1
|
Zhang J, Kwan HLR, Chan CB, Lee CW. Localized release of muscle-generated BDNF regulates the initial formation of postsynaptic apparatus at neuromuscular synapses. Cell Death Differ 2025; 32:546-560. [PMID: 39511403 PMCID: PMC11893767 DOI: 10.1038/s41418-024-01404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Growing evidence indicates that brain-derived neurotrophic factor (BDNF) is produced in contracting skeletal muscles and is secreted as a myokine that plays an important role in muscle metabolism. However, the involvement of muscle-generated BDNF and the regulation of its vesicular trafficking, localization, proteolytic processing, and spatially restricted release during the development of vertebrate neuromuscular junctions (NMJs) remain largely unknown. In this study, we first reported that BDNF is spatially associated with the actin-rich core domain of podosome-like structures (PLSs) at topologically complex acetylcholine receptor (AChR) clusters in cultured Xenopus muscle cells. The release of spatially localized BDNF is tightly controlled by activity-regulated mechanisms in a calcium-dependent manner. Live-cell time-lapse imaging further showed that BDNF-containing vesicles are transported to and captured at PLSs in both aneural and synaptic AChR clusters for spatially restricted release. Functionally, BDNF knockdown or furin-mediated endoproteolytic activity inhibition significantly suppresses aneural AChR cluster formation, which in turn affects synaptic AChR clustering induced by nerve innervation or agrin-coated beads. Lastly, skeletal muscle-specific BDNF knockout (MBKO) mice exhibit structural defects in the formation of aneural AChR clusters and their subsequent recruitment to nerve-induced synaptic AChR clusters during the initial stages of NMJ development in vivo. Together, this study demonstrated the regulatory roles of PLSs in the intracellular trafficking, spatial localization, and activity-dependent release of BDNF in muscle cells and revealed the involvement of muscle-generated BDNF and its proteolytic conversion in regulating the initial formation of aneural and synaptic AChR clusters during early NMJ development in vitro and in vivo.
Collapse
Affiliation(s)
- Jinkai Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Lee
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China.
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
2
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
3
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Herron JC, Hu S, Watanabe T, Nogueira AT, Liu B, Kern ME, Aaron J, Taylor A, Pablo M, Chew TL, Elston TC, Hahn KM. Actin nano-architecture of phagocytic podosomes. Nat Commun 2022; 13:4363. [PMID: 35896550 PMCID: PMC9329332 DOI: 10.1038/s41467-022-32038-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Podosomes are actin-enriched adhesion structures important for multiple cellular processes, including migration, bone remodeling, and phagocytosis. Here, we characterize the structure and organization of phagocytic podosomes using interferometric photoactivated localization microscopy, a super-resolution microscopy technique capable of 15-20 nm resolution, together with structured illumination microscopy and localization-based super-resolution microscopy. Phagocytic podosomes are observed during frustrated phagocytosis, a model in which cells attempt to engulf micropatterned IgG antibodies. For circular patterns, this results in regular arrays of podosomes with well-defined geometry. Using persistent homology, we develop a pipeline for semi-automatic identification and measurement of podosome features. These studies reveal an hourglass shape of the podosome actin core, a protruding knob at the bottom of the core, and two actin networks extending from the core. Additionally, the distributions of paxillin, talin, myosin II, α-actinin, cortactin, and microtubules relative to actin are characterized.
Collapse
Affiliation(s)
- J Cody Herron
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shiqiong Hu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takashi Watanabe
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Ana T Nogueira
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bei Liu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan E Kern
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Aaron Taylor
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Timothy C Elston
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Klaus M Hahn
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
6
|
Castellanos-Martínez R, Jiménez-Camacho KE, Schnoor M. Cortactin Expression in Hematopoietic Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:958-967. [DOI: 10.1016/j.ajpath.2019.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
|
7
|
Chan ZCK, Kwan HLR, Wong YS, Jiang Z, Zhou Z, Tam KW, Chan YS, Chan CB, Lee CW. Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. eLife 2020; 9:54379. [PMID: 32208136 PMCID: PMC7093154 DOI: 10.7554/elife.54379] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
At vertebrate neuromuscular junctions (NMJs), the synaptic basal lamina contains different extracellular matrix (ECM) proteins and synaptogenic factors that induce and maintain synaptic specializations. Here, we report that podosome-like structures (PLSs) induced by ubiquitous ECM proteins regulate the formation and remodeling of acetylcholine receptor (AChR) clusters via focal ECM degradation. Mechanistically, ECM degradation is mediated by PLS-directed trafficking and surface insertion of membrane-type 1 matrix metalloproteinase (MT1-MMP) to AChR clusters through microtubule-capturing mechanisms. Upon synaptic induction, MT1-MMP plays a crucial role in the recruitment of aneural AChR clusters for the assembly of postsynaptic specializations. Lastly, the structural defects of NMJs in embryonic MT1-MMP-/- mice further demonstrate the physiological role of MT1-MMP in normal NMJ development. Collectively, this study suggests that postsynaptic MT1-MMP serves as a molecular switch to synaptogenesis by modulating local ECM environment for the deposition of synaptogenic signals that regulate postsynaptic differentiation at developing NMJs.
Collapse
Affiliation(s)
- Zora Chui-Kuen Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yin Shun Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Zhixin Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kin Wai Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
van den Dries K, Nahidiazar L, Slotman JA, Meddens MBM, Pandzic E, Joosten B, Ansems M, Schouwstra J, Meijer A, Steen R, Wijers M, Fransen J, Houtsmuller AB, Wiseman PW, Jalink K, Cambi A. Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nat Commun 2019; 10:5171. [PMID: 31729386 PMCID: PMC6858452 DOI: 10.1038/s41467-019-13123-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/11/2019] [Indexed: 01/03/2023] Open
Abstract
Basement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing. The podosome protrusive core contains a central branched actin module encased by a linear actin module, each harboring specific actin interactors and actin isoforms. From the core, two actin modules radiate: ventral filaments bound by vinculin and connected to the plasma membrane and dorsal interpodosomal filaments crosslinked by myosin IIA. On stiff substrates, the actin modules mediate long-range substrate exploration, associated with degradative behavior. On compliant substrates, the vinculin-bound ventral actin filaments shorten, resulting in short-range connectivity and a focally protrusive, non-degradative state. Our findings redefine podosome nanoscale architecture and reveal a paradigm for how actin modularity drives invadosome mechanosensing in cells that breach tissue boundaries.
Collapse
Affiliation(s)
- Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leila Nahidiazar
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- van Leeuwenhoek Centre of Advanced Microscopy, Amsterdam, Netherlands
| | - Johan A Slotman
- Department of Pathology, Optical imaging center Erasmus MC, Rotterdam, Netherlands
| | - Marjolein B M Meddens
- Department of Physics and Astronomy and Department of Pathology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joost Schouwstra
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anke Meijer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raymond Steen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jack Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Paul W Wiseman
- Departments of Physics and Chemistry, McGill University Otto Maass (OM), Chemistry Building, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- van Leeuwenhoek Centre of Advanced Microscopy, Amsterdam, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
9
|
Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 2019; 40:197-209. [PMID: 31214894 PMCID: PMC6726830 DOI: 10.1007/s10974-019-09529-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022]
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.
Collapse
Affiliation(s)
- Brian Sit
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Daniel Gutmann
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Alonso F, Spuul P, Daubon T, Kramer IJ, Génot E. Variations on the theme of podosomes: A matter of context. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:545-553. [PMID: 30594495 DOI: 10.1016/j.bbamcr.2018.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
Extensive in vitro studies have described podosomes as actin-based structures at the plasma membrane, connecting the cell with its extracellular matrix and endowed with multiple capabilities. Contractile actin-myosin cables assemble them into a network that constitutes a multifaceted cellular superstructure taking different forms - with common characteristics - but manifesting different properties depending on the context of study. Their morphology and their role in cell functioning and behavior are therefore now apprehended in in vivo or in vitro situations relevant to physiological processes. We focus here on three of them, namely: macrophage migration, antigen presentation by dendritic cells and endothelial cell sprouting during angiogenesis to highlight the characteristics of podosomes and their functioning shaped by the microenvironment.
Collapse
Affiliation(s)
- Florian Alonso
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux F-33076 Cedex, France
| | - Pirjo Spuul
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Thomas Daubon
- Laboratoire de l'Angiogénèse et du Microenvironnement des Cancers (INSERM U1029), Université de Bordeaux, Bordeaux F-33076 Cedex, France
| | - IJsbrand Kramer
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux F-33076 Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux F-33076 Cedex, France.
| |
Collapse
|
11
|
Yin M, Ma W, An L. Cortactin in cancer cell migration and invasion. Oncotarget 2017; 8:88232-88243. [PMID: 29152154 PMCID: PMC5675706 DOI: 10.18632/oncotarget.21088] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cortactin, a substrate of sarcoma (Src) kinases, is an actin-binding protein that is involved in cytoskeletal regulation, and is frequently overexpressed in cancer cells. Binding to the actin related protein 2/3 (Arp2/3) complex stimulates cortactin activity, which promotes F-actin nucleation and assembly. Cortactin promotes cancer cell migration and invasion, and plays a pivotal role in invadopodia formation and extra cellular matrix degradation. Overexpression of cortactin, by amplification of the chromosomal band 11q13, increases tumor aggressiveness. In this review, we report on the current knowledge and potential mechanisms of action of cortactin as a critical mediator of cancer cell migration and invasion.
Collapse
Affiliation(s)
- Miao Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Wenqing Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
12
|
González-Jamett AM, Guerra MJ, Olivares MJ, Haro-Acuña V, Baéz-Matus X, Vásquez-Navarrete J, Momboisse F, Martinez-Quiles N, Cárdenas AM. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain. Front Cell Neurosci 2017; 11:130. [PMID: 28522963 PMCID: PMC5415606 DOI: 10.3389/fncel.2017.00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Valentina Haro-Acuña
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Ximena Baéz-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Narcisa Martinez-Quiles
- Departamento de Microbiología (Inmunología), Facultad de Medicina, Universidad Complutense de MadridMadrid, Spain
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
13
|
Pedersen EA, Menon R, Bailey KM, Thomas DG, Van Noord RA, Tran J, Wang H, Qu PP, Hoering A, Fearon ER, Chugh R, Lawlor ER. Activation of Wnt/β-Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS Function and Promotes Phenotypic Transition to More Metastatic Cell States. Cancer Res 2016; 76:5040-53. [PMID: 27364557 DOI: 10.1158/0008-5472.can-15-3422] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Ewing sarcomas are characterized by the presence of EWS/ETS fusion genes in the absence of other recurrent genetic alterations and mechanisms of tumor heterogeneity that contribute to disease progression remain unclear. Mutations in the Wnt/β-catenin pathway are rare in Ewing sarcoma but the Wnt pathway modulator LGR5 is often highly expressed, suggesting a potential role for the axis in tumor pathogenesis. We evaluated β-catenin and LGR5 expression in Ewing sarcoma cell lines and tumors and noted marked intra- and inter-tumor heterogeneity. Tumors with evidence of active Wnt/β-catenin signaling were associated with increased incidence of tumor relapse and worse overall survival. Paradoxically, RNA sequencing revealed a marked antagonism of EWS/ETS transcriptional activity in Wnt/β-catenin-activated tumor cells. Consistent with this, Wnt/β-catenin-activated cells displayed a phenotype that was reminiscent of Ewing sarcoma cells with partial EWS/ETS loss of function. Specifically, activation of Wnt/β-catenin induced alterations to the actin cytoskeleton, acquisition of a migratory phenotype, and upregulation of EWS/ETS-repressed genes. Notably, activation of Wnt/β-catenin signaling led to marked induction of tenascin C (TNC), an established promoter of cancer metastasis, and an EWS/ETS-repressed target gene. Loss of TNC function in Ewing sarcoma cells profoundly inhibited their migratory and metastatic potential. Our studies reveal that heterogeneous activation of Wnt/β-catenin signaling in subpopulations of tumor cells contributes to phenotypic heterogeneity and disease progression in Ewing sarcoma. Significantly, this is mediated, at least in part, by inhibition of EWS/ETS fusion protein function that results in derepression of metastasis-associated gene programs. Cancer Res; 76(17); 5040-53. ©2016 AACR.
Collapse
Affiliation(s)
- Elisabeth A Pedersen
- Translational Oncology Program, The University of Michigan, Ann Arbor, Michigan. Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | - Rajasree Menon
- Department of Computational Medicine & Bioinformatics, The University of Michigan, Ann Arbor, Michigan
| | - Kelly M Bailey
- Translational Oncology Program, The University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, and Communicable Diseases, The University of Michigan, Ann Arbor, Michigan
| | - Dafydd G Thomas
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | - Raelene A Van Noord
- Translational Oncology Program, The University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, and Communicable Diseases, The University of Michigan, Ann Arbor, Michigan
| | - Jenny Tran
- Translational Oncology Program, The University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, and Communicable Diseases, The University of Michigan, Ann Arbor, Michigan
| | - Hongwei Wang
- Department of Cancer Research and Biostatistics, Seattle, Washington
| | - Ping Ping Qu
- Department of Cancer Research and Biostatistics, Seattle, Washington
| | - Antje Hoering
- Department of Cancer Research and Biostatistics, Seattle, Washington
| | - Eric R Fearon
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan. Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan. Department of Human Genetics, The University of Michigan, Ann Arbor, Michigan
| | - Rashmi Chugh
- Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan
| | - Elizabeth R Lawlor
- Translational Oncology Program, The University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, and Communicable Diseases, The University of Michigan, Ann Arbor, Michigan. Department of Pathology, The University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
14
|
Alblazi KMO, Siar CH. Cellular protrusions--lamellipodia, filopodia, invadopodia and podosomes--and their roles in progression of orofacial tumours: current understanding. Asian Pac J Cancer Prev 2016; 16:2187-91. [PMID: 25824735 DOI: 10.7314/apjcp.2015.16.6.2187] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protrusive structures formed by migrating and invading cells are termed lamellipodia, filopodia, invadopodia and podosomes. Lamellipodia and filopodia appear on the leading edges of migrating cells and function to command the direction of the migrating cells. Invadopodia and podosomes are special F-actin-rich matrix-degrading structures that arise on the ventral surface of the cell membrane. Invadopodia are found in a variety of carcinomatous cells including squamous cell carcinoma of head and neck region whereas podosomes are found in normal highly motile cells of mesenchymal and myelomonocytic lineage. Invadopodia-associated protein markers consisted of 129 proteins belonging to different functional classes including WASP, NWASP, cortactin, Src kinase, Arp 2/3 complex, MT1-MMP and F-actin. To date, our current understanding on the role(s) of these regulators of actin dynamics in tumors of the orofacial region indicates that upregulation of these proteins promotes invasion and metastasis in oral squamous cell carcinoma, is associated with poor/worst prognostic outcome in laryngeal cancers, contributes to the persistent growth and metastasis characteristics of salivary gland adenoid cystic carcinoma, is a significant predictor of increased cancer risk in oral mucosal premalignant lesions and enhances local invasiveness in jawbone ameloblastomas.
Collapse
Affiliation(s)
- Kamila Mohamed Om Alblazi
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia E-mail :
| | | |
Collapse
|
15
|
Fascin actin bundling controls podosome turnover and disassembly while cortactin is involved in podosome assembly by its SH3 domain in THP-1 macrophages and dendritic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:940-52. [PMID: 25601713 DOI: 10.1016/j.bbamcr.2015.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/08/2015] [Indexed: 11/21/2022]
Abstract
Podosomes are dynamic degrading devices present in myeloid cells among other cell types. They consist of an actin core with associated regulators, surrounded by an adhesive ring. Both fascin and cortactin are known constituents but the role of fascin actin bundling is still unclear and cortactin research rather focuses on its homologue hematopoietic lineage cell-specific protein-1 (HS1). A fascin nanobody (FASNb5) that inhibits actin bundling and a cortactin nanobody (CORNb2) specifically targeting its Src-homology 3 (SH3) domain were used as unique tools to study the function of these regulators in podosome dynamics in both THP-1 macrophages and dendritic cells (DC). Upon intracellular FASNb5 expression, the few podosomes present were aberrantly stable, long-living and large, suggesting a role for fascin actin bundling in podosome turnover and disassembly. Fascin modulates this by balancing the equilibrium between branched and bundled actin networks. In the presence of CORNb2, the few podosomes formed show disrupted structures but their dynamics were unaffected. This suggests a role of the cortactin SH3 domain in podosome assembly. Remarkably, both nanobody-induced podosome-losses were compensated for by focal adhesion structures. Furthermore, matrix degradation capacities were altered and migratory phenotypes were lost. In conclusion, the cortactin SH3 domain contributes to podosome assembly while fascin actin bundling is a master regulator of podosome disassembly in THP-1 macrophages and DC.
Collapse
|
16
|
Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2014; 2:117-130. [PMID: 21776413 DOI: 10.4161/sgtp.2.3.16453] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells that are responsible for resorption of bone, and increased activity of these cells is associated with several common bone diseases, including postmenopausal osteoporosis. Upon adhesion to bone, osteoclasts become polarized and reorganise their cytoskeleton and membrane to form unique domains including the sealing zone (SZ), which is a dense ring of F-actin-rich podosomes delimiting the ruffled border (RB), where protons and proteases are secreted to demineralise and degrade the bone matrix, respectively. These processes are dependent on the activity of small GTPases. Rho GTPases are well known to control the organization of F-actin and adhesion structures of different cell types, affecting subsequently their migration. In osteoclasts, RhoA, Rac, Cdc42, RhoU and also Arf6 regulate podosome assembly and their organization into the SZ. By contrast, the formation of the RB involves vesicular trafficking pathways that are regulated by the Rab family of GTPases, in particular lysosomal Rab7. Finally, osteoclast survival is dependent on the activity of Ras GTPases. The correct function of almost all these GTPases is absolutely dependent on post-translational prenylation, which enables them to localize to specific target membranes. Bisphosphonate drugs, which are widely used in the treatment of bone diseases such as osteoporosis, act by preventing the prenylation of small GTPases, resulting in the loss of the SZ and RB and therefore inhibition of osteoclast activity, as well as inducing osteoclast apoptosis. In this review we summarize current understanding of the role of specific prenylated small GTPases in osteoclast polarization, function and survival.
Collapse
Affiliation(s)
- Cecile Itzstein
- Musculoskeletal Research Programme; Institute of Medical Sciences; University of Aberdeen; Aberdeen, Scotland UK
| | | | | |
Collapse
|
17
|
Abstract
WIP plays an important role in the remodeling of the actin cytoskeleton, which controls cellular activation, proliferation, and function. WIP regulates actin polymerization by linking the actin machinery to signaling cascades. WIP binding to WASp and to its homolog, N-WASp, which are central activators of the actin-nucleating complex Arp2/3, regulates their cellular distribution, function, and stability. By binding to WASp, WIP protects it from degradation and thus, is crucial for WASp retention. Indeed, most mutations that result in WAS, an X-linked immunodeficiency caused by defective/absent WASp activity, are located in the WIP-binding region of WASp. In addition, by binding directly to actin, WIP promotes the formation and stabilization of actin filaments. WASp-independent activities of WIP constitute a new research frontier and are discussed extensively in this article. Here, we review the current information on WIP in human and mouse systems, focusing on its associated proteins, its molecular-regulatory mechanisms, and its role as a key regulator of actin-based processes in the immune system.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
18
|
Aga M, Bradley JM, Wanchu R, Yang YF, Acott TS, Keller KE. Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Invest Ophthalmol Vis Sci 2014; 55:5497-509. [PMID: 25103269 DOI: 10.1167/iovs.14-14519] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE A single nucleotide polymorphism (SNP) identified between caveolin-1 (CAV1) and caveolin-2 (CAV2) on chromosome 7 is associated with glaucoma. One function of CAVs is endocytosis and recycling of extracellular matrix (ECM) components. Here, we generated CAV-silencing lentivirus to evaluate the effects on ECM turnover by trabecular meshwork (TM) cells and to measure the effect on outflow facility in anterior segment perfusion culture. METHODS Short hairpin CAV1 and CAV2 silencing and control lentivirus were generated, characterized, and applied to anterior segments in perfusion culture. Colocalization of CAVs with various ECM molecules in TM cells was investigated using immunofluorescence and confocal microscopy. Western immunoblotting and fluorogenic-based enzyme activity assays were used to investigate ECM protein levels and degradation, respectively. RESULTS Endogenous CAVs colocalized with cortactin at podosome- or invadopodia-like structures (PILS), which are areas of focal ECM degradation. In perfusion culture, outflow rates increased significantly in CAV1-silenced anterior segments, whereas outflow significantly decreased in CAV2-silenced anterior segments. Matrix metalloproteinase (MMP)2 and MMP14, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4) colocalized with both CAVs in TM cells. Protein levels and enzyme activities of MMP/ADAMTS4, fibronectin protein levels, actin stress fibers, and α-smooth muscle actin were all increased in CAV-silenced cells. CONCLUSIONS Caveolin-mediated endocytosis is one mechanism by which TM cells can alter the physiological catabolism of ECM in order to change the composition of the outflow channels in the TM to regulate aqueous outflow resistance. Dysregulation of CAV function could contribute to the pathological changes in ECM that are observed in glaucoma.
Collapse
Affiliation(s)
- Mini Aga
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John M Bradley
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Rohan Wanchu
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Yong-feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ted S Acott
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
19
|
Microtubule dynamic instability controls podosome patterning in osteoclasts through EB1, cortactin, and Src. Mol Cell Biol 2013; 34:16-29. [PMID: 24144981 DOI: 10.1128/mcb.00578-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing "plus" ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.
Collapse
|
20
|
Schachtner H, Calaminus SDJ, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 2013; 70:572-89. [PMID: 23804547 DOI: 10.1002/cm.21119] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
Cells use various actin-based motile structures to allow them to move across and through matrix of varying density and composition. Podosomes are actin cytoskeletal structures that form in motile cells and that mediate adhesion to substrate, migration, and other specialized functions such as transmigration through cell and matrix barriers. The podosome is a unique and interesting entity, which appears in the light microscope as an individual punctum, but is linked to other podosomes like a node on a network of the underlying cytoskeleton. Here, we discuss the signals that control podosome assembly and dynamics in different cell types and the actin organising proteins that regulate both the inner actin core and integrin-rich surrounding ring structures. We review the structure and composition of podosomes and also their functions in various cell types of both myeloid and endothelial lineage. We also discuss the emerging idea that podosomes can sense matrix stiffness and enable cells to respond to their environment.
Collapse
Affiliation(s)
- Hannah Schachtner
- CRUK Beatson Institute for Cancer Research and College of Medical, Veterinary and Life Sciences, Glasgow University, Garscube Campus, Switchback Rd., Bearsden, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
21
|
García E, Jones GE, Machesky LM, Antón IM. WIP: WASP-interacting proteins at invadopodia and podosomes. Eur J Cell Biol 2012; 91:869-77. [PMID: 22823953 DOI: 10.1016/j.ejcb.2012.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022] Open
Abstract
Regulated cell invasion resulting from migratory and matrix-degrading events is an essential step in physiological processes such as the inflammatory response and tissue repair. Cell invasion is also thought to be a critical parameter in pathological conditions such as cancer metastasis. The migration of normal and cancer cells is largely driven by the actin cytoskeleton, which controls cell shape, adhesion and contractility. Podosomes and invadopodia are actin-rich protrusions that drive invasion in normal and cancer cells. These structures protrude from the basal region of the cell facing the extracellular matrix, where they adhere to and degrade the matrix, thus facilitating invasive migration. WASP (Wiskott-Aldrich syndrome protein) and WIP (WASP-interacting protein) localise to the actin rich core of podosomes and play a critical role in their formation. More recently, studies performed on microarray data sets from cancer patients of several tumour categories show a strong correlation between reduced WIP expression and improved prognosis. In this article, we identify endogenous WIP at the distal tips of cancer cell invasive protrusions and we summarise recent advances in the study of the roles of WIP- and WASP-protein families during migration and invasion of normal and cancer cells related to podosome and invadopodium generation.
Collapse
|
22
|
Chander H, Truesdell P, Meens J, Craig AWB. Transducer of Cdc42-dependent actin assembly promotes breast cancer invasion and metastasis. Oncogene 2012; 32:3080-90. [DOI: 10.1038/onc.2012.317] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Rosales EM, Aguilera MO, Salinas RP, Carminati SA, Colombo MI, Martinez-Quiles N, Berón W. Cortactin is involved in the entry of Coxiella burnetii into non-phagocytic cells. PLoS One 2012; 7:e39348. [PMID: 22761768 PMCID: PMC3382237 DOI: 10.1371/journal.pone.0039348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 05/24/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cortactin is a key regulator of the actin cytoskeleton and is involved in pathogen-host cell interactions. Numerous pathogens exploit the phagocytic process and actin cytoskeleton to infect host cells. Coxiella burnetii, the etiologic agent of Q fever, is internalized by host cells through a molecular mechanism that is poorly understood. METHODOLOGY/PRINCIPAL FINDING Here we analyzed the role of different cortactin motifs in the internalization of C. burnetii by non-phagocytic cells. C. burnetii internalization into HeLa cells was significantly reduced when the cells expressed GFP-cortactin W525K, which carries a mutation in the SH3 domain that renders the protein unable to bind targets such as N-WASP. However, internalization was unaffected when the cells expressed the W22A mutant, which has a mutation in the N-terminal acidic region that destroys the protein's ability to bind and activate Arp2/3. We also determined whether the phosphorylation status of cortactin is important for internalization. Expression of GFP-cortactin 3F, which lacks phosphorylatable tyrosines, significantly increased internalization of C. burnetii, while expression of GFP-cortactin 3D, a phosphotyrosine mimic, did not affect it. In contrast, expression of GFP-cortactin 2A, which lacks phosphorylatable serines, inhibited C. burnetii internalization, while expression of GFP-cortactin SD, a phosphoserine mimic, did not affect it. Interestingly, inhibitors of Src kinase and the MEK-ERK kinase pathway blocked internalization. In fact, both kinases reached maximal activity at 15 min of C. burnetii infection, after which activity decreased to basal levels. Despite the decrease in kinase activity, cortactin phosphorylation at Tyr421 reached a peak at 1 h of infection. CONCLUSIONS/SIGNIFICANCE Our results suggest that the SH3 domain of cortactin is implicated in C. burnetii entry into HeLa cells. Furthermore, cortactin phosphorylation at serine and dephosphorylation at tyrosine favor C. burnetii internalization. We present evidence that ERK and Src kinases play a role early in infection by this pathogen.
Collapse
Affiliation(s)
- Eliana M. Rosales
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, Argentina
| | - Milton O. Aguilera
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, Argentina
| | - Romina P. Salinas
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, Argentina
| | - Sergio A. Carminati
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, Argentina
| | - María I. Colombo
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, Argentina
| | | | - Walter Berón
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, Argentina
- * E-mail:
| |
Collapse
|
24
|
Nazari H, Khaleghian A, Takahashi A, Harada N, Webster NJG, Nakano M, Kishi K, Ebina Y, Nakaya Y. Cortactin, an actin binding protein, regulates GLUT4 translocation via actin filament remodeling. BIOCHEMISTRY (MOSCOW) 2012; 76:1262-9. [PMID: 22117553 DOI: 10.1134/s0006297911110083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin regulates glucose uptake into fat and skeletal muscle cells by modulating the translocation of GLUT4 between the cell surface and interior. We investigated a role for cortactin, a cortical actin binding protein, in the actin filament organization and translocation of GLUT4 in Chinese hamster ovary (CHO-GLUT4myc) and L6-GLUT4myc myotube cells. Overexpression of wild-type cortactin enhanced insulin-stimulated GLUT4myc translocation but did not alter actin fiber formation. Conversely, cortactin mutants lacking the Src homology 3 (SH3) domain inhibited insulin-stimulated formation of actin stress fibers and GLUT4 translocation similar to the actin depolymerizing agent cytochalasin D. Wortmannin, genistein, and a PP1 analog completely blocked insulin-induced Akt phosphorylation, formation of actin stress fibers, and GLUT4 translocation indicating the involvement of both PI3-K/Akt and the Src family of kinases. The effect of these inhibitors was even more pronounced in the presence of overexpressed cortactin suggesting that the same pathways are involved. Knockdown of cortactin by siRNA did not inhibit insulin-induced Akt phosphorylation but completely inhibited actin stress fiber formation and glucose uptake. These results suggest that the actin binding protein cortactin is required for actin stress fiber formation in muscle cells and that this process is absolutely required for translocation of GLUT4-containing vesicles to the plasma membrane.
Collapse
Affiliation(s)
- H Nazari
- Department of Nutrition and Metabolism, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Boateng LR, Cortesio CL, Huttenlocher A. Src-mediated phosphorylation of mammalian Abp1 (DBNL) regulates podosome rosette formation in transformed fibroblasts. J Cell Sci 2012; 125:1329-41. [PMID: 22303001 DOI: 10.1242/jcs.096529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes are dynamic actin-based structures that mediate adhesion to the extracellular matrix and localize matrix degradation to facilitate cell motility and invasion. Drebrin-like protein (DBNL), which is homologous to yeast mAbp1 and is therefore known as mammalian actin-binding protein 1 (mAbp1), has been implicated in receptor-mediated endocytosis, vesicle recycling and dorsal ruffle formation. However, it is not known whether mAbp1 regulates podosome formation or cell invasion. In this study, we found that mAbp1 localizes to podosomes and is necessary for the formation of podosome rosettes in Src-transformed fibroblasts. Despite their structural similarity, mAbp1 and cortactin play distinct roles in podosome regulation. Cortactin was necessary for the formation of podosome dots, whereas mAbp1 was necessary for the formation of organized podosome rosettes in Src-transformed cells. We identified specific Src phosphorylation sites, Tyr337 and Tyr347 of mAbp1, which mediate the formation of podosome rosettes and degradation of the ECM. In contrast to dorsal ruffles, the interaction of mAbp1 with WASP-interacting protein (WIP) was not necessary for the formation of podosome rosettes. Finally, we showed that depletion of mAbp1 increased invasive cell migration, suggesting that mAbp1 differentially regulates matrix degradation and cell invasion. Collectively, our findings identify a role for mAbp1 in podosome rosette formation and cell invasion downstream of Src.
Collapse
Affiliation(s)
- Lindsy R Boateng
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
26
|
Grigera PR, Ma L, Borgman CA, Pinto AF, Sherman NE, Parsons JT, Fox JW. Mass spectrometric analysis identifies a cortactin-RCC2/TD60 interaction in mitotic cells. J Proteomics 2012; 75:2153-9. [PMID: 22282019 DOI: 10.1016/j.jprot.2012.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 10/24/2022]
Abstract
Cortactin is an F-actin binding protein that functions as a scaffold to regulate Arp2/3 mediated actin polymerization in lamellipodia and invadopodia formation as well as functioning in cell migration and endocytosis of many different cell types. In light of the fact that regulated actin polymerization is critical for many cellular processes we launched a search for novel cortactin interactions with cellular proteins that might indicate heretofore undescribed biological activities supported by cortactin. Using a modified stable isotope labeling in cell culture (SILAC) approach in HEK293 cells and Flag-tagged cortactin (F-cortactin) as bait, we identified a limited set of cortactin interactions including several proteins which have not previously been identified as cortactin associated proteins. Among these were serine/threonine-protein phosphatase 2A subunit beta (PP2A-beta) and RCC2/TD60, a Rac guanine nucleotide exchange factor (GEF) required for completion of mitosis and cytokinesis. The interaction between cortactin and RCC2/TD60 was verified in cell lysates immunoprecitated with anti-RCC2/TD60 antibody. Furthermore, cortactin was localized by immunofluorescence in the equatorial plane of dividing HeLa cells in the region where RCC2/TD60 has previously been localized thus providing support for a complex containing cortactin and RCC2/TD60 complex that may play a functional role in cells undergoing mitosis.
Collapse
Affiliation(s)
- Pablo R Grigera
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, United States
| | | | | | | | | | | | | |
Collapse
|
27
|
Burger KL, Davis AL, Isom S, Mishra N, Seals DF. The podosome marker protein Tks5 regulates macrophage invasive behavior. Cytoskeleton (Hoboken) 2011; 68:694-711. [PMID: 22021214 PMCID: PMC3240724 DOI: 10.1002/cm.20545] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 01/07/2023]
Abstract
Tks5 is a Src substrate and adaptor protein previously recognized for its regulation of cancer cell invasion through modulation of specialized adhesion structures called podosomes/invadopodia. Here we show for the first time that Tks5 localizes to the podosomes of primary macrophages, and that Tks5 protein levels increase concurrently with podosome deposition during the differentiation of monocytes into macrophages. Similar results are reported for model THP-1 cells, which differentiate into macrophages and form proteolytically active podosomes in response to a PKC signaling agonist (PMA) and with sensitivity to a PKC inhibitor (bisindolylmaleimide). Genetic manipulation of Tks5 expression (silencing and overexpression) in stable THP-1 cell lines does not independently alter this macrophage differentiation process. Nor do these cells lose the ability to focalize F-actin and its accessory proteins into podosome-like structures following PMA treatment. However, Tks5 directly controls podosome-associated gelatin degradation and invasion through collective changes in adhesion, chemotaxis, and the expression/proteolytic activity of MMP9. The Src family kinase-dependent phosphorylation of Tks5 is also implicated in the regulation of THP-1 macrophage invasive behavior. These results therefore define a previously unappreciated function of Tks5 signaling specific to the functional attributes of the macrophage podosome in adhesion, motility, and extracellular matrix-remodeling.
Collapse
Affiliation(s)
- Karen L. Burger
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Amanda L. Davis
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Scott Isom
- Department of Department of Biostatistical Sciences-Section on Biostatistics, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Nilamadhab Mishra
- Department of Internal Medicine-Section on Rheumatology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Darren F. Seals
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
28
|
Huang Y, Biswas C, Klos Dehring DA, Sriram U, Williamson EK, Li S, Clarke F, Gallucci S, Argon Y, Burkhardt JK. The actin regulatory protein HS1 is required for antigen uptake and presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:5952-63. [PMID: 22031761 DOI: 10.4049/jimmunol.1100870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hematopoietic actin regulatory protein hematopoietic lineage cell-specific protein 1 (HS1) is required for cell spreading and signaling in lymphocytes, but the scope of HS1 function in Ag presentation has not been addressed. We show that dendritic cells (DCs) from HS1(-/-) mice differentiate normally and display normal LPS-induced upregulation of surface markers and cytokines. Consistent with their normal expression of MHC and costimulatory molecules, HS1(-/-) DCs present OVA peptide efficiently to CD4(+) T cells. However, presentation of OVA protein is defective. Similarly, MHC class I-dependent presentation of VSV8 peptide to CD8(+) T cells occurs normally, but cross-presentation of GRP94/VSV8 complexes is defective. Analysis of Ag uptake pathways shows that HS1 is required for receptor-mediated endocytosis, but not for phagocytosis or macropinocytosis. HS1 interacts with dynamin 2, a protein involved in scission of endocytic vesicles. However, HS1(-/-) DCs showed decreased numbers of endocytic invaginations, whereas dynamin-inhibited cells showed accumulation of these endocytic intermediates. Taken together, these studies show that HS1 promotes an early step in the endocytic pathway that is required for efficient Ag presentation of exogenous Ag by DCs.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The Aarskog-Scott syndrome protein Fgd1 regulates podosome formation and extracellular matrix remodeling in transforming growth factor β-stimulated aortic endothelial cells. Mol Cell Biol 2011; 31:4430-41. [PMID: 21911474 DOI: 10.1128/mcb.05474-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Podosomes are dynamic actin-rich adhesion plasma membrane microdomains endowed with extracellular matrix-degrading activities. In aortic endothelial cells, podosomes are induced by transforming growth factor β (TGF-β), but how this occurs is largely unknown. It is thought that, in endothelial cells, podosomes play a role in vessel remodeling and/or in breaching anatomical barriers. We demonstrate here that, in bovine aortic endothelial cells, that the Cdc42-specific guanine exchange factor (GEF) Fgd1 is expressed and regulated by TGF-β to induce Cdc42-dependent podosome assembly. Within 15 min of TGF-β stimulation, Fgd1, but none of the other tested Cdc42 GEFs, undergoes tyrosine phosphorylation, associates with Cdc42, and translocates to the subcortical cytoskeleton via a cortactin-dependent mechanism. Small interfering RNA-mediated Fgd1 knockdown inhibits TGF-β-induced Cdc42 activation. Fgd1 depletion also reduces podosome formation and associated matrix degradation and these defects are rescued by reexpression of Fgd1. Although overexpression of Fgd1 does not promote podosome formation per se, it enhances TGF-β-induced matrix degradation. Our results identify Fgd1 as a TGF-β-regulated GEF and, as such, the first GEF to be involved in the process of cytokine-induced podosome formation. Our findings reveal the involvement of Fgd1 in endothelial cell biology and open up new avenues to study its role in vascular pathophysiology.
Collapse
|
30
|
McInroy L, Määttä A. Plectin regulates invasiveness of SW480 colon carcinoma cells and is targeted to podosome-like adhesions in an isoform-specific manner. Exp Cell Res 2011; 317:2468-78. [PMID: 21821021 DOI: 10.1016/j.yexcr.2011.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/29/2011] [Accepted: 07/16/2011] [Indexed: 11/25/2022]
Abstract
Co-ordination of cytoskeletal networks and their dynamics is an essential feature of cell migration and cancer cell invasion. Plectin is a large cytolinker protein that influences tissue integrity, organisation of actin and intermediate filaments, and cell migration. Alternatively spliced plectin isoforms are targeted to different subcellular locations. Here, we show that plectin ablation by siRNA impaired migration, invasion and adhesion of SW480 colon carcinoma cells. A previously less well characterised plectin isoform, plectin-1k, co-localised with epithelial integrins, N-WASP, cortactin, and dynamin in podosome-like adhesions in invasive SW480 colon carcinoma cells. Transfection of alternative plectin N-terminal constructs demonstrated that the first exons of isoforms 1k, 1 and 1d can target the actin-binding domain of plectin to podosome-like adhesions. Finally, Plectin-1k N-terminus rescued adhesion site formation in plectin knock-down cells. Thus, plectin participates in actin assembly and invasiveness in carcinoma cells in an isoform-specific manner.
Collapse
Affiliation(s)
- Lorna McInroy
- School of Biological and Biomedical Sciences, Durham University, DH1 3LE Durham, United Kingdom
| | | |
Collapse
|
31
|
Abstract
Podosomes, important structures for adhesion and extracellular matrix degradation, are claimed to be involved in cell migration. In addition, podosomes are also reported to be of importance in tissue remodelling, e.g., in osteoclast-mediated bone resorption. Podosomes are highly dynamic actin-filament scaffolds onto which proteins important for their function, such as matrix metallo-proteases and integrins, attach. The dynamics of the podosomes require the action of many proteins regulating actin assembly and disassembly. One such protein, gelsolin, which associates to podosomes, has been reported to be important for podosome formation and function in osteoclasts. However, podosome-like structures have been reported in gelsolin-deficient dendritic cells, but the identity of these structures was not confirmed, and their dynamics and function was not investigated. Like many other cells, dendritic cells of the immune system also form matrix degrading podosomes. In the present study, we show that dendritic cells form podosomes independently of gelsolin, that there are no major alterations in their dynamics of formation and disassembly, and that they exhibit matrix-degrading function. Furthermore, we found that gelsolin is not required for TLR4-induced podosome disassembly. Thus, the actin cytoskeleton of podosomes involved in dendritic cell extracellular matrix degradation appears to be regulated differently than the cytoskeleton in podosomes of osteoclasts mediating bone resorption.
Collapse
|
32
|
Kirkbride KC, Sung BH, Sinha S, Weaver AM. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh Migr 2011; 5:187-98. [PMID: 21258212 DOI: 10.4161/cam.5.2.14773] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Branched actin assembly is critical for a variety of cellular processes that underlie cell motility and invasion, including cellular protrusion formation and membrane trafficking. Activation of branched actin assembly occurs at various subcellular locations via site-specific activation of distinct WASp family proteins and the Arp2/3 complex. A key branched actin regulator that promotes cell motility and links signaling, cytoskeletal and membrane trafficking proteins is the Src kinase substrate and Arp2/3 binding protein cortactin. Due to its frequent overexpression in advanced, invasive cancers and its general role in regulating branched actin assembly at multiple cellular locations, cortactin has been the subject of intense study. Recent studies suggest that cortactin has a complex role in cellular migration and invasion, promoting both on-site actin polymerization and modulation of autocrine secretion. Diverse cellular activities may derive from the interaction of cortactin with site-specific binding partners.
Collapse
Affiliation(s)
- Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
33
|
The cortactin-binding domain of WIP is essential for podosome formation and extracellular matrix degradation by murine dendritic cells. Eur J Cell Biol 2011; 90:213-23. [DOI: 10.1016/j.ejcb.2010.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/05/2010] [Accepted: 09/01/2010] [Indexed: 01/10/2023] Open
|
34
|
Cornfine S, Himmel M, Kopp P, El Azzouzi K, Wiesner C, Krüger M, Rudel T, Linder S. The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes. Mol Biol Cell 2010; 22:202-15. [PMID: 21119006 PMCID: PMC3020916 DOI: 10.1091/mbc.e10-05-0394] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Podosomes are actin-based matrix contacts in a variety of cell types. This study identifies the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and shows that their interaction through the unique C-terminal domain of KIF9 is critical for the matrix-degrading ability of these structures. Podosomes are actin-based matrix contacts in a variety of cell types, most notably monocytic cells, and are characterized by their ability to lyse extracellular matrix material. Besides their dependence on actin regulation, podosomes are also influenced by microtubules and microtubule-dependent transport processes. Here we describe a novel role for KIF9, a previously little-characterized member of the kinesin motor family, in the regulation of podosomes in primary human macrophages. We find that small interfering RNA (siRNA)/short-hairpin RNA–induced knockdown of KIF9 significantly affects both numbers and matrix degradation of podosomes. Overexpression and microinjection experiments reveal that the unique C-terminal region of KIF9 is crucial for these effects, presumably through binding of specific interactors. Indeed, we further identify reggie-1/flotillin-2, a signaling mediator between intracellular vesicles and the cell periphery, as an interactor of the KIF9 C-terminus. Reggie-1 dynamically colocalizes with KIF9 in living cells, and, consistent with KIF9-mediated effects, siRNA-induced knockdown of reggies/flotillins significantly impairs matrix degradation by podosomes. In sum, we identify the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and show that their interaction is critical for the matrix-degrading ability of these structures.
Collapse
Affiliation(s)
- Susanne Cornfine
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany Institute for Cardiovascular Diseases, 80336 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kelley LC, Ammer AG, Hayes KE, Martin KH, Machida K, Jia L, Mayer BJ, Weed SA. Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. J Cell Sci 2010; 123:3923-32. [PMID: 20980387 DOI: 10.1242/jcs.075200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The proto-oncogene Src tyrosine kinase (Src) is overexpressed in human cancers and is currently a target of anti-invasive therapies. Activation of Src is an essential catalyst of invadopodia production. Invadopodia are cellular structures that mediate extracellular matrix (ECM) proteolysis, allowing invasive cell types to breach confining tissue barriers. Invadopodia assembly and maturation is a multistep process, first requiring the targeting of actin-associated proteins to form pre-invadopodia, which subsequently mature by recruitment and activation of matrix metalloproteases (MMPs) that facilitate ECM degradation. We demonstrate that active, oncogenic Src alleles require the presence of a wild-type counterpart to induce ECM degradation at invadopodia sites. In addition, we identify the phosphorylation of the invadopodia regulatory protein cortactin as an important mediator of invadopodia maturation downstream of wild-type Src. Distinct phosphotyrosine-based protein-binding profiles in cells forming pre-invadopodia and mature invadopodia were identified by SH2-domain array analysis. These results indicate that although elevated Src kinase activity is required to target actin-associated proteins to pre-invadopodia, regulated Src activity is required for invadopodia maturation and matrix degradation activity. Our findings describe a previously unappreciated role for proto-oncogenic Src in enabling the invasive activity of constitutively active Src alleles.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Appel S, Allen PG, Vetterkind S, Jin JP, Morgan KG. h3/Acidic calponin: an actin-binding protein that controls extracellular signal-regulated kinase 1/2 activity in nonmuscle cells. Mol Biol Cell 2010; 21:1409-22. [PMID: 20181831 PMCID: PMC2854098 DOI: 10.1091/mbc.e09-06-0451] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 01/29/2010] [Accepted: 02/17/2010] [Indexed: 01/03/2023] Open
Abstract
Migration of fibroblasts is important in wound healing. Here, we demonstrate a role and a mechanism for h3/acidic calponin (aCaP, CNN3) in REF52.2 cell motility, a fibroblast line rich in actin filaments. We show that the actin-binding protein h3/acidic calponin associates with stress fibers in the absence of stimulation but is targeted to the cell cortex and podosome-like structures after stimulation with a phorbol ester, phorbol-12,13-dibutyrate (PDBu). By coimmunoprecipitation and colocalization, we show that extracellular signal-regulated kinase (ERK)1/2 and protein kinase C (PKC)alpha constitutively associate with h3/acidic calponin and are cotargeted with h3/acidic calponin in the presence of PDBu. This targeting can be blocked by a PKC inhibitor but does not require phosphorylation of h3/acidic calponin at the PKC sites S175 or T184. Knockdown of h3/acidic calponin results in a loss of PDBu-mediated ERK1/2 targeting, whereas PKCalpha targeting is unaffected. Caldesmon is an actin-binding protein that regulates actomyosin interactions and is a known substrate of ERK1/2. Both ERK1/2 activity and nonmuscle l-caldesmon phosphorylation are blocked by h3/acidic calponin knockdown. Furthermore, h3/acidic calponin knockdown inhibits REF52.2 migration in an in vitro wound healing assay. Our findings are consistent with a model whereby h3/acidic calponin controls fibroblast migration by regulation of ERK1/2-mediated l-caldesmon phosphorylation.
Collapse
Affiliation(s)
| | - Philip G. Allen
- Whitaker Imaging Facility, Biomedical Engineering, Boston University, Boston, MA 02215; and
| | | | - Jian-Ping Jin
- School of Medicine, Wayne State University, Detroit, MI 48201
| | | |
Collapse
|
37
|
Maślikowski BM, Néel BD, Wu Y, Wang L, Rodrigues NA, Gillet G, Bédard PA. Cellular processes of v-Src transformation revealed by gene profiling of primary cells--implications for human cancer. BMC Cancer 2010; 10:41. [PMID: 20152043 PMCID: PMC2837010 DOI: 10.1186/1471-2407-10-41] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/12/2010] [Indexed: 01/05/2023] Open
Abstract
Background Cell transformation by the Src tyrosine kinase is characterized by extensive changes in gene expression. In this study, we took advantage of several strains of the Rous sarcoma virus (RSV) to characterize the patterns of v-Src-dependent gene expression in two different primary cell types, namely chicken embryo fibroblasts (CEF) and chicken neuroretinal (CNR) cells. We identified a common set of v-Src regulated genes and assessed if their expression is associated with disease-free survival using several independent human tumor data sets. Methods CEF and CNR cells were infected with transforming, non-transforming, and temperature sensitive mutants of RSV to identify the patterns of gene expression in response to v-Src-transformation. Microarray analysis was used to measure changes in gene expression and to define a common set of v-Src regulated genes (CSR genes) in CEF and CNR cells. A clustering enrichment regime using the CSR genes and two independent breast tumor data-sets was used to identify a 42-gene aggressive tumor gene signature. The aggressive gene signature was tested for its prognostic value by conducting survival analyses on six additional tumor data sets. Results The analysis of CEF and CNR cells revealed that cell transformation by v-Src alters the expression of 6% of the protein coding genes of the genome. A common set of 175 v-Src regulated genes (CSR genes) was regulated in both CEF and CNR cells. Within the CSR gene set, a group of 42 v-Src inducible genes was associated with reduced disease- and metastasis-free survival in several independent patient cohorts with breast or lung cancer. Gene classes represented within this group include DNA replication, cell cycle, the DNA damage and stress responses, and blood vessel morphogenesis. Conclusion By studying the v-Src-dependent changes in gene expression in two types of primary cells, we identified a set of 42 inducible genes associated with poor prognosis in breast and lung cancer. The identification of these genes provides a set of biomarkers of aggressive tumor behavior and a framework for the study of cancer cells characterized by elevated Src kinase activity.
Collapse
Affiliation(s)
- Bart M Maślikowski
- Department of Biology, McMaster University, 1280 Main street West, Hamilton, ON, L8S 4K1, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci U S A 2009; 106:18373-8. [PMID: 19822767 DOI: 10.1073/pnas.0910391106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A critical step in synapse formation is the clustering of neurotransmitter receptors in the postsynaptic membrane, directly opposite the nerve terminal. At the neuromuscular junction, a widely studied model synapse, acetylcholine receptors (AChRs) initially aggregate to form an ovoid postsynaptic plaque. As the synapse matures, the plaque becomes perforated and is eventually transformed into a complex, branched structure. We found that this transformation also occurs in myotubes cultured in the absence of neurons, and used this system to seek machinery that orchestrates postsynaptic maturation. We show that perforations in the AChR aggregate bear structures resembling podosomes, dynamic actin-rich adhesive organelles involved in matrix remodeling in non-neuronal cells but not described in neural structures. The location and dynamics of synaptic podosomes are spatiotemporally correlated with changes in AChR aggregate topology, and pharmacological disruption of podosomes leads to rapid alterations in AChR organization. Our results indicate that synaptic podosomes play critical roles in maturation of the postsynaptic membrane.
Collapse
|
39
|
Crimaldi L, Courtneidge SA, Gimona M. Tks5 recruits AFAP-110, p190RhoGAP, and cortactin for podosome formation. Exp Cell Res 2009; 315:2581-92. [PMID: 19540230 DOI: 10.1016/j.yexcr.2009.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/29/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
Abstract
Podosome formation in vascular smooth muscle cells is characterized by the recruitment of AFAP-110, p190RhoGAP, and cortactin, which have specific roles in Src activation, local down-regulation of RhoA activity, and actin polymerization, respectively. However, the molecular mechanism that underlies their specific recruitment to podosomes remains unknown. The scaffold protein Tks5 is localized to podosomes in Src-transformed fibroblasts and in smooth muscle cells, and may serve as a specific recruiting adapter for various components during podosome formation. We show here that induced mislocalization of Tks5 to the surface of mitochondria leads to a major subcellular redistribution of AFAP-110, p190RhoGAP, and cortactin, and to inhibition of podosome formation. Analysis of a series of similarly mistargeted deletion mutants of Tks5 indicates that the fifth SH3 domain is essential for this recruitment. A Tks5 mutant lacking the PX domain also inhibits podosome formation and induces the redistribution of AFAP-110, p190RhoGAP, and cortactin to the perinuclear area. By expressing a catalytically inactive point mutant and by siRNA-mediated expression knock-down we also provide evidence that p190RhoGAP is required for podosome formation. Together our findings demonstrate that Tks5 plays a central role in the recruitment of AFAP-110, p190RhoGAP, and cortactin to drive podosome formation.
Collapse
Affiliation(s)
- Luca Crimaldi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale, Santa Maria, Imbaro, Chieti, Italy.
| | | | | |
Collapse
|
40
|
Abstract
Podosomes are highly dynamic adhesion microdomains formed at the ventral membrane of some monocyte-derived cells. Structurally, their most distinguishing feature is their two-part architecture, consisting in a core of F-actin and actin-associated proteins, surrounded by a ring structure consisting of plaque proteins as well as signalling proteins. In addition to the presence of specific markers, they are distinguished from other adhesion structures by the presence of metalloproteases, endowing them with the ability to degrade the extracellular matrix. Invadopodia are related structures, of similar molecular composition but of distinct architecture, made by fibroblasts or epithelial cells transformed by the v-src oncogene or aggressive carcinoma cells. Such membrane-associated cellular devices, now named invadosomes, are thought to have a central role in mediating polarized migration in cells that cross anatomical boundaries. Podosomes have now been shown to form in endothelial cells, non monocytic and non tumoral cells, endowed with tissue invasive activities during vascular remodelling. Here, we summarize the recent advances and developments in this field, discuss how endothelial podosomes combine specificities of monocytic podosomes and invadopodia and provide our provisional outlook into the future understanding of endothelial podosomes.
Collapse
Affiliation(s)
- Elisabeth Génot
- IECB/Inserm U889, 2, rue Robert Escarpit, 33600 Pessac, France.
| |
Collapse
|
41
|
Buschman MD, Bromann PA, Cejudo-Martin P, Wen F, Pass I, Courtneidge SA. The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation. Mol Biol Cell 2009; 20:1302-11. [PMID: 19144821 DOI: 10.1091/mbc.e08-09-0949] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metastatic cancer cells have the ability to both degrade and migrate through the extracellular matrix (ECM). Invasiveness can be correlated with the presence of dynamic actin-rich membrane structures called podosomes or invadopodia. We showed previously that the adaptor protein tyrosine kinase substrate with five Src homology 3 domains (Tks5)/Fish is required for podosome/invadopodia formation, degradation of ECM, and cancer cell invasion in vivo and in vitro. Here, we describe Tks4, a novel protein that is closely related to Tks5. This protein contains an amino-terminal Phox homology domain, four SH3 domains, and several proline-rich motifs. In Src-transformed fibroblasts, Tks4 is tyrosine phosphorylated and predominantly localized to rosettes of podosomes. We used both short hairpin RNA knockdown and mouse embryo fibroblasts lacking Tks4 to investigate its role in podosome formation. We found that lack of Tks4 resulted in incomplete podosome formation and inhibited ECM degradation. Both phenotypes were rescued by reintroduction of Tks4, whereas only podosome formation, but not ECM degradation, was rescued by overexpression of Tks5. The tyrosine phosphorylation sites of Tks4 were required for efficient rescue. Furthermore, in the absence of Tks4, membrane type-1 matrix metalloproteinase (MT1-MMP) was not recruited to the incomplete podosomes. These findings suggest that Tks4 and Tks5 have overlapping, but not identical, functions, and implicate Tks4 in MT1-MMP recruitment and ECM degradation.
Collapse
Affiliation(s)
- Matthew D Buschman
- Tumor Microenvironment Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Lin JJ, Li Y, Eppinga RD, Wang Q, Jin J. Chapter 1 Roles of Caldesmon in Cell Motility and Actin Cytoskeleton Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:1-68. [DOI: 10.1016/s1937-6448(08)02001-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Crowley JL, Smith TC, Fang Z, Takizawa N, Luna EJ. Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency. Mol Biol Cell 2008; 20:948-62. [PMID: 19109420 DOI: 10.1091/mbc.e08-08-0867] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface.
Collapse
Affiliation(s)
- Jessica L Crowley
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
45
|
Aga M, Bradley JM, Keller KE, Kelley MJ, Acott TS. Specialized podosome- or invadopodia-like structures (PILS) for focal trabecular meshwork extracellular matrix turnover. Invest Ophthalmol Vis Sci 2008; 49:5353-65. [PMID: 18641286 PMCID: PMC2683617 DOI: 10.1167/iovs.07-1666] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE There are distinctive areas of colocalization of matrix metalloproteinase (MMP)-2 and -14 on trabecular meshwork (TM) cells that resemble podosomes or invadopodia. Studies were conducted to determine whether TM cells exhibit podosome- or invadopodia-like structures (PILS) and whether they produce focal extracellular matrix (ECM) turnover. METHODS Porcine and human TM cells and perfused anterior segment organ cultures were studied. Localization of PILS components on TM cells and in sections from anterior segments was determined by immunohistochemistry and confocal microscopy. Cells were grown on type I collagen labeled with fluorescein isothiocyanate (FITC) for degradation analysis. Confocal time lapse images were taken of labeled TM cells on FITC-collagen. RESULTS Immunostaining for MMP-2, MMP-14, and the typical PILS components cortactin, caldesmon, alpha-actinin, N-WASP, Arp-3, and cdc42 colocalized on these distinctive structures. Integrin-alphaV and -beta1, fibronectin, and versican colocalized with PILS components. TM cells on FITC-conjugated collagen developed focal regions of degradation. Time-lapse imaging showed dramatic and controlled movement of TM cell processes during this ECM degradation and fragment internalization. MMP-2, MMP-14, and cortactin colocalized at regions that appear to be PILS on cells within the outflow pathway in sections of human anterior segments. CONCLUSIONS TM cells exhibit areas where PILS components colocalize with MMP-2 and -14. Similar structures are found in sections, suggesting that PILS occur in situ in the outflow pathway. The collagen degradation suggests that PILS may serve as focal sites for targeted ECM turnover, an event linked to modifications of aqueous outflow resistance and intraocular pressure homeostasis.
Collapse
Affiliation(s)
- Mini Aga
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239-4197, USA
| | | | | | | | | |
Collapse
|
46
|
De Kimpe L, Janssens K, Derua R, Armacki M, Goicoechea S, Otey C, Waelkens E, Vandoninck S, Vandenheede JR, Seufferlein T, Van Lint J. Characterization of cortactin as an in vivo protein kinase D substrate: interdependence of sites and potentiation by Src. Cell Signal 2008; 21:253-63. [PMID: 19038333 DOI: 10.1016/j.cellsig.2008.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 10/15/2008] [Accepted: 10/22/2008] [Indexed: 10/24/2022]
Abstract
Protein Kinase D (PKD) has been implicated in the regulation of actin turnover at the leading edge, invasion and migration. In particular, a complex between cortactin, paxillin and PKD in the invadopodia of invasive breast cancer cells has been described earlier, but so far this complex remained ill defined. Here we have investigated the possible role of PKD as a cortactin kinase. Using a mass spectrometric approach, we found that PKD phosphorylates cortactin on Ser 298 in the 6th cortactin repeat region and on Ser 348, right before the helical-proline rich domain of cortactin. We developed phosphospecific antibodies against these phosphorylated sequences, and used them as tools to follow the in vivo phosphorylation of cortactin by PKD. Examination of cortactin phosphorylation kinetics revealed that Ser 298 serves as a priming site for subsequent phosphorylation of Ser 348. Src, a well-known cortactin kinase, strongly potentiated the in vivo PKD mediated cortactin phosphorylation. This Src effect is neither mediated by pre-phosphorylation of cortactin nor by activation of PKD by Src. Phosphorylation of cortactin by PKD does not affect its subcellular localization, nor does it affect its translocation to podosomes or membrane ruffles. Moreover, there was no effect of PKD mediated cortactin phosphorylation on EGF receptor degradation and LPA induced migration. Taken together, these data establish cortactin as a novel PKD substrate and reveal a novel connection between Src and PKD.
Collapse
Affiliation(s)
- Line De Kimpe
- Department of Molecular Cell Biology, Faculty of Medicine, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Clark ES, Weaver AM. A new role for cortactin in invadopodia: regulation of protease secretion. Eur J Cell Biol 2008; 87:581-90. [PMID: 18342393 PMCID: PMC2566933 DOI: 10.1016/j.ejcb.2008.01.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/19/2008] [Accepted: 01/22/2008] [Indexed: 01/11/2023] Open
Abstract
Invadopodia are actin-dependent organelles that function in the invasion and remodeling of the extracellular matrix (ECM) by tumor cells. Cortactin, a regulator of the Arp2/3 complex, is of particular importance in invadopodia function. While most of the focus has been on the possible role of cortactin in actin assembly for direct formation of actin-rich invadopodia puncta, our recent data suggest that the primary role of cortactin in invadopodia is to promote protease secretion. In this manuscript, we review our previous work and present new data showing that cortactin is essential for both the localization of key invadopodia matrix metalloproteinases (MMPs) to actin-positive puncta at the cell-ECM interface and for ECM degradation induced by overexpression of MT1-MMP-GFP. Based on these data and results from the literature, we propose potential mechanisms by which cortactin may link vesicular trafficking and dynamic branched actin assembly to regulate protease secretion for invadopodia-associated ECM degradation.
Collapse
Affiliation(s)
- Emily S. Clark
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alissa M. Weaver
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
48
|
CALLE Y, ANTÓN I, THRASHER A, JONES G. WASP and WIP regulate podosomes in migrating leukocytes. J Microsc 2008; 231:494-505. [DOI: 10.1111/j.1365-2818.2008.02062.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Abstract
Cortactin is a cytoskeletal protein and src kinase substrate that is frequently overexpressed in cancer. Animal studies suggest that cortactin overexpression increases tumor aggressiveness, possibly through promotion of tumor invasion and metastasis. Recently, many studies have documented a role for cortactin in promoting cell motility and invasion, including a critical role in invadopodia, actin rich-subcellular protrusions associated with degradation of the extracellular matrix by cancer cells. Here, I review the evidence and potential mechanisms for cortactin as a critical mediator of tumor cell invasion.
Collapse
Affiliation(s)
- Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University Medical Center, 448 PRB, VUMC, Nashville, TN 37232-6840, USA.
| |
Collapse
|
50
|
Dorfleutner A, Cho Y, Vincent D, Cunnick J, Lin H, Weed SA, Stehlik C, Flynn DC. Phosphorylation of AFAP-110 affects podosome lifespan in A7r5 cells. J Cell Sci 2008; 121:2394-405. [PMID: 18577577 DOI: 10.1242/jcs.026187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AFAP-110 is an actin-binding and -crosslinking protein that is enriched in Src and phorbol ester (PE)-induced podosomes. In vascular smooth muscle cells endogenous AFAP-110 localized to actin stress fibers and, in response to treatment with phorbol-12,13-dibutyrate (PDBu), to actin-rich podosomes. Since PEs can activate PKCalpha, AFAP-110 is a substrate of PKCalpha and PKCalpha-AFAP-110 interactions direct podosome formation, we sought to identify a PE-induced phosphorylation site in AFAP-110 and determine whether phosphorylation is linked to the formation of podosomes. Mutational analysis revealed Ser277 of AFAP-110 to be phosphorylated in PE-treated cells. The use of a newly generated, phospho-specific antibody directed against phosphorylated Ser277 revealed that PKCalpha activation is associated with PE-induced AFAP-110 phosphorylation. In PDBu-treated A7r5 rat vascular smooth muscle cells, immunolabeling using the phospho-specific antibody showed that phospho-AFAP-110 is primarily associated with actin in podosomes. Although mutation of Ser at position 277 to Ala (AFAP-110(S277A)) did not alter the ability of AFAP-110 to localize to podosomes, overexpression of AFAP-110(S277A) in treated and untreated A7r5 cells resulted in an increased number of cells that display podosomes. Video microscopy demonstrated that AFAP-110(S277A) expression correlates with an increased number of long-lived podosomes. Therefore, we hypothesize that AFAP-110 phosphorylation and/or dephosphorylation is involved in the regulation of podosome stability and lifespan.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- The Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | | | | | |
Collapse
|