1
|
Liu W, Li H, Botos I, Kumkhaek C, Zhu J, Rodgers GP. Olfactomedin 4 promotes gastric cancer cell G2/M progression and serves as a therapeutic target in gastric adenocarcinoma. Carcinogenesis 2025; 46:bgaf010. [PMID: 40056162 PMCID: PMC12013284 DOI: 10.1093/carcin/bgaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Olfactomedin 4 (OLFM4) is a member of the olfactomedin domain-containing olfactomedin glycoprotein family and plays important roles in innate immunity, inflammation, and cancer. It exhibits increased expression in gastric cancer patient tissues and has been shown to regulate proliferation and apoptosis in gastric cancer cells. However, the molecular mechanism(s) underlying OLFM4's role in gastric cancer remain unknown. In this study, we found that OLFM4 knockdown significantly inhibited YCC3 gastric cancer cell proliferation and induced G2/M cell cycle arrest. Yeast two-hybridization screening revealed that OLFM4 directly interacts with cyclin B1 interacting protein 1 (CCNB1IP1), an E3 ubiquitin protein ligase. In YCC3 cells, OLFM4 co-immunoprecipitated and colocalized with CCNB1IP1 and underwent cell cycle phase-specific nucleo-cytoplasmic shuttling. OLFM4 knockdown decreased both cyclin B1 protein levels and CDK1 activity in YCC3 cells. Screening of a cohort of OLFM4-targeted microRNAs (miRNAs) for their impact on cell proliferation identified several that significantly downregulated OLFM4 protein levels and inhibited YCC3 cell proliferation in vitro. Rescue experiments demonstrated that these miRNAs' inhibitory effect on cell proliferation was partially related to their downregulation of OLFM4. When three of these miRNAs were individually administered intratumorally to nude mice bearing YCC3 cell xenografts, tumor growth was significantly inhibited when compared with tumors treated with a negative control miRNA. These results suggest that OLFM4 promotes cell cycle progression and cell proliferation in gastric cancer cells and may have utility as a therapeutic target in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Chutima Kumkhaek
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Wen F, Han Y, Zhang H, Zhao Z, Wang W, Chen F, Qin W, Ju J, An L, Meng Y, Yang J, Tang Y, Zhao Y, Zhang H, Li F, Bai W, Xu Y, Zhou Z, Jiao S. Epstein-Barr virus infection upregulates extracellular OLFM4 to activate YAP signaling during gastric cancer progression. Nat Commun 2024; 15:10543. [PMID: 39627192 PMCID: PMC11615309 DOI: 10.1038/s41467-024-54850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/24/2024] [Indexed: 12/06/2024] Open
Abstract
Extracellular vesicles (EVs) are known to mediate cell communications and shape tumor microenvironment. Compared to the well-studied small EVs, the function of large microvesicles (MVs) during tumorigenesis is poorly understood. Here we show the proteome of MVs in Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC), and identify olfactomedin 4 (OLFM4) is induced by EBV infection and secreted via MVs to promote tumor progression through Hippo signaling. Specifically, OLFM4 is a target gene of the cGAS-STING pathway, and EBV infection activates cGAS-STING pathway and increases OLFM4 expression. Moreover, MV-carried OLFM4 binds with the extracellular cadherin domain of FAT1, thereby impairing its intracellular interaction with MST1 and leading to YAP activation in recipient cells. Together, our study not only reveals a regulatory mechanism though which viral infection is coupled via MVs with intercellular control of the Hippo signaling, but also highlights the OLFM4-Hippo axis as a therapeutic target for EBV-associated cancers.
Collapse
Affiliation(s)
- Fuping Wen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhangting Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Fan Chen
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Weimin Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Meng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yang Tang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yun Zhao
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huanhu Zhang
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China
| | - Feng Li
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China
| | - Wenqi Bai
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China.
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Xing Z, Li X, He J, Chen Y, Zhu L, Zhang X, Huang Z, Tang J, Guo Y, He Y. OLFM4 modulates intestinal inflammation by promoting IL-22 +ILC3 in the gut. Commun Biol 2024; 7:914. [PMID: 39075283 PMCID: PMC11286877 DOI: 10.1038/s42003-024-06601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) play key roles in intestinal inflammation. Olfactomedin 4 (OLFM4) is highly expressed in the colon and has a potential role in dextran sodium sulfate-induced colitis. However, the detailed mechanisms underlying the effects of OLFM4 on ILC3-mediated colitis remain unclear. In this study, we identify OLFM4 as a positive regulator of IL-22+ILC3. OLFM4 expression in colonic ILC3s increases substantially during intestinal inflammation in humans and mice. Compared to littermate controls, OLFM4-deficient (OLFM4-/-) mice are more susceptible to bacterial infection and display greater resistance to anti-CD40 induced innate colitis, together with impaired IL-22 production by ILC3, and ILC3s from OLFM4-/-mice are defective in pathogen resistance. Besides, mice with OLFM4 deficiency in the RORγt compartment exhibit the same trend as in OLFM4-/-mice, including colonic inflammation and IL-22 production. Mechanistically, the decrease in IL-22+ILC3 caused by OLFM4 deficiency involves the apoptosis signal-regulating kinase 1 (ASK1)- p38 MAPK signaling-dependent downregulation of RAR-related orphan receptor gamma (RORγt) protein. The OLFM4-metadherin (MTDH) complex upregulates p38/RORγt signaling, which is necessary for IL-22+ILC3 activation. The findings indicate that OLFM4 is a novel regulator of IL-22+ILC3 and essential for modulating intestinal inflammation and tissue homeostasis.
Collapse
Affiliation(s)
- Zhe Xing
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Yimin Chen
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaogang Zhang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Zhengcong Huang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Li Y, Wang JX, Yibi RH. Prediction of lymph node metastasis in early esophageal cancer. World J Gastrointest Surg 2023; 15:2294-2304. [PMID: 37969711 PMCID: PMC10642458 DOI: 10.4240/wjgs.v15.i10.2294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Given the poor prognosis of patients with lymph node metastasis, estimating the lymph node status in patients with early esophageal cancer is crucial. Indicators that could be used to predict lymph node metastasis in early esophageal cancer have been reported in many recent studies, but no recent studies have included a review of this subject. AIM To review indicators predicting lymph node metastasis in early esophageal squamous cell carcinoma (ESCC) and early esophageal adenocarcinoma (EAC). METHODS We searched PubMed with "[early esophageal cancer (Title/Abstract)] and [lymph node (Title/Abstract)]" or "[early esophageal carcinoma (Title/Abstract)] and [lymph node (Title/Abstract)]" or "[superficial esophageal cancer (Title/Abstract)] and [lymph node (Title/Abstract)]." A total of 29 studies were eligible for analysis. RESULTS Preoperative imaging (size), serum markers (microRNA-218), postoperative pathology and immunohistochemical analysis (depth of invasion, tumor size, differentiation grade, lymphovascular invasion, neural invasion, expression of PIM-1 < 30%) were predictive factors for lymph node metastasis in both early ESCC and EAC. Serum markers (thymidine kinase 1 ≥ 3.38 pmol/L; cytokeratin 19 fragment antigen 21-1 > 3.30 ng/mL; stathmin-1) and postoperative pathology and immunohistochemical analysis (overexpression of cortactin, mixed-lineage leukaemia 2, and stanniocalcin-1) were predictive for lymph node metastasis in early ESCC. Transcription of CD69, myeloid differentiation protein 88 and toll-like receptor 4 and low expression of olfactomedin 4 were predictive of lymph node metastasis in early EAC. A total of 6 comprehensive models for early ESCC, including logistic regression model, nomogram, and artificial neural network (ANN), were reviewed. The areas under the receiver operating characteristic curve of these models reached 0.789-0.938, and the ANN performed best. As all these models relied on postoperative pathology, further models focusing on serum markers, imaging and immunohistochemical indicators are still needed. CONCLUSION Various factors were predictive of lymph node metastasis in early esophageal cancer, and present comprehensive models predicting lymph node metastasis in early ESCC mainly relied on postoperative pathology. Further studies focusing on serum markers, imaging and immunohistochemical indicators are still in need.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology, Lhasa People’s Hospital, Lhasa 850000, Tibet Autonomous Region, China
| | - Jun-Xiong Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100000, China
- National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100000, China
| | - Ran-Hen Yibi
- Department of Gastroenterology, Lhasa People’s Hospital, Lhasa 850000, Tibet Autonomous Region, China
| |
Collapse
|
5
|
Praus F, Künstner A, Sauer T, Kohl M, Kern K, Deichmann S, Végvári Á, Keck T, Busch H, Habermann JK, Gemoll T. Panomics reveals patient individuality as the major driver of colorectal cancer progression. J Transl Med 2023; 21:41. [PMID: 36691026 PMCID: PMC9869555 DOI: 10.1186/s12967-022-03855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/26/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent cancers, with over one million new cases per year. Overall, prognosis of CRC largely depends on the disease stage and metastatic status. As precision oncology for patients with CRC continues to improve, this study aimed to integrate genomic, transcriptomic, and proteomic analyses to identify significant differences in expression during CRC progression using a unique set of paired patient samples while considering tumour heterogeneity. METHODS We analysed fresh-frozen tissue samples prepared under strict cryogenic conditions of matched healthy colon mucosa, colorectal carcinoma, and liver metastasis from the same patients. Somatic mutations of known cancer-related genes were analysed using Illumina's TruSeq Amplicon Cancer Panel; the transcriptome was assessed comprehensively using Clariom D microarrays. The global proteome was evaluated by liquid chromatography-coupled mass spectrometry (LC‒MS/MS) and validated by two-dimensional difference in-gel electrophoresis. Subsequent unsupervised principal component clustering, statistical comparisons, and gene set enrichment analyses were calculated based on differential expression results. RESULTS Although panomics revealed low RNA and protein expression of CA1, CLCA1, MATN2, AHCYL2, and FCGBP in malignant tissues compared to healthy colon mucosa, no differentially expressed RNA or protein targets were detected between tumour and metastatic tissues. Subsequent intra-patient comparisons revealed highly specific expression differences (e.g., SRSF3, OLFM4, and CEACAM5) associated with patient-specific transcriptomes and proteomes. CONCLUSION Our research results highlight the importance of inter- and intra-tumour heterogeneity as well as individual, patient-paired evaluations for clinical studies. In addition to changes among groups reflecting CRC progression, we identified significant expression differences between normal colon mucosa, primary tumour, and liver metastasis samples from individuals, which might accelerate implementation of precision oncology in the future.
Collapse
Affiliation(s)
- Friederike Praus
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Campus Lübeck, 23538, Lübeck, Germany
| | - Thorben Sauer
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Michael Kohl
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Campus Lübeck, 23538, Lübeck, Germany
| | - Katharina Kern
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Steffen Deichmann
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
- Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tobias Keck
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Campus Lübeck, 23538, Lübeck, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Department of Oncology Pathology, Karolinska Institutet, 171 64, Solna, Sweden
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
6
|
New Insights of OLFM2 and OLFM4 in Gut-Liver Axis and Their Potential Involvement in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137442. [PMID: 35806447 PMCID: PMC9267292 DOI: 10.3390/ijms23137442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Olfactomedins (OLFMs) are a family of glycoproteins that play a relevant role in embryonic development and in some pathological processes. Although OLFM2 is involved in the regulation of the energy metabolism and OLFM4 is an important player in inflammation, innate immunity and cancer, the role of OLFMs in NAFLD-related intestinal dysbiosis remains unknown. In this study, we analysed the hepatic mRNA expression of OLFM2 and the jejunal expression of OLFM4 in a well-established cohort of women with morbid obesity (MO), classified according to their hepatic histology into normal liver (n = 27), simple steatosis (n = 26) and nonalcoholic steatohepatitis (NASH, n = 16). Our results showed that OLFM2 hepatic mRNA was higher in NASH, in advanced degrees of steatosis and in the presence of lobular inflammation. Additionally, we obtained positive correlations between hepatic OLFM2 and glucose, cholesterol, trimethylamine N-oxide and deoxycholic acid levels and hepatic fatty acid synthase, and negative associations with weight and jejunal Toll-like receptors (TLR4) and TLR5 expression. Regarding jejunal OLFM4, we observed positive correlations with circulating interleukin (IL)-8, IL-10, IL-17 and jejunal TLR9. In conclusion, OLFM2 in the liver seems to play a relevant role in NAFLD progression, while OLFM4 in the jejunum could be involved in gut dysbiosis-related inflammatory events.
Collapse
|
7
|
Cárdenas-León CG, Klaas M, Mäemets-Allas K, Arak T, Eller M, Jaks V. Olfactomedin 4 regulates migration and proliferation of immortalized non-transformed keratinocytes through modulation of the cell cycle machinery and actin cytoskeleton remodelling. Exp Cell Res 2022; 415:113111. [PMID: 35337817 DOI: 10.1016/j.yexcr.2022.113111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
Abstract
Olfactomedin 4 (OLFM4), a multifunctional matricellular protein, is involved in regulation of angiogenesis, innate immunity, inflammation, tumorigenesis and metastasis formation via modulation of important cellular processes like adhesion, proliferation, differentiation as well as apoptosis. In our previous work we demonstrated the upregulation of OLFM4 during liver regeneration and cutaneous wound healing. Here we studied the outcomes of OLFM4 downregulation in human immortalized keratinocytes - the HaCaT cells. The suppression of OLFM4 inhibited migration but enhanced the proliferation of these cells. By using proteomic, and phosphoproteomic analysis, we found that OLFM4 downregulation induced changes in the levels of 184 proteins and 348 phosphosites. An integrated pathway analysis suggested that the increased phosphorylation of CDK7 at Ser164 and Thr170 may serve as the key event in the activation of CDK2 and consequent activation of cell cycle progression. Furthermore, the decrease in GIT1 and WAVE2 protein levels were connected to the disorganization of the actin cytoskeleton, reduction of lamellipodia formation at the leading edge of HaCaT cells, and decrease in their migration capacity.
Collapse
Affiliation(s)
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Terje Arak
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Mart Eller
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia; Dermatology Clinic, Tartu University Clinics, Tartu, Estonia.
| |
Collapse
|
8
|
Klaas M, Mäemets-Allas K, Heinmäe E, Lagus H, Arak T, Eller M, Kingo K, Kankuri E, Jaks V. Olfactomedin-4 improves cutaneous wound healing by promoting skin cell proliferation and migration through POU5F1/OCT4 and ESR1 signalling cascades. Cell Mol Life Sci 2022; 79:157. [PMID: 35218417 PMCID: PMC8882121 DOI: 10.1007/s00018-022-04202-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
Olfactomedin-4 (OLFM4) is an olfactomedin-domain-containing glycoprotein, which regulates cell adhesion, proliferation, gastrointestinal inflammation, innate immunity and cancer metastasis. In the present study we investigated its role in skin regeneration. We found that OLFM4 expression is transiently upregulated in the proliferative phase of cutaneous wound healing in humans as well as in mice. Moreover, a significant increase in OLFM4 expression was detected in the skin of lesional psoriasis, a chronic inflammatory disease characterized by keratinocyte hyperproliferation. In vitro experiments demonstrated that OLFM4 selectively stimulated keratinocyte proliferation and increased both keratinocyte and fibroblast migration. Using proteotranscriptomic pathway analysis we revealed that transcription factors POU5F1/OCT4 and ESR1 acted as hubs for OLFM4-induced signalling in keratinocytes. In vivo experiments utilizing mouse splinted full-thickness cutaneous wound healing model showed that application of recombinant OLFM4 protein can significantly improve wound healing efficacy. Taken together, our results suggest that OLFM4 acts as a transiently upregulated inflammatory signal that promotes wound healing by regulating both dermal and epidermal cell compartments of the skin.
Collapse
Affiliation(s)
- Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Elizabeth Heinmäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Terje Arak
- Surgery Clinic, Tartu University Hospital, Puusepa 8, 50406, Tartu, Estonia
| | - Mart Eller
- Surgery Clinic, Tartu University Hospital, Puusepa 8, 50406, Tartu, Estonia
| | - Külli Kingo
- Dermatology Clinic, Tartu University Hospital, Raja 31, 50417, Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia. .,Dermatology Clinic, Tartu University Hospital, Raja 31, 50417, Tartu, Estonia.
| |
Collapse
|
9
|
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M, Chrousos GP. Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 2022; 49:35. [PMID: 35059730 PMCID: PMC8815408 DOI: 10.3892/ijmm.2022.5090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The highly heterogeneous symptomatology and unpredictable progress of COVID-19 triggered unprecedented intensive biomedical research and a number of clinical research projects. Although the pathophysiology of the disease is being progressively clarified, its complexity remains vast. Moreover, some extremely infrequent cases of thrombotic thrombocytopenia following vaccination against SARS-CoV-2 infection have been observed. The present study aimed to map the signaling pathways of thrombocytopenia implicated in COVID-19, as well as in vaccine-induced thrombotic thrombocytopenia (VITT). The biomedical literature database, MEDLINE/PubMed, was thoroughly searched using artificial intelligence techniques for the semantic relations among the top 50 similar words (>0.9) implicated in COVID-19-mediated human infection or VITT. Additionally, STRING, a database of primary and predicted associations among genes and proteins (collected from diverse resources, such as documented pathway knowledge, high-throughput experimental studies, cross-species extrapolated information, automated text mining results, computationally predicted interactions, etc.), was employed, with the confidence threshold set at 0.7. In addition, two interactomes were constructed: i) A network including 119 and 56 nodes relevant to COVID-19 and thrombocytopenia, respectively; and ii) a second network containing 60 nodes relevant to VITT. Although thrombocytopenia is a dominant morbidity in both entities, three nodes were observed that corresponded to genes (AURKA, CD46 and CD19) expressed only in VITT, whilst ADAM10, CDC20, SHC1 and STXBP2 are silenced in VITT, but are commonly expressed in both COVID-19 and thrombocytopenia. The calculated average node degree was immense (11.9 in COVID-19 and 6.43 in VITT), illustrating the complexity of COVID-19 and VITT pathologies and confirming the importance of cytokines, as well as of pathways activated following hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are key potential therapeutic targets for all three morbid entities, meriting further research. This interactome was based on wild-type genes, revealing the predisposition of the body to hypoxia-induced thrombosis, leading to the acute COVID-19 phenotype, the 'long-COVID syndrome', and/or VITT. Thus, common nodes appear to be key players in illness prevention, progression and treatment.
Collapse
Affiliation(s)
- Styliani A Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Işil Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | | | - Marina Mantzourani
- First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - George P Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
OLFM4-RET fusion is an oncogenic driver in small intestine adenocarcinoma. Oncogene 2022; 41:72-82. [PMID: 34675408 DOI: 10.1038/s41388-021-02072-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023]
Abstract
Small intestine adenocarcinoma is a rare intestinal malignancy with distinct clinical, pathological, and molecular characteristics. Recently, a fusion of the intestinal stem-cell marker olfactomedin 4 (OLFM4) and the proto-oncogene RET has been identified in a small intestine adenocarcinoma patient. Here we investigated the biological effects of OLFM4-RET fusion and whether it can initiate tumorigenesis in small intestine. OLFM4 expression was found to be frequently lost or reduced in human small intestine adenocarcinoma, and its downregulation correlated with high tumor grade and advanced tumor stage. Expression of OLFM4-RET fusion-induced cellular transformation in HEK293 cells and blocked RET-induced inhibition of colony growth in HuTu 80 small intestine adenocarcinoma cells. Further, expression of OLFM4-RET activated the RAS-RAF-MAPK and STAT3 cell signaling pathways in both HEK293 cells and HuTu 80 cells. OLFM4-RET expression in HEK293 cells upregulated multiple families of genes related to carcinogenesis, cancer progression, and metastasis. Targeted expression of OLFM4-RET in the small intestine led to the development of hyperplasia, adenoma, or adenocarcinoma in transgenic mice. Our study suggests that OLFM4-RET is an oncogenic driver of small intestine tumorigenesis. Therefore, the small intestine adenocarcinoma patients with OLFM4-RET fusion may benefit from treatment with RET kinase inhibitor.
Collapse
|
11
|
Proteomic Signatures of Diffuse and Intestinal Subtypes of Gastric Cancer. Cancers (Basel) 2021; 13:cancers13235930. [PMID: 34885041 PMCID: PMC8656738 DOI: 10.3390/cancers13235930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of death from cancer globally. Gastric cancer is classified into intestinal, diffuse and indeterminate subtypes based on histology according to the Laurén classification. The intestinal and diffuse subtypes, although different in histology, demographics and outcomes, are still treated in the same fashion. This study was designed to discover proteomic signatures of diffuse and intestinal subtypes. Mass spectrometry-based proteomics using tandem mass tags (TMT)-based multiplexed analysis was used to identify proteins in tumor tissues from patients with diffuse or intestinal gastric cancer with adjacent normal tissue control. A total of 7448 or 4846 proteins were identified from intestinal or diffuse subtype, respectively. This quantitative mass spectrometric analysis defined a proteomic signature of differential expression across the two subtypes, which included gremlin1 (GREM1), bcl-2-associated athanogene 2 (BAG2), olfactomedin 4 (OLFM4), thyroid hormone receptor interacting protein 6 (TRIP6) and melanoma-associated antigen 9 (MAGE-A9) proteins. Although GREM1, BAG2, OLFM4, TRIP6 and MAGE-A9 have all been previously implicated in tumor progression and metastasis, they have not been linked to intestinal or diffuse subtypes of gastric cancer. Using immunohistochemical labelling of a tissue microarray comprising of 124 cases of gastric cancer, we validated the proteomic signature obtained by mass spectrometry in the discovery cohort. Our findings should help investigate the pathogenesis of these gastric cancer subtypes and potentially lead to strategies for early diagnosis and treatment.
Collapse
|
12
|
Kuno R, Ito G, Kawamoto A, Hiraguri Y, Sugihara HY, Takeoka S, Nagata S, Takahashi J, Tsuchiya M, Anzai S, Mizutani T, Shimizu H, Yui S, Oshima S, Tsuchiya K, Watanabe M, Okamoto R. Notch and TNF-α signaling promote cytoplasmic accumulation of OLFM4 in intestinal epithelium cells and exhibit a cell protective role in the inflamed mucosa of IBD patients. Biochem Biophys Rep 2021; 25:100906. [PMID: 33490652 PMCID: PMC7808948 DOI: 10.1016/j.bbrep.2020.100906] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Notch signaling is activated in the intestinal epithelial cells (IECs) of patients with inflammatory bowel disease (IBD), and contributes to mucosal regeneration. Our previous study indicated that TNF-α and Notch signaling may synergistically promote the expression of the intestinal stem cell (ISC) marker OLFM4 in human IECs. In the present study, we investigated the gene regulation and function of OLFM4 in human IEC lines. We confirmed that TNF-α and Notch synergistically upregulate the mRNA expression of OLFM4. Luciferase reporter assay showed that OLFM4 transcription is regulated by the synergy of TNF-α and Notch. At the protein level, synergy between TNF-α and Notch promoted cytoplasmic accumulation of OLFM4, which has potential anti-apoptotic properties in human IECs. Analysis of patient-derived tissues and organoids consistently showed cytoplasmic accumulation of OLFM4 in response to NF-κB and Notch activation. Cytoplasmic accumulation of OLFM4 in human IECs is tightly regulated by Notch and TNF-α in synergy. Such cytoplasmic accumulation of OLFM4 may have a cell-protective role in the inflamed mucosa of patients with IBD. Notch and TNF-α signaling is important in IECs of patients with IBD. Notch and TNF-α signaling promotes the cytoplasmic accumulation of OLFM4. OLFM4 accumulation may have anti-apoptotic properties. OLFM4 could protect against mucosal inflammation in IBD.
Collapse
Key Words
- CD, Crohn's disease
- ChIP, chromatin immunoprecipitation
- DBZ, intestinal epithelial cells
- Dox, doxycycline
- IBD, inflammatory bowel disease
- IEC, dibenzazepine
- NICD, Notch intracellular domain
- Notch pathway
- OLFM4
- TNF-α, tumour necrosis factor α
- Tumour necrosis factor-α (TNF-α)
- UC, ulcerative colitis
- qRT-PCR, quantitative reverse transcription-polymerase chain reaction analysis
Collapse
Affiliation(s)
- Reiko Kuno
- Department of Gastroenterology and Hepatology, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ami Kawamoto
- Department of Gastroenterology and Hepatology, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Japan
| | | | | | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Japan
| | | | - Mao Tsuchiya
- Department of Gastroenterology and Hepatology, Japan
| | - Sho Anzai
- Department of Gastroenterology and Hepatology, Japan
| | | | - Hiromichi Shimizu
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | | - Mamoru Watanabe
- Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
13
|
Prognostic Significance and Functional Relevance of Olfactomedin 4 in Early-Stage Hepatocellular Carcinoma. Clin Transl Gastroenterol 2020; 11:e00124. [PMID: 31990698 PMCID: PMC7056049 DOI: 10.14309/ctg.0000000000000124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is a leading cancer-related cause of death. Unfortunately, recurrence is common even after curative treatment of early-stage patients, and no adjuvant treatment has yet been established. Aberrant expression of OLFM4 in human cancers has been reported; yet, its specific function during tumor development remains poorly understood, and its role in HCC is unknown. The purpose of this study is to examine the prognostic significance of OLFM4 and its functional relevance in determining recurrence in patients with early-stage HCC. METHODS Immunohistochemical staining to assess expression, cellular distribution, and prognostic significance of OLFM4 was performed in a tissue microarray comprising 157 HCC tissues and matched nontumor tissues. In addition, expression of OLFM4-coding mRNA was assessed in a separate patients' cohort. The findings were validated by in vitro functional studies using siRNA directed against OLFM4 to assess its effect on cell motility and proliferation. RESULTS The fraction of HCC samples exhibiting positive OLFM4 staining was higher in comparison with that observed in hepatocytes from matched nontumor tissue (61% vs 39%). However, cytoplasmic-only staining for OLFM4 was associated with vascular invasion (P = 0.048), MMP-7 expression (P = 0.002), and poorer survival (P = 0.008). A multivariate analysis confirmed the independent significance of OLFM4 in determining patients' outcome (5-year survival [58.3% vs 17.3%; HR: 2.135 {95% confidence interval: 1.135-4.015}; P = 0.019]). Correspondingly, inhibition of OLFM4 by siRNA modulated the expression of MMP-7 and E-cadherin, causing inhibition of cell proliferation, motility, and migration. DISCUSSION To the best of our knowledge, we provide the first report on the prognostic significance of OLFM4 in HCC and identify its mechanistic role as crucial mediator of MMP family protein and E-Cadherin in determining cell invasion and metastasis formation.
Collapse
|
14
|
Yang Z, Ni J, Kuang L, Gao Y, Tao S. Identification of genes and pathways associated with subchondral bone in osteoarthritis via bioinformatic analysis. Medicine (Baltimore) 2020; 99:e22142. [PMID: 32925767 PMCID: PMC7489699 DOI: 10.1097/md.0000000000022142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/30/2022] Open
Abstract
Osteoarthritis (OA) is a high prevalent musculoskeletal problem, which can cause severe pain, constitute a huge social and economic burden, and seriously damage the quality of life. This study was intended to identify genetic characteristics of subchondral bone in patients with OA and to elucidate the potential molecular mechanisms involved. Data of gene expression profiles (GSE51588), which contained 40 OA samples and 10 normal samples, was obtained from the Gene Expression Omnibus (GEO). The raw data were integrated to obtain differentially expressed genes (DEGs) and were further analyzed with bioinformatic analysis. The protein-protein interaction (PPI) networks were built and analyzed via Search Tool for the Retrieval of Interacting Genes (STRING). The significant modules and hub genes were identified via Cytoscape. Moreover, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis were performed. Totally 235 DEGs were differentially expressed in the subchondral bone from OA patients compared with those of normal individuals, of which 78 were upregulated and 157 were downregulated. Eight hub genes were identified, including DEFA4, ARG1, LTF, RETN, PGLYRP1, OLFM4, ORM1, and BPI. The enrichment analyses of the DEGs and significant modules indicated that DEGs were mainly involved in inflammatory response, extracellular space, RAGE receptor binding, and amoebiasis pathway. The present study provides a novel and in-depth understanding of pathogenesis of the OA subchondral bone at molecular level. DEFA4, ARG1, LTF, RETN, PGLYRP1, OLFM4, ORM1, and BPI may be the new candidate targets for diagnosis and therapies on patients with OA in the future.
Collapse
Affiliation(s)
- Zhanyu Yang
- Department of Orthopaedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
- Hunan Provincial Emergency Center
| | - Jiangdong Ni
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Letian Kuang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Yongquan Gao
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Shibin Tao
- Department of Orthopaedics, Qinghai University Affiliated Hospital, Xining, Qinghai, P.R. China
| |
Collapse
|
15
|
Clinicopathological significance of olfactomedin-4 in extrahepatic bile duct carcinoma. Pathol Res Pract 2020; 216:152940. [PMID: 32276789 DOI: 10.1016/j.prp.2020.152940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/21/2020] [Indexed: 12/28/2022]
Abstract
The clinicopathological and prognostic significance of olfactomedin-4 (OLFM4) expression has not yet been elucidated in extrahepatic bile duct carcinomas (EBDCs). Immunohistochemical analysis of OLFM4 expression in 31 normal biliary epithelia, 33 biliary intraepithelial neoplasias (BilINs), and 180 surgically resected EBDCs (54 perihilar and 126 distal) was performed and was used to analyze clinicopathological variables including patient survival. The expression of OLFM4 showed a progressive increase from normal biliary epithelia (0.2 ± 0.4) to BilINs (2.8 ± 3.2) to EBDCs (4.6 ± 4.2; P < 0.001). OLFM4 was highly expressed in 26.1% (47/180) of the EBDC cases, and high OLFM4 levels were more frequently observed in tumors with nodular growth (P = 0.029), well differentiation (P = 0.011), and lower T-category (P = 0.025) and stage grouping (P = 0.013). Patients with EBDC having high expression of OLFM4 had better survival than those with low expression of OLFM4 (median, 43.3 vs. 29.2 months; P = 0.037). OLFM4 might play an important role in carcinogenesis and in the progression from BilINs to EBDCs. High OLFM4 expression predicted less aggressive clinical behavior in patients with EBDC.
Collapse
|
16
|
Stark JE, Opoka AM, Mallela J, Devarajan P, Ma Q, Levinsky NC, Stringer KF, Wong HR, Alder MN. Juvenile OLFM4-null mice are protected from sepsis. Am J Physiol Renal Physiol 2020; 318:F809-F816. [PMID: 32068457 PMCID: PMC7099509 DOI: 10.1152/ajprenal.00443.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pediatric sepsis is a leading cause of morbidity and mortality in children. One of the most common and devastating morbidities is sepsis-related acute kidney injury (AKI). AKI was traditionally thought to be related to low perfusion and acute tubular necrosis. However, little acute tubular necrosis can be found following septic AKI, and little is known about the mechanism of septic AKI. Olfactomedin-4 (OLFM4) is a secreted glycoprotein that marks a subset of neutrophils. Increased expression of OLFM4 in the blood is associated with worse outcomes in sepsis. Here, we investigated a pediatric model of murine sepsis using murine pups to investigate the mechanisms of OLFM4 in sepsis. When sepsis was induced in murine pups, survival was significantly increased in OLFM4-null pups. Immunohistochemistry at 24 h after the induction of sepsis demonstrated increased expression of OLFM4 in the kidney, which was localized to the loop of Henle. Renal cell apoptosis and plasma creatinine were significantly increased in wild-type versus OLFM4-null pups. Finally, bone marrow transplant suggested that increased OLFM4 in the kidney reflects local production rather than filtered from the plasma. These results demonstrate renal expression of OLFM4 for the first time and suggest that a kidney-specific mechanism may contribute to survival differences in OLFM4-null animals.
Collapse
Affiliation(s)
- Julie E Stark
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amy M Opoka
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jaya Mallela
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nick C Levinsky
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Keith F Stringer
- Division of Pathology and Laboratory Medicine, University of Cincinnati Department of Pediatrics, Cincinnati, Ohio
| | - Hector R Wong
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew N Alder
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
17
|
Nakajima K, Tanizaki Y, Luu N, Zhang H, Shi YB. Comprehensive RNA-Seq analysis of notochord-enriched genes induced during Xenopus tropicalis tail resorption. Gen Comp Endocrinol 2020; 287:113349. [PMID: 31794731 PMCID: PMC6956247 DOI: 10.1016/j.ygcen.2019.113349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
Anuran metamorphosis is perhaps the most dramatic developmental process regulated by thyroid hormone (TH). One of the unique processes that occur during metamorphosis is the complete resorption of the tail, including the notochord. Interestingly, recent gene knockout studies have shown that of the two known vertebrate TH receptors, TRα and TRβ, TRβ appears to be critical for notochord regression during tail resorption in Xenopus tropicalis. To determine the mechanisms underlying notochord regression, we carried out a comprehensive gene expression analysis in the notochord during metamorphosis by using RNA-Seq analyses of whole tail at stage 60 before any noticeable tail length reduction, whole tail at stage 63 when the tail length is reduced by about one half, and the rest of the tail at stage 63 after removing the notochord. This allowed us to identify many notochord-enriched, metamorphosis-induced genes at stage 63. Future studies on these genes should help to determine if they are regulated by TRβ and play any roles in notochord regression.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739 8526, Japan.
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hongen Zhang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yun Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
18
|
Ohkuma R, Yada E, Ishikawa S, Komura D, Ishizaki H, Tamada K, Kubota Y, Hamada K, Ishida H, Hirasawa Y, Ariizumi H, Satoh E, Shida M, Watanabe M, Onoue R, Ando K, Tsurutani J, Yoshimura K, Yokobori T, Sasada T, Aoki T, Murakami M, Norose T, Ohike N, Takimoto M, Izumizaki M, Kobayashi S, Tsunoda T, Wada S. High expression of olfactomedin-4 is correlated with chemoresistance and poor prognosis in pancreatic cancer. PLoS One 2020; 15:e0226707. [PMID: 31923206 PMCID: PMC6953839 DOI: 10.1371/journal.pone.0226707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer has an extremely poor prognosis, and identification of novel predictors of therapeutic efficacy and prognosis is urgently needed. Chemoresistance-related molecules are correlated with poor prognosis and may be effective targets for cancer treatment. Here, we aimed to identify novel molecules correlated with chemoresistance and poor prognosis in pancreatic cancer. We established 10 patient-derived xenograft (PDX) lines from patients with pancreatic cancer and performed next-generation sequencing (NGS) of tumor tissues from PDXs after treatment with standard drugs. We established a gene-transferred tumor cell line to express chemoresistance-related molecules and analyzed the chemoresistance of the established cell line against standard drugs. Finally, we performed immunohistochemical (IHC) analysis of chemoresistance-related molecules using 80 pancreatic cancer tissues. From NGS analysis, we identified olfactomedin-4 (OLFM4) as having high expression in the PDX group treated with anticancer drugs. In IHC analysis, OLFM4 expression was also high in PDXs administered anticancer drugs compared with that in untreated PDXs. Chemoresistance was observed by in vitro analysis of tumor cell lines with forced expression of OLFM4. In an assessment of tissue specimens from 80 patients with pancreatic cancer, Kaplan-Meier analysis showed that patients in the low OLFM4 expression group had a better survival rate than patients in the high OLFM4 expression group. Additionally, multivariate analysis showed that high expression of OLFM4 was an independent prognostic factor predicting poor outcomes. Overall, our study revealed that high expression of OLFM4 was involved in chemoresistance and was an independent prognostic factor in pancreatic cancer. OLFM4 may be a candidate therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Ryotaro Ohkuma
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Physiology, Graduate School of Medicine, Showa University, Tokyo, Japan
| | - Erica Yada
- Kanagawa Cancer Center Research Institute, Kanagawa, Japan
| | - Shumpei Ishikawa
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Koji Tamada
- Department of Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yutaro Kubota
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Kazuyuki Hamada
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Hiroo Ishida
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Yuya Hirasawa
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Etsuko Satoh
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Midori Shida
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Makoto Watanabe
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Rie Onoue
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Kiyohiro Ando
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Junji Tsurutani
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Takehiko Yokobori
- Department of Innovative Immune-Oncology Therapeutics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tetsuro Sasada
- Kanagawa Cancer Center Research Institute, Kanagawa, Japan
| | - Takeshi Aoki
- Department of Surgery, Division of General and Gastroenterological Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiko Murakami
- Department of Surgery, Division of General and Gastroenterological Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Tomoko Norose
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Nobuyuki Ohike
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Graduate School of Medicine, Showa University, Tokyo, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
| | - Takuya Tsunoda
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- Department of Medicine, Division of Medical Oncology, School of Medicine, Showa University, Tokyo, Japan
- Clinical Research Institute for Clinical Pharmacology & Therapeutics, Showa University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Purification and functional analysis of the shell matrix protein N66 from the shell of the pearl oyster Pteria sterna. Comp Biochem Physiol B Biochem Mol Biol 2019; 235:19-29. [PMID: 31129291 DOI: 10.1016/j.cbpb.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
Mollusk biomineralization is a process controlled by a complex interplay of proteins, ions and external regulators. In spite of several studies, there is a lack of knowledge of who (molecules involved), how (mechanism) and why (evolution and adaptation) mollusk are designed as we know them. In this study, a shell matrix protein, N66, has been purified and characterized biochemically from the shell of Pteria sterna. Two protein bands with carbohydrates associated were separated with a molecular weight of ~60 and 64 kDa. It has carbonic anhydrase activity and it is able to form crystal polymorphs of calcium carbonate in vitro. The mRNA N66 was obtained from the mantle tissue of Pteria sterna and the deduced amino acid sequence contained a carbonic anhydrase (CA) domain and a Asn/Gly-rich domain (aa243-439). The CA domain contained three His residues acting as zinc ligands and the gate-keeper residues present in all α-CAs (Glu166-Thr525), being thus similar to the human isoform hCAVII. Also, to test whether the posttranslational modifications present on the native N66 affects the CA activity and its crystallization capability in vitro, a recombinant N66 was overexpressed in Escherichia coli and functionally characterized. Our results show that recombinant N66 has higher CA activity and produce larger size crystals in vitro than the native N66 protein, suggesting that intrinsic properties of the native N66, such as glycosylations and/or phosphorylations, might regulate its activity.
Collapse
|
20
|
Li H, Kim C, Liu W, Zhu J, Chin K, Rodriguez‐Canales J, Rodgers GP. Olfactomedin 4 downregulation is associated with tumor initiation, growth and progression in human prostate cancer. Int J Cancer 2019; 146:1346-1358. [PMID: 31241767 PMCID: PMC7004162 DOI: 10.1002/ijc.32535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Abstract
The olfactomedin 4 (OLFM4) gene has been analyzed as a tumor‐suppressor gene and a putative biomarker in many cancers. In our study, we analyzed the relationship of OLFM4 expression with clinicopathological features and with CpG site methylation in the OLFM4 gene promoter region in human primary prostate adenocarcinoma. OLFM4 protein expression was significantly reduced in prostate cancer tissue compared to adjacent normal tissue and was further significantly reduced in more advanced cancers. Bioinformatic studies with clinical datasets revealed that primary prostate adenocarcinoma patients with reduced OLFM4 mRNA expression exhibited higher Gleason scores and higher preoperative serum prostate‐specific antigen levels, as well as lower recurrence‐free survival. Three of the eight CpG sites in the OLFM4 gene promoter region were hypermethylated in cancerous prostate cells compared to adjacent normal cells, and reduced methylation of eight CpG sites was associated with increased OLFM4 mRNA expression in RWPE1 and PC‐3 cells. Furthermore, knockdown of OLFM4 gene expression was associated with enhanced epithelial–mesenchymal transition (EMT)‐marker expression in RWPE immortalized normal prostate cells. In contrast, restoration of OLFM4 expression in PC‐3 and DU145 prostate cancer cells lacking OLFM4 significantly inhibited both EMT‐marker expression and tumor cell growth in in vitro and in vivo models, indicating that OLFM4 may play a tumor‐suppressor role in inhibiting the EMT program, as well as tumor initiation and growth, in prostate cells. Taken together, these findings suggest that OLFM4 plays an important tumor‐suppressor role in prostate cancer progression and might be useful as a novel candidate biomarker for prostate cancer. What's new? Altered expression of the OLFM4 gene appears to be involved in many cancers. In this study of prostate cancers, the authors found that OLFM4 can suppress tumor initiation, growth and progression. Downregulation of OLFM4 was associated with higher serum PSA levels, higher Gleason scores, and lower recurrence‐free survival in prostate cancer patients. These results indicate that OLFM4 may play an important tumor‐suppressor role in the progression of prostate cancer, and may provide a novel prognostic biomarker for prostate cancer treatment.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Christine Kim
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Kay Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Jaime Rodriguez‐Canales
- Pathogenetics Unit, Laboratory of Pathology, Center for Cancer ResearchNational Institutes of HealthBethesdaMD
- MedimmuneGaithersburgMD
| | - Griffin P. Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMD
| |
Collapse
|
21
|
Suzuki L, ten Kate FJC, Gotink AW, Stoop H, Doukas M, Nieboer D, Spaander MCW, van Lanschot JJB, van Wijnhoven BPL, Koch AD, Bruno MJ, Looijenga LHJ, Biermann K. Olfactomedin 4 (OLFM4) expression is associated with nodal metastases in esophageal adenocarcinoma. PLoS One 2019; 14:e0219494. [PMID: 31283789 PMCID: PMC6613772 DOI: 10.1371/journal.pone.0219494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
To date no informative biomarkers exist to accurately predict presence of lymph node metastases (LNM) in esophageal adenocarcinoma (EAC). We studied the discriminative value of Olfactomedin 4 (OLFM4), an intestinal stem cell marker, in EAC. Patients who had undergone esophagectomy as single treatment modality for both advanced (pT2-4) and early (pT1b) adenocarcinoma of the esophagus or gastro-esophageal junction were selected for this study from an institutional database (Erasmus MC University Medical Center, Rotterdam, The Netherlands). Surgical resection specimens of 196 advanced and 44 early EAC were examined. OLFM4 expression was studied by immunohistochemistry and categorized as low (<30%) or high (> = 30%) expression. Low OLFM4 was associated with poor differentiation grade in both advanced (60% vs. 34.8%, p = 0.001) and early EAC (39.1% vs. 9.5%, p = 0.023). LNM were present in 161 (82.1%) of advanced and 9 (20.5%) of early EAC respectively. Low OLFM4 was independently associated with the presence of LNM in advanced EAC in multivariable analysis (OR 2.7; 95% CI, 1.16-6.41; p = 0.022), but not in early EAC (OR 2.1; 95% CI, 0.46-9.84; p = 0.338). However, the difference in association with LNM between advanced (OR 2.7; 95% CI, 1.18-6.34; p = 0.019) and early (OR 2.3; 95% CI, 0.47-11.13; p = 0.302) EAC was non-significant (p = 0.844), suggesting that the lack of significance in early EAC is due to the small number of patients in this group. OLFM4 was not of significance for the disease free and overall survival. Overall, low expression of intestinal stem cell marker OLFM4 was associated with the presence of LNM. Our study suggests that OLFM4 could be an informative marker with the potential to improve preoperative assessment in patients with EAC. Further studies are needed to confirm the value of OLFM4 as a biomarker for LNM.
Collapse
Affiliation(s)
- Lucia Suzuki
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Fiebo J. C. ten Kate
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Annieke W. Gotink
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Hans Stoop
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Daan Nieboer
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Manon C. W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Jan J. B. van Lanschot
- Department of Surgery, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Bas P. L. van Wijnhoven
- Department of Surgery, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Arjun D. Koch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Cancer Institute, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Ren J, Sui H, Fang F, Li Q, Li B. The application of Apc Min/+ mouse model in colorectal tumor researches. J Cancer Res Clin Oncol 2019; 145:1111-1122. [PMID: 30887153 DOI: 10.1007/s00432-019-02883-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE ApcMin/+ mouse is an excellent animal model bearing multiple intestinal neoplasia, used to simulate human familial adenomatous polyposis and colorectal tumors. The key point of this model is the mutation of Apc gene, which is a significant tumor-suppressor gene in the Wnt signaling pathway. There are also some other possible mechanisms responsible for the development of colorectal tumors in the ApcMin/+ mouse model, such as tumor-associated signaling pathways activation, the changes of tumor-related genes, and the involvement of some related proteins or molecules. METHODS The relevant literatures about ApcMin/+ mouse model from PUBMED databases are reviewed in this study. RESULTS In recent years, increasing studies have focused on the application of ApcMin/+ mouse model in colorectal tumor, trying to find effective therapeutic targets for further use. CONCLUSION This article will give a brief review on the related molecular mechanisms of the ApcMin/+ mouse model and its application in colorectal tumor researches.
Collapse
Affiliation(s)
- Junze Ren
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Hua Sui
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Qi Li
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
23
|
Li J, Liu C, Li D, Wan M, Zhang H, Zheng X, Jie X, Zhang P, Li J, Hou H, Sun Q. OLFM4 Inhibits Epithelial-Mesenchymal Transition and Metastatic Potential of Cervical Cancer Cells. Oncol Res 2019; 27:763-771. [PMID: 30764901 PMCID: PMC7848444 DOI: 10.3727/096504018x15399955297355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OLFM4 has been shown to play an important role in tumor initiation and progression. This study aims to investigate the role of OLFM4 in metastatic cervical cancer and its underlying mechanism. Here we discover that OLFM4 expression is significantly reduced in metastatic cervical cancer. Accordingly, overexpression of OLFM4 inhibits epithelial–mesenchymal transition (EMT), migration, and invasion in human cervical cancer cells. To further explore its molecular mechanisms, we reveal that OLFM4 augmentation interferes with mTOR signaling pathway, and the suppressive effects of OLFM4 on cell migration and invasion are largely weakened by phosphatidic acid (PA)-induced mTOR signal activation, which implicates the potential role of the mTOR pathway in OLFM4-related cervical metastasis. In conclusion, our results confirm OLFM4 as a tumor suppressor that inhibits cervical cancer metastasis by regulating mTOR signal pathway.
Collapse
Affiliation(s)
- Juan Li
- Department of Pathology, Qianfoshan Hospital Affiliated with Shandong University, Jinan, Shandong, P.R. China
| | - Chunyan Liu
- Department of Combined Traditional Chinese and Western Medicine, Medical College of Qingdao University, Qingdao, Shandong, P.R. China
| | - Dawei Li
- Department of Neurology, People's Hospital of Xintai City, Affiliated to Taishan Medical University, Xintai, Shandong, P.R. China
| | - Meng Wan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, P.R. China
| | - Hong Zhang
- Department of Gynecology, Jinan Women and Children's Health Hospital, Jinan, Shandong, P.R. China
| | - Xiaoxia Zheng
- Department of Gynecology, Jinan Women and Children's Health Hospital, Jinan, Shandong, P.R. China
| | - Xuemei Jie
- Department of Gynecology, Jinan Women and Children's Health Hospital, Jinan, Shandong, P.R. China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, P.R. China
| | - Jingjing Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Hongchun Hou
- Department of Gynecology, Jinan Women and Children's Health Hospital, Jinan, Shandong, P.R. China
| | - Qing Sun
- Department of Pathology, Qianfoshan Hospital Affiliated with Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
24
|
Liu W, Aerbajinai W, Li H, Liu Y, Gavrilova O, Jain S, Rodgers GP. Olfactomedin 4 Deletion Improves Male Mouse Glucose Intolerance and Insulin Resistance Induced by a High-Fat Diet. Endocrinology 2018; 159:3235-3244. [PMID: 30052841 PMCID: PMC6098226 DOI: 10.1210/en.2018-00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/13/2018] [Indexed: 01/09/2023]
Abstract
Glucose-stimulated insulin secretion (GSIS) is essential for blood glucose homeostasis and is impaired in type 2 diabetes mellitus. Understanding the regulatory components of GSIS has clinical implications for diabetes treatment. In this study, we found that olfactomedin 4 (OLFM4) is endogenously expressed in pancreatic islet β cells and further investigated its potential roles in glucose homeostasis and the pathogenesis of type 2 diabetes using mouse models. Olfm4-deficient mice showed significantly improved glucose tolerance and significantly increased insulin levels after glucose challenge compared with wild-type (WT) mice. GSIS, mitochondrial ATP production, and mitochondrial respiration were all significantly increased in islets isolated from Olfm4-deficient mice compared with those isolated from WT mice. In a high-fat diet (HFD)-induced diabetic mouse model, the increase in insulin levels after glucose challenge was significantly higher in Olfm4-deficient mice compared with WT mice. The impaired glucose tolerance and insulin resistance in HFD-fed mice were improved by loss of Olfm4. Olfm4 was found to be mainly localized in the mitochondria and interacts with GRIM-19 (a gene associated with retinoid-interferon mortality) in Min6 pancreatic β cells. Collectively, these studies suggest that Olfm4 negatively regulates GSIS. OLFM4 may represent a potential therapeutic target for impaired glucose tolerance and patients with type 2 diabetes.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Correspondence: Wenli Liu, MD, Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 9N113, 9000 Rockville Pike, Bethesda, Maryland 20892. E-mail:
| | - Wulin Aerbajinai
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Shalini Jain
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
25
|
Liu W, Liu Y, Li H, Rodgers GP. Olfactomedin 4 contributes to hydrogen peroxide-induced NADPH oxidase activation and apoptosis in mouse neutrophils. Am J Physiol Cell Physiol 2018; 315:C494-C501. [PMID: 29949402 DOI: 10.1152/ajpcell.00336.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neutrophils increase production of reactive oxygen species, including superoxide, hydrogen peroxide (H2O2), and hydroxyl radical, to destroy invading microorganisms under pathological conditions. Conversely, oxidative stress conditions, such as the presence of H2O2, induce neutrophil apoptosis, which helps to remove neutrophils after inflammation. However, the detailed molecular mechanisms that are involved in the latter process have not been elucidated. In this study, we investigated the potential role of olfactomedin 4 (Olfm4) in H2O2-induced superoxide production and apoptosis in mouse neutrophils. We have demonstrated that Olfm4 is not required for maximal-dosage PMA- and Escherichia coli bacteria-induced superoxide production, but Olfm4 contributes to suboptimal-dosage PMA- and H2O2-induced superoxide production. Using an NADPH oxidase inhibitor and gp91phox-deficient mouse neutrophils, we found that NAPDH oxidase was required for PMA-stimulated superoxide production and that Olfm4 mediated H2O2-induced superoxide production through NADPH oxidase, in mouse neutrophils. We have shown that neutrophils from Olfm4-deficient mice exhibited reduced H2O2-induced apoptosis compared with neutrophils from wild-type mice. We also demonstrated that neutrophils from Olfm4-deficient mice exhibited reduced H2O2-stimulated mitochondrial damage and membrane permeability, and as well as reduced caspase-3 and caspase-9 activity, compared with neutrophils from wild-type mice. Moreover, the cytoplasmic translocation of the proapoptotic mitochondrial proteins Omi/HtrA2 and Smac/DIABLO in response to H2O2 was reduced in neutrophils from Olfm4-deficient mice compared with neutrophils from wild-type mice. Our study demonstrates that Olfm4 contributes to H2O2-induced NADPH oxidase activation and apoptosis in mouse neutrophils. Olfactomedin 4 might prove to be a potential target for future studies on inflammatory neutrophil biology and for inflammatory disease treatment.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
26
|
Wang XY, Chen SH, Zhang YN, Xu CF. Olfactomedin-4 in digestive diseases: A mini-review. World J Gastroenterol 2018; 24:1881-1887. [PMID: 29740203 PMCID: PMC5937205 DOI: 10.3748/wjg.v24.i17.1881] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Olfactomedin-4 (OLFM4, GW112, hGC-1) is a glycoprotein belonging to the olfactomedin family. The expression of OLFM4 is strong in the small intestine, colon and prostate, and moderate in the stomach and bone marrow. Previous studies have revealed that OLFM4 is closely associated with many digestive diseases. Up-regulation of OLFM4 has been detected in the Helicobacter pylori (H. pylori)-infected gastric mucosa, inflammatory bowel disease tissue and gastrointestinal malignancies, including gastric cancer, colorectal cancer, pancreatic cancer and gallbladder cancer. Down-regulation of OLFM4 has also been detected in some cases, such as in poorly differentiated, advanced-stage and metastatic tumors. Studies using OLFM4-deficient mouse models have revealed that OLFM4 acts as a negative regulator of H. pylori-specific immune responses and plays an important role in mucosal defense in inflammatory bowel disease. Patients with OLFM4-positive gastric cancer or colorectal cancer have a better survival rate than OLFM4-negative patients. However, the prognosis is worse in pancreatic cancer patients with high levels of expression of OLFM4. The NF-κB, Notch and Wnt signaling pathways are involved in the regulation of OLFM4 expression in digestive diseases, and its role in pathogenesis is associated with anti-inflammation, apoptosis, cell adhesion and proliferation. OLFM4 may serve as a potential specific diagnostic marker and a therapeutic target in digestive diseases. Further studies are required to explore the clinical value of OLFM4.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Sheng-Hui Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ya-Nan Zhang
- Department of Geriatrics, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Cheng-Fu Xu
- Department of Gastroenterology, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
27
|
Liu C, Guo Y, Wu W, Zhang Z, Xu L, Wu K, Hu W, Liu G, Shi J, Xu C, Bi J, Sheng Y. Plasma olfactomedin 4 level in peripheral blood and its association with clinical features of breast cancer. Oncol Lett 2017; 14:8106-8113. [PMID: 29344255 DOI: 10.3892/ol.2017.7193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
The present study aimed to investigate the expression of olfactomedin 4 (OLFM4) in plasma of patients with breast cancer and its association with diagnosis, metastasis and prognosis of breast cancer. OLFM4 gene expression level of peripheral blood plasma in 60 patients with breast cancer and 26 healthy donors was examined by ELISA. The expression of OLFM4 in tumor tissues of patients with breast cancer was evaluated by immunohistochemistry (protein expression) and reverse transcription-quantitative polymerase chain reaction (mRNA expression), respectively. Circulating tumor cells (CTCs) were detected in a certain set of patients. The expression of OLFM4 in plasma of the overall healthy people was higher compared with patients with breast cancer. The plasma OLFM4 level in patients with breast cancer was consistent with the expression of OLFM4 protein in tumor tissues (R2=1), indicating that the level of plasma OLFM4 expression may represent the expression of OLFM4 in breast cancer tissues. The plasma OLFM4 level in patients with histological grade I was significantly lower compared with grade III (P<0.05). Breast cancer patients with positive CTC were associated with low level of plasma OLFM4. These results suggest that low OLFM4 expression in plasma or tissue specimens of breast cancer patients is more likely to represent low histological differentiation and decreased invasive/metastatic capabilities. Taken together, plasma OLFM4 level may be considered as a biomarker for diagnosis and prognosis of breast cancer for cases where there are difficulties in obtaining tumor tissue samples.
Collapse
Affiliation(s)
- Chaoqian Liu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yan Guo
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Weiwei Wu
- Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Zhenzhen Zhang
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China.,Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Lu Xu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Kainan Wu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Wei Hu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Guoping Liu
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Junyi Shi
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Cheng Xu
- Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Jianwei Bi
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuan Sheng
- Department of Breast Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
28
|
Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components. Stem Cells Int 2017; 2017:7970385. [PMID: 28835755 PMCID: PMC5556610 DOI: 10.1155/2017/7970385] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.
Collapse
|
29
|
Abstract
Olfactomedin 4 (OLFM4) is an olfactomedin domain-containing glycoprotein. Multiple signaling pathways and factors, including NF-κB, Wnt, Notch, PU.1, retinoic acids, estrogen receptor, and miR-486, regulate its expression. OLFM4 interacts with several other proteins, such as gene associated with retinoic-interferon-induced mortality 19 (GRIM-19), cadherins, lectins, nucleotide oligomerization domain-1 (NOD1) and nucleotide oligomerization domain-2 (NOD2), and cathepsins C and D, known to regulate important cellular functions. Recent investigations using Olfm4-deficient mouse models have provided important clues about its in vivo biological functions. Olfm4 inhibited Helicobacter pylori-induced NF-κB pathway activity and inflammation and facilitated H. pylori colonization in the mouse stomach. Olfm4-deficient mice exhibited enhanced immunity against Escherichia coli and Staphylococcus aureus infection. Olfm4 deletion in a chronic granulomatous disease mouse model rescued them from S. aureus infection. Olfm4 deletion in mice treated with azoxymethane/dextran sodium sulfate led to robust intestinal inflammation and intestinal crypt hyperplasia. Olfm4 deletion in Apc (Min/+) mice promoted intestinal polyp formation as well as adenocarcinoma development in the distal colon. Further, Olfm4-deficient mice spontaneously developed prostatic epithelial lesions as they age. OLFM4 expression is correlated with cancer differentiation, stage, metastasis, and prognosis in a variety of cancers, suggesting its potential clinical value as an early-stage cancer marker or a therapeutic target. Collectively, these data suggest that OLFM4 plays important roles in innate immunity against bacterial infection, gastrointestinal inflammation, and cancer. In this review, we have summarized OLFM4's initial characterization, expression, regulation, protein interactions, and biological functions.
Collapse
|
30
|
Xiong B, Lei X, Zhang L, Fu J. The clinical significance and biological function of olfactomedin 4 in triple negative breast cancer. Biomed Pharmacother 2016; 86:67-73. [PMID: 27939521 DOI: 10.1016/j.biopha.2016.11.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/15/2023] Open
Abstract
Olfactomedin 4 abnormal expression has been observed in several types of human cancer, but the status of olfactomedin 4 in triple negative breast cancer is still unknown. The aim of our study is to explore the clinical significance and biological function of olfactomedin 4 in triple negative breast cancer. The mRNA and protein expression of olfactomedin 4 in triple negative breast cancer tissues and cell lines was detected, and the correlation between olfactomedin 4 expression and clinicopathological factors was analyzed by immunohistochemistry. The biological function of olfactomedin 4 on tumor-metastasis was explored by Transwell migration assay and invasion assay in vitro. In our results, olfactomedin 4 mRNA and protein expression is decreased in triple-negative breast cancer tissues and cell lines. Olfactomedin 4 protein low-expression associated with lymph node metastasis, distant metastasis, clinical stage and poor prognosis of triple-negative breast cancer patients. Up-regulation of olfactomedin 4 suppresseed triple-negative breast cancer cells migration and invasion, and reduced cell metastasis-associated protein MMP 9 expression. In conclusion, olfactomedin 4 is a novel biomarker of triple-negative breast cancer for predicting prognosis and developing targeted molecular therapies.
Collapse
Affiliation(s)
- Bin Xiong
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, No. 16 Hehua Road, Jining, Shandong 272067, China
| | - Xuefeng Lei
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, No. 16 Hehua Road, Jining, Shandong 272067, China
| | - Lei Zhang
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, No. 16 Hehua Road, Jining, Shandong 272067, China
| | - Jia Fu
- Academy of Basic Medicine, Jining Medical University, No. 16 Hehua Road, Jining, Shandong 272067, China.
| |
Collapse
|
31
|
Olfactomedin 4 deletion induces colon adenocarcinoma in Apc Min/+ mice. Oncogene 2016; 35:5237-5247. [PMID: 26973250 PMCID: PMC5057043 DOI: 10.1038/onc.2016.58] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Colon carcinogenesis is a multiple-step process involving the accumulation of a series of genetic and epigenetic alterations. The most commonly initiating event of intestinal carcinogenesis is mutation of the adenomatous polyposis coli (APC) gene, which leads to activation of the Wnt/β-catenin pathway. Olfactomedin 4 (OLFM4) has emerged as an intestinal stem-cell marker, but its biological function in the intestine remains to be determined. Here we show that Olfm4 deletion induced colon adenocarcinoma in the distal colon of ApcMin/+ mice. Mechanistically, we found that OLFM4 is a target gene of the Wnt/β-catenin pathway and can downregulate β-catenin signaling by competing with Wnt ligands for binding to Frizzled receptors, as well as by inhibition of the Akt-GSK-3β (Akt-glycogen synthase kinase-3β) pathway. We have shown that both Wnt and nuclear factor-κB (NF-κB) signaling were boosted in tumor tissues of Apc Olfm4 double-mutant mice. These data establish OLFM4 as a critical negative regulator of the Wnt/β-catenin and NF-κB pathways that inhibits colon-cancer development initiated by APC mutation. In addition, Olfm4 deletion significantly enhanced intestinal-crypt proliferation and inflammation induced by azoxymethane/dextran sodium sulfate. Thus, OLFM4 has an important role in the regulation of intestinal inflammation and tumorigenesis, and could be a potential therapeutic target for intestinal malignant tumors. Unlike the human colonic epithelium, the mouse colonic epithelium does not express OLFM4, but nevertheless, systemic OLFM4 deletion promotes colon tumorigenesis and that loss from mucosal neutrophils may have a role to play.
Collapse
|
32
|
Li H, Liu W, Chen W, Zhu J, Deng CX, Rodgers GP. Olfactomedin 4 deficiency promotes prostate neoplastic progression and is associated with upregulation of the hedgehog-signaling pathway. Sci Rep 2015; 5:16974. [PMID: 26581960 PMCID: PMC4652203 DOI: 10.1038/srep16974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Loss of olfactomedin 4 (OLFM4) gene expression is associated with the progression of human prostate cancer, but its role and the molecular mechanisms involved in this process have not been completely understood. In this study, we found that Olfm4-knockout mice developed prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Importantly, we found that the hedgehog-signaling pathway was significantly upregulated in the Olfm4-knockout mouse model. We also found that restoration of OLFM4 in human prostate-cancer cells that lack OLFM4 expression significantly downregulated hedgehog signaling-pathway component expression. Furthermore, we demonstrated that the OLFM4 protein interacts with sonic hedgehog protein, as well as significantly inhibits GLI-reporter activity. Bioinformatic and immunohistochemistry analyses revealed that decreased OLFM4 and increased SHH expression was significantly associated with advanced human prostate cancer. Thus, olfactomedin 4 appears to play a critical role in regulating progression of prostate cancer, and has potential as a new biomarker for prostate cancer.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiping Chen
- Genomics Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Suknuntha K, Ishii Y, Tao L, Hu K, McIntosh BE, Yang D, Swanson S, Stewart R, Wang JYJ, Thomson J, Slukvin I. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells. Stem Cell Res 2015; 15:678-693. [PMID: 26561938 PMCID: PMC5003778 DOI: 10.1016/j.scr.2015.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023] Open
Abstract
A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin(-)CD34(+) cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells.
Collapse
Affiliation(s)
- Kran Suknuntha
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53792, United States
| | - Yuki Ishii
- Department of Medicine, Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0820, United States
| | - Lihong Tao
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, United States
| | - Kejin Hu
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, United States
| | - Brian E McIntosh
- Morgridge Institute for Research, Madison, WI 53707, United States
| | - David Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53792, United States
| | - Scott Swanson
- Morgridge Institute for Research, Madison, WI 53707, United States
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53707, United States
| | - Jean Y J Wang
- Department of Medicine, Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0820, United States
| | - James Thomson
- Morgridge Institute for Research, Madison, WI 53707, United States; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53707, United States; Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Igor Slukvin
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53792, United States; Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, United States.
| |
Collapse
|
34
|
Clemmensen SN, Glenthøj AJ, Heebøll S, Nielsen HJ, Koch C, Borregaard N. Plasma levels of OLFM4 in normals and patients with gastrointestinal cancer. J Cell Mol Med 2015; 19:2865-73. [PMID: 26416558 PMCID: PMC4687705 DOI: 10.1111/jcmm.12679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022] Open
Abstract
Olfactomedin 4 (OLFM4) is a secreted glycoprotein predominantly expressed in bone marrow and gastrointestinal tissues. Aberrant expression of OLFM4 has been shown in several cancers. However, the clinical significance hereof is currently controversial. OLFM4 has been proposed as a candidate biomarker of gastrointestinal cancers. To address this, we developed monoclonal antibodies against synthetic peptides representing various segments of OLFM4. We examined expression of OLFM4 in epithelial cells by immunohistochemistry and found that OLFM4 is highly expressed in proliferating benign epithelial cells and in some carcinoma cells. We developed an Enzyme Linked Immunosorbent Assay for OLFM4 and investigated whether plasma levels of OLFM4 reflect colorectal malignancies, but were unable to see any such association. Instead, we observed two populations of individuals with respect to OLFM4 levels in plasma, the majority with OLFM4 in plasma between 0 and 0.1 μg/ml, mean 0.028 μg/ml while 10% of both normals and patients with cancers had OLFM4 between 4 and 60 μg/ml, mean 15 μg/ml. The levels were constant over time. The background for this high plasma level is not known, but must be taken into account if OLFM4 is used as biomarker for GI cancers.
Collapse
Affiliation(s)
- Stine N Clemmensen
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| | - Anders J Glenthøj
- Department of Pathology, National University Hospital, Copenhagen, Denmark
| | - Sara Heebøll
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | - Claus Koch
- Department of Biomedicine, University of Southern Denmark, Odense, Denmark
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, Copenhagen, Denmark
| |
Collapse
|
35
|
Ran X, Xu X, Yang Y, She S, Yang M, Li S, Peng H, Ding X, Hu H, Hu P, Zhang D, Ren H, Wu L, Zeng W. A quantitative proteomics study on olfactomedin 4 in the development of gastric cancer. Int J Oncol 2015; 47:1932-44. [PMID: 26398045 DOI: 10.3892/ijo.2015.3168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is now one of the most common malignancies with a relatively high incidence and high mortality rate. The prognosis is closely related to the degree of tumor metastasis. The mechanism of metastasis is still unclear. Proteomics analysis is a powerful tool to study and evaluate protein expression in tumor tissues. In the present study, we collected 15 gastric cancer and adjacent normal gastric tissues and used the isobaric tags for relative and absolute quantitation (iTRAQ) method to identify differentially expressed proteins. A total of 134 proteins were differentially expressed between the cancerous and non-cancerous samples. Azurocidin 1 (AZU1), CPVL, olfactomedin 4 (OLFM4) and Villin 1 (VIL1) were upregulated and confirmed by western blot analysis, real-time quantitative PCR and immunohistochemical analyses. These results were in accordance with iTRAQ. Furthermore, silencing the OLFM4 expression suppressed the migration, invasion and proliferation of the GC cells in vitro. The present study represents a successful application of the iTRAQ method in analyzing the expression levels of thousands of proteins. Overexpression of OLFM4 in gastric cancer may induce the development of gastric cancer. Overall, suppression of OLFM4 expression may be a promising strategy in the development of novel cancer therapeutic drugs.
Collapse
Affiliation(s)
- Xiaoping Ran
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoming Xu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Sha She
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Min Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shiying Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong Peng
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiangchun Ding
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Huaidong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dazhi Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ligang Wu
- Department of Oncological Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Weiqun Zeng
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
36
|
Maeda S, Morikawa T, Takadate T, Suzuki T, Minowa T, Hanagata N, Onogawa T, Motoi F, Nishimura T, Unno M. Mass spectrometry-based proteomic analysis of formalin-fixed paraffin-embedded extrahepatic cholangiocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 22:683-91. [PMID: 25917007 DOI: 10.1002/jhbp.262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma is very difficult to diagnose at an early stage, and has a poor prognosis. Novel markers for diagnosis and optimal treatment selection are needed. However, there has been very limited data on the proteome profile of extrahepatic cholangiocarcinoma. This study was designed to unravel the proteome profile of this disease and to identify overexpressed proteins using mass spectrometry-based proteomic approaches. METHODS We analyzed a discovery set of formalin-fixed paraffin-embedded tissues of 14 extrahepatic cholangiocarcinomas using shotgun mass spectrometry, and compared proteome profiles with those of seven controls. Then, selected candidates were verified by quantitative analysis using scheduled selected reaction monitoring-based mass spectrometry. Furthermore, immunohistochemical staining used a validation set of 165 cases. RESULTS In total, 1,992 proteins were identified and 136 proteins were overexpressed. Verification of 58 selected proteins by quantitative analysis revealed 11 overexpressed proteins. Immunohistochemical validation for 10 proteins showed positive rates of S100P (84%), CEAM5 (75%), MUC5A (62%), OLFM4 (60%), OAT (42%), CAD17 (41%), FABPL (38%), AOFA (30%), K1C20 (25%) and CPSM (22%) in extrahepatic cholangiocarcinomas, which were rarely positive in controls. CONCLUSIONS We identified 10 proteins associated with extrahepatic cholangiocarcinoma using proteomic approaches. These proteins are potential targets for future diagnostic biomarkers and therapy.
Collapse
Affiliation(s)
- Shimpei Maeda
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Surgery, South Miyagi Medical Center, Miyagi, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuyuki Takadate
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Japan
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Japan
| | - Tohru Onogawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
37
|
Jang BG, Lee BL, Kim WH. Olfactomedin-related proteins 4 (OLFM4) expression is involved in early gastric carcinogenesis and of prognostic significance in advanced gastric cancer. Virchows Arch 2015; 467:285-94. [PMID: 26070873 DOI: 10.1007/s00428-015-1793-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Olfactomedin 4 (OLFM4) has been demonstrated to be upregulated in various cancers and involved in many cellular processes such as cell adhesion, apoptosis, and cell proliferation. In gastric cancer, clinicopathological relevance of OLFM4 expression has been reported. However, there are few studies showing how expression of OLFM4 evolves during multistep gastric carcinogenesis. In this study, we investigated OLFM4 expression during gastric carcinogenesis using RNA in situ hybridization (ISH). We found that OLFM4 expression is absent in normal gastric mucosa, begins to appear at the isthmus region in gastric glands in chronic gastritis, and is remarkably increased in intestinal metaplasia (IM). Interestingly, gastric-type glands around IM frequently expressed OLFM4 before CDX2 was expressed, suggesting that OLFM4 might be involved in regulating CDX2 expression. However, overexpression of OLFM4 failed to induce CDX2 transcription. All gastric adenomas were strongly positive for OLFM4. OLFM4 expression was higher in intestinal type, well to moderately differentiated and early-stage adenocarcinomas, and decreased in poorly differentiated and advanced-stage gastric cancer (GC). Although OLFM4 expression had no prognostic value for GC overall (P = 0.441), it was associated with poor survival of GC in stage II, III, and IV (P = 0.018), suggesting that OLFM4 expression has prognostic significance for late-stage GC. Our findings suggest that OLFM4 is not only involved in early stages of gastric carcinogenesis but also a useful prognostic marker for advanced GC, which is encouraging for further studies exploring OLFM4 as a potential target for therapy of GC.
Collapse
Affiliation(s)
- Bo Gun Jang
- Department of Pathology, Jeju National University Hospital, Ara-1-dong, Jeju, 690-767, Korea
| | | | | |
Collapse
|
38
|
Su W, Luo L, Wu F, Lai Z, Li X, Xie Z, Tang Z, Yang Z, Liang R. Low expression of olfactomedin 4 correlates with poor prognosis in smoking patients with non–small cell lung cancer. Hum Pathol 2015; 46:732-8. [DOI: 10.1016/j.humpath.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
39
|
Rose-Martel M, Smiley S, Hincke MT. Novel identification of matrix proteins involved in calcitic biomineralization. J Proteomics 2015; 116:81-96. [DOI: 10.1016/j.jprot.2015.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 02/06/2023]
|
40
|
Son EM, Kim JY, An S, Song KB, Kim SC, Yu E, Hong SM. Clinical and Prognostic Significances of Cytokeratin 19 and KIT Expression in Surgically Resectable Pancreatic Neuroendocrine Tumors. J Pathol Transl Med 2015; 49:30-6. [PMID: 25812655 PMCID: PMC4357408 DOI: 10.4132/jptm.2014.10.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Pancreatic neuroendocrine tumors (PanNETs) are malignant endocrine neoplasms that present diverse clinical behaviors. Therefore, identification of biomarkers of PanNETs is important for stratification of the prognosis of PanNET patients. Recently, cytokeratin 19 (CK19) and KIT expression were reported to have prognostic significance in PanNET patients. METHODS To identify their prognostic significance, CK19 and KIT protein expression were assessed in 182 surgically resected PanNETs and compared with clinicopathologic factors. RESULTS Of 182 PanNETs cases, CK19 and KIT expression was noted in 97 (53.3%) and 16 (8.8%) cases, respectively. PanNET patients with CK19 expression had larger tumors (p=.006), higher World Health Organization (WHO) grade (p=.002) and pT classification (p<.001), increased distant metastasis (p=.004), and lymphovascular (p=.012) and perineural (p=.019) invasion. Similarly, those with KIT expression had larger tumors (p=.030), higher WHO grade (p=.001), advanced pT classification (p<.001), distant metastasis (p=.001), and lymphovascular invasion (p=.014). The 5-year survival rate for PanNET patients with KIT expression was significantly lower (62%) than that of patients without KIT expression (77%, p=.011), as determined by univariate but not by multivariate analyses. CONCLUSIONS CK19 and KIT expression correlate with higher metastatic potential and advanced disease stage, and KIT expression is associated with worse survival in PanNET patients.
Collapse
Affiliation(s)
- Eun-Mi Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Young Kim
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Soyeon An
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-Byung Song
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Guette C, Valo I, Vétillard A, Coqueret O. Olfactomedin-4 is a candidate biomarker of solid gastric, colorectal, pancreatic, head and neck, and prostate cancers. Proteomics Clin Appl 2014; 9:58-63. [PMID: 25400027 DOI: 10.1002/prca.201400083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/13/2022]
Abstract
Olfactomedin-4 (OLFM4, OLM4) is a 72 kDa secreted glycoprotein belonging to the olfactomedin family. The OLFM4 gene expression is regulated by the transcription factors NF-kappa B and AP-1, and the OLM4 functions are poorly understood. OLM4 has been described as being able to interact with cell surface proteins such as lectins and concanavalin-A suggesting that one function of OLM4 is to regulate cell adhesion and migration. OLM4 is a marker for intestinal stem cells and is expressed at the bottom of the intestinal crypts. Expression of OLM4 during tumor development showed that OLM4 expression is increased in the early stages of tumor initiation. As OLM4 is a secreted protein, it is a prime candidate for biomarker research for tumor detection or progression. Levels of circulating OLM4 were significantly higher in patients with gastric, colorectal, and pancreatic cancers than in healthy subjects.
Collapse
Affiliation(s)
- Catherine Guette
- Institut de Cancerologie de l'Ouest Paul Papin, INSERM U892, Angers, France
| | | | | | | |
Collapse
|
42
|
Saunders NR, Noor NM, Dziegielewska KM, Wheaton BJ, Liddelow SA, Steer DL, Ek CJ, Habgood MD, Wakefield MJ, Lindsay H, Truettner J, Miller RD, Smith AI, Dietrich WD. Age-dependent transcriptome and proteome following transection of neonatal spinal cord of Monodelphis domestica (South American grey short-tailed opossum). PLoS One 2014; 9:e99080. [PMID: 24914927 PMCID: PMC4051688 DOI: 10.1371/journal.pone.0099080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/09/2014] [Indexed: 01/08/2023] Open
Abstract
This study describes a combined transcriptome and proteome analysis of Monodelphis domestica response to spinal cord injury at two different postnatal ages. Previously we showed that complete transection at postnatal day 7 (P7) is followed by profuse axon growth across the lesion with near-normal locomotion and swimming when adult. In contrast, at P28 there is no axon growth across the lesion, the animals exhibit weight-bearing locomotion, but cannot use hind limbs when swimming. Here we examined changes in gene and protein expression in the segment of spinal cord rostral to the lesion at 24 h after transection at P7 and at P28. Following injury at P7 only forty genes changed (all increased expression); most were immune/inflammatory genes. Following injury at P28 many more genes changed their expression and the magnitude of change for some genes was strikingly greater. Again many were associated with the immune/inflammation response. In functional groups known to be inhibitory to regeneration in adult cords the expression changes were generally muted, in some cases opposite to that required to account for neurite inhibition. For example myelin basic protein expression was reduced following injury at P28 both at the gene and protein levels. Only four genes from families with extracellular matrix functions thought to influence neurite outgrowth in adult injured cords showed substantial changes in expression following injury at P28: Olfactomedin 4 (Olfm4, 480 fold compared to controls), matrix metallopeptidase (Mmp1, 104 fold), papilin (Papln, 152 fold) and integrin α4 (Itga4, 57 fold). These data provide a resource for investigation of a priori hypotheses in future studies of mechanisms of spinal cord regeneration in immature animals compared to lack of regeneration at more mature stages.
Collapse
Affiliation(s)
- Norman R. Saunders
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- * E-mail:
| | - Natassya M. Noor
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | | | - Benjamin J. Wheaton
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Shane A. Liddelow
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - C. Joakim Ek
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mark D. Habgood
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Matthew J. Wakefield
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Department of Genetics, The University of Melbourne, Victoria, Australia
| | - Helen Lindsay
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jessie Truettner
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Robert D. Miller
- Center for Evolutionary & Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - A. Ian Smith
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
43
|
Deletion of the olfactomedin 4 gene is associated with progression of human prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 183:1329-38. [PMID: 24070418 DOI: 10.1016/j.ajpath.2013.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/10/2013] [Accepted: 06/24/2013] [Indexed: 02/07/2023]
Abstract
The olfactomedin 4 (OLFM4) gene is located on chromosome 13q14.3, which frequently is deleted in human prostate cancer. However, direct genetic evidence of OLFM4 gene alteration in human prostate cancer has not yet been obtained. In this study, we investigated the genetics, protein expression, and functions of the OLFM4 gene in human prostate cancer. We found overall 25% deletions within the OLFM4 gene in cancerous epithelial cells compared with adjacent normal epithelial cells that were microdissected from 31 prostate cancer specimens using laser-capture microdissection and genomic DNA sequencing. We found 28% to 45% hemizygous and 15% to 57% homozygous deletions of the OLFM4 gene via fluorescence in situ hybridization analysis from 44 different prostate cancer patient samples. Moreover, homozygous deletion of the OLFM4 gene significantly correlated with advanced prostate cancer. By using immunohistochemical analysis of 162 prostate cancer tissue array samples representing a range of Gleason scores, we found that OLFM4 protein expression correlated inversely with advanced prostate cancer, consistent with the genetic results. We also showed that a truncated mutant of OLFM4 that lacks the olfactomedin domain eliminated suppression of PC-3 prostate cancer cell growth. Together, our findings indicate that OLFM4 is a novel candidate tumor-suppressor gene for chromosome 13q and may shed new light on strategies that could be used for the diagnosis, prognosis, and treatment of prostate cancer patients.
Collapse
|
44
|
Anholt RRH. Olfactomedin proteins: central players in development and disease. Front Cell Dev Biol 2014; 2:6. [PMID: 25364714 PMCID: PMC4206993 DOI: 10.3389/fcell.2014.00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/07/2014] [Indexed: 12/14/2022] Open
Abstract
Olfactomedin proteins are characterized by a conserved domain of \texorpdfstring~\textasciitilde250 amino acids corresponding to the olfactomedin archetype first discovered in olfactory neuroepithelium. They arose early in evolution and occur throughout the animal kingdom. In mice and humans olfactomedin proteins comprise a diverse array of glycoproteins, many of which are critical for early development and functional organization of the nervous system as well as hematopoiesis. Olfactomedin domains appear to facilitate protein-protein interactions, intercellular interactions, and cell adhesion. Several members of the family have been implicated in various common diseases, notably myocilin in glaucoma and OLFM4 in cancer. This review highlights this important, hitherto understudied family of proteins.
Collapse
Affiliation(s)
- Robert R. H. Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|
45
|
Duan C, Liu X, Liang S, Yang Z, Xia M, Wang L, Chen S, Yu L. Oestrogen receptor-mediated expression of Olfactomedin 4 regulates the progression of endometrial adenocarcinoma. J Cell Mol Med 2014; 18:863-74. [PMID: 24495253 PMCID: PMC4119392 DOI: 10.1111/jcmm.12232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Endometrial adenocarcinoma is the most common tumour of the female genital tract in developed countries, and oestrogen receptor (ER) signalling plays a pivotal role in its pathogenesis. When we used bioinformatics tools to search for the genes contributing to gynecological cancers, the expression of Olfactomedin 4 (OLFM4) was found by digital differential display to be associated with differentiation of endometrial adenocarcinoma. Aberrant expression of OLFM4 has been primarily reported in tumours of the digestive system. The mechanism of OLFM4 in tumuorigenesis is elusive. We investigated OLFM4 expression in endometrium, analysed the association of OLFM4 with ER signalling in endometrial adenocarcinoma, and examined the roles of OLFM4 in endometrial adenocarcinoma. Expression of OLFM4 was increased during endometrial carcinogenesis, linked to the differentiation of endometrioid adenocarcinoma, and positively related to the expression of oestrogen receptor-α (ERα) and progesterone receptor. Moreover, ERα-mediated signalling regulated expression of OLFM4, and knockdown of OLFM4 enhanced proliferation, migration and invasion of endometrial carcinoma cells. Down-regulation of OLFM4 was associated with decreased cumulative survival rate of patients with endometrioid adenocarcinoma. Our data suggested that impairment of ERα signal-mediated OLFM4 expression promoted the malignant progression of endometrioid adenocarcinoma, which may have significance for the therapy of this carcinoma.
Collapse
Affiliation(s)
- Chao Duan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2308-16. [PMID: 23665456 DOI: 10.1016/j.bbapap.2013.04.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/21/2013] [Accepted: 04/29/2013] [Indexed: 01/11/2023]
|
48
|
Lukic N, Visentin R, Delhaye M, Frossard JL, Lescuyer P, Dumonceau JM, Farina A. An integrated approach for comparative proteomic analysis of human bile reveals overexpressed cancer-associated proteins in malignant biliary stenosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:1026-33. [PMID: 23872482 DOI: 10.1016/j.bbapap.2013.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022]
Abstract
Proteomics is a key tool in the identification of new bile biomarkers for differentiating malignant and nonmalignant biliary stenoses. Unfortunately, the complexity of bile and the presence of molecules interfering with protein analysis represent an obstacle for quantitative proteomic studies in bile samples. The simultaneous need to introduce purification steps and minimize the use of pre-fractionation methods inevitably leads to protein loss and limited quantifications. This dramatically reduces the chance of identifying new potential biomarkers. In the present study, we included differential centrifugation as a preliminary step in a quantitative proteomic workflow involving iTRAQ labeling, peptide fractionation by OFFGEL electrophoresis and LC-MS/MS, to compare protein expression in bile samples collected from patients with malignant or nonmalignant biliary stenoses. A total of 1267 proteins were identified, including a set of 322 newly described bile proteins, mainly belonging to high-density cellular fractions. The subsequent comparative analysis led to a 5-fold increase in the number of quantified proteins over previously published studies and highlighted 104 proteins overexpressed in malignant samples. Finally, immunoblot verifications performed on a cohort of 8 malignant (pancreatic adenocarcinoma, n=4; cholangiocarcinoma, n=4) and 5 nonmalignant samples (chronic pancreatitis, n=3; biliary stones, n=2) confirmed the results of proteomic analysis for three proteins: olfactomedin-4, syntenin-2 and Ras-related C3 botulinum toxin substrate 1. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Natalija Lukic
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland
| | - Rémy Visentin
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland
| | - Myriam Delhaye
- Department of Gastroenterology, Erasme Hospital, Free University of Brussels, Brussels BE-1070, Belgium
| | - Jean-Louis Frossard
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Pierre Lescuyer
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland; Clinical Proteomics Laboratory, Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Jean-Marc Dumonceau
- Division of Gastroenterology and Hepatology, Geneva University Hospitals, Geneva CH-1211, Switzerland
| | - Annarita Farina
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, Geneva University, Geneva CH-1211, Switzerland.
| |
Collapse
|
49
|
Park KS, Kim KK, Piao ZH, Kim MK, Lee HJ, Kim YC, Lee KS, Lee JH, Kim KE. Olfactomedin 4 suppresses tumor growth and metastasis of mouse melanoma cells through downregulation of integrin and MMP genes. Mol Cells 2012; 34:555-61. [PMID: 23161172 PMCID: PMC3887829 DOI: 10.1007/s10059-012-0251-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/10/2012] [Indexed: 01/14/2023] Open
Abstract
Olfactomedin 4 (OLFM4) is highly expressed in gastrointestinal cancers and has an anti-apoptotic function. The roles of OLFM4 in tumor growth and metastasis and how it functions in these processes remain elusive. We investigated the function of OLFM4 in tumor growth and metastasis using B16F10 mouse melanoma cells as an experimental system. Our results showed that OLFM4 had no positive effect on cell viability or cell cycle progression in B16F10 cells. However, it significantly suppressed the tumorigenicity of B16F10 cells, i.e., intradermal primary tumor growth and lung metastasis. OLFM4 also suppressed the migration and invasion of B16F10 cells in vitro. For further insight into the mechanisms underlying OLFM4-mediated suppression of tumor progression, we examined the effect of OLFM4 on the expression of integrin and matrix metalloproteinase (MMP), both of which are involved in tumor progression. Overexpression of OLFM4 clearly reduced the expression levels of integrin α1, integrin α4, integrin α5, integrin α6, and MMP9. Moreover, forced expression of MMP9 attenuated the inhibitory activity of OLFM4 on migration and invasiveness. Our findings provide the experimental evidence that OLFM4 may function as a tumor suppressor and an anti-metastatic gene during tumor progression.
Collapse
Affiliation(s)
- Key Sun Park
- Department of Biochemistry, Chungnam National University, Daejeon 305-764,
Korea
| | - Kee Kwang Kim
- Department of Biochemistry, Chungnam National University, Daejeon 305-764,
Korea
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892,
USA
| | - Zheng-Hao Piao
- Department of Biochemistry, Chungnam National University, Daejeon 305-764,
Korea
- Department of Basic Medical Sciences, Hangzhou Normal University School of Medicine, Xiasha Higher Education Zone, Hangzhou,
China
| | - Mi Kyung Kim
- Department of Biochemistry, Chungnam National University, Daejeon 305-764,
Korea
| | - Hyun Jean Lee
- Department of Biochemistry, Chungnam National University, Daejeon 305-764,
Korea
| | - Yong Chan Kim
- Department of Biochemistry, Chungnam National University, Daejeon 305-764,
Korea
- Department of Medicine (MED), USUHS Building A, Bethesda, MD 20814,
USA
| | - Ki Sung Lee
- Department of Biology and Medicinal Science, College of Sciences and Technology, Pai Chai University, Daejeon 302-735,
Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Kyoon Eon Kim
- Department of Biochemistry, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
50
|
Liu W, Yan M, Liu Y, McLeish KR, Coleman WG, Rodgers GP. Olfactomedin 4 inhibits cathepsin C-mediated protease activities, thereby modulating neutrophil killing of Staphylococcus aureus and Escherichia coli in mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:2460-7. [PMID: 22844115 DOI: 10.4049/jimmunol.1103179] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophils kill bacteria generally through oxidative and nonoxidative mechanisms. Whereas much research has focused on the enzymes essential for neutrophil killing, little is known about the regulatory molecules responsible for such killing. In this study, we investigated the role of olfactomedin 4 (OLFM4), an olfactomedin-related glycoprotein, in neutrophil bactericidal capability and host innate immunity. Neutrophils from OLFM4⁻/⁻ mice have increased intracellular killing of Staphylococcus aureus and Escherichia coli in vitro. The OLFM4⁻/⁻ mice have enhanced in vivo bacterial clearance and are more resistant to sepsis when challenged with S. aureus or E. coli by i.p. injection. OLFM4 was found to interact with cathepsin C, a cysteine protease that plays an important role in bacterial killing and immune regulation. We demonstrated that OLFM4 inhibited cathepsin C activity in vitro and in vivo. The cathepsin C activity in neutrophils from OLFM4⁻/⁻ mice was significantly higher than that in neutrophils from wild-type littermate mice. The activities of three serine proteases (neutrophil elastase, cathepsin G, and proteinase 3), which require cathepsin C activity for processing and maturity, were also significantly higher in OLFM4⁻/⁻ neutrophils. The bacterial killing and clearance capabilities observed in OLFM4⁻/⁻ mice that were enhanced relative to wild-type mice were significantly compromised by the additional loss of cathepsin C in mice with OLFM4 and cathepsin C double deficiency. These results indicate that OLFM4 is an important negative regulator of neutrophil bactericidal activity by restricting cathepsin C activity and its downstream granule-associated serine proteases.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|