1
|
Yang H, Zheng Y, Yu T, Wu B, Liu Z, Liu S, Sun X, Zhou L. A functional role for myostatin in muscle hyperplasia and hypertrophy revealed by comparative transcriptomics in Yesso scallop Patinopecten yessoensis. Int J Biol Macromol 2025; 307:142308. [PMID: 40118415 DOI: 10.1016/j.ijbiomac.2025.142308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Elucidating the molecular regulatory mechanisms underlying muscle growth and development is of profound significance in aquaculture. Yesso scallop is a cold-water bivalve of considerable economic importance, having its primary edible component of adductor muscle. In this study, comparative transcriptomics and histological analysis at different sampling times after Myostatin (MSTN) interference were performed to identify the potential candidate genes potentially involved in muscle growth and development. The comparative transcriptomics revealed that growth factors and cytokines, extracellular matrix proteins and ubiquitin-proteasome system are potentially involved in muscle hypertrophy and hyperplasia. After MSTN interference, striated adductor muscle displays significant muscle hypertrophy (51.77 % increase on day 7 and 59.83 % increase on day 21) and muscle hyperplasia (59.36 % increase on day 7 and 61.83 % increase on day 21). WGCNA identifies the key darkolivegreen module, which may play crucial roles in muscle hyperplasia and hypertrophy within the striated muscle of the scallop. Five key transcription factors (zf-CCCH, zf-C2H2, PPP1R10, LRRFIP2, and Gon4) are identified by analyzing the co-expression patterns of core genes within the module. These findings will aid in understanding the regulatory mechanisms of muscle growth in scallops and provide a basis for genetic improvement in shellfish aquaculture.
Collapse
Affiliation(s)
- Hongsu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China; Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Chen J, Wang J, Zhao H, Tan X, Yan S, Zhang H, Wang T, Tang X. Molecular breeding of pigs in the genome editing era. Genet Sel Evol 2025; 57:12. [PMID: 40065264 PMCID: PMC11892312 DOI: 10.1186/s12711-025-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To address the increasing demand for high-quality pork protein, it is essential to implement strategies that enhance diets and produce pigs with excellent production traits. Selective breeding and crossbreeding are the primary methods used for genetic improvement in modern agriculture. However, these methods face challenges due to long breeding cycles and the necessity for beneficial genetic variation associated with high-quality traits within the population. This limitation restricts the transfer of desirable alleles across different genera and species. This article systematically reviews past and current research advancements in porcine molecular breeding. It discusses the screening of clustered regularly interspaced short palindromic repeats (CRISPR) to identify resistance loci in swine and the challenges and future applications of genetically modified pigs. MAIN BODY The emergence of transgenic and gene editing technologies has prompted researchers to apply these methods to pig breeding. These advancements allow for alterations in the pig genome through various techniques, ranging from random integration into the genome to site-specific insertion and from target gene knockout (KO) to precise base and prime editing. As a result, numerous desirable traits, such as disease resistance, high meat yield, improved feed efficiency, reduced fat deposition, and lower environmental waste, can be achieved easily and effectively by genetic modification. These traits can serve as valuable resources to enhance swine breeding programmes. CONCLUSION In the era of genome editing, molecular breeding of pigs is critical to the future of agriculture. Long-term and multidomain analyses of genetically modified pigs by researchers, related policy development by regulatory agencies, and public awareness and acceptance of their safety are the keys to realizing the transition of genetically modified products from the laboratory to the market.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Haoran Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xiao Tan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shihan Yan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tiefeng Wang
- College of Life Science, Baicheng Normal University, Baicheng, 137000, China.
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Timofte DV, Tudor RC, Mocanu V, Labusca L. Obesity, Osteoarthritis, and Myokines: Balancing Weight Management Strategies, Myokine Regulation, and Muscle Health. Nutrients 2024; 16:4231. [PMID: 39683624 PMCID: PMC11644804 DOI: 10.3390/nu16234231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity and osteoarthritis (OA) are increasingly prevalent conditions that are intricately linked, with each exacerbating the other's pathogenesis and worsening patient outcomes. This review explores the dual impact of obesity on OA, highlighting the role of excessive weight in aggravating joint degeneration and the limitations OA imposes on physical activity, which further perpetuates obesity. The role of muscle tissue, particularly the release of myokines during physical activity, is examined in the context of OA and obesity. Myokines such as irisin, IL-6, and myostatin are discussed for their roles in metabolic regulation, inflammation, and tissue repair, offering insights into their potential therapeutic targets. This review emphasizes the importance of supervised weight management methods in parallel with muscle rehabilitation in improving joint health and metabolic balance. The potential for myokine modulation through targeted exercise and weight loss interventions to mitigate the adverse effects of obesity and OA is also discussed, suggesting avenues for future research and therapy development to reduce the burden of these chronic conditions.
Collapse
Affiliation(s)
- Daniel Vasile Timofte
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.V.T.); (R.C.T.)
| | - Razvan Cosmin Tudor
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.V.T.); (R.C.T.)
- Dr. Iacob Czihac Military Emergency Hospital Iasi, General Henri Mathias Berthelot Str. 7-9, 700483 Iași, Romania
| | - Veronica Mocanu
- Department of Morpho-Functional Sciences II (Pathophysiology), Center for Obesity BioBehavioral Experimental Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Luminita Labusca
- Department of Orthopedics and Traumatology, “Sf. Spiridon” Emergency Clinical Hospital, 700111 Iasi, Romania;
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania
| |
Collapse
|
4
|
Madula R, Visser C, van Marle-Köster E. The impact of myostatin variants on growth traits in South African Bonsmara beef cattle. Trop Anim Health Prod 2024; 56:358. [PMID: 39448522 PMCID: PMC11502602 DOI: 10.1007/s11250-024-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Double muscling occurs when the myostatin (MSTN) gene is deactivated due to a series of mutations, leading to uncontrolled muscle growth and excessive muscle fiber accumulation, as the gene can no longer effectively regulate muscle development. This study aimed to assess the impact of MSTN variants and their combinations on growth traits, namely direct birth weight (BWDIR), direct weaning weight (WWDIR), average daily gain (ADG) and feed conversion ratio (FCR) in the South African (SA) Bonsmara. Genomically enhanced estimated breeding value (GEBVs) for traits of interest, and MTSN genotypes for SA Bonsmara animals were available for the study. Thirteen MSTN variants (Nt821, Q204X, F94L, E226X, E291X, C313Y, Nt419, S105C, D182N, Nt414, Nt324, Nt267, and Nt748) were routinely genotyped using the IDBv3 SNP array. Genotypic frequencies of MSTN variants ranged from 1.18% for Q204X to 35.02% for Nt748. No association was observed between the Nt267 variant and any growth traits, while both Nt748 and Nt414 variants affected WWDIR, ADG and FCR (p < 0.05). The results of the effect of multiple variants on growth traits indicated that there was an additive effect when more than one MSTN variant was present in an individual. This study is the first study to report the impact of MSTN variants on traits of economic importance in the SA Bonsmara breed.
Collapse
Affiliation(s)
- Rendani Madula
- Department of Animal Science, University of Pretoria, Pretoria, South Africa.
| | - Carina Visser
- Department of Animal Science, University of Pretoria, Pretoria, South Africa.
| | | |
Collapse
|
5
|
Vasilev V, Boyadjiev N, Hrischev P, Gerginska F, Delchev S, Arabadzhiyska D, Komrakova M, Boeker KO, Schilling AF, Georgieva K. Ostarine blunts the effect of endurance training on submaximal endurance in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6523-6532. [PMID: 38451281 PMCID: PMC11422473 DOI: 10.1007/s00210-024-03030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
The purpose of this study is to study the effects of ostarine alone and in combination with endurance training in sexually mature, male Wistar rats. The rats were divided into a treadmill-trained group and a sedentary group. Half of each group received either ostarine or vehicle for 8 weeks (n = 10 each, in total n = 40). We examined some functional, hormonal, and anthropometric parameters and the myogenic gene expression of myostatin, insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor-A (VEGF-A) in m. gastrocnemius. Ostarine decreased submaximal endurance and increased myogenic gene expression of myostatin but had no effect on maximal time to exhaustion and grip strength. Training increased submaximal endurance, maximal time to exhaustion, and grip strength. Our results indicate that both exercise and ostarine treatment had no significant effects on serum levels of luteinizing hormone, follicle-stimulating hormone, and testosterone, or on the myogenic gene expression of IGF-1 and VEGF-A. Neither ostarine nor the training had a significant effect on the testis, liver, and heart weights. In conclusion, ostarine had no effect on anthropometric and hormonal parameters but increased the myostatin gene expression in muscle. The SARM treatment decreased submaximal endurance without affecting maximal time to exhaustion, and training increased both metrics.
Collapse
Affiliation(s)
- Veselin Vasilev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 15-A "Vasil Aprilov" Blvd, Plovdiv, 4002, Bulgaria.
| | - Nikolay Boyadjiev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 15-A "Vasil Aprilov" Blvd, Plovdiv, 4002, Bulgaria
| | - Petar Hrischev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 15-A "Vasil Aprilov" Blvd, Plovdiv, 4002, Bulgaria
| | - Fanka Gerginska
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 15-A "Vasil Aprilov" Blvd, Plovdiv, 4002, Bulgaria
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 15-A "Vasil Aprilov" Blvd, Plovdiv, 4002, Bulgaria
| | - Desislava Arabadzhiyska
- Department of Clinical Laboratory, Faculty of Medicine, Medical University of Plovdiv, 15-A "Vasil Aprilov" Blvd, Plovdiv, 4002, Bulgaria
| | - Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Kai O Boeker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Katerina Georgieva
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 15-A "Vasil Aprilov" Blvd, Plovdiv, 4002, Bulgaria
| |
Collapse
|
6
|
Filippini M, Bugli S, Biordi N, Muccioli F, Reggini V, Benedettini M, Migliore S, Pieri L, Comito A, Pennati BM, Fusco I, Isaza PG, Dominguez AP, Zingoni T, Farinelli M. Myostatin Changes in Females with UI after Magnetic Stimulation: A Quasi-Experimental Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1399. [PMID: 39336440 PMCID: PMC11434281 DOI: 10.3390/medicina60091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Urinary incontinence (UI) is the involuntary loss of urine caused by a weakness in the pelvic floor muscles (PFMs) that affects urethral closure. Myostatin, which prevents the growth of muscles, is a protein expressed by human skeletal muscle cells. Indeed, it has been observed that myostatin concentration rises during skeletal muscle inactivity and that suppressing serum myostatin promotes muscle growth and strength. Furthermore, therapeutic interventions that reduce myostatin signalling may lessen the effects of aging on skeletal muscle mass and function. For this reason, the aim of the study was to assess if flat magnetic stimulation technology affects serum myostatin levels, as myostatin can block cell proliferation at the urethral sphincter level. Materials and Methods: A total of 19 women, 75% presenting stress urinary incontinence (SUI) and 25% urgency urinary incontinence (UUI), were enrolled. A non-invasive electromagnetic therapeutic system designed for deep pelvic floor area stimulation was used for eight sessions. Results: The ELISA (enzyme linked immunosorbent assay) test indicated that the myostatin levels in blood sera had significantly decreased. Patients' ultrasound measurements showed a significant genital hiatus length reduction at rest and in a stress condition. The Pelvic Floor Bother Questionnaire consistently revealed a decrease in mean scores when comparing the pre- and post-treatment data. Conclusions: Effective flat magnetic stimulation reduces myostatin concentration and genital hiatus length, minimizing the severity of urinary incontinence. The results of the study show that without causing any discomfort or unfavourable side effects, the treatment plan significantly improved the PFM tone and strength in patients with UI.
Collapse
Affiliation(s)
- Maurizio Filippini
- Department of Obstetrics and Gynaecology, Hospital State of Republic of San Marino, 47893 San Marino, San Marino; (M.F.); (S.B.); (N.B.); (S.M.); (M.F.)
| | - Simona Bugli
- Department of Obstetrics and Gynaecology, Hospital State of Republic of San Marino, 47893 San Marino, San Marino; (M.F.); (S.B.); (N.B.); (S.M.); (M.F.)
| | - Nicoletta Biordi
- Department of Obstetrics and Gynaecology, Hospital State of Republic of San Marino, 47893 San Marino, San Marino; (M.F.); (S.B.); (N.B.); (S.M.); (M.F.)
| | - Fausto Muccioli
- Department of Transfusion Medicine and Clinical Pathology, Hospital State of Republic of San Marino, 47893 San Marino, San Marino; (F.M.); (V.R.); (M.B.)
| | - Valentina Reggini
- Department of Transfusion Medicine and Clinical Pathology, Hospital State of Republic of San Marino, 47893 San Marino, San Marino; (F.M.); (V.R.); (M.B.)
| | - Milena Benedettini
- Department of Transfusion Medicine and Clinical Pathology, Hospital State of Republic of San Marino, 47893 San Marino, San Marino; (F.M.); (V.R.); (M.B.)
| | - Serena Migliore
- Department of Obstetrics and Gynaecology, Hospital State of Republic of San Marino, 47893 San Marino, San Marino; (M.F.); (S.B.); (N.B.); (S.M.); (M.F.)
| | - Laura Pieri
- El. En. Group, 50041 Florence, Italy; (L.P.); (A.C.); (B.M.P.); (T.Z.)
| | - Alessandra Comito
- El. En. Group, 50041 Florence, Italy; (L.P.); (A.C.); (B.M.P.); (T.Z.)
| | | | - Irene Fusco
- El. En. Group, 50041 Florence, Italy; (L.P.); (A.C.); (B.M.P.); (T.Z.)
| | - Pablo Gonzalez Isaza
- Division of Urogynecology and Pelvic Reconstructive Surgery, Department of Obstetrics and Gynecology, San Jorge University Hospital, Pereira 660002, Colombia;
| | - Antonio Posada Dominguez
- Colsposcopy Unit, Department Obstetrics and Gynecology, Centro Hospitalario La Concepcion, Saltillo 25230, Mexico;
| | - Tiziano Zingoni
- El. En. Group, 50041 Florence, Italy; (L.P.); (A.C.); (B.M.P.); (T.Z.)
| | - Miriam Farinelli
- Department of Obstetrics and Gynaecology, Hospital State of Republic of San Marino, 47893 San Marino, San Marino; (M.F.); (S.B.); (N.B.); (S.M.); (M.F.)
| |
Collapse
|
7
|
Lv ST, Gao K, Choe HM, Jin ZY, Chang SY, Quan BH, Yin XJ. Effects of myostatin gene knockout on porcine extraocular muscles. Anim Biotechnol 2023; 34:2150-2158. [PMID: 35658834 DOI: 10.1080/10495398.2022.2077741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Myostatin (MSTN), a negative regulator of skeletal muscle mass, is not well known in extraocular muscles (EOMs). EOMs are specialized skeletal muscles. Hence, in this study, the effect of MSTN on the superior rectus (SR) and superior oblique (SO) of 2-month-old MSTN knockout (MSTN-/-) and wild-type (WT) pigs of the same genotype was investigated. SR (P < 0.01) and SO (P < 0.001) fiber cross-sectional areas of MSTN-/- pigs were significantly larger than those of WT pigs. Compared with WT pigs, MSTN-/- SO displayed a decrease in type I fibers (WT: 27.24%, MSTN-/-: 10.32%, P < 0.001). Type IIb fibers were higher in MSTN-/- pigs than in WT pigs (WT: 30.38%, MSTN-/-: 62.24%, P < 0.001). The trend in SR was the same as that in SO, although the trend in SO was greater than that in SR. The expression of myogenic differentiation factor (MyoD) and myogenic (MyoG) showed a significant increase in MSTN-/- SO (about 2.5-fold and 2-fold, respectively at the gene expression level, about 1.5-fold at the protein level) compared with WT pigs. MSTN plays an important role in the development of EOMs and regulates the muscle fiber type by modulating the gene expression of MyoD and MyoG in pigs.
Collapse
Affiliation(s)
- Si-Tong Lv
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Kai Gao
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Hak Myong Choe
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zheng-Yun Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Shuang-Yan Chang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Biao-Hu Quan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
8
|
Hager A, Mazurak V, Noga M, Gilmour SM, Mager DR. Skeletal muscle fibre morphology in childhood-insights into myopenia in pediatric liver disease. Appl Physiol Nutr Metab 2023; 48:730-750. [PMID: 37319441 DOI: 10.1139/apnm-2023-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TAKE-HOME MESSAGE Skeletal muscle morphology in healthy children changes with age. Liver disease may preferentially affect type II fibres in adults with end-stage liver disease (ESLD). More research is needed on the effects of ESLD on muscle morphology in children.
Collapse
Affiliation(s)
- Amber Hager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vera Mazurak
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michelle Noga
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Susan M Gilmour
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Division of Pediatric Gastroenterology & Nutrition/Transplant Services, The Stollery Children's Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Diana R Mager
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Lakhina Y, Boulis NM, Donsante A. Current and emerging targeted therapies for spinal muscular atrophy. Expert Rev Neurother 2023; 23:1189-1199. [PMID: 37843301 DOI: 10.1080/14737175.2023.2268276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a progressive neurodegenerative disorder caused by insufficiency or total absence of the survival motor neuron protein due to a mutation in the SMN1 gene. The copy number of its paralog, SMN2, influences disease onset and phenotype severity. Current therapeutic approaches include viral and non-viral modalities affecting gene expression. Regulatory-approved drugs Spinraza (Nusinersen), Zolgensma (Onasemnogene abeparvovec), and Evrysdi (Risdiplam) are still being investigated during clinical trials and show benefits in the long-term for symptomatic and pre-symptomatic patients. However, some ongoing interventions require repeated drug administration. AREAS COVERED In this review, the authors describe the existing therapy based on point of application, focusing on recent clinical trials of antisense oligonucleotides, viral gene therapy, and splice modulators and thepotential routes for correcting the mutation to provide therapeutic levels of SMN protein. EXPERT OPINION In the opinion of the authors, multiple treatment options for patients with SMA shifted the treatment paradigm from palliative supportive care to improvedmotor function, increased survival, and greater quality of life for such patients. They further believe that the future in SMA treatment development lies incombining existing treatment options, targeting aspects of the disease refractory to these treatments, and using gene editing technologies.
Collapse
Affiliation(s)
- Yuliya Lakhina
- Department of Neurosurgery, Emory University, Atlanta, USA
| | | | | |
Collapse
|
10
|
Dakhlan A, Bayu Putra WP, Santosa PE, Kurniawati D. Novel Polymorphisms in Caprine Myostatin Gene and its Relationship with Growth Traits in Saburai Does ( Capra hircus). Pak J Biol Sci 2023; 26:380-385. [PMID: 37902079 DOI: 10.3923/pjbs.2023.380.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
<b>Background and Objective:</b> Saburai goat (<i>Capra hircus</i>) is a crossbred goat from Boer buck (75%) and Ettawa doe (25%) for meat production purposes. This study was carried out to detect the mutation points or Single Nucleotide Polymorphisms (SNPs) in the myostatin (<i>MSTN</i>) gene of Saburai with the forward sequencing method. <b>Materials and Methods:</b> A total of twenty-one blood samples of Saburai does (75% Boer, 25% Ettawa) were collected from the Villager Breeder Center (VBC) at Tanggamus Regency of Lampung Province, Indonesia. The DNA analysis consists of DNA isolation, PCR analysis and sequencing analysis. The record data were used for association study with the mathematical model: Y<sub>ij</sub> = μ+G<sub>i</sub>+Є<sub>ij</sub>. <b>Results:</b> Research showed that one common SNP of g.217_218.indel.TTTTA (5'UTR) and three novel SNPs of c.386G>C (exon 1), g.641_642.indel.T (intron 2) and c.4957G>C (exon 3) were detected in the present study. In this study, a novel SNP on exon 1 and intron 2 of Saburai <i>MSTN</i> gene has a moderate PIC value (>0.30). In addition, a novel SNP on exon 1 and exon 3 of the Saburai <i>MSTN</i> gene was detected as a missense mutation of A55P and A43P, respectively. Goats with the heterozygous genotype have higher growth traits compared to goats with the homozygous genotype. <b>Conclusion:</b> The goats with heterozygous genotypes can be further developed to increase the productivity of Saburai goats.
Collapse
|
11
|
Fisher G, Mackels L, Markati T, Sarkozy A, Ochala J, Jungbluth H, Ramdas S, Servais L. Early clinical and pre-clinical therapy development in Nemaline myopathy. Expert Opin Ther Targets 2022; 26:853-867. [PMID: 36524401 DOI: 10.1080/14728222.2022.2157258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nemaline myopathies (NM) represent a group of clinically and genetically heterogeneous congenital muscle disorders with the common denominator of nemaline rods on muscle biopsy. NEB and ACTA1 are the most common causative genes. Currently, available treatments are supportive. AREAS COVERED We explored experimental treatments for NM, identifying at least eleven mainly pre-clinical approaches utilizing murine and/or human muscle cells. These approaches target either i) the causative gene or associated genes implicated in the same pathway; ii) pathophysiologically relevant biochemical mechanisms such as calcium/myosin regulation of muscle contraction; iii) myogenesis; iv) other therapies that improve or optimize muscle function more generally; v) and/or combinations of the above. The scope and efficiency of these attempts is diverse, ranging from gene-specific effects to those widely applicable to all NM-associated genes. EXPERT OPINION The wide range of experimental therapies currently under consideration for NM is promising. Potential translation into clinical use requires consideration of additional factors such as the potential muscle type specificity as well as the possibility of gene expression remodeling. Challenges in clinical translation include the rarity and heterogeneity of genotypes, phenotypes, and disease trajectories, as well as the lack of longitudinal natural history data and validated outcomes and biomarkers.
Collapse
Affiliation(s)
- Gemma Fisher
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Laurane Mackels
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| | - Theodora Markati
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Laurent Servais
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
12
|
Han SZ, Gao K, Chang SY, Choe HM, Paek HJ, Quan BH, Liu XY, Yang LH, Lv ST, Yin XJ, Quan LH, Kang JD. miR-455-3p Is Negatively Regulated by Myostatin in Skeletal Muscle and Promotes Myoblast Differentiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10121-10133. [PMID: 35960196 DOI: 10.1021/acs.jafc.2c02474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Myostatin (MSTN) is a growth and differentiation factor that regulates proliferation and differentiation of myoblasts, which in turn controls skeletal muscle growth. It may regulate myoblast differentiation by influencing miRNA expression, and the present study aimed to clarify its precise mechanism of action. Here, we found that MSTN-/- pigs showed an overgrowth of skeletal muscle and upregulated miR-455-3p level. Intervention of MSTN expression using siMSTN in C2C12 myoblasts also showed that siMSTN significantly increased the expression of miR-455-3p. It was found that miR-455-3p directly targeted the 3'-untranslated region of Smad2 by dual-luciferase assay. qRT-PCR, Western blotting, and immunofluorescence analyses indicated that miR-455-3p overexpression or Smad2 silencing in C2C12 myoblasts significantly promoted myoblast differentiation. Furthermore, siMSTN significantly increased the expression of GATA3. The levels of miR-455-3p were considerably reduced in C2C12 myoblasts following GATA3 knockdown. Consistently, GATA3 knockdown also reduced the enhanced miR-455-3p expression caused by siMSTN. Finally, we illustrated that GATA3 has a role in myoblast differentiation regulation. Taken together, we identified the expression profiles of miRNAs in MSTN-/- pigs and found that miR-455-3p positively regulates myoblast differentiation. In addition, we revealed that MSTN acts through the GATA3/miR-455-3p/Smad2 cascade to regulate muscle development.
Collapse
Affiliation(s)
- Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Kai Gao
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Hak-Myong Choe
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Hyo-Jin Paek
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Biao-Hu Quan
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Xin-Yue Liu
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Si-Tong Lv
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| |
Collapse
|
13
|
Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, Qadri AF, Hwang YC, Jan AT, Ahmad SS, Ali S, Shaikh S, Lee EJ, Choi I. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol 2022; 13:876078. [PMID: 35812316 PMCID: PMC9259834 DOI: 10.3389/fphys.2022.876078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN. This review delivers an overview of the current state of knowledge about SM and myogenesis with particular emphasis on the structural characteristics and regulatory functions of MSTN during myogenesis and its involvements in various muscle related disorders. In addition, we review the diverse approaches used to inhibit the activity of MSTN, especially in silico approaches to the screening of natural compounds and the design of novel short peptides derived from proteins that typically interact with MSTN.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Afsha Fatima Qadri
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
14
|
Abati E, Manini A, Comi GP, Corti S. Inhibition of myostatin and related signaling pathways for the treatment of muscle atrophy in motor neuron diseases. Cell Mol Life Sci 2022; 79:374. [PMID: 35727341 PMCID: PMC9213329 DOI: 10.1007/s00018-022-04408-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Myostatin is a negative regulator of skeletal muscle growth secreted by skeletal myocytes. In the past years, myostatin inhibition sparked interest among the scientific community for its potential to enhance muscle growth and to reduce, or even prevent, muscle atrophy. These characteristics make it a promising target for the treatment of muscle atrophy in motor neuron diseases, namely, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), which are rare neurological diseases, whereby the degeneration of motor neurons leads to progressive muscle loss and paralysis. These diseases carry a huge burden of morbidity and mortality but, despite this unfavorable scenario, several therapeutic advancements have been made in the past years. Indeed, a number of different curative therapies for SMA have been approved, leading to a revolution in the life expectancy and outcomes of SMA patients. Similarly, tofersen, an antisense oligonucleotide, is now undergoing clinical trial phase for use in ALS patients carrying the SOD1 mutation. However, these therapies are not able to completely halt or reverse progression of muscle damage. Recently, a trial evaluating apitegromab, a myostatin inhibitor, in SMA patients was started, following positive results from preclinical studies. In this context, myostatin inhibition could represent a useful strategy to tackle motor symptoms in these patients. The aim of this review is to describe the myostatin pathway and its role in motor neuron diseases, and to summarize and critically discuss preclinical and clinical studies of myostatin inhibitors in SMA and ALS. Then, we will highlight promises and pitfalls related to the use of myostatin inhibitors in the human setting, to aid the scientific community in the development of future clinical trials.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Neurology Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arianna Manini
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Neurology Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
- Neurology Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
15
|
Sonali, Giri SK, Unnati, Nayan V, Legha RA, Pal Y, Bhardwaj A. Characterization of Partial Sequence of Myostatin Gene Exon 2 along with SNP detection in Indian Horse Breeds (Equus caballus). J Equine Vet Sci 2022; 116:104047. [PMID: 35716837 DOI: 10.1016/j.jevs.2022.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
India has well documented horse and pony breeds; however, the population is well diversified in different geographical regions. The Myostatin gene is one of the most profoundly studied genetic components for the detection of SNP's for the performance analysis in horses. In the present study, the MSTN exon 2 partial cds were amplified, sequenced and characterized in about 60 samples of eight different breeds of Indian horses. The results indicated the transition of Thymine to Cytosine (T>C) as SNPs in the partial sequence of exon 2 of the MSTN gene at two different codon positions (T12C, T13C) on chromosome 18. The haplotypes and phylogeny of the MSTN gene in the selected horse population were also analyzed. The overall and singleton haplotype are two different entities, indicating the variation among breeds is unique while the gene is equally distributed throughout the population. The phylogeny suggests that all the breeds are somehow equally distributed in their specific geographical tracts. It is the first study of MSTN gene variations in Indian horse breeds, which provides insight into predicting athletic performance as well as phylogeny. This study provides useful genetic information on Indian horses that can be used to model the racing performances of the breeds.
Collapse
Affiliation(s)
- Sonali
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India; Department of Biotechnology (SBAS), Maharaja Agrasen University, Baddi, 174103, Solan HP, India
| | - Shiv Kumar Giri
- Department of Biotechnology (SBAS), Maharaja Agrasen University, Baddi, 174103, Solan HP, India.
| | - Unnati
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India
| | - Varij Nayan
- ICAR- Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Ram Avatar Legha
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India
| | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India
| | - Anuradha Bhardwaj
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India.
| |
Collapse
|
16
|
Zhou S, Kalds P, Luo Q, Sun K, Zhao X, Gao Y, Cai B, Huang S, Kou Q, Petersen B, Chen Y, Ma B, Wang X. Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality. BMC Genomics 2022; 23:348. [PMID: 35524183 PMCID: PMC9078021 DOI: 10.1186/s12864-022-08594-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND CRISPR/Cas9-based genome-editing systems have been used to efficiently engineer livestock species with precise genetic alterations intended for biomedical and agricultural applications. Previously, we have successfully generated gene-edited sheep and goats via one-cell-stage embryonic microinjection of a Cas9 mRNA and single-guide RNAs (sgRNAs) mixture. However, most gene-edited animals produced using this approach were heterozygotes. Additionally, non-homozygous gene-editing outcomes may not fully generate the desired phenotype in an efficient manner. RESULTS We report the optimization of a Cas9 mRNA-sgRNA delivery system to efficiently generate homozygous myostatin (MSTN) knockout sheep for improved growth and meat production. Firstly, an sgRNA selection software (sgRNAcas9) was used to preliminarily screen for highly efficient sgRNAs. Ten sgRNAs targeting the MSTN gene were selected and validated in vitro using sheep fibroblast cells. Four out of ten sgRNAs (two in exon 1 and two in exon 2) showed a targeting efficiency > 50%. To determine the optimal CRISPR/Cas9 microinjection concentration, four levels of Cas9 mRNA and three levels of sgRNAs in mixtures were injected into sheep embryos. Microinjection of 100 ng/μL Cas9 mRNA and 200 ng/μL sgRNAs resulted in the most improved targeting efficiency. Additionally, using both the highly efficient sgRNAs and the optimal microinjection concentration, MSTN-knockout sheep were generated with approximately 50% targeting efficiency, reaching a homozygous knockout efficiency of 25%. Growth rate and meat quality of MSTN-edited lambs were also investigated. MSTN-knockout lambs exhibited increased body weight and average daily gain. Moreover, pH, drip loss, intramuscular fat, crude protein, and shear force of gluteal muscles of MSTN-knockout lambs did not show changes compared to the wild-type lambs. CONCLUSIONS This study highlights the importance of in vitro evaluation for the optimization of sgRNAs and microinjection dosage of gene editing reagents. This approach enabled efficient engineering of homozygous knockout sheep. Additionally, this study confirms that MSTN-knockout lambs does not negatively impact meat quality, thus supporting the adoption of gene editing as tool to improve productivity of farm animals.
Collapse
Affiliation(s)
- Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Qi Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kexin Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qifang Kou
- Ningxia Tianyuan Tan Sheep Farm, Hongsibu, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Starcher AE, Peissig K, Stanton JB, Churchill GA, Cai D, Maxwell JT, Grider A, Love K, Chen SY, Coleman AE, Strauss E, Pazdro R. A systems approach using Diversity Outbred mice distinguishes the cardiovascular effects and genetics of circulating GDF11 from those of its homolog, myostatin. G3-GENES GENOMES GENETICS 2021; 11:6362884. [PMID: 34510201 PMCID: PMC8527520 DOI: 10.1093/g3journal/jkab293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/02/2022]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the TGF-β protein family that has been implicated in the development of cardiac hypertrophy. While some studies have suggested that systemic GDF11 protects against cardiomyocyte enlargement and left ventricular wall thickening, there remains uncertainty about the true impact of GDF11 and whether its purported effects are actually attributable to its homolog myostatin. This study was conducted to resolve the statistical and genetic relationships among GDF11, myostatin, and cardiac hypertrophy in a mouse model of human genetics, the Diversity Outbred (DO) stock. In the DO population, serum GDF11 concentrations positively correlated with cardiomyocyte cross-sectional area, while circulating myostatin levels were negatively correlated with body weight, heart weight, and left ventricular wall thickness and mass. Genetic analyses revealed that serum GDF11 concentrations are modestly heritable (0.23) and identified a suggestive peak on murine chromosome 3 in close proximity to the gene Hey1, a transcriptional repressor. Bioinformatic analyses located putative binding sites for the HEY1 protein upstream of the Gdf11 gene in the mouse and human genomes. In contrast, serum myostatin concentrations were more heritable (0.57) than GDF11 concentrations, and mapping identified a significant locus near the gene FoxO1, which has binding motifs within the promoter regions of human and mouse myostatin genes. Together, these findings more precisely define the independent cardiovascular effects of GDF11 and myostatin, as well as their distinct regulatory pathways. Hey1 is a compelling candidate for the regulation of GDF11 and will be further evaluated in future studies.
Collapse
Affiliation(s)
- Abigail E Starcher
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Kristen Peissig
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - James B Stanton
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | | | - Dunpeng Cai
- Department of Physiology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Joshua T Maxwell
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Arthur Grider
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Kim Love
- K. R. Love Quantitative Consulting and Collaboration, Athens, GA 30605, USA
| | - Shi-You Chen
- Department of Physiology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Amanda E Coleman
- Department of Small Animal Medicine & Surgery, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Emma Strauss
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
19
|
Interaction of Fibromodulin and Myostatin to Regulate Skeletal Muscle Aging: An Opposite Regulation in Muscle Aging, Diabetes, and Intracellular Lipid Accumulation. Cells 2021; 10:cells10082083. [PMID: 34440852 PMCID: PMC8393414 DOI: 10.3390/cells10082083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to investigate fibromodulin (FMOD) and myostatin (MSTN) gene expressions during skeletal muscle aging and to understand their involvements in this process. The expressions of genes related to muscle aging (Atrogin 1 and Glb1), diabetes (RAGE and CD163), and lipid accumulation (CD36 and PPARγ) and those of FMOD and MSTN were examined in CTX-injected, aged, MSTN−/−, and high-fat diet (HFD) mice and in C2C12 myoblasts treated with ceramide or grown under adipogenic conditions. Results from CTX-injected mice and gene knockdown experiments in C2C12 cells suggested the involvement of FMOD during muscle regeneration and myoblast proliferation and differentiation. Downregulation of the FMOD gene in MSTN−/− mice, and MSTN upregulation and FMOD downregulation in FMOD and MSTN knockdown C2C12 cells, respectively, during their differentiation, suggested FMOD negatively regulates MSTN gene expression, and MSTN positively regulates FMOD gene expression. The results of our in vivo and in vitro experiments indicate FMOD inhibits muscle aging by negatively regulating MSTN gene expression or by suppressing the action of MSTN protein, and that MSTN promotes muscle aging by positively regulating the expressions of Atrogin1, CD36, and PPARγ genes in muscle.
Collapse
|
20
|
Liu Y, Xu C, Asiamah CA, Ye R, Pan Y, Lu LL, Zhao Z, Jiang P, Su Y. Decorin regulates myostatin and enhances proliferation and differentiation of embryonic myoblasts in Leizhou black duck. Gene 2021; 804:145884. [PMID: 34364913 DOI: 10.1016/j.gene.2021.145884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023]
Abstract
Skeletal muscle is one of the most important economic traits in the poultry industry whose development goes through several processes influenced by several candidate genes. This study explored the regulatory role of DCN on MSTN and the influence of these genes on the proliferation and differentiation of embryonic myoblasts in Leizhou black ducks. Embryonic myoblasts were transfected with over-expressing DCN, Si-DCN, and empty vector and cultured for 24 h, 48 h, and 72 h of proliferation and the comparative expression of DCN and MSTN were measured. The results showed that cells transfected with the over-expression DCN had a significantly (P < 0.05) higher expression of DCN mRNA than the normal group and the expression of MSTN mRNA showed a downward trend during the proliferation of myoblasts. DCN mRNA expression was lower in cells transfected with Si-DCN than the normal group in all stages of proliferation. While the expression of MSTN in the Si-DCN transfected group was higher than the normal group with a significant (P < 0.05) difference at the 72 h stage. DCN mRNA increased at the early stage of differentiation but decreased (P > 0.05) from the 6th day to the 8th day of differentiation. The level of MSTN increased gradually during the differentiation process of myoblasts until it decreased significantly on the 8th day. These results show that DCN enhances the proliferation and differentiation of Leizhou black duck myoblasts and suppresses MSTN activity.
Collapse
Affiliation(s)
- Yuanbo Liu
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chong Xu
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | | | - Rungen Ye
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yiting Pan
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Li-Li Lu
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhihui Zhao
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ping Jiang
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ying Su
- Binhai Agricultural College of Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
21
|
Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. SCIENCE CHINA-LIFE SCIENCES 2021; 65:362-375. [PMID: 34109474 PMCID: PMC8188954 DOI: 10.1007/s11427-020-1927-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/05/2022]
Abstract
Beef and mutton production has been aided by breeding to integrate allelic diversity for myostatin (MSTN), but a lack of diversity in the MSTN germplasm has limited similar advances in pig farming. Moreover, insurmountable challenges with congenital lameness and a dearth of data about the impacts of feed conversion, reproduction, and meat quality in MSTN-edited pigs have also currently blocked progress. Here, in a largest-to-date evaluation of multiple MSTN-edited pig populations, we demonstrated a practical alternative edit-site-based solution that overcomes the major production obstacle of hindlimb weakness. We also provide long-term and multidomain datasets for multiple breeds that illustrate how MSTN-editing can sustainably increase the yields of breed-specific lean meat and the levels of desirable lipids without deleteriously affecting feed-conversion rates or litter size. Apart from establishing a new benchmark for the data scale and quality of genome-edited animal production, our study specifically illustrates how gene-editing site selection profoundly impacts the phenotypic outcomes in diverse genetic backgrounds.
Collapse
|
22
|
roostaei M, pirani H, rashidlamir A. High intensity interval training induces the expression of Myostatin and Follistatin isoforms in rat muscle: differential effects on fast and slow twitch skeletal muscles. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.5.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
23
|
A Novel Nanobody Directed against Ovine Myostatin to Enhance Muscle Growth in Mouse. Animals (Basel) 2020; 10:ani10081398. [PMID: 32796682 PMCID: PMC7460164 DOI: 10.3390/ani10081398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Myostatin (MSTN) is a negative regulator of myogenesis, and various strategies have been used to improve livestock production by inhibiting MSTN. In this study, we developed a single-variable domain of the heavy chain antibody-recombinant MSTN nanobody (RMN) against MSTN. The selected RMN was expressed, purified, and assessed for its cytotoxicity, affinity, specificity, and the ability to inhibit MSTN. The results demonstrated that RMN could specifically detect and bind MSTN, further inhibit myostatin activity, as well as enhance muscle growth in mice. Abstract Myostatin (MSTN) is a member of the transforming growth factor beta superfamily and is a negative regulator of myogenesis. It has been shown to function by controlling the proliferation of myoblasts. MSTN inhibition is considered as a promising treatment for promoting animal growth in livestock. Nanobodies, a special antibody discovered in camel, have arisen as an alternative to conventional antibodies and have shown great potential when used as tools in different biotechnology fields, such as diagnostics and therapy. In this study, we examined the effect of MSTN inhibition by RMN on the muscle growth of mice. The results showed that RMN could specifically detect and bind MSTN, as well as inhibit MSTN activity. A significant increase in skeletal muscle mass was observed after intramuscular injection of RMN into mice. Enhanced muscle growth occurred because of myofiber hypertrophy. These results offer a promising approach to enhance muscle growth that warrants further investigation in domestic animals.
Collapse
|
24
|
Associations of CAST, CAPN1 and MSTN Genes Polymorphism with Slaughter Value and Beef Quality – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The slaughter value of cattle and beef quality are influenced by many factors, which can generally be divided into antemortem (breed, sex, age, housing system, diet, pre-slaughter handling) and postmortem (post-slaughter processing, chilling temperature, packaging). Studies of many authors have shown that meat quality traits can be also influenced by the individual genetic background of an animal. Numerous studies have been conducted worldwide to determine the functions of various genes as well as polymorphisms with potential effects on fattening and slaughter value of cattle and on beef quality. This study reviews the most important research done on the associations of polymorphisms in the calpain, calpastatin and myostatin genes with carcass traits and beef quality. Knowledge about the genes and chromosome regions associated with desired meat quality characteristics may prove very helpful when selecting pairs for mating and estimating the breeding value of offspring, mainly because it is difficult to improve meat quality traits based on conventional selection methods due to their low heritability and polygenic regulation. Furthermore, meat quality evaluation is expensive and can only be carried out after slaughter.
Collapse
|
25
|
Tinklenberg JA, Siebers EM, Beatka MJ, Fickau BA, Ayres S, Meng H, Yang L, Simpson P, Granzier HL, Lawlor MW. Myostatin Inhibition Using ActRIIB-mFc Does Not Produce Weight Gain or Strength in the Nebulin Conditional KO Mouse. J Neuropathol Exp Neurol 2019; 78:130-139. [PMID: 30597051 DOI: 10.1093/jnen/nly120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations in at least 12 genes are responsible for a group of congenital skeletal muscle diseases known as nemaline myopathies (NMs). NMs are associated with a range of clinical symptoms and pathological changes often including the presence of cytoplasmic rod-like structures (nemaline bodies) and myofiber hypotrophy. Our recent work has identified a variable degree of behavioral benefit when treating 2 NM mouse models due to mutations in Acta1 with myostatin inhibition. This study is focused on the effects of delivering ActRIIB-mFc (Acceleron; a myostatin inhibitor) to the nebulin conditional knockout KO (Neb cKO) mouse model of NM. Treatment of Neb cKO mice with ActRIIB-mFc did not produce increases in weight gain, strength, myofiber size, or hypertrophic pathway signaling. Overall, our studies demonstrate a lack of response in Neb cKO mice to myostatin inhibition, which differs from the response observed when treating other NM models.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brittany A Fickau
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samuel Ayres
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Pippa Simpson
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine
| | - Henk L Granzier
- Division of Quantitative Health Sciences, Department of Pediatrics Medical College of Wisconsin, Milwaukee, Wisconsin (PS); and College of Medicine, University of Arizona, Tucson, Arizona
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
26
|
Molecular characterization, expression analysis of myostatin gene and its negative regulation by miR-29b-3p in Chinese concave-eared frogs (Odorrana tormota). Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110369. [PMID: 31676334 DOI: 10.1016/j.cbpb.2019.110369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/08/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023]
Abstract
The molecular characteristics, expression patterns and functions of the amphibian myostatin (MSTN) gene are unknown. Here, we isolated a full-length Odorrana tormota MSTN cDNA sequence of 1701 bp (Ot-MSTN), containing a putative N-terminal signal peptide, a TGF-β propeptide domain and an active peptide. Ot-MSTN was expressed in 9 selected tissues examined, and the highest level of expression was in thigh muscle, followed by brain and female gonadal tissue. The expression of Ot-MSTN in multiple O. tormota tissues supported that the activities of MSTN may be not limited to skeletal muscle. Ot-MSTN expression was decreased from stage 31 to stage 40, while the growth rate was increased. The expression of Ot-MSTN in adult male frogs increased with age, indicating that adult male frogs may inhibit the continued hypertrophy of thigh muscle fibers and decrease the growth rate of thigh muscle to ensure muscles do not grow too large. Luciferase reporter assays showed that miR-29b-3p directly targeted the 3'-UTR of Ot-MSTN. miR-29b-3p expression in the thigh muscle of 2 yrs. females who grew faster was significantly lower than that of the slow-growing 2 yrs. male individuals, which showed an opposite trend with Ot-MSTN expression. In addition,miR-29b-3p expression reversed trends of Ot-MSTN expression at different developmental stages in thigh muscle. Therefore, these data indicate that miR-29-3p may negatively regulate the expression of MSTN and regulate thigh muscle growth and development in O. tormota.
Collapse
|
27
|
Shanazari Z, Faramarzi M, Banitalebi E, Hemmati R. Effect of moderate and high-intensity endurance and resistance training on serum concentrations of MSTN and IGF-1 in old male Wistar rats. Horm Mol Biol Clin Investig 2019; 38:/j/hmbci.ahead-of-print/hmbci-2018-0066/hmbci-2018-0066.xml. [PMID: 31063458 DOI: 10.1515/hmbci-2018-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/10/2019] [Indexed: 11/15/2022]
Abstract
Background Skeletal muscle is very sensitive to extracellular and intracellular signaling evoked by contractions from endurance and resistance exercise. The aim of this study was to compare the effects of moderate- and high-intensity endurance and resistance training on the serum myostatin (MSTN) and insulin-like growth factor (IGF-1) levels in older rats. Materials and methods Fifty old Wistar male rats (23 months old) were randomly divided into four experimental and one control groups, including moderate-endurance training (MET) (n = 10), high-intensity endurance training (EHT) (n = 10), moderate-intensity resistance training (MRT) (n = 10), high-intensity resistance training (HRT) (n = 10), and control group (C) (n = 10). Seventy-two hours after the last exercise session, euthanasia of the rats were rendered unconscious and direct blood samples were collected. Serum IGF-1 and MSTN concentration were measured using the enzyme-linked immuno sorbent assay (ELISA) method. The statistical analysis was performed using one-way analysis of variance (ANOVA) test with a significance level of p ≤ 0.05. Results There was a significant reduction in MSTN and an increase in IGF-1 concentrations was observed between IGF-I levels in high and moderate resistance and endurance training. However, no significant difference was observed in MSTN levels between groups. Discussion Therefore, it appears that resistance training, especially HRT, is effective to increase growth mediators among older rats.
Collapse
Affiliation(s)
| | - Mohammad Faramarzi
- Exercise Physiology, Shahrekord University, Shahrekord, Iran, Phone: 09133040196
| | | | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
28
|
A sensitive antibody-free 2D-LC–MS/MS assay for the quantitation of myostatin in the serum of different species. Bioanalysis 2019; 11:957-970. [DOI: 10.4155/bio-2018-0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Myostatin (MSTN) is an attractive therapeutic target for the treatment of muscle degeneration-related diseases and is being evaluated as a target engagement biomarker. Methods: A sensitive 2D-LC–MS/MS assay was developed to quantify MSTN in different animal species. Sample preparation involved SDS denaturation of serum proteins followed by tryptic digestion and peptide enrichment by SPE. Results: The assay was validated with LLOQ of 2.5 ng/ml in rat and monkey serum. The precision was within 13.7%, and the bias was within ±12.6% for all quality control samples in authentic matrices. Conclusion: This new assay was successfully applied to measure MSTN in mouse, rat, monkey and human serum. The total MSTN in rat and monkey serum was elevated following administration of an MSTN inhibitor.
Collapse
|
29
|
The Possible Role of Complete Loss of Myostatin in Limiting Excessive Proliferation of Muscle Cells (C2C12) via Activation of MicroRNAs. Int J Mol Sci 2019; 20:ijms20030643. [PMID: 30717351 PMCID: PMC6386905 DOI: 10.3390/ijms20030643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Myostatin (MSTN) is a member of the TGF-β superfamily that negatively regulates skeletal muscle growth and differentiation. However, the mechanism by which complete MSTN deletion limits excessive proliferation of muscle cells remains unclear. In this study, we knocked out MSTN in mouse myoblast lines using a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system and sequenced the mRNA and miRNA transcriptomes. The results show that complete loss of MSTN upregulates seven miRNAs targeting an interaction network composed of 28 downregulated genes, including TGFB1, FOS and RB1. These genes are closely associated with tumorigenesis and cell proliferation. Our study suggests that complete loss of MSTN may limit excessive cell proliferation via activation of miRNAs. These data will contribute to the treatment of rhabdomyosarcoma (RMS).
Collapse
|
30
|
Choi DH, Yang J, Kim YS. Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway. Biochem Biophys Rep 2019; 17:182-190. [PMID: 30805561 PMCID: PMC6362869 DOI: 10.1016/j.bbrep.2018.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023] Open
Abstract
Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Muscle mass increase induced by myostatin inhibition was suppressed by rapamycin administration. Myostatin suppression enhanced mRNA abundance of Akt, p70S6K and 4E-BP1 in mice. Rapamycin decreased the expression of Akt, p70S6K and 4E-BP1 in mice with myostatin suppression.
Collapse
Affiliation(s)
- Dong Hyuck Choi
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Yong Soo Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
31
|
Tinklenberg JA, Siebers EM, Beatka MJ, Meng H, Yang L, Zhang Z, Ross JA, Ochala J, Morris C, Owens JM, Laing NG, Nowak KJ, Lawlor MW. Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and TgACTA1D286G nemaline myopathy mice. Hum Mol Genet 2019; 27:638-648. [PMID: 29293963 DOI: 10.1093/hmg/ddx431] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022] Open
Abstract
Nemaline myopathy (NM) is a heterogeneous congenital skeletal muscle disease with cytoplasmic rod-like structures (nemaline bodies) in muscle tissue. While weakness in NM is related to contractile abnormalities, myofiber smallness is an additional abnormality in NM that may be treatable. We evaluated the effects of mRK35 (a myostatin inhibitor developed by Pfizer) treatment in the TgACTA1D286G mouse model of NM. mRK35 induced skeletal muscle growth that led to significant increases in animal bodyweight, forelimb grip strength and muscle fiber force, although it should be noted that animal weight and forelimb grip strength in untreated TgACTA1D286G mice was not different from controls. Treatment was also associated with an increase in the number of tubular aggregates found in skeletal muscle. These findings suggest that myostatin inhibition may be useful in promoting muscle growth and strength in Acta1-mutant muscle, while also further establishing the relationship between low levels of myostatin and tubular aggregate formation.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Zizhao Zhang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | | | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| |
Collapse
|
32
|
Silva RP, Berton MP, Grigoletto L, Carvalho FE, Silva RMO, Peripolli E, Castro LM, Ferraz JBS, Eler JP, Lôbo RB, Baldi F. Genomic regions and enrichment analyses associated with carcass composition indicator traits in Nellore cattle. J Anim Breed Genet 2018; 136:118-133. [PMID: 30592105 DOI: 10.1111/jbg.12373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Accepted: 11/17/2018] [Indexed: 12/30/2022]
Abstract
The aim of this study was to estimate genetic parameters and identify genomic regions associated with carcass traits obtained by ultrasound and visual scores in Nellore cattle. Data from ~66,000 animals from the National Association of Breeders and Researchers (ANCP) were used. The variance components for backfat thickness, rump fat thickness and Longissimus muscle area (LMA) were estimated considering a linear model whereas a threshold model for body structure (BS), finishing precocity (FP) and musculature (MS) traits. The SNP solutions were estimated using the ssGBLUP approach by considering windows of 10 consecutive SNPs. Regions that accounted for more than 1.0% of the additive genetic variance were used. Genes identified within the significant windows, such as FOXA3, AP2S1, FKRP, NPASI and ATP6V1G1, were found to be related with MS, while OMA1 and FFGY with BS and FP traits. The PLTP, TNNC2 and GPAT2 genes were found in the regions associated with LMA, as well as TKT, FNDC5 and CHRND can strongly be related with fat deposition. Gene enrichment analysis revealed processes that might be directly influenced the organism growth and development. These results should help to better understand the genetic and physiological mechanisms regulating growth and body composition, muscle tissue development and subcutaneous fat expression, and this information might be useful for future genomic studies in Nellore cattle.
Collapse
Affiliation(s)
- Rosiane P Silva
- Departament of Veterinary Medicine, College of Animal Science and Food Engineer, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Mariana P Berton
- Departament of Animal Science, College of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Laís Grigoletto
- Departament of Veterinary Medicine, College of Animal Science and Food Engineer, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Felipe E Carvalho
- Departament of Veterinary Medicine, College of Animal Science and Food Engineer, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Rafael M O Silva
- Zoetis, Edifício Morumbi Corporate, Diamond Tower, São Paulo, SP, Brazil
| | - Elisa Peripolli
- Departament of Animal Science, College of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Letícia M Castro
- Nacional Association of Breeders and Researchers (ANCP), Ribeirão Preto, SP, Brazil
| | - José Bento S Ferraz
- Departament of Veterinary Medicine, College of Animal Science and Food Engineer, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Joanir P Eler
- Departament of Veterinary Medicine, College of Animal Science and Food Engineer, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Raysildo B Lôbo
- Nacional Association of Breeders and Researchers (ANCP), Ribeirão Preto, SP, Brazil
| | - Fernando Baldi
- Departament of Veterinary Medicine, College of Animal Science and Food Engineer, University of São Paulo (USP), Pirassununga, SP, Brazil
| |
Collapse
|
33
|
Miller RR, Roubenoff R. Emerging Interventions for Elderly Patients-The Promise of Regenerative Medicine. Clin Pharmacol Ther 2018; 105:53-60. [PMID: 30387136 DOI: 10.1002/cpt.1272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
Abstract
The impressive increase in lifespan that occurred in the 20th century has driven a boom in age-associated degeneration resulting from senescence. Geriatric syndromes, such as sarcopenia and frailty, do not fall neatly into classical medical definitions of disease because they result from subtle declines in physiological function that occur over many years instead of specific organ-related pathology. These conditions have become more clinically prominent with the aging population and are the focus of research in regenerative medicine. Two major approaches are being pursued: the first targets specific organs that are adversely affected by senescence, and the second targets senescence pathways themselves, with the goal of favorably altering the affected physiology. This review will highlight a few examples of recent applications of both of these approaches to illustrate the potential of the application of a regenerative medicine approach to improve the quality of life and independence in older adults.
Collapse
Affiliation(s)
- Ram R Miller
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA.,Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
34
|
Weber-Rajek M, Radzimińska A, Strączyńska A, Podhorecka M, Kozakiewicz M, Perkowski R, Jarzemski P, Kędziora-Kornatowska K, Goch A. A randomized-controlled trial pilot study examining the effect of extracorporeal magnetic innervation in the treatment of stress urinary incontinence in women. Clin Interv Aging 2018; 13:2473-2480. [PMID: 30584287 PMCID: PMC6287547 DOI: 10.2147/cia.s176588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Introduction Peri- and postmenopausal women frequently suffer from urinary incontinence (UI). Generally, UI becomes more severe with age. It impacts physical, mental, and social functioning as well as the quality of life, often leading to depression. Extracorporeal magnetic innervation (ExMI) is a relatively new conservative treatment method for UI. Objective The aim of the study was to assess the effectiveness of ExMI in the treatment of stress UI in women. Methods A total of 52 women were included in the analysis: 28 participants were allocated to the experimental group (EG) and 24 to the control group (CG). The average age was 65.41 years (±SD 4.08). EG patients completed ExMI therapy. The treatment sessions lasted for 15 minutes, and occurred three times a week, for 4 weeks. No therapeutic intervention was applied to the CG. To objectify the treatment outcomes in both groups before and after the treatment, we measured myostatin concentration and performed the UI severity assessment (The Revised Urinary Incontinence Scale), perceived self-efficacy assessment (General Self-Efficacy Scale), and depression severity assessment (Beck Depression Inventory). Results The authors compared the EG results at the initial and final assessments and found a statistically significant improvement in severity of UI (P=0.001) and depression severity (P=0.006), and a decrease in myostatin concentration (P≤0.001). The authors did not find any statistically significant differences between all measured variables for the CG at the initial and final assessments. Furthermore, there were no statistically significant differences between all measured variables for the EG and the CG at the final assessment. Conclusion Further trials are needed to determine optimal treatment protocols for various UI types and to evaluate long-term outcomes of the ExMI treatment.
Collapse
Affiliation(s)
- Magdalena Weber-Rajek
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland,
| | - Agnieszka Radzimińska
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland,
| | - Agnieszka Strączyńska
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland,
| | - Marta Podhorecka
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Mariusz Kozakiewicz
- Department of Food Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Radosław Perkowski
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Piotr Jarzemski
- Clinic of Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Aleksander Goch
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland,
| |
Collapse
|
35
|
Radzimińska A, Weber-Rajek M, Strączyńska A, Podhorecka M, Kozakiewicz M, Kędziora-Kornatowska K, Goch A. The impact of pelvic floor muscle training on the myostatin concentration and severity of urinary incontinence in elderly women with stress urinary incontinence - a pilot study. Clin Interv Aging 2018; 13:1893-1898. [PMID: 30323575 PMCID: PMC6174897 DOI: 10.2147/cia.s177730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective The aim of the study was to assess the myostatin concentration and an improvement in the severity of urinary incontinence (UI) after pelvic floor muscle training (PFMT) in a group of elderly women with stress UI. Methods A total of 74 participants were included in the analysis: 40 participants in the experimental group (EG) and 34 participants in the control group (CG). The EG underwent PFMT, whereas no therapeutic intervention was applied to the CG. Myostatin concentration and UI severity (Revised Urinary Incontinence Scale [RUIS]) were assessed in all women before and after the treatment. Results By comparing the results before and after the treatment, we have been able to demonstrate a statistically significant decrease in myostatin concentration (P<0.0001) and an improvement in the severity of UI (RUIS) (P<0.0001) in the EG. No statistically significant differences in all measured variables were reported before and after the treatment in the CG. A lower myostatin concentration (P=0.0084) and an improvement in the severity of UI (RUIS) (P=0.0008) were observed after the treatment in the EG compared to that in the CG. Conclusion Effective PFMT causes downregulation of myostatin concentration and an improvement in the severity of UI in elderly women with stress UI. Further trials on a larger EG and an assessment of long-term treatment outcomes are required.
Collapse
Affiliation(s)
- Agnieszka Radzimińska
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland,
| | - Magdalena Weber-Rajek
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland,
| | - Agnieszka Strączyńska
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland,
| | - Marta Podhorecka
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Department of Food Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Aleksander Goch
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland,
| |
Collapse
|
36
|
Wang L, Cai B, Zhou S, Zhu H, Qu L, Wang X, Chen Y. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout. PLoS One 2017; 12:e0187966. [PMID: 29228005 PMCID: PMC5724853 DOI: 10.1371/journal.pone.0187966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the MSTN knockout goat, which is a valuable resource for studying goat genomics.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shiwei Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
37
|
Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse. PLoS One 2017; 12:e0186247. [PMID: 29190290 PMCID: PMC5708611 DOI: 10.1371/journal.pone.0186247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
Variation in the myostatin (MSTN) gene has been reported to be associated with race distance, body composition and skeletal muscle fibre composition in the horse. The aim of the present study was to test the hypothesis that MSTN variation influences mitochondrial phenotypes in equine skeletal muscle. Mitochondrial abundance and skeletal muscle fibre types were measured in whole muscle biopsies from the gluteus medius of n = 82 untrained (21 ± 3 months) Thoroughbred horses. Skeletal muscle fibre type proportions were significantly (p < 0.01) different among the three MSTN genotypes and mitochondrial content was significantly (p < 0.01) lower in the combined presence of the C-allele of SNP g.66493737C>T (C) and the SINE insertion 227 bp polymorphism (I). Evaluation of mitochondrial complex activities indicated higher combined mitochondrial complex I+III and II+III activities in the presence of the C-allele / I allele (p ≤ 0.05). The restoration of complex I+III and complex II+III activities following addition of exogenous coenzyme Q1 (ubiquinone1) (CoQ1) in vitro in the TT/NN (homozygous T allele/homozygous no insertion) cohort indicated decreased coenzyme Q in these animals. In addition, decreased gene expression in two coenzyme Q (CoQ) biosynthesis pathway genes (COQ4, p ≤ 0.05; ADCK3, p ≤ 0.01) in the TT/NN horses was observed. This study has identified several mitochondrial phenotypes associated with MSTN genotype in untrained Thoroughbred horses and in addition, our findings suggest that nutritional supplementation with CoQ may aid to restore coenzyme Q activity in TT/NN horses.
Collapse
|
38
|
St Andre M, Johnson M, Bansal PN, Wellen J, Robertson A, Opsahl A, Burch PM, Bialek P, Morris C, Owens J. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skelet Muscle 2017; 7:25. [PMID: 29121992 PMCID: PMC5679155 DOI: 10.1186/s13395-017-0141-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients’ functional decline. Methods A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody’s effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Results Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. Conclusions We demonstrated that the potent anti-myostatin antibody mRK35 and its clinical analog, domagrozumab, were able to induce muscle anabolic activity in both rodents, including the mdx mouse model of DMD, and non-human primates. A Phase 2, potentially registrational, clinical study with domagrozumab in DMD patients is currently underway.
Collapse
Affiliation(s)
- Michael St Andre
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA. .,NIGMS Training Program in Biomolecular Pharmacology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Mark Johnson
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Prashant N Bansal
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA.,Present Address: PAREXEL Informatics, Billerica, MA, USA
| | - Jeremy Wellen
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | | | - Alan Opsahl
- Investigative Pathology, Pfizer Inc., Groton, CT, USA
| | - Peter M Burch
- Research and Development Drug Safety, Pfizer Inc., Groton, CT, USA.,Present Address: Summit Therapeutics, Cambridge, MA, USA
| | - Peter Bialek
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA.,Present Address: Proteostasis Therapeutics, Cambridge, MA, USA
| | - Carl Morris
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA.,Present Address: Solid Biosciences, Cambridge, MA, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|
39
|
Abdel-Aziem SH, Mahrous KF, Abd El-Hafez MAM, Abdel Mordy M. Genetic variability of myostatin and prolactin genes in popular goat breeds in Egypt. J Genet Eng Biotechnol 2017; 16:89-97. [PMID: 30647710 PMCID: PMC6296629 DOI: 10.1016/j.jgeb.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/25/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022]
Abstract
The genetic polymorphisms of two functional genes named: myostatin (MSTN) and prolactin (PRL) were investigated in three goat breeds (Barki, Damascus and Zaraibi) using Sanger nucleotide sequence and restriction fragment length polymorphism (RFLP) methods, in order to differentiate between these breeds. Nucleotide sequencing of 337 bp MSTN gene detected five SNPs in Barki breed, two SNPs in Damascus breed, while the Zaraibi breed did not show any SNPs. Moreover, MSTN-HaeIII/PCR-RFLP gave a single Genotype BB was found in all the studied breeds. Meanwhile, Nucleotide sequencing of 196 bp PRL gene showed two SNPs in Damascus breed, one SNPs in Zaraibi breed, while the Barki breed did not show any SNPs. Moreover, PRL-Eco24I/PCR-RFLP showed three genotypes (AA, AB and BB). The genotype AB showed the maximum frequency in all the studied breeds (0.75, 0.85, and 0.90 for Damascus, Barki and Zaraibi breeds, respectively). Observed heterozygosity (Ho) value was higher than expected heterozygosity (He) value all studied breeds. In addition, the values of both Ho and He were the highest in Zaraibi breed (0.90 and 0.51 respectively). Chi-square (χ2) value revealed a significant variation Hardy-Weinberg equilibrium (P < .05) in the three studied breeds. It is the highest in Zaraibi goats and lowest in Damascus breed. The results demonstrated that the PRL-Eco24I/PCR-RFLP polymorphism may be utilized as effective marker for genetic differentiation between goat breeds, but MSTN-HaeIII/PCR-RFLP revealed no polymorphism or variation, thus it is not recommended in the selection program. Moreover, these results open up interesting prospects for future selection programs, especially marker assisted selection. In addition, the results established that PCR-RFLP method is a suitable tool for calculating genetic variability.
Collapse
Affiliation(s)
| | - K F Mahrous
- Department of Cell Biology, National Research Center, Dokki, Giza, Egypt
| | - M A M Abd El-Hafez
- Department of Cell Biology, National Research Center, Dokki, Giza, Egypt
| | - M Abdel Mordy
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
40
|
The histone deacetylase SIRT6 blocks myostatin expression and development of muscle atrophy. Sci Rep 2017; 7:11877. [PMID: 28928419 PMCID: PMC5605688 DOI: 10.1038/s41598-017-10838-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
Muscle wasting, also known as cachexia, is associated with many chronic diseases, which worsens prognosis of primary illness leading to enhanced mortality. Molecular basis of this metabolic syndrome is not yet completely understood. SIRT6 is a chromatin-bound member of the sirtuin family, implicated in regulating many cellular processes, ranging from metabolism, DNA repair to aging. SIRT6 knockout (SIRT6-KO) mice display loss of muscle, fat and bone density, typical characteristics of cachexia. Here we report that SIRT6 depletion in cardiac as well as skeletal muscle cells promotes myostatin (Mstn) expression. We also observed upregulation of other factors implicated in muscle atrophy, such as angiotensin-II, activin and Acvr2b, in SIRT6 depleted cells. SIRT6-KO mice showed degenerated skeletal muscle phenotype with significant fibrosis, an effect consistent with increased levels of Mstn. Additionally, we observed that in an in vivo model of cancer cachexia, Mstn expression coupled with downregulation of SIRT6. Furthermore, SIRT6 overexpression downregulated the cytokine (TNFα-IFNγ)-induced Mstn expression in C2C12 cells, and promoted myogenesis. From the ChIP assay, we found that SIRT6 controls Mstn expression by attenuating NF-κB binding to the Mstn promoter. Together, these data suggest a novel role for SIRT6 in maintaining muscle mass by controlling expression of atrophic factors like Mstn and activin.
Collapse
|
41
|
Chu W, Wei W, Han H, Gao Y, Liu K, Tian Y, Jiang Z, Zhang L, Chen J. Muscle-specific downregulation of GR levels inhibits adipogenesis in porcine intramuscular adipocyte tissue. Sci Rep 2017; 7:510. [PMID: 28360421 PMCID: PMC5428816 DOI: 10.1038/s41598-017-00615-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/06/2017] [Indexed: 12/26/2022] Open
Abstract
Intramuscular adipose is conducive to good pork quality, whereas subcutaneous adipose is considered as waste in pig production. So uncovering the regulation differences between these two adiposes is helpful to tissue-specific control of fat deposition. In this study, we found the sensitivity to glucocorticoids (GCs) was lower in intramuscular adipocytes (IMA) compared with subcutaneous adipocytes (SA). Comparison of glucocorticoid receptor (GR) revealed that IMA had lower GR level which contributed to its reduced GCs sensitivity. Higher methylation levels of GR promotor 1-C and 1-H were detected in IMA compared with SA. GR expression decrease was also found in adipocytes when treated with muscle conditioned medium (MCM) in vitro, which resulted in significant inhibition of adipocytes proliferation and differentiation. Since abundant myostatin (MSTN) was detected in MCM by ELISA assay, we further investigated the effect of this myokine on adipocytes. MSTN treatment suppressed adipocytes GR expression, cell proliferation and differentiation, which mimicked the effects of MCM. The methylation levels of GR promotor 1-C and 1-H were also elevated after MSTN treatment. Our study reveals the role of GR in muscle fiber inhibition on intramuscular adipocytes, and identifies myostatin as a muscle-derived modulator for adipose GR level.
Collapse
Affiliation(s)
- Weiwei Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, P.R. China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Haiyin Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ying Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zaohang Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
42
|
Ong JLY, Chng YR, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Ip YK. Molecular characterization of myostatin from the skeletal muscle of the African lungfish, Protopterus annectens, and changes in its mRNA and protein expression levels during three phases of aestivation. J Comp Physiol B 2017; 187:575-589. [PMID: 28184997 DOI: 10.1007/s00360-017-1057-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/26/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - You R Chng
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Xiu L Chen
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
43
|
Rashidlamir A, Attarzadeh Hosseini SR, Hejazi K, Motevalli Anberani SM. The effect of eight weeks resistance and aerobic training on myostatin and follistatin expression in cardiac muscle of rats. J Cardiovasc Thorac Res 2016; 8:164-169. [PMID: 28210472 PMCID: PMC5304099 DOI: 10.15171/jcvtr.2016.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/23/2016] [Indexed: 01/14/2023] Open
Abstract
Introduction: The clinical studies have shown that the myostatin gene expression and its serum density occur more frequently in heart patients than in healthy individuals. The purpose of this study is to investigate the influence of 8-week resistance and aerobic exercise on the myostatin and follistatin gene expression of myocardium muscle of healthy male Wistar rats.
Methods: In this experimental study, 20 five-week-old adult Wistar rats (250 ± 26.5 g) were divided into three groups: healthy control group (n = 6), resistance exercise group (n = 7), and aerobic exercise group (n = 7). The resistance and aerobic exercise plan consisted of 8 weeks and 3 sessions per week. The resistance exercise group performed climbing a one-meter 26-stair ladder with a slope of 85 degrees for 3 sets of 5 repetitions per session. The aerobic exercise group performed running at a speed of 12 meters per minute for 30 minutes during the first sessions gradually increasing up to a speed of 30 meters per minute for 60 minutes during the final sessions (equivalent to 70% to 80% of maximum oxygen consumption). The differences between the groups were evaluated using a one-way analysis of variance (ANOVA) test. When appropriate, LSD post-hoc test was used. The significance level for the study was less than 0.05.
Results: The results of this study shows that after 8 weeks of exercise, there is no significant difference between myostatin mRNA gene expression levels of the heart muscle among the three groups of control, resistance exercise, and aerobic exercise (P = 0.172, F = 1.953). However, the mean differences between follistatin mRNA levels of the heart muscle among the three groups of control, resistance exercise, and aerobic exercise are statistically significant (F = 38.022, P = 0.001). Furthermore, the ratio of follistatin to myostatin mRNA gene expression of the heart muscle (P = 0.001, F = 10.288) shows significant difference among the three groups.
Conclusion: Our results indicate that the resistance and aerobic exercise could cause a decrease in myostatin and an increase in follistatin levels, thus preventing many muscular physiological disorders such as arthritis and muscle weakness.
Collapse
Affiliation(s)
- Amir Rashidlamir
- Faculty of Physical Education and Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyyed Reza Attarzadeh Hosseini
- Professor in Sport Physiology, Faculty of Physical Education and Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Keyvan Hejazi
- PhD Student of Physical Education and Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
44
|
The transgenic expression of human follistatin-344 increases skeletal muscle mass in pigs. Transgenic Res 2016; 26:25-36. [PMID: 27787698 DOI: 10.1007/s11248-016-9985-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/29/2016] [Indexed: 01/04/2023]
Abstract
Follistatin (FST), which was first found in the follicles of cattle and pigs, has been shown to be an essential regulator for muscle development. Mice that were genetically engineered to overexpress Fst specifically in muscle had at least twice the amount of skeletal muscle mass as controls; these findings are similar to earlier results obtained in myostatin-knockout mice. However, the role of follistatin in skeletal muscle development has yet to be clarified in livestock. Here, we describe transgenic Duroc pigs that exogenously express Fst specifically in muscle tissue. The transgenic pigs exhibited an increased proportion of skeletal muscle and a reduced proportion of body fat that were similar to those reported in myostatin-null cattle. The lean percentage of lean meat was significantly higher in the F1 generation of TG pigs (72.95 ± 1.0 %) than in WT pigs (69.18 ± 0.97 %) (N = 16, P < 0.05). Myofiber hypertrophy was also observed in the longissimus dorsi of transgenic pigs, possibly contributing to the increased skeletal muscle mass. Western blot analysis showed a significantly reduced level of Smad2 phosphorylation and an increased level of AktS473 phosphorylation in the skeletal muscle tissue of the transgenic pigs. Moreover, no cardiac muscle hypertrophy or reproductive abnormality was observed. These findings indicate that muscle-specific Fst overexpression in pigs enhances skeletal muscle growth, at least partly due to myofiber hypertrophy and providing a promising approach to increase muscle mass in pigs and other livestock.
Collapse
|
45
|
Fernández-Solà J, Planavila Porta A. New Treatment Strategies for Alcohol-Induced Heart Damage. Int J Mol Sci 2016; 17:E1651. [PMID: 27690014 PMCID: PMC5085684 DOI: 10.3390/ijms17101651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
High-dose alcohol misuse induces multiple noxious cardiac effects, including myocyte hypertrophy and necrosis, interstitial fibrosis, decreased ventricular contraction and ventricle enlargement. These effects produce diastolic and systolic ventricular dysfunction leading to congestive heart failure, arrhythmias and an increased death rate. There are multiple, dose-dependent, synchronic and synergistic mechanisms of alcohol-induced cardiac damage. Ethanol alters membrane permeability and composition, interferes with receptors and intracellular transients, induces oxidative, metabolic and energy damage, decreases protein synthesis, excitation-contraction coupling and increases cell apoptosis. In addition, ethanol decreases myocyte protective and repair mechanisms and their regeneration. Although there are diverse different strategies to directly target alcohol-induced heart damage, they are partially effective, and can only be used as support medication in a multidisciplinary approach. Alcohol abstinence is the preferred goal, but control drinking is useful in alcohol-addicted subjects not able to abstain. Correction of nutrition, ionic and vitamin deficiencies and control of alcohol-related systemic organ damage are compulsory. Recently, several growth factors (myostatin, IGF-1, leptin, ghrelin, miRNA, and ROCK inhibitors) and new cardiomyokines such as FGF21 have been described to regulate cardiac plasticity and decrease cardiac damage, improving cardiac repair mechanisms, and they are promising agents in this field. New potential therapeutic targets aim to control oxidative damage, myocyte hypertrophy, interstitial fibrosis and persistent apoptosis In addition, stem-cell therapy may improve myocyte regeneration. However, these strategies are not yet approved for clinical use.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Alcohol Unit, Department of Internal Medicine, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain.
| | - Ana Planavila Porta
- Departament of Biochemistry and Molecular Biomedicine, Faculty of Biology, Avda Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
46
|
Dewey CM, Spitler KM, Ponce JM, Hall DD, Grueter CE. Cardiac-Secreted Factors as Peripheral Metabolic Regulators and Potential Disease Biomarkers. J Am Heart Assoc 2016; 5:e003101. [PMID: 27247337 PMCID: PMC4937259 DOI: 10.1161/jaha.115.003101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen M Dewey
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jessica M Ponce
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, Papajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
47
|
Jan AT, Lee EJ, Ahmad S, Choi I. Meeting the meat: delineating the molecular machinery of muscle development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2016; 58:18. [PMID: 27168943 PMCID: PMC4862161 DOI: 10.1186/s40781-016-0100-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Muscle, studied mostly with respect to meat production, represents one of the largest protein reservoirs of the body. As gene expression profiling holds credibility to deal with the increasing demand of food from animal sources, excessive loss due to myopathies and other muscular dystrophies was found detrimental as it aggravates diseases that result in increased morbidity and mortality. Holding key point towards improving the developmental program of muscle in meat producing animals, elucidating the underlying mechanisms of the associated pathways in livestock animals is believed to open up new avenues towards enhancing the lean tissue deposition. To this end, identification of vital candidate genes having no known function in myogenesis, is believed to increase the current understanding of the physiological processes going on in the skeletal muscle tissue. Taking consequences of gene expression changes into account, knowledge of the pathways associated with their activation and as such up-regulation seems critical for the overall muscle homeostasis. Having important implications on livestock production, a thorough understanding of postnatal muscle development seems a timely step to fulfil the growing need of ever increasing populations of the world.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Sarafraz Ahmad
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
48
|
Treatment with ActRIIB-mFc Produces Myofiber Growth and Improves Lifespan in the Acta1 H40Y Murine Model of Nemaline Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1568-81. [PMID: 27102768 DOI: 10.1016/j.ajpath.2016.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 11/22/2022]
Abstract
Nemaline myopathies (NMs) are a group of congenital muscle diseases caused by mutations in at least 10 genes and associated with a range of clinical symptoms. NM is defined on muscle biopsy by the presence of cytoplasmic rod-like structures (nemaline rods) composed of cytoskeletal material. Myofiber smallness is also found in many cases of NM and may represent a cause of weakness that can be counteracted by treatment. We have used i.p. injection of activin type IIB receptor (ActRIIB)-mFc (an inhibitor of myostatin signaling) to promote hypertrophy and increase strength in our prior murine work; we therefore tested whether ActRIIB-mFc could improve weakness in NM mice through myofiber hypertrophy. We report a study of ActRIIB-mFc treatment in the Acta1 H40Y mouse model of NM. Treatment of Acta1 H40Y mice produced significant increases in body mass, muscle mass, quadriceps myofiber size, and survival, but other measurements of strength (forelimb grip strength, ex vivo measurements of contractile function) did not improve. Our studies also identified that the complications of urethral obstruction are associated with mortality in male hemizygote Acta1 H40Y mice. The incidence of urethral obstruction and histologic evidence of chronic obstruction (inflammation) were significantly lower in Acta1 H40Y mice that had been treated with ActRIIB-mFc. ActRIIB-mFc treatment produces a mild benefit to the disease phenotype in Acta1 H40Y mice.
Collapse
|
49
|
Lee EJ, Jan AT, Baig MH, Ashraf JM, Nahm SS, Kim YW, Park SY, Choi I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. FASEB J 2016; 30:2708-19. [PMID: 27069062 DOI: 10.1096/fj.201500133r] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022]
Abstract
Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | | | | | - Sang-Soep Nahm
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea; and
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, South Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea;
| |
Collapse
|
50
|
Walpurgis K, Thomas A, Schänzer W, Thevis M. Myostatin inhibitors in sports drug testing: Detection of myostatin-neutralizing antibodies in plasma/serum by affinity purification and Western blotting. Proteomics Clin Appl 2015. [DOI: 10.1002/prca.201500043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katja Walpurgis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Andreas Thomas
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne/Bonn Germany
| |
Collapse
|