |
Collapse
|
20
|
Huan P, Cui M, Wang Q, Liu B. CRISPR/Cas9-mediated mutagenesis reveals the roles of calaxin in gastropod larval cilia. Gene 2021; 787:145640. [PMID: 33845135 DOI: 10.1016/j.gene.2021.145640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Obtaining detectable knockout phenotypes in the G0 generation is essential for gene function studies. Although CRISPR/Cas9-mediated gene editing has been employed to knock out molluscan genes, detectable phenotypes in the G0 generation have not been reported in these animals. In this study, we determined the knockout phenotype of a cilium-related gene, calaxin, using CRISPR/Cas9 technology in the gastropod mollusk Lottia goshimai. Injections with the Cas9-sgRNA complex caused approximately 30-80% of the injected larvae to exhibit a short-cilia phenotype characteristic of shortened cilia and decreased motility in the larvae. This phenotype was detectable in the G0 generation and was consistent for two independent sgRNAs. Genotyping of the injected larvae revealed various types of deletions and insertions in the target gene, which occurred in all sequences from the short-cilia larvae. This result indicated that the short-cilia phenotype was indeed caused by calaxin knockout. This possibility was supported by an RNAi assay targeting calaxin, which produced a highly similar short-cilia phenotype. We observed that a single SNP in the target sequences of the sgRNAs could show varied effects on the efficiency of mutagenesis. These results help to establish a foundation for future studies on molluscan gene editing using the CRISPR/Cas9 technique and contribute to the body of knowledge on molluscan ciliary functions.
Collapse
Affiliation(s)
- Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Menglu Cui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Qian Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China.
| |
Collapse
|
21
|
Pieplow A, Dastaw M, Sakuma T, Sakamoto N, Yamamoto T, Yajima M, Oulhen N, Wessel GM. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Dev Biol 2021; 472:85-97. [PMID: 33482173 PMCID: PMC7956150 DOI: 10.1016/j.ydbio.2021.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
We seek to manipulate gene function here through CRISPR-Cas9 editing of cis-regulatory sequences, rather than the more typical mutation of coding regions. This approach would minimize secondary effects of cellular responses to nonsense mediated decay pathways or to mutant protein products by premature stops. This strategy also allows for reducing gene activity in cases where a complete gene knockout would result in lethality, and it can be applied to the rapid identification of key regulatory sites essential for gene expression. We tested this strategy here with genes of known function as a proof of concept, and then applied it to examine the upstream genomic region of the germline gene Nanos2 in the sea urchin, Strongylocentrotus purpuratus. We first used CRISPR-Cas9 to target established genomic cis-regulatory regions of the skeletogenic cell transcription factor, Alx1, and the TGF-β signaling ligand, Nodal, which produce obvious developmental defects when altered in sea urchin embryos. Importantly, mutation of cis-activator sites (Alx1) and cis-repressor sites (Nodal) result in the predicted decreased and increased transcriptional output, respectively. Upon identification of efficient gRNAs by genomic mutations, we then used the same validated gRNAs to target a deadCas9-VP64 transcriptional activator to increase Nodal transcription directly. Finally, we paired these new methodologies with a more traditional, GFP reporter construct approach to further our understanding of the transcriptional regulation of Nanos2, a key gene required for germ cell identity in S. purpuratus. With a series of reporter assays, upstream Cas9-promoter targeted mutagenesis, coupled with qPCR and in situ RNA hybridization, we concluded that the promoter of Nanos2 drives strong mRNA expression in the sea urchin embryo, indicating that its primordial germ cell (PGC)-specific restriction may rely instead on post-transcriptional regulation. Overall, we present a proof-of-principle tool-kit of Cas9-mediated manipulations of promoter regions that should be applicable in most cells and embryos for which CRISPR-Cas9 is employed.
Collapse
Affiliation(s)
- Alice Pieplow
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Meseret Dastaw
- Ethiopian Biotechnology Institute, Addis Ababa University, NBH1, 4killo King George VI St, Addis Ababa, Ethiopia
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
22
|
Bardhan A, Deiters A, Ettensohn CA. Conditional gene knockdowns in sea urchins using caged morpholinos. Dev Biol 2021; 475:21-29. [PMID: 33684434 DOI: 10.1016/j.ydbio.2021.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/01/2022]
Abstract
Echinoderms are important experimental models for analyzing embryonic development, but a lack of spatial and temporal control over gene perturbations has hindered developmental studies using these animals. Morpholino antisense oligonucleotides (MOs) have been used successfully by the echinoderm research community for almost two decades, and MOs remain the most widely used tool for acute gene knockdowns in these organisms. Echinoderm embryos develop externally and are optically transparent, making them ideally-suited to many light-based approaches for analyzing and manipulating development. Studies using zebrafish embryos have demonstrated the effectiveness of photoactivatable (caged) MOs for conditional gene knockdowns. Here we show that caged MOs, synthesized using nucleobase-caged monomers, provide light-regulated control over gene expression in sea urchin embryos. Our work provides the first robust approach for conditional gene silencing in this prominent model system.
Collapse
Affiliation(s)
- Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Nesbit KT, Hamdoun A. Embryo, larval, and juvenile staging of Lytechinus pictus from fertilization through sexual maturation. Dev Dyn 2020; 249:1334-1346. [PMID: 32644271 DOI: 10.1002/dvdy.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sea urchin embryos have been used for more than a century in the study of fertilization and early development. However, several of the species used, such as Strongylocentrotus purpuratus, have long generation times making them suboptimal for transgenerational studies. RESULTS Here, we present an overview of the development of a rapidly developing echinoderm species, Lytechinus pictus, from fertilization through sexual maturation. When grown at room temperature (20°C) embryos complete the first cell cycle in 90 minutes, followed by subsequent cleavages every 45 minutes, leading to hatching at 9 hours postfertilization (hpf). The swimming embryos gastrulate from 12 to 36 hpf and produce the cells which subsequently give rise to the larval skeleton and immunocytes. Larvae begin to feed at 2 days and metamorphose by 3 weeks. Juveniles reach sexual maturity at 4 to 6 months of age, depending on individual growth rate. CONCLUSIONS This staging scheme lays a foundation for future studies in L. pictus, which share many of the attractive features of other urchins but have the key advantage of rapid development to sexual maturation. This is significant for multigenerational and genetic studies newly enabled by CRISPR-CAS mediated gene editing.
Collapse
Affiliation(s)
- Katherine T Nesbit
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
24
|
Fernandez-Nicolas A, Xu D, Yajima M. A tumor suppressor Retinoblastoma1 is essential for embryonic development in the sea urchin. Dev Dyn 2019; 248:1273-1285. [PMID: 31515896 DOI: 10.1002/dvdy.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Embryonic cells and cancer cells share various cellular characteristics important for their functions. It has been thus proposed that similar mechanisms of regulation may be present in these otherwise disparate cell types. RESULTS To explore how regulative embryonic cells are fundamentally different from cancerous cells, we report here that a fine balance of a tumor suppressor protein Retinoblastoma1 (Rb1) and a germline factor Vasa are important for proper cell proliferation and differentiation of the somatic cells during embryogenesis of the sea urchin. Rb1 knockdown blocked embryonic development and induced Vasa accumulation in the entire embryo, while its overexpression resulted in a smaller-sized embryo with differentiated body structures. These results suggest that a titrated level of Rb1 protein may be essential for a proper balance of cell proliferation and differentiation during development. Vasa knockdown or overexpression, on the other hand, reduced or increased Rb1 protein expression, respectively. CONCLUSIONS Taken together, it appears that Vasa protein positively regulates Rb1 protein while Rb1 protein negatively regulates Vasa protein, balancing the act of these two antagonistic molecules in somatic cells. This mechanism may provide a fine control of cell proliferation and differentiation, which is essential for regulative embryonic development.
Collapse
Affiliation(s)
| | - Derek Xu
- MCB Department, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- MCB Department, Brown University, Providence, Rhode Island
| |
Collapse
|
25
|
Poon J, Fries A, Wessel GM, Yajima M. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins. Nat Commun 2019; 10:3779. [PMID: 31439829 PMCID: PMC6706577 DOI: 10.1038/s41467-019-11560-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 02/01/2023] Open
Abstract
Evolution is proposed to result, in part, from acquisition of new developmental programs. One such example is the appearance of the micromeres in a sea urchin that form by an asymmetric cell division at the 4th embryonic cleavage and function as a major signaling center in the embryo. Micromeres are not present in other echinoderms and thus are considered as a derived feature, yet its acquisition mechanism is unknown. Here, we report that the polarity factor AGS and its associated proteins are responsible for micromere formation. Evolutionary modifications of AGS protein seem to have provided the cortical recruitment and binding of AGS to the vegetal cortex, contributing to formation of micromeres in the sea urchins. Indeed, introduction of sea urchin AGS into the sea star embryo induces asymmetric cell divisions, suggesting that the molecular evolution of AGS protein is key in the transition of echinoderms to micromere formation and the current developmental style of sea urchins not seen in other echinoderms.
Collapse
Affiliation(s)
- Jessica Poon
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Annaliese Fries
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA.
| |
Collapse
|
26
|
Coleman MA, Goold HD. Harnessing synthetic biology for kelp forest conservation 1. JOURNAL OF PHYCOLOGY 2019; 55:745-751. [PMID: 31152453 DOI: 10.1111/jpy.12888] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Environmental and climatic change is outpacing the ability of organisms to adapt, at an unprecedented level, resulting in range contractions and global ecosystem shifts to novel states. At the same time, scientific advances continue to accelerate, providing never-before imagined solutions to current and emerging environmental problems. Synthetic biology, the creation of novel and engineered genetic variation, is perhaps the fastest developing and transformative scientific field. Its application to solve extant and emerging environmental problems is vast, at times controversial, and technological advances have outpaced the social, ethical, and practical considerations of its use. Here, we discuss the potential direct and indirect applications of synthetic biology to kelp forest conservation. Rather than advocate or oppose its use, we identify where and when it may play a role in halting or reversing global kelp loss and discuss challenges and identify pathways of research needed to bridge the gap between technological advances and organismal biology and ecology. There is a pressing need for prompt collaboration and dialogue among synthetic biologists, ecologists, and conservationists to identify opportunities for use and ensure that extant research directions are set on trajectories to allow these currently disparate fields to converge toward practical environmental solutions.
Collapse
Affiliation(s)
- Melinda A Coleman
- Department of Primary Industries, NSW Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, New South Wales, 2450, Australia
- Southern Cross University, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, New South Wales, 2450, Australia
- University of Western Australia Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Hugh D Goold
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, New South Wales, 2568, Australia
- Department of Molecular Sciences, Macquarie University, North Ryde, New South Wales, 2109, Australia
| |
Collapse
|
27
|
Liu D, Awazu A, Sakuma T, Yamamoto T, Sakamoto N. Establishment of knockout adult sea urchins by using a CRISPR‐Cas9 system. Dev Growth Differ 2019; 61:378-388. [DOI: 10.1111/dgd.12624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Daming Liu
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
- Division of Integrated Sciences for Life Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
- Division of Integrated Sciences for Life Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
- Division of Integrated Sciences for Life Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Hiroshima Japan
- Division of Integrated Sciences for Life Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
| |
Collapse
|
28
|
Hirohashi N, Yanagimachi R. Sperm acrosome reaction: its site and role in fertilization. Biol Reprod 2019; 99:127-133. [PMID: 29462288 DOI: 10.1093/biolre/ioy045] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 01/14/2023] Open
Abstract
Manner and roles of sperm acrosome reaction in a variety of animals were compared.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, Oki, Japan
| | - Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
29
|
Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Res 2019; 28:341-356. [PMID: 31183663 DOI: 10.1007/s11248-019-00125-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
CRISPR/Cas9 system has been developed as a highly efficient genome editing technology to specifically induce mutations in a few aquaculture species. In this study, we described induction of targeted gene (namely tyrosinase, tyr) mutations in large-scale loach Paramisgurnus dabryanus, an important aquaculture fish species and a potential model organism for studies of intestinal air-breathing function, using the CRISPR/Cas9 system. Tyr gene in large-scale loach was firstly cloned and then its expressions were investigated. Two guide RNAs (gRNAs) were designed and separately transformed with Cas9 in the loach. 89.4% and 96.1% of injected loach juveniles respectively displayed a graded loss of pigmentation for the two gRNAs, in other words, for target 1 and target 2. We classified the injected loach juveniles into five groups according to their skin color phenotypes, including four albino groups and one wild-type-like group. And one of them was clear albino group, which was of high ornamental and commercial value. More than 50 clones for each albino transformant with a visible phenotype in each target were randomly selected and sequenced. Results obtained here showed that along with the increase of pigmentation, wild-type alleles appeared in the injected loach juveniles more often and insertion/deletion alleles less frequently. This study demonstrated that CRISPR/Cas9 system could be practically performed to modify large-scale loach tyr to produce an albino mutant of high ornamental and commercial value, and for the first time showed successful use of the CRISPR/Cas9 system for genome editing in a Cobitidae species.
Collapse
|
30
|
Buckley KM, Dong P, Cameron RA, Rast JP. Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms. Brief Funct Genomics 2019; 17:362-371. [PMID: 29045542 DOI: 10.1093/bfgp/elx031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome sequences contain all the necessary information-both coding and regulatory sequences-to construct an organism. The developmental process translates this genomic information into a three-dimensional form. One interpretation of this translation process can be described using gene regulatory network (GRN) models, which are maps of interactions among regulatory gene products in time and space. As high throughput investigations reveal increasing complexity within these GRNs, it becomes apparent that efficient methods are required to test the necessity and sufficiency of regulatory interactions. One of the most complete GRNs for early development has been described in the purple sea urchin, Strongylocentrotus purpuratus. This work has been facilitated by two resources: a well-annotated genome sequence and transgenes generated in bacterial artificial chromosome (BAC) constructs. BAC libraries played a central role in assembling the S. purpuratus genome sequence and continue to serve as platforms for generating reporter constructs for use in expression and regulatory analyses. Optically transparent echinoderm larvae are highly amenable to transgenic approaches and are therefore particularly well suited for experiments that rely on BAC-based reporter transgenes. Here, we discuss the experimental utility of BAC constructs in the context of understanding developmental processes in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Ping Dong
- California Institute of Technology, California, USA
| | - R Andrew Cameron
- Beckman Institute Center for Computational Regulatory Genomics, California Institute for Technology, California, USA
| | | |
Collapse
|
31
|
Zhang J, Han X, Wang J, Liu BZ, Wei JL, Zhang WJ, Sun ZH, Chang YQ. Molecular Cloning and Sexually Dimorphic Expression Analysis of nanos2 in the Sea Urchin, Mesocentrotus nudus. Int J Mol Sci 2019; 20:ijms20112705. [PMID: 31159444 PMCID: PMC6600436 DOI: 10.3390/ijms20112705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Sea urchin (Mesocentrotus nudus) is an economically important mariculture species in China and the gonads are the solely edible parts to human. The molecular mechanisms of gonad development have attracted increasing attention in recent years. Although the nanos2 gene has been identified as a germ cell marker in several invertebrates, little is known about nanos2 in adult sea urchins. Hereinto, we report the characterization of Mnnano2, an M. nudus nanos2 homology gene. Mnnanos2 is a maternal factor and can be detected continuously during embryogenesis and early ontogeny. Real-time quantitative PCR (RT-qPCR) and section in situ hybridization (ISH) analysis revealed a dynamic and sexually dimorphic expression pattern of Mnnano2 in the gonads. Its expression reached the maximal level at Stage 2 along with the gonad development in both ovary and testis. In the ovary, Mnnanos2 is specifically expressed in germ cells. In contrast, Mnnanos2 is expressed in both nutritive phagocytes (NP) cells and male germ cells in testis. Moreover, knocking down of Mnnanos2 by means of RNA interference (RNAi) reduced nanos2 and boule expression but conversely increased the expression of foxl2. Therefore, our data suggest that Mnnanos2 may serve as a female germ cell marker during gametogenesis and provide chances to uncover its function in adult sea urchin.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Xiao Han
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Jin Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Bing-Zheng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Jin-Liang Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Wei-Jie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Zhi-Hui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Ya-Qing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
32
|
Yu H, Li H, Li Q, Xu R, Yue C, Du S. Targeted Gene Disruption in Pacific Oyster Based on CRISPR/Cas9 Ribonucleoprotein Complexes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:301-309. [PMID: 30810831 DOI: 10.1007/s10126-019-09885-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The Pacific oyster (Crassostrea gigas) is a representative bivalve mollusc that is widely cultured in the world. In recent years, it has become an important model species for ecological, evolutionary, and developmental studies because of its ability to survive in extreme environmental conditions as a sessile filter feeder and its classical mosaic pattern of development. Although the complete genome sequence of C. gigas is available and omics data have been rapidly generated for the past few years, the genetic tools for gene functional studies have thus far been limited to RNA interference technology. In this study, we developed a gene editing system for C. gigas based on CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 ribonucleoprotein complexes. Two candidate genes, myostatin (MSTN) and Twist, were selected as targets. After microinjecting CRISPR/Cas9 ribonucleoprotein complexes into fertilized eggs, CRISPR-induced indel mutations were detected in the target genes. The CRISPR/Cas9-induced mutations were predominantly small indel mutations ranging in size from 1 to 24 bp in these two target genes. These results demonstrate that CRISPR/Cas9 can be successfully used as an effective targeted gene editing system in C. gigas. The method reported here provides a powerful tool for gene functional studies in oysters and other marine bivalves, and potentially as a new technology for genetic engineering to improve oyster traits for aquaculture.
Collapse
Affiliation(s)
- Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Huijuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Rui Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chenyang Yue
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21202, USA
| |
Collapse
|
33
|
Gonadal transcriptomic analysis and identification of candidate sex-related genes in Mesocentrotus nudus. Gene 2019; 698:72-81. [DOI: 10.1016/j.gene.2019.02.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
|
34
|
Fernandez-Valverde SL, Aguilera F, Ramos-Díaz RA. Inference of Developmental Gene Regulatory Networks Beyond Classical Model Systems: New Approaches in the Post-genomic Era. Integr Comp Biol 2019; 58:640-653. [PMID: 29917089 DOI: 10.1093/icb/icy061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The advent of high-throughput sequencing (HTS) technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules, and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyze cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in HTS technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.
Collapse
Affiliation(s)
- Selene L Fernandez-Valverde
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - René Alexander Ramos-Díaz
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| |
Collapse
|
35
|
Molina MD, Gache C, Lepage T. Expression of exogenous mRNAs to study gene function in echinoderm embryos. Methods Cell Biol 2019; 151:239-282. [PMID: 30948011 DOI: 10.1016/bs.mcb.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the completion of the genome sequencing projects, a new challenge for developmental biologists is to assign a function to the thousands of genes identified. Expression of exogenous mRNAs is a powerful, versatile and rapid technique that can be used to study gene function during development of the sea urchin. This chapter describes how this technique can be used to analyze gene function in echinoderm embryos, how it can be combined with cell transplantation to perform mosaic analysis and how it can be applied to identify downstream targets genes of transcription factors and signaling pathways. We describe specific examples of the use of overexpression of mRNA to analyze gene function, mention the benefits and current limitations of the technique and emphasize the importance of using different controls to assess the specificity of the effects observed. Finally, this chapter details the different steps, vectors and protocols for in vitro production of mRNA and phenotypic analysis.
Collapse
Affiliation(s)
| | - Christian Gache
- Université Pierre et Marie Curie, Observatoire Océanologique de Villefranche sur Mer, UMR7009 CNRS, Paris, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
| |
Collapse
|
36
|
Nesbit KT, Fleming T, Batzel G, Pouv A, Rosenblatt HD, Pace DA, Hamdoun A, Lyons DC. The painted sea urchin, Lytechinus pictus, as a genetically-enabled developmental model. Methods Cell Biol 2019; 150:105-123. [PMID: 30777173 PMCID: PMC6487866 DOI: 10.1016/bs.mcb.2018.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although sea urchins are one of the oldest and most widely used marine model systems, few species have been routinely kept in culture through multiple generations. The workhorse of the field is the purple urchin Strongylocentrotus purpuratus. However, one disadvantage of S. purpuratus is its long generation time, making it impractical as a model for generating and maintaining transgenic lines. In an effort to develop a sea urchin that is suitable for transgenerational experiments and the generation of transgenic lines, we have focused on development of updated culturing methods and genomic resources for the painted sea urchin, Lytechinus pictus. Compared to S. purpuratus, L. pictus have relatively large eggs, develop into optically clear embryos, and the smaller adults can become gravid in under a year. Fifty years ago, Hinegardner developed culturing methods for raising L. pictus through metamorphosis. Here, we provide an updated protocol for establishing and maintaining L. pictus in the laboratory, and describe a new genome resource for this urchin. In our hands, L. pictus reach the 4-armed pluteus stage at 4 days; become competent to metamorphosis at 24 days; and are gravid by 6 months. Plutei and juveniles are fed on a diet of algae and diatoms, and adults are fed on kelp. We also make available a L. pictus transcriptome generated from developmental stages (eggs to 2-day-old plutei) to support the annotation of our genome sequencing project, and to enhance the utility of this species for molecular studies and transgenesis.
Collapse
Affiliation(s)
- Katherine T. Nesbit
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Travis Fleming
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Grant Batzel
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Amara Pouv
- Biological Science, California State University Long Beach, Long Beach, CA, United States
| | - Hannah D. Rosenblatt
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Douglas A. Pace
- Biological Science, California State University Long Beach, Long Beach, CA, United States
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States,Corresponding authors: ;
| | - Deirdre C. Lyons
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States,Corresponding authors: ;
| |
Collapse
|
37
|
Peter IS. Methods for the experimental and computational analysis of gene regulatory networks in sea urchins. Methods Cell Biol 2018; 151:89-113. [PMID: 30948033 DOI: 10.1016/bs.mcb.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The discovery of gene regulatory networks (GRNs) has opened a gate to access the genomic mechanisms controlling development. GRNs are systems of transcriptional regulatory circuits that control the differential specification of cell fates during development by regulating gene expression. The experimental analysis of GRNs involves a collection of methods, each revealing aspects of the overall control process. This review provides an overview of experimental and computational methods that have been successfully applied for solving developmental GRNs in the sea urchin embryo. The key in this approach is to obtain experimental evidence for functional interactions between transcription factors and regulatory DNA. In the second part of this review, a more generally applicable strategy is discussed that shows a path from experimental evidence to annotation of regulatory linkages to the generation of GRN models.
Collapse
Affiliation(s)
- Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
38
|
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated nuclease 9) technology enables rapid, targeted, and efficient changes in the genomes of various model organisms. The short guide RNAs (gRNAs) of the CRISPR/Cas9 system can be designed to recognize target DNA within coding regions for functional gene knockouts. Several studies have demonstrated that the CRISPR/Cas9 system efficiently and specifically targets sea urchin genes and results in expected mutant phenotypes. In addition to disrupting gene functions, modifications and additions to the Cas9 protein enable alternative activities targeted to specific sites within the genome. This includes a fusion of cytidine deaminase to Cas9 (Cas9-DA) for single nucleotide conversion in targeted sites. In this chapter, we describe detailed methods for the CRISPR/Cas9 application in sea urchin embryos, including gRNA design, in vitro synthesis of single guide RNA (sgRNA), and the usages of the CRISPR/Cas9 technology for gene knockout and single nucleotide editing. Methods for genotyping the resultant embryos are also provided for assessing efficiencies of gene editing.
Collapse
Affiliation(s)
- Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Gary Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
39
|
Arimoto A, Tagawa K. Regeneration in the enteropneust hemichordate, Ptychodera flava, and its evolutionary implications. Dev Growth Differ 2018; 60:400-408. [PMID: 30009383 DOI: 10.1111/dgd.12557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022]
Abstract
Hemichordates are marine invertebrates that are closely related to chordates, but while their body plans are comparable to those of chordates, they possess a remarkable capacity for regeneration, even as adults. A small fragment is sufficient to form a complete individual. Unlike echinoderms, their larvae transform directly into adults; therefore, hemichordate systems offer clear morphological and molecular parallels between regeneration and development. Morphological events in regeneration are generally similar to organogenesis in juveniles. Nonetheless, comparative analysis of gene expression in these two morphological phenomena suggests that hemichordate regeneration is regulated by regeneration-specific mechanisms, as well as by developmental mechanisms. Dependency upon resident pluripotent/multipotent stem cells is a significant difference in metazoan regeneration, and such stem cells are essential for regeneration in many lineages. Based on the present gene expression study, regeneration in acorn worms is more closely related to that in vertebrates, because it employs endogenous stem cell-independent transdifferentiation.
Collapse
Affiliation(s)
- Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kuni Tagawa
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima, Japan
| |
Collapse
|
40
|
Uchida A, Yajima M. An optogenetic approach to control protein localization during embryogenesis of the sea urchin. Dev Biol 2018; 441:19-30. [PMID: 29958898 DOI: 10.1016/j.ydbio.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Light inducible protein-protein interactions have been used to manipulate protein localization and function in the cell with utmost spatial and temporal precision. In this technical report, we use a recently developed optogenetic approach to manipulate protein localization in the developing sea urchin embryo. A photosensitive LOV domain from Avena sativa phototropin1 cages a small peptide that binds the engineered PDZ domain (ePDZ) upon blue light irradiation. Using this system, mCherry tagged proteins fused with the LOV domain were recruited to ectopic sub-cellular regions such as the membrane, microtubules, or actin by GFP tagged proteins fused with the ePDZ domain upon blue light irradiation within 1-3 min in the sea urchin embryo. The efficiency and speed of recruitment of each protein to its respective subcellular region appeared to be dependent on the power and duration of laser irradiation, as well as the respective level of affinity to the tagged location. Controlled laser irradiation allowed partial recruitment of the spindle to the membrane, and resulted in cell blebbing. Vasa, a cell cycle and germline factor that localizes on the spindle and enriches in the micromeres at 8-16 cell stage was recruited to ectopic sites, preventing normal enrichment. Continuous blue light activation with a regular blue aquarium light over two days of culture successfully induced LOV-ePDZ binding in the developing embryos, resulting in continued ectopic recruitment of Vasa and failure in gastrulation at Day 2. Although some cytotoxicity was observed with prolonged blue light irradiation, this optogenetic system provides a promising approach to test the sub-cellular activities of developmental factors, as well as to alter protein localization and development during embryogenesis.
Collapse
Affiliation(s)
- Alicia Uchida
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA.
| |
Collapse
|
41
|
Lowe EK, Cuomo C, Arnone MI. Omics approaches to study gene regulatory networks for development in echinoderms. Brief Funct Genomics 2018; 16:299-308. [PMID: 28957458 DOI: 10.1093/bfgp/elx012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene regulatory networks (GRNs) describe the interactions for a developmental process at a given time and space. Historically, perturbation experiments represent one of the key methods for analyzing and reconstructing a GRN, and the GRN governing early development in the sea urchin embryo stands as one of the more deeply dissected so far. As technology progresses, so do the methods used to address different biological questions. Next-generation sequencing (NGS) has become a standard experimental technique for genome and transcriptome sequencing and studies of protein-DNA interactions and DNA accessibility. While several efforts have been made toward the integration of different omics approaches for the study of the regulatory genome in many animals, in a few cases, these are applied with the purpose of reconstructing and experimentally testing developmental GRNs. Here, we review emerging approaches integrating multiple NGS technologies for the prediction and validation of gene interactions within echinoderm GRNs. These approaches can be applied to both 'model' and 'non-model' organisms. Although a number of issues still need to be addressed, advances in NGS applications, such as assay for transposase-accessible chromatin sequencing, combined with the availability of embryos belonging to different species, all separated by various evolutionary distances and accessible to experimental regulatory biology, place echinoderms in an unprecedented position for the reconstruction and evolutionary comparison of developmental GRNs. We conclude that sequencing technologies and integrated omics approaches allow the examination of GRNs on a genome-wide scale only if biological perturbation and cis-regulatory analyses are experimentally accessible, as in the case of echinoderm embryos.
Collapse
|
42
|
Cui M, Lin CY, Su YH. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development. Brief Funct Genomics 2018; 16:309-318. [PMID: 28605407 DOI: 10.1093/bfgp/elx011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies on the gene regulatory networks (GRNs) of sea urchin embryos have provided a basic understanding of the molecular mechanisms controlling animal development. The causal links in GRNs have been verified experimentally through perturbation of gene functions. Microinjection of antisense morpholino oligonucleotides (MOs) into the egg is the most widely used approach for gene knockdown in sea urchin embryos. The modification of MOs into a membrane-permeable form (vivo-MOs) has allowed gene knockdown at later developmental stages. Recent advances in genome editing tools, such as zinc-finger nucleases, transcription activator-like effector-based nucleases and the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system, have provided methods for gene knockout in sea urchins. Here, we review the use of vivo-MOs and genome editing tools in sea urchin studies since the publication of its genome in 2006. Various applications of the CRISPR/Cas9 system and their potential in studying sea urchin development are also discussed. These new tools will provide more sophisticated experimental methods for studying sea urchin development.
Collapse
|
43
|
Abstract
The control processes that underlie the progression of development can be summarized in maps of gene regulatory networks (GRNs). A critical step in their assembly is the systematic perturbation of network candidates. In sea urchins the most important method for interfering with expression in a gene-specific way is application of morpholino antisense oligonucleotides (MOs). MOs act by binding to their sequence complement in transcripts resulting in a block in translation or a change in splicing and thus result in a loss of function. Despite the tremendous success of this technology, recent comparisons to mutants generated by genome editing have led to renewed criticism and challenged its reliability. As with all methods based on sequence recognition, MOs are prone to off-target binding that may result in phenotypes that are erroneously ascribed to the loss of the intended target. However, the slow progression of development in sea urchins has enabled extremely detailed studies of gene activity in the embryo. This wealth of knowledge paired with the simplicity of the sea urchin embryo enables careful analysis of MO phenotypes through a variety of methods that do not rely on terminal phenotypes. This article summarizes the use of MOs in probing GRNs and the steps that should be taken to assure their specificity.
Collapse
|
44
|
Wiseman E, Bates L, Dubé A, Carroll DJ. Starfish as a Model System for Analyzing Signal Transduction During Fertilization. Results Probl Cell Differ 2018; 65:49-67. [PMID: 30083915 DOI: 10.1007/978-3-319-92486-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The starfish oocyte and egg offer advantages for use as a model system for signal transduction research. Some of these have been recognized for over a century, including the ease of procuring gametes, in vitro fertilization, and culturing the embryos. New advances, particularly in genomics, have also opened up opportunities for the use of these animals. In this chapter, we give a few examples of the historical use of the starfish for research in cell biology and then describe some new areas in which we believe the starfish can contribute to our understanding of signal transduction-particularly in fertilization.
Collapse
Affiliation(s)
- Emily Wiseman
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Lauren Bates
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Altair Dubé
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - David J Carroll
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
45
|
Duronio RJ, O'Farrell PH, Sluder G, Su TT. Sophisticated lessons from simple organisms: appreciating the value of curiosity-driven research. Dis Model Mech 2017; 10:1381-1389. [PMID: 29259023 PMCID: PMC5769611 DOI: 10.1242/dmm.031203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For hundreds of years, biologists have studied accessible organisms such as garden peas, sea urchins collected at low tide, newt eggs, and flies circling rotten fruit. These organisms help us to understand the world around us, attracting and inspiring each new generation of biologists with the promise of mystery and discovery. Time and time again, what we learn from such simple organisms has emphasized our common biological origins by proving to be applicable to more complex organisms, including humans. Yet, biologists are increasingly being tasked with developing applications from the known, rather than being allowed to follow a path to discovery of the as yet unknown. Here, we provide examples of important lessons learned from research using selected non-vertebrate organisms. We argue that, for the purpose of understanding human disease, simple organisms cannot and should not be replaced solely by human cell-based culture systems. Rather, these organisms serve as powerful discovery tools for new knowledge that could subsequently be tested for conservation in human cell-based culture systems. In this way, curiosity-driven biological research in simple organisms has and will continue to pay huge dividends in both the short and long run for improving the human condition.
Collapse
Affiliation(s)
- Robert J Duronio
- Departments of Biology and Genetics, Integrative Program for Biological and Genome Sciences, and Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599-3280, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Greenfield Sluder
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tin Tin Su
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
46
|
Buckley KM, Rast JP. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response. Front Immunol 2017; 8:1297. [PMID: 29109720 PMCID: PMC5660111 DOI: 10.3389/fimmu.2017.01297] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/27/2017] [Indexed: 12/27/2022] Open
Abstract
The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN) approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17), are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism.
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Shevidi S, Uchida A, Schudrowitz N, Wessel GM, Yajima M. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo. Dev Dyn 2017; 246:1036-1046. [PMID: 28857338 DOI: 10.1002/dvdy.24586] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A single base pair mutation in the genome can result in many congenital disorders in humans. The recent gene editing approach using CRISPR/Cas9 has rapidly become a powerful tool to replicate or repair such mutations in the genome. These approaches rely on cleaving DNA, while presenting unexpected risks. RESULTS In this study, we demonstrate a modified CRISPR/Cas9 system fused to cytosine deaminase (Cas9-DA), which induces a single nucleotide conversion in the genome. Cas9-DA was introduced into sea urchin eggs with sgRNAs targeted for SpAlx1, SpDsh, or SpPks, each of which is critical for skeletogenesis, embryonic axis formation, or pigment formation, respectively. We found that both Cas9 and Cas9-DA edit the genome, and cause predicted phenotypic changes at a similar efficiency. Cas9, however, resulted in significant deletions in the genome centered on the gRNA target sequence, whereas Cas9-DA resulted in single or double nucleotide editing of C to T conversions within the gRNA target sequence. CONCLUSIONS These results suggest that the Cas9-DA approach may be useful for manipulating gene activity with decreased risks of genomic aberrations. Developmental Dynamics 246:1036-1046, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Saba Shevidi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| | - Alicia Uchida
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| | - Natalie Schudrowitz
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| |
Collapse
|
48
|
Shrock E, Güell M. CRISPR in Animals and Animal Models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 152:95-114. [PMID: 29150007 DOI: 10.1016/bs.pmbts.2017.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CRISPR-Cas9 has revolutionized the generation of transgenic animals. This system has demonstrated an unprecedented efficiency, multiplexability, and ease of use, thereby reducing the time and cost required for genome editing and enabling the production of animals with more extensive genetic modifications. It has also been shown to be applicable to a wide variety of animals, from early-branching metazoans to primates. Genome-wide screens in model organisms have been performed, accurate models of human diseases have been constructed, and potential therapies have been tested and validated in animal models. Several achievements in genetic modification of animals have been translated into products for the agricultural and pharmaceutical industries. Based on the remarkable progress to date, one may anticipate that in the future, CRISPR-Cas9 technology will enable additional far-reaching advances, including understanding the bases of diseases with complex genetic origins, engineering animals to produce organs for human transplantation, and genetically transforming entire populations of organisms to prevent the spread of disease.
Collapse
Affiliation(s)
- Ellen Shrock
- Biological and Biomedical Sciences, Harvard University, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Marc Güell
- Harvard Medical School, Boston, MA, United States; Pompeu Fabra University, Barcelona, Spain.
| |
Collapse
|
49
|
Mellott DO, Thisdelle J, Burke RD. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos. Development 2017; 144:3602-3611. [PMID: 28851710 DOI: 10.1242/dev.151720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
We have examined regulation of neurogenesis by Delta/Notch signaling in sea urchin embryos. At gastrulation, neural progenitors enter S phase coincident with expression of Sp-SoxC. We used a BAC containing GFP knocked into the Sp-SoxC locus to label neural progenitors. Live imaging and immunolocalizations indicate that Sp-SoxC-expressing cells divide to produce pairs of adjacent cells expressing GFP. Over an interval of about 6 h, one cell fragments, undergoes apoptosis and expresses high levels of activated Caspase3. A Notch reporter indicates that Notch signaling is activated in cells adjacent to cells expressing Sp-SoxC. Inhibition of γ-secretase, injection of Sp-Delta morpholinos or CRISPR/Cas9-induced mutation of Sp-Delta results in supernumerary neural progenitors and neurons. Interfering with Notch signaling increases neural progenitor recruitment and pairs of neural progenitors. Thus, Notch signaling restricts the number of neural progenitors recruited and regulates the fate of progeny of the asymmetric division. We propose a model in which localized signaling converts ectodermal and ciliary band cells to neural progenitors that divide asymmetrically to produce a neural precursor and an apoptotic cell.
Collapse
Affiliation(s)
- Dan O Mellott
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Jordan Thisdelle
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| |
Collapse
|
50
|
D'Agostino Y, D'Aniello S. Molecular basis, applications and challenges of CRISPR/Cas9: a continuously evolving tool for genome editing. Brief Funct Genomics 2017; 16:211-216. [PMID: 28057617 DOI: 10.1093/bfgp/elw038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system is a recently discovered tool for genome editing that has quickly revolutionized the ability to generate site-specific mutations in a wide range of animal models, including nonhuman primates. Indeed, a significant number of scientific reports describing single or multiplex guide RNA microinjection, double-nicking strategies, site-specific knock-in and conditional knock-out have been published in less than three years. However, despite the great potential of this new technology, there are some limitations because of the presence of off-target genomic sites, which must be taken into consideration. To address this issue, various research teams have tried to improve the efficiency of the system through enzymatic modifications of the Cas9 protein or by the introduction of alternative strategies. Although several review articles are available that singly describe the molecular mechanism(s), applications and challenges of each of these strategies, a concise compilation of approaches is lacking. In the current review, we describe and evaluate most CRISPR/Cas9 approaches available at present, describing both mechanism of action, in addition to advantages or disadvantages. The primary goal of this work is to serve as a guide for not skilled researchers, facilitating the selection of the best strategy to target their gene of interest and allowing optimization of particular applications to the specific aims of the study. The present article also offers a unique perspective, focusing on the fact that CRISPR technology is opening a new genomic era, providing the means to manipulate specific genes in a targeted manner in all animal models, an endeavor previously considered to be difficult.
Collapse
|