1
|
Lagrange J, Van De Velde G, Lacolley P, Regnault V, Bascetin R. Underestimated role of macromolecular crowding in bioengineered in vitro models of health and diseases. Mater Today Bio 2025; 32:101772. [PMID: 40331149 PMCID: PMC12053638 DOI: 10.1016/j.mtbio.2025.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Macromolecular crowding (MMC) is a ubiquitous phenomenon in biological systems that is largely overlooked in bioengineered in vitro cellular models. This comprehensive review examines the significant impact of both intracellular and extracellular MMC on cellular and molecular processes under physiological and pathological conditions. By synthesizing current knowledge and identifying critical gaps in our understanding of MMC, this review highlights the need to incorporate crowding into the development of in vitro models for studying health and diseases, as well as for drug discovery platforms. The pervasive nature of MMC in biological systems underscores its potential importance in various physiological and pathological processes, including protein aggregation disorders, cancer, and vascular diseases. Recognizing the ubiquitous influence of MMC could open new avenues for therapeutic interventions and deepen our understanding of fundamental biological processes.
Collapse
Affiliation(s)
- Jérémy Lagrange
- Université de Lorraine, Inserm, DCAC, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Inserm, IHU INFINY, F-54000, Nancy, France
| | | | | | | | | |
Collapse
|
2
|
Liao C, Hu J, Mao F, Li Q, Li H, Yu C, Jia Y, Ding K. Extracellular TatD from Listeria monocytogenes displays DNase activity and contributes to biofilm dispersion. Microb Pathog 2025; 202:107445. [PMID: 40032003 DOI: 10.1016/j.micpath.2025.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/03/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
TatD is evolutionarily conserved in a variety of organisms and has been implicated in DNA repair, apoptosis, and the disruption of extracellular traps. The aim of our study was to investigate the effects of TatD on L. monocytogenes biofilms. In our previous study, the deletion of the TatD gene from L. monocytogenes (named LmTatD) increased biofilm formation. However, the underlying mechanism remains unclear. In this study, we present a detailed analysis of the structural characteristics of TatD. Bioinformatic analysis revealed that the amino acid residues DPGEGDQHEDP are fully conserved. LmTatD belongs to the Class II TatD family (TATDN3) and contains a signal peptide. Recombinant LmTatD exhibited DNase activity regardless of the DNA substrate. Mutagenesis experiments confirmed the importance of glutamic acid, histidine, and aspartic acid residues in enzymatic activity. Biofilm formation was evaluated via a crystal violet assay, confocal laser scanning microscopy, and scanning electron microscopy. rLmTatD impaired biofilm formation and reduced eDNA levels without disrupting the integrity of the bacteria within biofilms. Moreover, deficiency of LmTatD led to a significant decrease in the DNase activity of the extracellular proteins from L. monocytogenes, whereas there was an increase in biofilm formation and eDNA production during the dispersion stage. However, no significant change in the total number of biofilm or planktonic bacteria was observed at any of the time points. Additionally, the mRNA level of LmTatD in the biofilm formed by the wild-type strain at the dispersion stage was greater than that at the attachment and maturation stages. The number of planktonic bacteria for the wild-type strain at the dispersion stage was significantly greater than that for the ΔLmTatD mutant. Collectively, these data suggest that LmTatD exhibits extracellular DNase activity and regulates L. monocytogenes biofilm dispersion.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Jingzheng Hu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Fuchao Mao
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, 471000, China
| | - Qi Li
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Hanxiao Li
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, 471000, China
| | - Yanyan Jia
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
3
|
Krischek JO, Mannherz HG, Napirei M. Different results despite high homology: Comparative expression of human and murine DNase1 in Pichia pastoris. PLoS One 2025; 20:e0321094. [PMID: 40299953 PMCID: PMC12040185 DOI: 10.1371/journal.pone.0321094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/28/2025] [Indexed: 05/01/2025] Open
Abstract
The prolonged persistence of extracellular chromatin and DNA is a salient feature of diseases like cystic fibrosis, systemic lupus erythematosus and COVID-19 associated microangiopathy. Since deoxyribonuclease I (DNase1) is a major endonuclease involved in DNA-related waste disposal, recombinant DNase1 is an important therapeutic biologic. Recently we described the production of recombinant murine DNase1 (rmDNase1) in Pichia pastoris by employing the α-mating factor prepro signal peptide (αMF-SP) a method, which we now applied to express recombinant human DNASE1 (rhDNASE1). In addition to an impaired cleavage of the αMF pro-peptide, which we also detected previously for mDNase1, expression of hDNASE1 resulted in a 70-80 times lower yield although both orthologues share a high structural and functional homology. Using mDNase1 expression as a guideline, we were able to increase the yield of hDNASE1 fourfold by optimizing parameters like nutrients, cultivation temperature, methanol supply, and codon usage. In addition, post-translational import into the rough endoplasmic reticulum (rER) was changed to co-translational import by employing the signal peptide (SP) of the α-subunit of the Oligosaccharyltransferase complex (Ost1) from Saccharomyces cerevisiae. These improvements resulted in the purification of ~ 8 mg pure mature rmDNase1 and ~ 0.4 mg rhDNASE1 per Liter expression medium of a culture with a cell density of OD600 = 40 in 24 hours. As a main cause for the expression difference, we assume varying folding abilities to reach a native conformation, which induce an elevated unproductive unfolded protein response within the rER during hDNASE1 expression. Concerning functionality, rhDNASE1 expressed in P. pastoris is comparable to Pulmozyme®, i.e. rhDNASE1 produced in Chinese hamster ovary (CHO) cells by Roche - Genentech. With respect to the biochemical effectivity, rmDNase1 is superior to rhDNASE1 due to its higher specific activity in the presence of Ca2 + /Mg2 + and the lower inhibition by monomeric actin.
Collapse
Affiliation(s)
- Jan-Ole Krischek
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Hans Georg Mannherz
- Department of Cellular and Translational Physiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Gallizzi AA, Guéant-Rodriguez RM, Boteanu C, Alberto JM, Lakomy C, Louis H, Chery C, Renard P, Regnault V, Safar R, Heinken A, Romano A, Laguna JJ, Guéant JL. Assessment of Patients With Beta-Lactams Positive Provocation Tests by Biomarkers of IgG-Related Neutrophil Activation. Clin Exp Allergy 2025. [PMID: 40268517 DOI: 10.1111/cea.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/25/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Beta-lactams (BLs) are the predominant cause of immediate allergic reactions to drugs. Immediate hypersensitivity reactions (IHR) with positive provocation tests and negative skin and in vitro tests have undetermined mechanisms. We evaluated whether biomarkers of IgG-dependent neutrophil activation could help to assess this subgroup of BL IHRs. METHODS We evaluated biomarkers of neutrophil activation and neutrophil extracellular traps (NETs) in the serum of 26 BL IHR patients presenting with a positive provocation test, negative skin and serum specific IgE, and positive specific sIgG, and 8 perioperative BL IHR cases with positive skin tests and negative sIgE compared to 19 non-allergic matched controls. RESULTS We observed increased levels of DNase activity, neutrophil elastase (NE), myeloperoxidase (MPO)-DNA, IL8 and decreased IL4 and IL13 in patients, compared to matched controls, in the first 15 min of IHRs. DNAse activity, NE and MPO-DNA were maintained at high levels 2 h later (T0 + 2), while cell-free DNA and CXCR2 decreased significantly. IgG-related activation of neutrophils was suggested by significant correlations between NE, IL8 and CXCR2 axis and a single cluster associating BL sIgG antibodies and NE at T0 + 2, in principal factor analysis of all biomarkers. CONCLUSION Biomarkers of neutrophil activation and NETs were increased in BL IHRs with negative skin tests, positive sIgG and negative serum sIgE, and positive provocation test. We propose DNAse activity and NE as biomarkers for the biological assessment of BL IHRs and provocation tests and to consider IgG-related neutrophil activation as one of the mechanisms involved in BL IHRs with undetermined cause.
Collapse
Affiliation(s)
- Adrienne Astrid Gallizzi
- UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (NGERE), Université de Lorraine and University Regional Hospital of Nancy, avenue de la forêt de Haye, Vandoeuvre lès Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (NGERE), Université de Lorraine and University Regional Hospital of Nancy, avenue de la forêt de Haye, Vandoeuvre lès Nancy, France
| | - Cosmin Boteanu
- Allergy Unit, Allergo-Anesthesia Unit, University Hospital of Cruz Roja and Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| | - Jean-Marc Alberto
- UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (NGERE), Université de Lorraine and University Regional Hospital of Nancy, avenue de la forêt de Haye, Vandoeuvre lès Nancy, France
| | - Cécile Lakomy
- UMR 1116 DCAC, Université de Lorraine and INSERM, avenue de la Forêt de Haye, Vandoeuvre lès Nancy, France
| | - Huguette Louis
- UMR 1116 DCAC, Université de Lorraine and INSERM, avenue de la Forêt de Haye, Vandoeuvre lès Nancy, France
| | - Celine Chery
- UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (NGERE), Université de Lorraine and University Regional Hospital of Nancy, avenue de la forêt de Haye, Vandoeuvre lès Nancy, France
| | - Pauline Renard
- UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (NGERE), Université de Lorraine and University Regional Hospital of Nancy, avenue de la forêt de Haye, Vandoeuvre lès Nancy, France
| | - Véronique Regnault
- UMR 1116 DCAC, Université de Lorraine and INSERM, avenue de la Forêt de Haye, Vandoeuvre lès Nancy, France
| | - Ramia Safar
- UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (NGERE), Université de Lorraine and University Regional Hospital of Nancy, avenue de la forêt de Haye, Vandoeuvre lès Nancy, France
| | - Almut Heinken
- UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (NGERE), Université de Lorraine and University Regional Hospital of Nancy, avenue de la forêt de Haye, Vandoeuvre lès Nancy, France
| | - Antonino Romano
- UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (NGERE), Université de Lorraine and University Regional Hospital of Nancy, avenue de la forêt de Haye, Vandoeuvre lès Nancy, France
- Oasi Research Institute-IRCCS, Troina, Sicily, Italy
| | - Jose-Julio Laguna
- Allergy Unit, Allergo-Anesthesia Unit, University Hospital of Cruz Roja and Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| | - Jean-Louis Guéant
- UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (NGERE), Université de Lorraine and University Regional Hospital of Nancy, avenue de la forêt de Haye, Vandoeuvre lès Nancy, France
| |
Collapse
|
5
|
Zalghout S, Martinod K. Therapeutic potential of DNases in immunothrombosis: promising succor or uncertain future? J Thromb Haemost 2025; 23:760-778. [PMID: 39667687 DOI: 10.1016/j.jtha.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Sepsis, a life-threatening condition characterized by systemic inflammation and multiorgan dysfunction, is closely associated with the excessive formation of neutrophil extracellular traps (NETs) and the release of cell-free DNA. Both play a central role in sepsis progression, acting as major contributors to immunothrombosis and associated complications. Endogenous DNases play a pivotal role in degrading NETs and cell-free DNA, yet their activity is often dysregulated during thrombotic disease. Although exogenous DNase1 administration has shown potential in reducing NET burden and mitigating the detrimental effects of immunothrombosis, its therapeutic efficacy upon intravenous administration remains uncertain. The development of engineered DNase formulations and combination therapies may further enhance its therapeutic effectiveness by modifying its pharmacodynamic properties and avoiding the adverse effects associated with NET degradation, respectively. Although NETs are well-established targets of DNase1, it remains uncertain whether the positive effects of DNase1 on immunothrombosis are exclusively related to it's targeting of NETs or if other components contributing to immunothrombosis are also affected. This review examines the endogenous regulation of NETs in circulation and the therapeutic potential of DNases in immunothrombosis, underscoring the necessity for further investigation to optimize their clinical application.
Collapse
Affiliation(s)
- Sara Zalghout
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
6
|
Sogorb-Esteve A, Weiner S, Simrén J, Swift IJ, Bocchetta M, Todd EG, Cash DM, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Laforce R, Graff C, Galimberti D, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler CR, Le Ber I, Finger E, Tartaglia MC, Masellis M, Rowe JB, Synofzik M, Moreno F, Borroni B, Genfi, Blennow K, Zetterberg H, Rohrer JD, Gobom J. Proteomic analysis reveals distinct cerebrospinal fluid signatures across genetic frontotemporal dementia subtypes. Sci Transl Med 2025; 17:eadm9654. [PMID: 39908349 DOI: 10.1126/scitranslmed.adm9654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
We used an untargeted mass spectrometric approach, tandem mass tag proteomics, for the identification of proteomic signatures in genetic frontotemporal dementia (FTD). A total of 238 cerebrospinal fluid (CSF) samples from the Genetic FTD Initiative were analyzed, including samples from 107 presymptomatic (44 C9orf72, 38 GRN, and 25 MAPT) and 55 symptomatic (27 C9orf72, 17 GRN, and 11 MAPT) mutation carriers as well as 76 mutation-negative controls ("noncarriers"). We found shared and distinct proteomic alterations in each genetic form of FTD. Among the proteins significantly altered in symptomatic mutation carriers compared with noncarriers, we found that a set of proteins including neuronal pentraxin 2 and fatty acid binding protein 3 changed across all three genetic forms of FTD and patients with Alzheimer's disease from previously published datasets. We observed differential changes in lysosomal proteins among symptomatic mutation carriers with marked abundance decreases in MAPT carriers but not other carriers. Further, we identified mutation-associated proteomic changes already evident in presymptomatic mutation carriers. Weighted gene coexpression network analysis combined with gene ontology annotation revealed clusters of proteins enriched in neurodegeneration and glial responses as well as synapse- or lysosome-related proteins indicating that these are the central biological processes affected in genetic FTD. These clusters correlated with measures of disease severity and were associated with cognitive decline. This study revealed distinct proteomic changes in the CSF of patients with genetic FTD, providing insights into the pathological processes involved in the disease. In addition, we identified proteins that warrant further exploration as diagnostic and prognostic biomarker candidates.
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University, UB8 3PH London, UK
| | - Emily G Todd
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - David M Cash
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Phoebe H Foster
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Eve Ferry-Bolder
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, 08036 Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Bioclinicum, Karolinska Institutet, 171 64 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 171 77 Solna, Sweden
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, 20122 Milan, Italy
- University of Milan, Centro Dino Ferrari, 20122 Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
- Neurology Service, University Hospitals Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Pietro Tiraboschi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, 45141 Essen, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, 80539 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
- Department of Neurology, Martin-Luther-University Hospital of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Florence Pasquier
- University of Lille, 59000 Lille, France
- Inserm 1172, Lille, 59000 Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, 59000 Lille, France
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec H4A 3J1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec H3A 0G4, Canada
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario N6A 5A5, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, CB2 3EB Cambridge, UK
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, 20014 San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, 20014 San Sebastian, Gipuzkoa, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Department of Continuity of Care and Frialy, ASST Spedali Civili Brescia, 25123 Brescia, Italy
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, 75013 Paris, France
- University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, Anhui, P.R. China
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| |
Collapse
|
7
|
Tsui WHA, Ding SC, Jiang P, Lo YMD. Artificial intelligence and machine learning in cell-free-DNA-based diagnostics. Genome Res 2025; 35:1-19. [PMID: 39843210 PMCID: PMC11789496 DOI: 10.1101/gr.278413.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The discovery of circulating fetal and tumor cell-free DNA (cfDNA) molecules in plasma has opened up tremendous opportunities in noninvasive diagnostics such as the detection of fetal chromosomal aneuploidies and cancers and in posttransplantation monitoring. The advent of high-throughput sequencing technologies makes it possible to scrutinize the characteristics of cfDNA molecules, opening up the fields of cfDNA genetics, epigenetics, transcriptomics, and fragmentomics, providing a plethora of biomarkers. Machine learning (ML) and/or artificial intelligence (AI) technologies that are known for their ability to integrate high-dimensional features have recently been applied to the field of liquid biopsy. In this review, we highlight various AI and ML approaches in cfDNA-based diagnostics. We first introduce the biology of cell-free DNA and basic concepts of ML and AI technologies. We then discuss selected examples of ML- or AI-based applications in noninvasive prenatal testing and cancer liquid biopsy. These applications include the deduction of fetal DNA fraction, plasma DNA tissue mapping, and cancer detection and localization. Finally, we offer perspectives on the future direction of using ML and AI technologies to leverage cfDNA fragmentation patterns in terms of methylomic and transcriptional investigations.
Collapse
Affiliation(s)
- W H Adrian Tsui
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Spencer C Ding
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
8
|
Englert H, Rangaswamy C, Kullik GA, Divivier M, Göbel J, Hermans‐Borgmeyer I, Borgmeyer U, Mowen KA, Beerens M, Frye M, Mailer RK, Gelderblom M, Stavrou EX, Preston RJS, Schneider SW, Fuchs TA, Renné T. Sepsis-induced NET formation requires MYD88 but is independent of GSDMD and PAD4. FASEB J 2025; 39:e70301. [PMID: 39777764 PMCID: PMC11707982 DOI: 10.1096/fj.202402514r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
Neutrophils are peripheral blood-circulating leukocytes that play a pivotal role in host defense against bacterial pathogens which upon activation, they release web-like chromatin structures called neutrophil extracellular traps (NETs). Here, we analyzed and compared the importance of myeloid differentiation factor 88 (MYD88), peptidyl arginine deiminase 4 (PAD4), and gasdermin D (GSDMD) for NET formation in vivo following sepsis and neutrophilia challenge. Injection of lipopolysaccharide (LPS)/E. coli or the transgenic expression of granulocyte colony-stimulating factor (G-CSF), each induced NET-mediated lethal vascular occlusions in mice with combined genetic deficiency in Dnase1 and Dnase1l3 (D1/D1l3-/-). In accordance with the signaling of toll-like receptors, Myd88/D1/D1l3-/- animals were protected from the formation of lethal intravascular NETs during septic conditions. However, this protection was not observed during neutrophilia. It was unexpected to find that both Gsdmd/D1/D1l3-/- and Pad4/D1/D1l3-/- mice were fully capable of forming NETs upon LPS/E.coli challenge. Sepsis equally triggered a similar inflammatory response in these mice characterized by formation of DNA-rich thrombi, vessel occlusions, and mortality from pulmonary embolism, compared to D1/D1l3-/- mice. Pharmacologic GSDMD inhibitors did not reduce PMA-stimulated NET formation in ex vivo models either. Similarly, neither Pad4 nor GSDMD deficiency affected intravascular occlusive NET formation upon neutrophilia challenge. The magnitude of NET production, multi-organ damage, and lethality were comparable to those observed in challenged control mice. In conclusion, our data indicate that NET formation during experimental sepsis and neutrophilia is regulated by distinct stimulus-dependent pathways that may be independent of canonical PAD4 and GSDMD.
Collapse
Affiliation(s)
- Hanna Englert
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Chandini Rangaswamy
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Giuliano A. Kullik
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mylène Divivier
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Josephine Göbel
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Irm Hermans‐Borgmeyer
- Transgenic Mouse Unit, Center for Molecular Neurobiology HamburgUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Uwe Borgmeyer
- Transgenic Mouse Unit, Center for Molecular Neurobiology HamburgUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kerri A. Mowen
- Chemical PhysiologyThe Scripps InstituteLa JollaCaliforniaUSA
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, KielHamburgGermany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, KielHamburgGermany
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mathias Gelderblom
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Evi X. Stavrou
- Medicine Service, Section of Hematology‐OncologyLouis Stokes Veterans Administration Medical CenterClevelandOhioUSA
- Department of Medicine, Hematology and Oncology DivisionCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Roger J. S. Preston
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
| | - Stefan W. Schneider
- Department of Dermatology and VenereologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tobias A. Fuchs
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- NeutrolisCambridgeMassachusettsUSA
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
- Center for Thrombosis and Hemostasis (CTH)Johannes Gutenberg University Medical CenterMainzGermany
| |
Collapse
|
9
|
Oberemok VV, Puzanova YV, Gal’chinsky NV. The 'genetic zipper' method offers a cost-effective solution for aphid control. FRONTIERS IN INSECT SCIENCE 2024; 4:1467221. [PMID: 39726916 PMCID: PMC11670321 DOI: 10.3389/finsc.2024.1467221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024]
Abstract
Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought. The main paradigm shift was demonstrating that unmodified antisense DNA can act as a contact insecticide. Key breakthroughs included identifying convenient target genes (rRNA genes), mechanism of action (DNA containment), and discovering insect pests (sternorrhynchans) with high susceptibility to olinscides. Today, the CUAD platform possesses impressive characteristics: low carbon footprint, high safety for non-target organisms, rapid biodegradability, and avoidance of target-site resistance. This next-generation class of insecticides creates opportunities for developing products tailored for specific insect pest populations. The 'genetic zipper' method, based on CUAD biotechnology, integrates molecular genetics, bioinformatics, and in vitro nucleic acid synthesis. It serves as a simple and flexible tool for DNA-programmable plant protection using unmodified antisense oligonucleotides targeting pest rRNAs. Aphids, key pests of important agricultural crops, can be effectively controlled by oligonucleotide insecticides at an affordable price, ensuring efficient control with minimal environmental risks. In this article, a low-dose concentration (0.1 ng/µL; 20 mg per hectare in 200 L of water) of the 11 nt long oligonucleotide insecticide Schip-11 shows effectiveness against the aphid Schizolachnus pineti, causing mortality rate of 76.06 ± 7.68 on the 12th day (p<0.05). At a consumption rate of 200 L per hectare, the cost of the required oligonucleotide insecticide is about 0.5 USD/ha using liquid-phase DNA synthesis making them competitive in the market and very affordable for lab investigations. We also show that non-canonical base pairing Golinscide: UrRNA is well tolerated in aphids. Thus, non-canonical base-pairing should be considered not to harm non-target organisms and can be easily solved during the design of oligonucleotide insecticides. The 'genetic zipper' method, based on CUAD biotechnology, helps quickly create a plethora of efficient oligonucleotide pesticides against aphids and other pests. Already today, according to our estimations, the 'genetic zipper' is potentially capable of effectively controlling 10-15% of all insect pests using a simple and flexible algorithm.
Collapse
Affiliation(s)
- Vol V. Oberemok
- Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea
- Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens—National Scientific Centre of the Russian Academy of Sciences, Yalta, Republic of Crimea
| | - Yelizaveta V. Puzanova
- Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea
| | - Nikita V. Gal’chinsky
- Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea
| |
Collapse
|
10
|
Sirajee AS, Kabiraj D, De S. Cell-free nucleic acid fragmentomics: A non-invasive window into cellular epigenomes. Transl Oncol 2024; 49:102085. [PMID: 39178576 PMCID: PMC11388671 DOI: 10.1016/j.tranon.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
Clinical genomic profiling of cell-free nucleic acids (e.g. cell-free DNA or cfDNA) from blood and other body fluids has ushered in a new era in non-invasive diagnostics and treatment monitoring strategies for health conditions and diseases such as cancer. Genomic analysis of cfDNAs not only identifies disease-associated mutations, but emerging findings suggest that structural, topological, and fragmentation characteristics of cfDNAs reveal crucial information about the location of source tissues, their epigenomes, and other clinically relevant characteristics, leading to the burgeoning field of fragmentomics. The field has seen rapid developments in computational and genomics methodologies for conducting large-scale studies on health conditions and diseases - that have led to fundamental, mechanistic discoveries as well as translational applications. Several recent studies have shown the clinical utilities of the cfDNA fragmentomics technique which has the potential to be effective for early disease diagnosis, determining treatment outcomes, and risk-free continuous patient monitoring in a non-invasive manner. In this article, we outline recent developments in computational genomic methodologies and analysis strategies, as well as the emerging insights from cfNA fragmentomics. We conclude by highlighting the current challenges and opportunities.
Collapse
Affiliation(s)
- Ahmad Salman Sirajee
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Debajyoti Kabiraj
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
11
|
Razia S, Takeshita H, Inoue K, Iida R, Ueki M, Yasuda T. Unveiling human DNase II: Molecular characterizations, gene insights and functional implications. Leg Med (Tokyo) 2024; 71:102505. [PMID: 39182441 DOI: 10.1016/j.legalmed.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
This review comprehensively explores the molecular characterization, genetic insights, and functional implications of human DNase II, an enzyme crucial for DNA hydrolysis under acidic conditions. We discuss its purification, identification, and characterization, emphasizing the importance of highly purified samples for accurate analyses as well as for understanding the biochemical properties. The discovery and analysis of DNase II's cDNA and gene have provided crucial insights into its genetic regulation and chromosomal location. Genetic polymorphism in DNase II activity levels, characterized by distinct alleles, provides valuable information on the diversity of enzyme function among individuals. Tissue distribution studies reveal its widespread presence across human tissues, hinting at potential endocrine connections. Clinical implications of DNase II variants, including therapeutic strategies targeting the JAK1 pathway, offering insights into disease mechanisms and potential treatments. Overall, this review serves as a valuable resource for advancing our knowledge of DNase II and its impact on human health and disease.
Collapse
Affiliation(s)
- Sultana Razia
- Department of Legal Medicine, Shimane University School of Medicine, Izumo 6938501, Japan.
| | - Haruo Takeshita
- Department of Legal Medicine, Shimane University School of Medicine, Izumo 6938501, Japan; Autopsy Imaging Center, Shimane University Faculty of Medicine, Izumo, Japan
| | - Ken Inoue
- Research and Education Faculty, Medical Sciences Cluster, Health Service Center, Kochi University, Kochi 780-8520, Japan
| | - Reiko Iida
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Misuzu Ueki
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshihiro Yasuda
- Organization for Life Science Advancement Programs, University of Fukui, Fukai 910-1193, Japan
| |
Collapse
|
12
|
Wang J, Chen Y, Xu Y, Zhang J, Yang S, Zhou Y, Lei J, Ren R, Chen Y, Zhao H, Li Y, Yang S. DNASE1L3-mediated PANoptosis enhances the efficacy of combination therapy for advanced hepatocellular carcinoma. Theranostics 2024; 14:6798-6817. [PMID: 39479454 PMCID: PMC11519790 DOI: 10.7150/thno.102995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: The introduction of combination therapy utilizing tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors for advanced hepatocellular carcinoma (HCC) has significantly altered the management of affected patients. However, the absence of predictive biomarkers to identify those who would derive the greatest benefit from this combination therapy underscores the necessity for further enhancements in its efficacy. Methods: In this study, we performed a proteomic analysis on surgical specimens from patients who either responded to or did not respond to combination therapy with sorafenib and programmed death-1 (PD-1) monoclonal antibody (mAb). We employed in vitro experiments, including immunocytochemistry, co-immunoprecipitation, and transmission electron microscopy, to elucidate the mechanism of DNASE1L3-induced PANoptosis. Additionally, we assessed the function of DNASE1L3 in combination therapy using a mouse liver orthotopic tumor model and clinical samples. Results: Our findings indicated that the levels of deoxyribonuclease 1 like 3 (DNASE1L3) were significantly elevated in the cohort of patients who responded to treatment, correlating with the sorafenib-induced programmed cell death (PCD) of HCC cells. Further experimentation revealed that DNASE1L3 facilitated the generation of double-strand deoxyribonucleic acid (dsDNA) breaks and activated the absent in melanoma 2 (AIM2) pathway during sorafenib-induced HCC cell death, ultimately culminating in PANoptosis. Moreover, DNASE1L3-induced PANoptosis augmented the activation of anti-tumor immunity within the tumor microenvironment (TME), thereby enhancing the efficacy of the combination therapy involving sorafenib and PD-1 mAb. Conclusion: Our findings offer valuable insights into the mechanisms underlying DNASE1L3's role in sorafenib sensitivity and position DNASE1L3 as a promising predictive biomarker and target for improving outcomes in combination therapy for HCC.
Collapse
Affiliation(s)
- Jingchun Wang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University; Chongqing 400037, China
| | - Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Second Affiliated Hospital, Army Medical University; Chongqing 400037, China
| | - Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Shuai Yang
- Department of Pathology, First Affiliated Hospital, Army Medical University; Chongqing 400037, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Ran Ren
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Yang Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital; Chongqing 400030, China
| | - Shiming Yang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University; Chongqing 400037, China
| |
Collapse
|
13
|
Gilloteaux J, Jamison JM, Summers JL, Taper HS. Reactivation of nucleases with peroxidation damages induced by a menadione: ascorbate combination devastates human prostate carcinomas: ultrastructural aspects. Ultrastruct Pathol 2024; 48:378-421. [PMID: 39105605 DOI: 10.1080/01913123.2024.2379300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Xenografts of androgen-independent human DU145 prostate metastatic carcinomas implanted in nu/nu male mice have revealed a significant survival after a prooxidant anticancer treatment consisting of a combination of menadione bisulfite and sodium ascorbate (VK3:VC). METHODS Implanted samples of diaphragm carcinomas from longest survived mice from either oral, intraperitoneal (IP), or both oral and IP treatment groups were assessed with light, scanning, and transmission electron microscopy to analyze morphologic damages. RESULTS Compared with previous fine structure data of in vitro untreated carcinomas, the changes induced by oral, IP, and oral with IP VK3:VC treatment dismantled those xenografts with autoschizis, and necrotic atrophy was accomplished by cell's oxidative stress whose injuries were consequent to reactivated deoxyribonucleases and ribonucleases. Tumor destructions resulted from irreversible damages of nucleus components, endoplasmic reticulum, and mitochondria there. Other alterations included those of the cytoskeleton that resulted in characteristic self-excisions named " autoschizis." All these injuries lead resilient cancer cells to necrotic cell death. CONCLUSION The fine structure damages caused by VK3:VC prooxidant combination in the human DU145 prostate xenografts confirmed those shown in vitro and of other cell lines with histochemistry and biomolecular investigations. These devastations incurred without damage to normal tissues; thus, our data brought support for the above combination to assist in the treatment of prostate cancers and other cancers.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, Newcastle upon Tyne, UK
- Department of Anatomical Sciences, NEOMed (NEOUCOM), Rootstown, Ohio, USA
- Department of Medicine, Unit of Research in Molecular Physiology (URPhyM), NARILIS, Université de Namur, Namur, Belgium
| | - James M Jamison
- Department of Urology, Summa Health System, Akron, Ohio, USA
- St Thomas Hospital, The Apatone Development Center, Summa Research Fondation, Akron Ohio, USA
| | - Jack L Summers
- Department of Urology, Summa Health System, Akron, Ohio, USA
- St Thomas Hospital, The Apatone Development Center, Summa Research Fondation, Akron Ohio, USA
| | - Henryk S Taper
- Département des Sciences Pharmaceutiques, Unité de Pharmacocinétique, Métabolisme, Nutrition et Toxicologie, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Gavazzi F, Gonzalez CD, Arnold K, Swantkowski M, Charlton L, Modesti N, Dar AA, Vanderver A, Bennett M, Adang LA. Nucleotide metabolism, leukodystrophies, and CNS pathology. J Inherit Metab Dis 2024; 47:860-875. [PMID: 38421058 PMCID: PMC11358362 DOI: 10.1002/jimd.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kaley Arnold
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Meghan Swantkowski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren Charlton
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicholson Modesti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asif A. Dar
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko Bennett
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Pisetsky DS. Unique Interplay Between Antinuclear Antibodies and Nuclear Molecules in the Pathogenesis of Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:1334-1343. [PMID: 38622070 PMCID: PMC11349482 DOI: 10.1002/art.42863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that primarily affects young women and causes a wide range of inflammatory manifestations. The hallmark of SLE is the production of antibodies to components of the cell nucleus (antinuclear antibodies [ANAs]). These antibodies can bind to DNA, RNA, and protein complexes with nucleic acids. Among ANAs, antibodies to DNA (anti-DNA) are markers for classification and disease activity, waxing and waning disease activity in many patients. In the blood, anti-DNA antibodies can bind to DNA to form immune complexes with two distinct roles in pathogenesis: (1) renal deposition to provoke nephritis and (2) stimulation of cytokine production following uptake into innate immune cells and interaction with internal nucleic acid sensors. These sensors are part of an internal host defense system in the cell cytoplasm that can respond to DNA from infecting organisms; during cell stress, DNA from nuclear and mitochondrial sources can also trigger these sensors. The formation of immune complexes requires a source of extracellular DNA in an immunologically accessible form. As shown in in vivo and in vitro systems, extracellular DNA can emerge from dead and dying cells in both a free and a particulate form. Neutrophils undergoing the process of NETosis can release DNA in mesh-like structures called neutrophil extracellular traps. In SLE, therefore, the combination of ANAs and immunologically active DNA can create new structures that can promote inflammation throughout the body as well as drive organ inflammation and damage.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center and Durham Veterans Administration Medical Center, Durham, North Carolina
| |
Collapse
|
16
|
Mustelin T, Andrade F. Autoimmunity: the neoantigen hypothesis. Front Immunol 2024; 15:1432985. [PMID: 38994353 PMCID: PMC11236689 DOI: 10.3389/fimmu.2024.1432985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Wang WC, Hou TC, Kuo CY, Lai YC. Amplifications of EVX2 and HOXD9-HOXD13 on 2q31 in mature cystic teratomas of the ovary identified by array comparative genomic hybridization may explain teratoma characteristics in chondrogenesis and osteogenesis. J Ovarian Res 2024; 17:129. [PMID: 38907278 PMCID: PMC11193297 DOI: 10.1186/s13048-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/16/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Teratomas are a common type of germ cell tumor. However, only a few reports on their genomic constitution have been published. The study of teratomas may provide a better understanding of their stepwise differentiation processes and molecular bases, which could prove useful for the development of tissue-engineering technologies. METHODS In the present study, we analyzed the copy number aberrations of nine ovarian mature cystic teratomas using array comparative genomic hybridization in an attempt to reveal their genomic aberrations. RESULTS The many chromosomal aberrations observed on array comparative genomic hybridization analysis reveal the complex genetics of this tumor. Amplifications and deletions of large DNA fragments were observed in some samples, while amplifications of EVX2 and HOXD9-HOXD13 on 2q31.1, NDUFV1 on 11q13.2, and RPL10, SNORA70, DNASE1L1, TAZ, ATP6AP1, and GDI1 on Xq28 were found in all nine mature cystic teratomas. CONCLUSIONS Our results indicated that amplifications of these genes may play an important etiological role in teratoma formation. Moreover, amplifications of EVX2 and HOXD9-HOXD13 on 2q31.1, found on array comparative genomic hybridization, may help to explain the characteristics of teratomas in chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Wen-Chung Wang
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan
| | - Tai-Cheng Hou
- Department of Pathology, Jen-Ai Hospital, Taichung, Taiwan
| | - Chen-Yun Kuo
- Department of Pathology, Jen-Ai Hospital, Taichung, Taiwan
| | - Yen-Chein Lai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Road, Taichung, 402, Taiwan, R.O.C..
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
18
|
Stabach PR, Sims D, Gomez-Bañuelos E, Zehentmeier S, Dammen-Brower K, Bernhisel A, Kujawski S, Lopez SG, Petri M, Goldman DW, Lester ER, Le Q, Ishaq T, Kim H, Srivastava S, Kumar D, Pereira JP, Yarema KJ, Koumpouras F, Andrade F, Braddock DT. A dual-acting DNASE1/DNASE1L3 biologic prevents autoimmunity and death in genetic and induced lupus models. JCI Insight 2024; 9:e177003. [PMID: 38888971 PMCID: PMC11383374 DOI: 10.1172/jci.insight.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
A defining feature of systemic lupus erythematosus (SLE) is loss of tolerance to self-DNA, and deficiency of DNASE1L3, the main enzyme responsible for chromatin degradation in blood, is also associated with SLE. This association can be found in an ultrarare population of pediatric patients with DNASE1L3 deficiency who develop SLE, adult patients with loss-of-function variants of DNASE1L3 who are at a higher risk for SLE, and patients with sporadic SLE who have neutralizing autoantibodies against DNASE1L3. To mitigate the pathogenic effects of inherited and acquired DNASE1L3 deficiencies, we engineered a long-acting enzyme biologic with dual DNASE1/DNASE1L3 activity that is resistant to DNASE1 and DNASE1L3 inhibitors. Notably, we found that the biologic prevented the development of lupus in Dnase1-/-Dnase1L3-/- double-knockout mice and rescued animals from death in pristane-induced lupus. Finally, we confirmed that the human isoform of the enzyme biologic was not recognized by autoantibodies in SLE and efficiently degraded genomic and mitochondrial cell-free DNA, as well as microparticle DNA, in SLE plasma. Our findings suggest that autoimmune diseases characterized by aberrant DNA accumulation, such as SLE, can be effectively treated with a replacement DNASE tailored to bypass pathogenic mechanisms, both genetic and acquired, that restrict DNASE1L3 activity.
Collapse
Affiliation(s)
- Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dominique Sims
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eduardo Gomez-Bañuelos
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kris Dammen-Brower
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Bernhisel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sophia Kujawski
- Department of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sam G. Lopez
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel W. Goldman
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan R. Lester
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Quan Le
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tayyaba Ishaq
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hana Kim
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shivani Srivastava
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deepika Kumar
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joao P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin J. Yarema
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fotios Koumpouras
- Department of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Yu T, Sun Z, Cao X, Yang F, Pang Q, Deng H. Identification and characterization of TatD DNase in planarian Dugesia japonica and its antibiofilm effect. ENVIRONMENTAL RESEARCH 2024; 251:118534. [PMID: 38395336 DOI: 10.1016/j.envres.2024.118534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
TatD DNase, a key enzyme in vertebrates and invertebrates, plays a pivotal role in various physiological processes. Dugesia japonica (D. japonica), a flatworm species, has remarkable regenerative capabilities and possesses a simplified immune system. However, the existence and biological functions of TatD DNase in D. japonica require further investigation. Here, we obtained the open reading frame (ORF) of DjTatD and demonstrated its conservation. The three-dimensional structure of DjTatD revealed its active site and binding mechanism. To investigate its enzymological properties, we overexpressed, purified, and characterized recombinant DjTatD (rDjTatD). We observed that DjTatD was primarily expressed in the pharynx and its expression could be significantly challenged upon stimulation with lipopolysaccharide, peptidoglycan, gram-positive and gram-negative bacteria. RNA interference results indicated that both DjTatD and DjDN2s play a role in pharyngeal regeneration and may serve as functional complements to each other. Additionally, we found that rDjTatD and recombinant T7DjTatD effectively reduce biofilm formation regardless of their bacterial origin. Together, our results demonstrated that DjTatD may be involved in the planarian immune response and pharyngeal regeneration. Furthermore, after further optimization in the future, rDjTatD and T7DjTatD can be considered highly effective antibiofilm agents.
Collapse
Affiliation(s)
- Tong Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Zhe Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xiangyu Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| | - Qiuxiang Pang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China; Shandong Jiuyi Biotechnology Co., Ltd, Zibo, 255000, China.
| |
Collapse
|
20
|
Pisetsky DS, Herbert A. The role of DNA in the pathogenesis of SLE: DNA as a molecular chameleon. Ann Rheum Dis 2024; 83:830-837. [PMID: 38749573 PMCID: PMC11168871 DOI: 10.1136/ard-2023-225266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 06/14/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by antibodies to DNA (anti-DNA) and other nuclear macromolecules. Anti-DNA antibodies are markers for classification and disease activity and promote pathogenesis by forming immune complexes that deposit in the tissue or stimulate cytokine production. Studies on the antibody response to DNA have focused primarily on a conformation of DNA known as B-DNA, the classic right-handed double helix. Among other conformations of DNA, Z-DNA is a left-handed helix with a zig-zag backbone; hence, the term Z-DNA. Z-DNA formation is favoured by certain base sequences, with the energetically unfavourable flip from B-DNA to Z-DNA dependent on conditions. Z-DNA differs from B-DNA in its immunogenicity in animal models. Furthermore, anti-Z-DNA antibodies, but not anti-B-DNA antibodies, can be present in otherwise healthy individuals. In SLE, antibodies to Z-DNA can occur in association with antibodies to B-DNA as a cross-reactive response, rising and falling together. While formed transiently in chromosomal DNA, Z-DNA is stably present in bacterial biofilms; biofilms can provide protection against antibiotics and other challenges including elements of host defence. The high GC content of certain bacterial DNA also favours Z-DNA formation as do DNA-binding proteins of bacterial or host origin. Together, these findings suggest that sources of Z-DNA can enhance the immunogenicity of DNA and, in SLE, stimulate the production of cross-reactive antibodies that bind both B-DNA and Z-DNA. As such, DNA can act as a molecular chameleon that, when stabilised in the Z-DNA conformation, can drive autoimmunity.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center, Durham, North Carolina, USA
- Medical Research, Durham VA Health Care System, Durham, North Carolina, USA
| | - Alan Herbert
- InsideOutBio Inc, Charlestown, Massachusetts, USA
| |
Collapse
|
21
|
Lu Y, Elrod J, Herrmann M, Knopf J, Boettcher M. Neutrophil Extracellular Traps: A Crucial Factor in Post-Surgical Abdominal Adhesion Formation. Cells 2024; 13:991. [PMID: 38891123 PMCID: PMC11171752 DOI: 10.3390/cells13110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Post-surgical abdominal adhesions, although poorly understood, are highly prevalent. The molecular processes underlying their formation remain elusive. This review aims to assess the relationship between neutrophil extracellular traps (NETs) and the generation of postoperative peritoneal adhesions and to discuss methods for mitigating peritoneal adhesions. A keyword or medical subject heading (MeSH) search for all original articles and reviews was performed in PubMed and Google Scholar. It included studies assessing peritoneal adhesion reformation after abdominal surgery from 2003 to 2023. After assessing for eligibility, the selected articles were evaluated using the Critical Appraisal Skills Programme checklist for qualitative research. The search yielded 127 full-text articles for assessment of eligibility, of which 7 studies met our criteria and were subjected to a detailed quality review using the Critical Appraisal Skills Programme (CASP) checklist. The selected studies offer a comprehensive analysis of adhesion pathogenesis with a special focus on the role of neutrophil extracellular traps (NETs) in the development of peritoneal adhesions. Current interventional strategies are examined, including the use of mechanical barriers, advances in regenerative medicine, and targeted molecular therapies. In particular, this review emphasizes the potential of NET-targeted interventions as promising strategies to mitigate postoperative adhesion development. Evidence suggests that in addition to their role in innate defense against infections and autoimmune diseases, NETs also play a crucial role in the formation of peritoneal adhesions after surgery. Therefore, therapeutic strategies that target NETs are emerging as significant considerations for researchers. Continued research is vital to fully elucidate the relationship between NETs and post-surgical adhesion formation to develop effective treatments.
Collapse
Affiliation(s)
- Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
22
|
Chimienti G, Russo F, Bianco A, Maqoud F, De Virgilio C, Galeano G, Orlando A, Riezzo G, D’Attoma B, Ignazzi A, Linsalata M, Prospero L, Franco I, Bagnato CB, Curci R, Coletta S. Effect of a 12-Week Walking Program Monitored by Global Physical Capacity Score (GPCS) on Circulating Cell-Free mtDNA and DNase Activity in Patients with Irritable Bowel Syndrome. Int J Mol Sci 2024; 25:4293. [PMID: 38673878 PMCID: PMC11050617 DOI: 10.3390/ijms25084293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) involves low-grade mucosal inflammation. Among the various approaches capable of managing the symptoms, physical activity is still under investigation. Despite its benefits, it promotes oxidative stress and inflammation. Mitochondria impacts gut disorders by releasing damage-associated molecular patterns, such as cell-free mtDNA (cf-mtDNA), which support inflammation. This study evaluated the effects of a 12-week walking program on the cf-mtDNA and DNase in 26 IBS and 17 non-IBS subjects. Pro- and anti-inflammatory cytokines were evaluated by ELISA. Digital droplet PCR was used to quantify cf-mtDNA; DNase activity was assessed using a single radial enzyme diffusion assay. PCR-RFLP was used to genotype DNASE1 rs1053874 SNP. Significantly lower IL-10 levels were found in IBS than in non-IBS individuals. Exercise reduced cf-mtDNA in non-IBS subjects but not in IBS patients. DNase activity did not correlate with the cf-mtDNA levels in IBS patients post-exercise, indicating imbalanced cf-mtDNA clearance. Different rs1053874 SNP frequencies were not found between groups. The study confirms the positive effects of regular moderate-intensity physical activity in healthy subjects and its role in cf-mtDNA release and clearance. Walking alone might not sufficiently reduce subclinical inflammation in IBS, based on imbalanced pro- and anti-inflammatory molecules. Prolonged programs are necessary to investigate their effects on inflammatory markers in IBS.
Collapse
Affiliation(s)
- Guglielmina Chimienti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (G.C.); (C.D.V.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.M.); (G.G.); (A.O.); (G.R.); (B.D.); (A.I.); (M.L.); (L.P.)
| | - Antonella Bianco
- Laboratory of Movement and Wellness, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (A.B.); (I.F.); (C.B.B.); (R.C.)
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.M.); (G.G.); (A.O.); (G.R.); (B.D.); (A.I.); (M.L.); (L.P.)
| | - Caterina De Virgilio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (G.C.); (C.D.V.)
| | - Grazia Galeano
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.M.); (G.G.); (A.O.); (G.R.); (B.D.); (A.I.); (M.L.); (L.P.)
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.M.); (G.G.); (A.O.); (G.R.); (B.D.); (A.I.); (M.L.); (L.P.)
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.M.); (G.G.); (A.O.); (G.R.); (B.D.); (A.I.); (M.L.); (L.P.)
| | - Benedetta D’Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.M.); (G.G.); (A.O.); (G.R.); (B.D.); (A.I.); (M.L.); (L.P.)
| | - Antonia Ignazzi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.M.); (G.G.); (A.O.); (G.R.); (B.D.); (A.I.); (M.L.); (L.P.)
| | - Michele Linsalata
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.M.); (G.G.); (A.O.); (G.R.); (B.D.); (A.I.); (M.L.); (L.P.)
| | - Laura Prospero
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.M.); (G.G.); (A.O.); (G.R.); (B.D.); (A.I.); (M.L.); (L.P.)
| | - Isabella Franco
- Laboratory of Movement and Wellness, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (A.B.); (I.F.); (C.B.B.); (R.C.)
| | - Claudia Beatrice Bagnato
- Laboratory of Movement and Wellness, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (A.B.); (I.F.); (C.B.B.); (R.C.)
| | - Ritanna Curci
- Laboratory of Movement and Wellness, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (A.B.); (I.F.); (C.B.B.); (R.C.)
| | - Sergio Coletta
- Core Facility Biobank, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy;
| |
Collapse
|
23
|
Morita S, Nakamaru Y, Fukuda A, Fujiwara K, Suzuki M, Hoshino K, Honma A, Nakazono A, Homma A. Neutrophil Extracellular Trap Formation and Deoxyribonuclease I Activity in Patients with Otitis Media with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Int Arch Allergy Immunol 2024; 185:810-819. [PMID: 38583424 DOI: 10.1159/000537927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
INTRODUCTION No previous studies have evaluated the levels of neutrophil extracellular trap (NET) remnants or the importance of deoxyribonuclease (DNase) I activity based on the disease activity of otitis media with antineutrophil cytoplasmic antibody-associated vasculitis (OMAAV). The aim of this study was to explore the formation of NETs in the middle ear of patients with OMAAV during the onset and remission phases of the disease, with a particular focus on the relationships between the quantifiable levels of NET remnants and DNase I activity. METHODS OMAAV patients were eligible for inclusion. Patients with otitis media with effusion (OME) were examined as controls. The levels of cell-free deoxyribonucleic acid (DNA), citrullinated-histone H3 (cit-H3)-DNA complex, and myeloperoxidase (MPO)-DNA complex were quantified using an enzyme-linked immunosorbent assay. DNase I activity was measured using a fluorometric method. RESULTS The quantifiable levels of cell-free DNA, cit-H3-DNA complex, and MPO-DNA complex in the middle ear lavage of patients with OMAAV at onset were significantly higher than those in patients with OMAAV at remission and in patients with OME. DNase I activity in the patients with OMAAV at onset was significantly lower than those in patients with OMAAV at remission and OME and was negatively correlated with the level of MPO-DNA complex. CONCLUSIONS This study suggests that NET remnants and DNase I activity may be potentially useful biomarkers for the diagnosis and disease activity of OMAAV.
Collapse
Affiliation(s)
- Shinya Morita
- Department of Otolaryngology ‒ Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology ‒ Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Fukuda
- Department of Otolaryngology ‒ Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keishi Fujiwara
- Department of Otolaryngology ‒ Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masanobu Suzuki
- Department of Otolaryngology ‒ Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kimiko Hoshino
- Department of Otolaryngology ‒ Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Aya Honma
- Department of Otolaryngology ‒ Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Nakazono
- Department of Otolaryngology ‒ Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology ‒ Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
25
|
Federici S, Cinicola BL, La Torre F, Castagnoli R, Lougaris V, Giardino G, Volpi S, Caorsi R, Leonardi L, Corrente S, Soresina A, Cancrini C, Insalaco A, Gattorno M, De Benedetti F, Marseglia GL, Del Giudice MM, Cardinale F. Vasculitis and vasculopathy associated with inborn errors of immunity: an overview. Front Pediatr 2024; 11:1258301. [PMID: 38357265 PMCID: PMC10866297 DOI: 10.3389/fped.2023.1258301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are disorders of innate immunity, which are characterized by unprovoked recurrent flares of systemic inflammation often characterized by fever associated with clinical manifestations mainly involving the musculoskeletal, mucocutaneous, gastrointestinal, and nervous systems. Several conditions also present with varied, sometimes prominent, involvement of the vascular system, with features of vasculitis characterized by variable target vessel involvement and organ damage. Here, we report a systematic review of vasculitis and vasculopathy associated with inborn errors of immunity.
Collapse
Affiliation(s)
- Silvia Federici
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Gattorno
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
26
|
Koga T, Kida H, Yamasaki Y, Feril LB, Endo H, Itaka K, Abe H, Tachibana K. Intracranial Gene Delivery Mediated by Albumin-Based Nanobubbles and Low-Frequency Ultrasound. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:285. [PMID: 38334557 PMCID: PMC10856598 DOI: 10.3390/nano14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Research in the field of high-intensity focused ultrasound (HIFU) for intracranial gene therapy has greatly progressed over the years. However, limitations of conventional HIFU still remain. That is, genes are required to cross the blood-brain barrier (BBB) in order to reach the neurological disordered lesion. In this study, we introduce a novel direct intracranial gene delivery method, bypassing the BBB using human serum albumin-based nanobubbles (NBs) injected through a less invasive intrathecal route via lumbar puncture, followed by intracranial irradiation with low-frequency ultrasound (LoFreqUS). Focusing on both plasmid DNA (pDNA) and messenger RNA (mRNA), our approach utilizes LoFreqUS for deeper tissue acoustic penetration and enhancing gene transfer efficiency. This drug delivery method could be dubbed as the "Spinal Back-Door Approach", an alternative to the "front door" BBB opening method. Experiments showed that NBs effectively responded to LoFreqUS, significantly improving gene transfer in vitro using U-87 MG cell lines. In vivo experiments in mice demonstrated significantly increased gene expression with pDNA; however, we were unable to obtain conclusive results using mRNA. This novel technique, combining albumin-based NBs and LoFreqUS offers a promising, efficient, targeted, and non-invasive solution for central nervous system gene therapy, potentially transforming the treatment landscape for neurological disorders.
Collapse
Affiliation(s)
- Takayuki Koga
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (T.K.); (H.A.)
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Hiroshi Kida
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Yutaro Yamasaki
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Loreto B. Feril
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Hitomi Endo
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Tokyo 101-0062, Japan;
| | - Hiroshi Abe
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (T.K.); (H.A.)
| | - Katsuro Tachibana
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| |
Collapse
|
27
|
Qu X, Meng LC, Lu X, Chen X, Li Y, Zhou R, Zhu YJ, Luo YC, Huang JT, Shi XL, Zhang HB. Prognostic and metabolic characteristics of a novel cuproptosis-related signature in patients with hepatocellular carcinoma. Heliyon 2024; 10:e23686. [PMID: 38259960 PMCID: PMC10801206 DOI: 10.1016/j.heliyon.2023.e23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/24/2024] Open
Abstract
Cuproptosis is a novel discovered mode of programmed cell death. To identify the molecular regulatory patterns related to cuproptosis, this study was designed for exploring the correlation between cuproptosis-related genes (CRGs) and the prognosis, metabolism, and treatment of hepatocellular carcinoma (HCC). Cancer Genome Atlas (TCGA) database was used to screen 363 HCC samples, which were categorized into 2 clusters based on the expression of CRGs. Survival analysis demonstrated that overall survival (OS) was better in Cluster 1 than Cluster 2 which might to be relevant to differences in metabolic based on functional analysis. With LASSO regression analysis and univariate COX regression, 8 prognosis-related genes were screened, a differently expressed genes (DEGs) were then constructed (HCC patients' DEGs)-based signature. The signature's stability was also validated in the 2 independent cohorts and test cohorts (GSE14520, HCC dataset in PCAWG). The 1-year, 3-year, and 5-year area under the curve (AUC) were 0.756, 0.706, and 0.722, respectively. The signature could also well predict the response to chemotherapy, targeted and transcatheter arterial chemoembolization (TACE) by providing a risk score. Moreover, the correlation was uncovered by the research between the metabolism and risk score. In conclusion, a unique cuproptosis-related signature that be capable of predicting patients' prognosis with HCC, and offered valuable insights into chemotherapy, TACE and targeted therapies for these patients has been developed.
Collapse
Affiliation(s)
- Xin Qu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China, 510120
| | - Ling-cui Meng
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China, 510120
| | - Xi Lu
- Guangzhou University of Chinese Medicine, Guangzhou, China, 510405
| | - Xian Chen
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China, 510120
| | - Yong Li
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China, 510120
| | - Rui Zhou
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China, 510120
| | - Yan-juan Zhu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China, 510120
| | - Yi-chang Luo
- Department of Oncology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China, 510130
| | | | | | - Hai-Bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China, 510120
| |
Collapse
|
28
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
29
|
Gerovska D, Fernández Moreno P, Zabala A, Araúzo-Bravo MJ. Cell-Free Genic Extrachromosomal Circular DNA Profiles of DNase Knockouts Associated with Systemic Lupus Erythematosus and Relation with Common Fragile Sites. Biomedicines 2023; 12:80. [PMID: 38255187 PMCID: PMC10813657 DOI: 10.3390/biomedicines12010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Cell-free extrachromosomal circular DNA (cf-eccDNA) has been proposed as a promising early biomarker for disease diagnosis, progression and drug response. Its established biomarker features are changes in the number and length distribution of cf-eccDNA. Another novel promising biomarker is a set of eccDNA excised from a panel of genes specific to a condition compared to a control. Deficiencies in two endonucleases that specifically target DNA, Dnase1 and Dnase1l3, are associated with systemic lupus erythematosus (SLE). To study the genic eccDNA profiles in the case of their deficiencies, we mapped sequenced eccDNA data from plasma, liver and buffy coat from Dnase1 and Dnase1l3 knockouts (KOs), and wild type controls in mouse. Next, we performed an eccDNA differential analysis between KO and control groups using our DifCir algorithm. We found a specific genic cf-eccDNA fingerprint of the Dnase1l3 group compared to the wild type controls involving 131 genes; 26% of them were associated with human chromosomal fragile sites (CFSs) and with a statistically significant enrichment of CFS-associated genes. We found six genes in common with the genic cf-eccDNA profile of SLE patients with DNASE1L3 deficiency, namely Rorb, Mvb12b, Osbpl10, Fto, Tnik and Arhgap10; all of them were specific and present in all human plasma samples, and none of them were associated with CFSs. A not so distinctive genic cf-eccDNA difference involving only seven genes was observed in the case of the Dnase1 group compared to the wild type. In tissue-liver and buffy coat-we did not detect the same genic eccDNA difference observed in the plasma samples. These results point to a specific role of a set of genic eccDNA in plasma from DNase KOs, as well as a relation with CFS genes, confirming the promise of the genic cf-eccDNA in studying diseases and the need for further research on the relationship between eccDNA and CFSs.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
| | - Patricia Fernández Moreno
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
| | - Aitor Zabala
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (P.F.M.); (A.Z.)
- Basque Foundation for Science, IKERBASQUE, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
30
|
Zhu D, Wang H, Wu W, Geng S, Zhong G, Li Y, Guo H, Long G, Ren Q, Luan Y, Duan C, Wei B, Ma J, Li S, Zhou J, Mao M. Circulating cell-free DNA fragmentation is a stepwise and conserved process linked to apoptosis. BMC Biol 2023; 21:253. [PMID: 37953260 PMCID: PMC10642009 DOI: 10.1186/s12915-023-01752-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) is a pool of short DNA fragments mainly released from apoptotic hematopoietic cells. Nevertheless, the precise physiological process governing the DNA fragmentation and molecular profile of cfDNA remains obscure. To dissect the DNA fragmentation process, we use a human leukemia cell line HL60 undergoing apoptosis to analyze the size distribution of DNA fragments by shallow whole-genome sequencing (sWGS). Meanwhile, we also scrutinize the size profile of plasma cfDNA in 901 healthy human subjects and 38 dogs, as well as 438 patients with six common cancer types by sWGS. RESULTS Distinct size distribution profiles were observed in the HL60 cell pellet and supernatant, suggesting fragmentation is a stepwise process. Meanwhile, C-end preference was seen in both intracellular and extracellular cfDNA fragments. Moreover, the cfDNA profiles are characteristic and conserved across mammals. Compared with healthy subjects, distinct cfDNA profiles with a higher proportion of short fragments and lower C-end preference were found in cancer patients. CONCLUSIONS Our study provides new insight into fragmentomics of circulating cfDNA processing, which will be useful for early diagnosis of cancer and surveillance during cancer progression.
Collapse
Affiliation(s)
- Dandan Zhu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, 450000, China
| | - Haihong Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Wu
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Shuaipeng Geng
- Clinical Laboratories, Shenyou Bio, Zhengzhou, 450000, China
| | - Guolin Zhong
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Yunfei Li
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Han Guo
- Clinical Laboratories, Shenyou Bio, Zhengzhou, 450000, China
| | - Guanghui Long
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Qingqi Ren
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Yi Luan
- Clinical Laboratories, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chaohui Duan
- Clinical Laboratories, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Jie Ma
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Shiyong Li
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Jun Zhou
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Mao Mao
- Research & Development, SeekIn Inc, Shenzhen, 518000, China.
- Yonsei Song-Dang Institute for Cancer Research, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
31
|
Swarup N, Cheng J, Choi I, Heo YJ, Kordi M, Aziz M, Arora A, Li F, Chia D, Wei F, Elashoff D, Zhang L, Kim S, Kim Y, Wong DTW. Multi-faceted attributes of salivary cell-free DNA as liquid biopsy biomarkers for gastric cancer detection. Biomark Res 2023; 11:90. [PMID: 37817261 PMCID: PMC10566128 DOI: 10.1186/s40364-023-00524-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Recent advances in circulating cell-free DNA (cfDNA) analysis from biofluids have opened new avenues for liquid biopsy (LB). However, current cfDNA LB assays are limited by the availability of existing information on established genotypes associated with tumor tissues. Certain cancers present with a limited list of established mutated cfDNA biomarkers, and thus, nonmutated cfDNA characteristics along with alternative biofluids are needed to broaden the available cfDNA targets for cancer detection. Saliva is an intriguing and accessible biofluid that has yet to be fully explored for its clinical utility for cancer detection. METHODS In this report, we employed a low-coverage single stranded (ss) library NGS pipeline "Broad-Range cell-free DNA-Seq" (BRcfDNA-Seq) using saliva to comprehensively investigate the characteristics of salivary cfDNA (ScfDNA). The identification of cfDNA features has been made possible by applying novel cfDNA processing techniques that permit the incorporation of ultrashort, ss, and jagged DNA fragments. As a proof of concept using 10 gastric cancer (GC) and 10 noncancer samples, we examined whether ScfDNA characteristics, including fragmentomics, end motif profiles, microbial contribution, and human chromosomal mapping, could differentiate between these two groups. RESULTS Individual and integrative analysis of these ScfDNA features demonstrated significant differences between the two cohorts, suggesting that disease state may affect the ScfDNA population by altering nuclear cleavage or the profile of contributory organism cfDNA to total ScfDNA. We report that principal component analysis integration of several aspects of salivary cell-free DNA fragmentomic profiles, genomic element profiles, end-motif sequence patterns, and distinct oral microbiome populations can differentiate the two populations with a p value of < 0.0001 (PC1). CONCLUSION These novel features of ScfDNA characteristics could be clinically useful for improving saliva-based LB detection and the eventual monitoring of local or systemic diseases.
Collapse
Affiliation(s)
- Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jordan Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Irene Choi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - You Jeong Heo
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, Republic of Korea
| | - Misagh Kordi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mohammad Aziz
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Akanksha Arora
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Indraprastha Institute of Information Technology (IIIT), Delhi, India
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David Chia
- Indraprastha Institute of Information Technology (IIIT), Delhi, India
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David Elashoff
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Liying Zhang
- Indraprastha Institute of Information Technology (IIIT), Delhi, India
| | - Sung Kim
- Department of Medicine, Biostatistics and Computational Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, South Korea
| | - Yong Kim
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
32
|
Course CW, Lewis PA, Kotecha SJ, Cousins M, Hart K, Watkins WJ, Heesom KJ, Kotecha S. Characterizing the urinary proteome of prematurity-associated lung disease in school-aged children. Respir Res 2023; 24:191. [PMID: 37474963 PMCID: PMC10357627 DOI: 10.1186/s12931-023-02494-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Although different phenotypes of lung disease after preterm birth have recently been described, the underlying mechanisms associated with each phenotype are poorly understood. We, therefore, compared the urinary proteome for different spirometry phenotypes in preterm-born children with preterm- and term-born controls. METHODS Preterm and term-born children aged 7-12 years, from the Respiratory Health Outcomes in Neonates (RHiNO) cohort, underwent spirometry and urine collection. Urine was analysed by Nano-LC Mass-Spectrometry with Tandem-Mass Tag labelling. The preterm-born children were classified into phenotypes of prematurity-associated preserved ratio impaired spirometry (pPRISm, FEV1 < lower limit of normal (LLN), FEV1/FVC ≥ LLN), prematurity-associated obstructive lung disease (POLD, FEV1 < LLN, FEV1/FVC < LLN) and preterm controls (FEV1 ≥ LLN,). Biological relationships between significantly altered protein abundances were analysed using Ingenuity Pathways Analysis software, and receiver operator characteristic curves were calculated. RESULTS Urine was analysed from 160 preterm-born children and 44 term controls. 27 and 21 were classified into the pPRISm and POLD groups, respectively. A total of 785 proteins were detected. Compared to preterm-born controls, sixteen significantly altered proteins in the pPRISm group were linked to six biological processes related to upregulation of inflammation and T-cell biology. In contrast, four significantly altered proteins in the POLD group were linked with neutrophil accumulation. Four proteins (DNASE1, PGLYRP1, B2M, SERPINA3) in combination had an area under the curve of 0.73 for pPRISm and three combined proteins (S100A8, MMP9 and CTSC) had AUC of 0.76 for POLD. CONCLUSIONS In this exploratory study, we demonstrate differential associations of the urinary proteome with pPRISm and POLD. TRIAL REGISTRATION EudraCT: 2015-003712-20.
Collapse
Affiliation(s)
- Christopher W Course
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Philip A Lewis
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah J Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Michael Cousins
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - Kylie Hart
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - W John Watkins
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
33
|
Swarup N, Cheng J, Choi I, Heo YJ, Kordi M, Li F, Aziz M, Chia D, Wei F, Elashoff D, Zhang L, Kim S, Kim Y, Wong DT. Multi-Faceted Attributes of Salivary Cell-free DNA as Liquid Biopsy Biomarkers for Gastric Cancer Detection. RESEARCH SQUARE 2023:rs.3.rs-3154388. [PMID: 37503289 PMCID: PMC10371094 DOI: 10.21203/rs.3.rs-3154388/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Recent advances in circulating cell-free DNA (cfDNA) analysis from biofluids have opened new avenues for liquid biopsy (LB). However, current cfDNA LB assays are limited by the availability of existing information on established genotypes associated with tumor tissues. Certain cancers present with a limited list of established mutated cfDNA biomarkers, and thus, nonmutated cfDNA characteristics along with alternative biofluids are needed to broaden the available cfDNA targets for cancer detection. Saliva is an intriguing and accessible biofluid that has yet to be fully explored for its clinical utility for cancer detection. Methods In this report, we employed a low-coverage single stranded (ss) library NGS pipeline "Broad-Range cell-free DNA-Seq" (BRcfDNA-Seq) using saliva to comprehensively investigate the characteristics of salivary cfDNA (ScfDNA). The identification of cfDNA features has been made possible by applying novel cfDNA processing techniques that permit the incorporation of ultrashort, ss, and jagged DNA fragments. As a proof of concept using 10 gastric cancer (GC) and 10 noncancer samples, we examined whether ScfDNA characteristics, including fragmentomics, end motif profiles, microbial contribution, and human chromosomal mapping, could differentiate between these two groups. Results Individual and integrative analysis of these ScfDNA features demonstrated significant differences between the two cohorts, suggesting that disease state may affect the ScfDNA population by altering nuclear cleavage or the profile of contributory organism cfDNA to total ScfDNA. We report that principal component analysis integration of several aspects of salivary cell-free DNA fragmentomic profiles, genomic element profiles, end-motif sequence patterns, and distinct oral microbiome populations can differentiate the two populations with a p value of < 0.0001 (PC1). Conclusion These novel features of ScfDNA characteristics could be clinically useful for improving saliva-based LB detection and the eventual monitoring of local or systemic diseases.
Collapse
Affiliation(s)
- Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jordan Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Irene Choi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - You Jeong Heo
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, Republic of Korea
| | - Misagh Kordi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mohammad Aziz
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David Elashoff
- Department of Medicine, Biostatistics and Computational Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea
| | - Yong Kim
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David T.W. Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
34
|
Bhattacharya M, Horswill AR. Breaking bad. J Exp Med 2023; 220:e20230421. [PMID: 37129875 PMCID: PMC10233462 DOI: 10.1084/jem.20230421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
DNASE1 (D1) and DNASE1L3 (D1L3) synergistically reduce the severity of systemic infections caused by Staphylococcus aureus. In this issue of JEM, Lacey et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20221086) develop D1-/-, D1L3-/-, and D1-/-D1L3-/- mice to show that exogenous addition of the DNase formulation Dornase alfa can facilitate removal of biofilms.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO, USA
| |
Collapse
|
35
|
Lacey KA, Serpas L, Makita S, Wang Y, Rashidfarrokhi A, Soni C, Gonzalez S, Moreira A, Torres VJ, Reizis B. Secreted mammalian DNases protect against systemic bacterial infection by digesting biofilms. J Exp Med 2023; 220:e20221086. [PMID: 36928522 PMCID: PMC10037111 DOI: 10.1084/jem.20221086] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Extracellular DNase DNASE1L3 maintains tolerance to self-DNA in humans and mice, whereas the role of its homolog DNASE1 remains controversial, and the overall function of secreted DNases in immunity is unclear. We report that deletion of murine DNASE1 neither caused autoreactivity in isolation nor exacerbated lupus-like disease in DNASE1L3-deficient mice. However, combined deficiency of DNASE1 and DNASE1L3 rendered mice susceptible to bloodstream infection with Staphylococcus aureus. DNASE1/DNASE1L3 double-deficient mice mounted a normal innate response to S. aureus and did not accumulate neutrophil extracellular traps (NETs). However, their kidneys manifested severe pathology, increased bacterial burden, and biofilm-like bacterial lesions that contained bacterial DNA and excluded neutrophils. Furthermore, systemic administration of recombinant DNASE1 protein during S. aureus infection rescued the mortality of DNase-deficient mice and ameliorated the disease in wild-type mice. Thus, DNASE1 and DNASE1L3 jointly facilitate the control of bacterial infection by digesting extracellular microbial DNA in biofilms, suggesting the original evolutionary function of secreted DNases as antimicrobial agents.
Collapse
Affiliation(s)
- Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sohei Makita
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sandra Gonzalez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andre Moreira
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Englert H, Göbel J, Khong D, Omidi M, Wolska N, Konrath S, Frye M, Mailer RK, Beerens M, Gerwers JC, Preston RJS, Odeberg J, Butler LM, Maas C, Stavrou EX, Fuchs TA, Renné T. Targeting NETs using dual-active DNase1 variants. Front Immunol 2023; 14:1181761. [PMID: 37287977 PMCID: PMC10242134 DOI: 10.3389/fimmu.2023.1181761] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Background Neutrophil Extracellular Traps (NETs) are key mediators of immunothrombotic mechanisms and defective clearance of NETs from the circulation underlies an array of thrombotic, inflammatory, infectious, and autoimmune diseases. Efficient NET degradation depends on the combined activity of two distinct DNases, DNase1 and DNase1-like 3 (DNase1L3) that preferentially digest double-stranded DNA (dsDNA) and chromatin, respectively. Methods Here, we engineered a dual-active DNase with combined DNase1 and DNase1L3 activities and characterized the enzyme for its NET degrading potential in vitro. Furthermore, we produced a mouse model with transgenic expression of the dual-active DNase and analyzed body fluids of these animals for DNase1 and DNase 1L3 activities. We systematically substituted 20 amino acid stretches in DNase1 that were not conserved among DNase1 and DNase1L3 with homologous DNase1L3 sequences. Results We found that the ability of DNase1L3 to degrade chromatin is embedded into three discrete areas of the enzyme's core body, not the C-terminal domain as suggested by the state-of-the-art. Further, combined transfer of the aforementioned areas of DNase1L3 to DNase1 generated a dual-active DNase1 enzyme with additional chromatin degrading activity. The dual-active DNase1 mutant was superior to native DNase1 and DNase1L3 in degrading dsDNA and chromatin, respectively. Transgenic expression of the dual-active DNase1 mutant in hepatocytes of mice lacking endogenous DNases revealed that the engineered enzyme was stable in the circulation, released into serum and filtered to the bile but not into the urine. Conclusion Therefore, the dual-active DNase1 mutant is a promising tool for neutralization of DNA and NETs with potential therapeutic applications for interference with thromboinflammatory disease states.
Collapse
Affiliation(s)
- Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Josephine Göbel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Danika Khong
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryam Omidi
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian C. Gerwers
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jacob Odeberg
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lynn M. Butler
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evi X. Stavrou
- Medicine Service, Section of Hematology-Oncology, Louis Stokes Veterans Administration Medical Center, Cleveland, OH, United States
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tobias A. Fuchs
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neutrolis, Inc., Cambridge, MA, United States
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
37
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
38
|
Gomez-Bañuelos E, Yu Y, Li J, Cashman KS, Paz M, Trejo-Zambrano MI, Bugrovsky R, Wang Y, Chida AS, Sherman-Baust CA, Ferris DP, Goldman DW, Darrah E, Petri M, Sanz I, Andrade F. Affinity maturation generates pathogenic antibodies with dual reactivity to DNase1L3 and dsDNA in systemic lupus erythematosus. Nat Commun 2023; 14:1388. [PMID: 36941260 PMCID: PMC10027674 DOI: 10.1038/s41467-023-37083-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Anti-dsDNA antibodies are pathogenically heterogeneous, implying distinct origins and antigenic properties. Unexpectedly, during the clinical and molecular characterization of autoantibodies to the endonuclease DNase1L3 in patients with systemic lupus erythematosus (SLE), we identified a subset of neutralizing anti-DNase1L3 antibodies previously catalogued as anti-dsDNA. Based on their variable heavy-chain (VH) gene usage, these antibodies can be divided in two groups. One group is encoded by the inherently autoreactive VH4-34 gene segment, derives from anti-DNase1L3 germline-encoded precursors, and gains cross-reactivity to dsDNA - and some additionally to cardiolipin - following somatic hypermutation. The second group, originally defined as nephritogenic anti-dsDNA antibodies, is encoded by diverse VH gene segments. Although affinity maturation results in dual reactivity to DNase1L3 and dsDNA, their binding efficiencies favor DNase1L3 as the primary antigen. Clinical, transcriptional and monoclonal antibody data support that cross-reactive anti-DNase1L3/dsDNA antibodies are more pathogenic than single reactive anti-dsDNA antibodies. These findings point to DNase1L3 as the primary target of a subset of antibodies classified as anti-dsDNA, shedding light on the origin and pathogenic heterogeneity of antibodies reactive to dsDNA in SLE.
Collapse
Affiliation(s)
- Eduardo Gomez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Yikai Yu
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jessica Li
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Kevin S Cashman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Merlin Paz
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | | | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Youliang Wang
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Asiya Seema Chida
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Cheryl A Sherman-Baust
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Dylan P Ferris
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Daniel W Goldman
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Michelle Petri
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Iñaki Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Autoantibodies are cornerstone biomarkers in systemic lupus erythematosus (SLE), an autoimmune disease characterized by autoantibody-mediated tissue damage. Autoantibodies can inform about disease susceptibility, clinical course, outcomes and the cause of SLE. Identifying pathogenic autoantibodies in SLE, however, remains a significant challenge. This review summarizes recent advances in the field of autoantibodies in SLE. RECENT FINDINGS High-throughput technologies and innovative hypothesis have been applied to identify autoantibodies linked to pathogenic pathways in SLE. This work has led to the discovery of functional autoantibodies targeting key components is SLE pathogenesis (e.g. DNase1L3, cytokines, extracellular immunoregulatory receptors), as well as the identification of endogenous retroelements and interferon-induced proteins as sources of autoantigens in SLE. Others have reinvigorated the study of mitochondria, which has antigenic parallels with bacteria, as a trigger of autoantibodies in SLE, and identified faecal IgA to nuclear antigens as potential biomarkers linking gut permeability and microbial translocation in SLE pathogenesis. Recent studies showed that levels of autoantibodies against dsDNA, C1q, chromatin, Sm and ribosomal P may serve as biomarkers of proliferative lupus nephritis, and identified novel autoantibodies to several unique species of Ro52 overexpressed by SLE neutrophils. SUMMARY Autoantibodies hold promise as biomarkers of pathogenic mechanisms in SLE.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| | - Andrea Fava
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| |
Collapse
|
40
|
Bai Q, He X, Hu T. Pan‑cancer analysis of the deoxyribonuclease gene family. Mol Clin Oncol 2023; 18:19. [PMID: 36798465 PMCID: PMC9926046 DOI: 10.3892/mco.2023.2615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Deoxyribonuclease (DNase) is an enzyme that catalyzes the cleavage of phosphodiester bonds in the main chain of DNA to degrade DNA. DNase serves a vital role in several immune-related diseases. The present study linked the expression of DNase with overall survival (OS), performed pan-cancer co-expression analysis, and assessed the association between DNase and immune infiltration subtypes, tumor microenvironment and drug sensitivity through pan-cancer studies. Furthermore, gene expression data and clinical data were downloaded from The Cancer Genome Atlas. Next, through a series of bioinformatics analyses, DNase expression and survival, immune subtypes, tumor microenvironment and drug sensitivity in 33 tumor types were systematically studied. The expression of the DNase gene family was shown to have an apparent intratumoral heterogeneity. The expression of DNase 2, lysosomal (DNASE2) was the highest in tumors, whereas that of DNASE2 β was the lowest. DNase 1-like 3 (DNASE1L3) was mainly downregulated in tumors, whereas the rest of the DNases were mainly upregulated in tumors. The expression of DNase family members was also found to be associated with the OS rate of patients. DNase family genes may serve an essential role in the tumor microenvironment. DNase family gene expression was related to the content of cytotoxic cells, Immunescore, Stromalscore, Estimatescore and Tumorpurity. The present study also revealed that the DNase genes may be involved in the drug resistance of cancer cells. Finally, the correlation between DNase, and clinical stage and tumor microenvironment in hepatocellular carcinoma (HCC) was studied. In addition, the difference in DNASE1L3 expression between HCC and adjacent normal tissues, and the relationship between DNASE1L3 expression and clinical stage was verified by analyzing three groups in a Gene Expression Omnibus dataset and by performing immunohistochemistry. In conclusion, the present study assessed DNase gene expression, analyzed its relationship with patient OS, performed pan-cancer co-expression analysis, and assessed the association between DNase and immune infiltration subtypes, tumor microenvironment and drug sensitivity. The present study also confirmed the value of further laboratory research on DNases and their prospects in clinical cancer treatment.
Collapse
Affiliation(s)
- Qingquan Bai
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, D-13353 Berlin, Germany,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Correspondence to: Dr Qingquan Bai, Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Xiao He
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Correspondence to: Dr Qingquan Bai, Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
41
|
Korn MA, Steffensen M, Brandl C, Royzman D, Daniel C, Winkler TH, Nitschke L. Epistatic effects of Siglec-G and DNase1 or DNase1l3 deficiencies in the development of systemic lupus erythematosus. Front Immunol 2023; 14:1095830. [PMID: 36969253 PMCID: PMC10030676 DOI: 10.3389/fimmu.2023.1095830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease that displays considerable heterogeneity not only in its symptoms, but also in its environmental and genetic causes. Studies in SLE patients have revealed that many genetic variants contribute to disease development. However, often its etiology remains unknown. Existing efforts to determine this etiology have focused on SLE in mouse models revealing not only that mutations in specific genes lead to SLE development, but also that epistatic effects of several gene mutations significantly amplify disease manifestation. Genome-wide association studies for SLE have identified loci involved in the two biological processes of immune complex clearance and lymphocyte signaling. Deficiency in an inhibitory receptor expressed on B lymphocytes, Siglec-G, has been shown to trigger SLE development in aging mice, as have mutations in DNA degrading DNase1 and DNase1l3, that are involved in clearance of DNA-containing immune complexes. Here, we analyze the development of SLE-like symptoms in mice deficient in either Siglecg and DNase1 or Siglecg and DNase1l3 to evaluate potential epistatic effects of these genes. We found that germinal center B cells and follicular helper T cells were increased in aging Siglecg -/- x Dnase1 -/- mice. In contrast, anti-dsDNA antibodies and anti-nuclear antibodies were strongly increased in aging Siglecg-/- x Dnase1l3-/- mice, when compared to single-deficient mice. Histological analysis of the kidneys revealed glomerulonephritis in both Siglecg -/- x Dnase1 -/- and Siglecg-/- x Dnase1l3-/- mice, but with a stronger glomerular damage in the latter. Collectively, these findings underscore the impact of the epistatic effects of Siglecg with DNase1 and Dnase1l3 on disease manifestation and highlight the potential combinatory effects of other gene mutations in SLE.
Collapse
Affiliation(s)
- Marina A. Korn
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Marie Steffensen
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Carolin Brandl
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Dmytro Royzman
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
- Department of Immune Modulation, University Hospital of Erlangen, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Hospital of Erlangen, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
- *Correspondence: Lars Nitschke,
| |
Collapse
|
42
|
Zhao N, Wu W, Wang Y, Song K, Chen G, Chen Y, Wang R, Xu J, Cui K, Chen H, Tan W, Zhang J, Xiao Z. DNA-modularized construction of bivalent ligands precisely regulates receptor binding and activation. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Abstract
Cell-free DNA (cfDNA) is nonrandomly fragmented and contains a wealth of molecular information useful for noninvasive prenatal testing and cancer detection. cfDNA fragmentomics contains information beyond genetics, such as gene expression inference. However, the feasibility of using cfDNA fragmentomics for deducing cfDNA methylomics remains unexplored. This study demonstrated the possibility of using cfDNA fragmentation patterns to deduce the methylation patterns of cfDNA molecules, breaking free from the limitation of bisulfite sequencing. By using cfDNA cleavage profiles surrounding a cytosine-phosphate-guanine (CpG) site, we determined the methylation status ranging from a particular region down to a single CpG assisted by a deep learning algorithm. Both genetic and epigenetic information of cfDNA can therefore be obtained in a single nondestructive assay. Cell-free DNA (cfDNA) fragmentation patterns contain important molecular information linked to tissues of origin. We explored the possibility of using fragmentation patterns to predict cytosine-phosphate-guanine (CpG) methylation of cfDNA, obviating the use of bisulfite treatment and associated risks of DNA degradation. This study investigated the cfDNA cleavage profile surrounding a CpG (i.e., within an 11-nucleotide [nt] window) to analyze cfDNA methylation. The cfDNA cleavage proportion across positions within the window appeared nonrandom and exhibited correlation with methylation status. The mean cleavage proportion was ∼twofold higher at the cytosine of methylated CpGs than unmethylated ones in healthy controls. In contrast, the mean cleavage proportion rapidly decreased at the 1-nt position immediately preceding methylated CpGs. Such differential cleavages resulted in a characteristic change in relative presentations of CGN and NCG motifs at 5′ ends, where N represented any nucleotide. CGN/NCG motif ratios were correlated with methylation levels at tissue-specific methylated CpGs (e.g., placenta or liver) (Pearson’s absolute r > 0.86). cfDNA cleavage profiles were thus informative for cfDNA methylation and tissue-of-origin analyses. Using CG-containing end motifs, we achieved an area under a receiver operating characteristic curve (AUC) of 0.98 in differentiating patients with and without hepatocellular carcinoma and enhanced the positive predictive value of nasopharyngeal carcinoma screening (from 19.6 to 26.8%). Furthermore, we elucidated the feasibility of using cfDNA cleavage patterns to deduce CpG methylation at single CpG resolution using a deep learning algorithm and achieved an AUC of 0.93. FRAGmentomics-based Methylation Analysis (FRAGMA) presents many possibilities for noninvasive prenatal, cancer, and organ transplantation assessment.
Collapse
|
44
|
Dhawan UK, Margraf A, Lech M, Subramanian M. Hypercholesterolemia promotes autoantibody production and a lupus-like pathology via decreased DNase-mediated clearance of DNA. J Cell Mol Med 2022; 26:5267-5276. [PMID: 36098213 PMCID: PMC9575094 DOI: 10.1111/jcmm.17556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Hypercholesterolemia exacerbates autoimmune response and accelerates the progression of several autoimmune disorders, but the mechanistic basis is not well understood. We recently demonstrated that hypercholesterolemia is associated with increased serum extracellular DNA levels secondary to a defect in DNase-mediated clearance of DNA. In this study, we tested whether the impaired DNase response plays a causal role in enhancing anti-nuclear antibody levels and renal immune complex deposition in an Apoe-/- mouse model of hypercholesterolemia. We demonstrate that hypercholesterolemic mice have enhanced anti-ds-DNA and anti-nucleosome antibody levels which is associated with increased immune complex deposition in the renal glomerulus. Importantly, treatment with DNase1 led to a decrease in both the autoantibody levels as well as renal pathology. Additionally, we show that humans with hypercholesterolemia have decreased systemic DNase activity and increased anti-nuclear antibodies. In this context, our data suggest that recombinant DNase1 may be an attractive therapeutic strategy to lower autoimmune response and disease progression in patients with autoimmune disorders associated with concomitant hypercholesterolemia.
Collapse
Affiliation(s)
- Umesh Kumar Dhawan
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andreas Margraf
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maciej Lech
- LMU Hospital Department of Medicine, Munich, Germany
| | - Manikandan Subramanian
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
45
|
McCord JJ, Engavale M, Masoumzadeh E, Villarreal J, Mapp B, Latham MP, Keyel PA, Sutton RB. Structural features of Dnase1L3 responsible for serum antigen clearance. Commun Biol 2022; 5:825. [PMID: 35974043 PMCID: PMC9381713 DOI: 10.1038/s42003-022-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Autoimmunity develops when extracellular DNA released from dying cells is not cleared from serum. While serum DNA is primarily digested by Dnase1 and Dnase1L3, Dnase1 cannot rescue autoimmunity arising from Dnase1L3 deficiencies. Dnase1L3 uniquely degrades antigenic forms of cell-free DNA, including DNA complexed with lipids and proteins. The distinct activity of Dnase1L3 relies on its unique C-terminal Domain (CTD), but the mechanism is unknown. We used multiple biophysical techniques and functional assays to study the interplay between the core catalytic domain and the CTD. While the core domain resembles Dnase1, there are key structural differences between the two enzymes. First, Dnase1L3 is not inhibited by actin due to multiple differences in the actin recognition site. Second, the CTD augments the ability of the core to bind DNA, thereby facilitating the degradation of complexed DNA. Together, these structural insights will inform the development of Dnase1L3-based therapies for autoimmunity.
Collapse
Affiliation(s)
- Jon J McCord
- Texas Tech University Health Sciences Center, Dept of Cell Physiology and Molecular Biophysics, Lubbock, TX, USA
| | - Minal Engavale
- Texas Tech University, Dept. of Biological Sciences, Lubbock, TX, USA
| | - Elahe Masoumzadeh
- Texas Tech University, Dept. of Chemistry & Biochemistry, Lubbock, TX, USA
| | - Johanna Villarreal
- Texas Tech University Health Sciences Center, Dept of Cell Physiology and Molecular Biophysics, Lubbock, TX, USA
| | - Britney Mapp
- Texas Tech University, Dept. of Biological Sciences, Lubbock, TX, USA
| | - Michael P Latham
- Texas Tech University, Dept. of Chemistry & Biochemistry, Lubbock, TX, USA
| | - Peter A Keyel
- Texas Tech University, Dept. of Biological Sciences, Lubbock, TX, USA
| | - R Bryan Sutton
- Texas Tech University Health Sciences Center, Dept of Cell Physiology and Molecular Biophysics, Lubbock, TX, USA.
| |
Collapse
|
46
|
Li B, Ge YZ, Yan WW, Gong B, Cao K, Zhao R, Li C, Zhang YW, Jiang YH, Zuo S. DNASE1L3 inhibits proliferation, invasion and metastasis of hepatocellular carcinoma by interacting with β-catenin to promote its ubiquitin degradation pathway. Cell Prolif 2022; 55:e13273. [PMID: 35748106 PMCID: PMC9436914 DOI: 10.1111/cpr.13273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
As a member of the deoxyribonuclease 1 family, DNASE1L3 plays a significant role both inside and outside the cell. However, the role of DNASE1L3 in hepatocellular carcinoma (HCC) and its molecular basis remains to be further investigated. In this study, we report that DNASE1L3 is downregulated in clinical HCC samples and evaluate the relationship between its expression and HCC clinical features. In vivo and in vitro experiments showed that DNASE1L3 negatively regulates the proliferation, invasion and metastasis of HCC cells. Mechanistic studies showed that DNASE1L3 recruits components of the cytoplasmic β‐catenin destruction complex (GSK‐3β and Axin), promotes the ubiquitination degradation of β‐catenin, and inhibits its nuclear transfer, thus, decreasing c‐Myc, P21 and P27 level. Ultimately, cell cycle and EMT signals are restrained. In general, this study provides new insight into the mechanism for HCC and suggests that DNASE1L3 can become a considerable target for HCC.
Collapse
Affiliation(s)
- Bo Li
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu-Zhen Ge
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei-Wei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kun Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chao Li
- Department of General Surgery, The First People's Hospital of Fuquan, Fuquan, Guizhou, China
| | - Ye-Wei Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi-Heng Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
47
|
Mori G, Delfino D, Pibiri P, Rivetti C, Percudani R. Origin and significance of the human DNase repertoire. Sci Rep 2022; 12:10364. [PMID: 35725583 PMCID: PMC9208542 DOI: 10.1038/s41598-022-14133-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The human genome contains four DNase1 and two DNase2 genes. The origin and functional specialization of this repertoire are not fully understood. Here we use genomics and transcriptomics data to infer the evolutionary history of DNases and investigate their biological significance. Both DNase1 and DNase2 families have expanded in vertebrates since ~ 650 million years ago before the divergence of jawless and jawed vertebrates. DNase1, DNase1L1, and DNase1L3 co-existed in jawless fish, whereas DNase1L2 originated in amniotes by tandem duplication of DNase1. Among the non-human DNases, DNase1L4 and newly identified DNase1L5 derived from early duplications that were lost in terrestrial vertebrates. The ancestral gene of the DNase2 family, DNase2b, has been conserved in synteny with the Uox gene across 700 million years of animal evolution,while DNase2 originated in jawless fish. DNase1L1 acquired a GPI-anchor for plasma membrane attachment in bony fishes, and DNase1L3 acquired a C-terminal basic peptide for the degradation of microparticle DNA in jawed vertebrates. The appearance of DNase1L2, with a distinct low pH optimum and skin localization, is among the amniote adaptations to life on land. The expansion of the DNase repertoire in vertebrates meets the diversified demand for DNA debris removal in complex multicellular organisms.
Collapse
Affiliation(s)
- Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Danila Delfino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Paola Pibiri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| |
Collapse
|
48
|
Protease and DNase Activities of a Very Stable High-Molecular-Mass Multiprotein Complex from Sea Cucumber Eupentacta fraudatrix. Int J Mol Sci 2022; 23:ijms23126677. [PMID: 35743119 PMCID: PMC9224385 DOI: 10.3390/ijms23126677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Only some human organs, including the liver, are capable of very weak self-regeneration. Some marine echinoderms are very useful for studying the self-regeneration processes of organs and tissues. For example, sea cucumbers Eupentacta fraudatrix (holothurians) demonstrate complete restoration of all organs and the body within several weeks after their division into two parts. Therefore, these cucumbers are a prospective model for studying the general mechanisms of self-regeneration. However, there is no data available yet concerning biomolecules of holothurians, which can stimulate the processes of organ and whole-body regeneration. Investigation of these restoration mechanisms is very important for modern medicine and biology because it can help to understand which hormones, nucleic acids, proteins, enzymes, or complexes play an essential role in self-regeneration. It is possible that stable, polyfunctional, high-molecular-weight protein complexes play an essential role in these processes. It has recently been shown that sea cucumbers Eupentacta fraudatrix contain a very stable multiprotein complex of about 2000 kDa. The first analysis of possible enzymatic activities of a stable protein complex was carried out in this work, revealing that the complex possesses several protease and DNase activities. The complex metalloprotease is activated by several metal ions (Zn2+ > Mn2+ > Mg2+). The relative contribution of metalloproteases (~63.4%), serine-like protease (~30.5%), and thiol protease (~6.1%) to the total protease activity of the complex was estimated. Metal-independent proteases of the complex hydrolyze proteins at trypsin-specific sites (after Lys and Arg). The complex contains both metal-dependent and metal-independent DNases. Mg2+, Mn2+, and Co2+ ions were found to strongly increase the DNase activity of the complex.
Collapse
|
49
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
50
|
Hashimoto T, Ueki S, Kamide Y, Miyabe Y, Fukuchi M, Yokoyama Y, Furukawa T, Azuma N, Oka N, Takeuchi H, Kanno K, Ishida-Yamamoto A, Taniguchi M, Hashiramoto A, Matsui K. Increased Circulating Cell-Free DNA in Eosinophilic Granulomatosis With Polyangiitis: Implications for Eosinophil Extracellular Traps and Immunothrombosis. Front Immunol 2022; 12:801897. [PMID: 35095884 PMCID: PMC8790570 DOI: 10.3389/fimmu.2021.801897] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Background Endogenous DNA derived from nuclei or mitochondria is released into the blood circulation as cell-free DNA (cfDNA) following cell damage or death. cfDNA is associated with various pathological conditions; however, its clinical significance in antineutrophil cytoplasmic antibody-associated vasculitis (AAV) remains unclear. This study aimed to evaluate the clinical significance of cfDNA in AAV. Methods We enrolled 35 patients with AAV, including 10 with eosinophilic granulomatosis with polyangiitis (EGPA), 13 with microscopic polyangiitis, and 12 with granulomatosis with polyangiitis. Serum cf-nuclear DNA (cf-nDNA) and cf-mitochondrial DNA (cf-mtDNA) levels were measured by quantitative polymerase chain reaction before and after the initiation of immunosuppressive therapy. Tissue samples from EGPA patients were examined by immunofluorescence and transmission electron microscopy. The structure of eosinophil extracellular traps (EETs) and neutrophil extracellular traps (NETs) and stability against DNase were assessed in vitro. Platelet adhesion of EETs were also assessed. Results Serum cf-nDNA and cf-mtDNA levels were significantly higher in AAV than in healthy controls, with the highest levels in EGPA; however, serum DNase activities were comparable among all groups. cf-nDNA and cf-mtDNA decreased after treatment and were associated with disease activity only in EGPA. Blood eosinophil count and plasma D-dimer levels were significantly correlated with cf-nDNA in EGPA and cf-mtDNA. EGPA tissue samples showed lytic eosinophils and EETs in small-vessel thrombi. The structure of EETs showed bolder net-like chromatin threads in vitro and EETs showed greater stability against DNase than NETs. EETs provided a scaffold for platelet adhesion. Conclusion cfDNA was increased in EGPA, associated with disease activity. The presence of DNase-resistant EETs in small-vessel thrombi might contribute to higher concentration of cfDNA and the occurrence of immunothrombosis in EGPA.
Collapse
Affiliation(s)
- Teppei Hashimoto
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yosuke Kamide
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Sagamihara, Japan
| | - Yui Miyabe
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Mineyo Fukuchi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuichi Yokoyama
- Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Tetsuya Furukawa
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Naoto Azuma
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nobuyuki Oka
- Department of Neurology, Kyoto Konoe Rehabilitation Hospital, Kyoto, Japan
| | - Hiroki Takeuchi
- Department of Neurology, National Hospital Organization Minami Kyoto Hospital, Kyoto, Japan
| | - Kyoko Kanno
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | | | - Masami Taniguchi
- National Hospital Organization Sagamihara National Hospital, Clinical Research Center, Sagamihara, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kiyoshi Matsui
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|