1
|
Liu J, Mouradian MM. Pathogenetic Contributions and Therapeutic Implications of Transglutaminase 2 in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2364. [PMID: 38397040 PMCID: PMC10888553 DOI: 10.3390/ijms25042364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer's disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson's disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington's disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - M. Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
2
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
3
|
Anakha J, Dobariya P, Sharma SS, Pande AH. Recombinant human endostatin as a potential anti-angiogenic agent: therapeutic perspective and current status. Med Oncol 2023; 41:24. [PMID: 38123873 DOI: 10.1007/s12032-023-02245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
Angiogenesis is the physiological process that results in the formation of new blood vessels develop from pre-existing vasculature and plays a significant role in several physiological and pathological processes. Inhibiting angiogenesis, a crucial mechanism in the growth and metastasis of cancer, has been proposed as a potential anticancer therapy. Different studies showed the beneficial effects of angiogenesis inhibitors either in patients suffering from different cancers, alone or in combination with conventional therapies. Even though there are currently a number of efficient anti-angiogenic drugs, including monoclonal antibodies and kinase inhibitors, the associated toxicity profile and their affordability constraints are prompting researchers to search for a safe and affordable angiostatic agent for cancer treatment. Endostatin is one of the endogenous anti-angiogenic candidates that have been extensively pursued for the treatment of cancer, but even over three decades after its discovery, we have not made much advancement in employing it as an anticancer therapeutic despite of its remarkable anti-angiogenic effect with low toxicity profile. A recombinant human endostatin (rh-Es) variant for non-small cell lung cancer was approved by China in 2006 and has since been used effectively. Several other successful clinical trials related to endostatin for various malignancies are either ongoing or have already been completed with promising results. Thus, in this review, we have provided an overview of existing anti-angiogenic drugs developed for cancer therapy, with a summary of tumour angiogenesis in the context of Endostatin, and clinical status of rh-Es in cancer treatment. Furthermore, we briefly discuss the various strategies to improve endostatin features (poor pharmacokinetic properties) for developing rh-Es as a safe and effective agent for cancer treatment.
Collapse
Affiliation(s)
- J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Prakashkumar Dobariya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
4
|
Ganesh RA, Venkataraman K, Sirdeshmukh R. GPR56 signaling pathway network and its dynamics in the mesenchymal transition of glioblastoma. J Cell Commun Signal 2023:10.1007/s12079-023-00792-5. [PMID: 37980704 DOI: 10.1007/s12079-023-00792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
G protein-coupled receptor 56 (GPR56/ADGRG1) is a multifunctional adhesion GPCR involved in diverse biological processes ranging from development to cancer. In our earlier study, we reported that GPR56 is expressed heterogeneously in glioblastoma (GBM) and is involved in the mesenchymal transition, making it a promising therapeutic target (Ganesh et al., 2022). Despite its important role in cancer, its mechanism of action or signaling is not completely understood. Thus, based on transcriptomic, proteomic, and phosphoproteomic differential expression data of GPR56 knockdown U373-GBM cells included in our above study along with detailed literature mining of the molecular events plausibly associated with GPR56 activity, we have constructed a signaling pathway map of GPR56 as may be applicable in mesenchymal transition in GBM. The map incorporates more than 100 molecular entities including kinases, receptors, ion channels, and others associated with Wnt, integrin, calcium signaling, growth factors, and inflammation signaling pathways. We also considered intracellular and extracellular factors that may influence the activity of the pathway entities. Here we present a curated signaling map of GPR56 in the context of GBM and discuss the relevance and plausible cross-connectivity across different axes attributable to GPR56 function. GPR56 signaling and mesenchymal transition.
Collapse
Affiliation(s)
- Raksha A Ganesh
- Mazumdar Shaw Center for Translational Research, Narayana Health, Mazumdar Shaw Medical Foundation, Bangalore, 560099, India
- Center for Bio-Separation Technology, Vellore Institute of Technology, Vellore, 632104, India
| | - Krishnan Venkataraman
- Center for Bio-Separation Technology, Vellore Institute of Technology, Vellore, 632104, India
| | - Ravi Sirdeshmukh
- Mazumdar Shaw Center for Translational Research, Narayana Health, Mazumdar Shaw Medical Foundation, Bangalore, 560099, India.
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India.
- Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
5
|
Muccioli S, Brillo V, Varanita T, Rossin F, Zaltron E, Velle A, Alessio G, Angi B, Severin F, Tosi A, D'Eletto M, Occhigrossi L, Falasca L, Checchetto V, Ciaccio R, Fascì A, Chieregato L, Rebelo AP, Giacomello M, Rosato A, Szabò I, Romualdi C, Piacentini M, Leanza L. Transglutaminase Type 2-MITF axis regulates phenotype switching in skin cutaneous melanoma. Cell Death Dis 2023; 14:704. [PMID: 37898636 PMCID: PMC10613311 DOI: 10.1038/s41419-023-06223-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Skin cutaneous melanoma (SKCM) is the deadliest form of skin cancer due to its high heterogeneity that drives tumor aggressiveness. Melanoma plasticity consists of two distinct phenotypic states that co-exist in the tumor niche, the proliferative and the invasive, respectively associated with a high and low expression of MITF, the master regulator of melanocyte lineage. However, despite efforts, melanoma research is still far from exhaustively dissecting this phenomenon. Here, we discovered a key function of Transglutaminase Type-2 (TG2) in regulating melanogenesis by modulating MITF transcription factor expression and its transcriptional activity. Importantly, we demonstrated that TG2 expression affects melanoma invasiveness, highlighting its positive value in SKCM. These results suggest that TG2 may have implications in the regulation of the phenotype switching by promoting melanoma differentiation and impairing its metastatic potential. Our findings offer potential perspectives to unravel melanoma vulnerabilities via tuning intra-tumor heterogeneity.
Collapse
Affiliation(s)
- Silvia Muccioli
- Department of Biology, University of Padua, Padua, Italy
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | | | - Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Angelo Velle
- Department of Biology, University of Padua, Padua, Italy
| | | | - Beatrice Angi
- Department of Biology, University of Padua, Padua, Italy
| | | | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Luca Occhigrossi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Laura Falasca
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | | | | | - Amelia Fascì
- Department of Biology, University of Padua, Padua, Italy
| | | | | | | | - Antonio Rosato
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
| | | | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Kaartinen MT, Arora M, Heinonen S, Rissanen A, Kaprio J, Pietiläinen KH. Transglutaminases and Obesity in Humans: Association of F13A1 to Adipocyte Hypertrophy and Adipose Tissue Immune Response. Int J Mol Sci 2020; 21:E8289. [PMID: 33167412 PMCID: PMC7663854 DOI: 10.3390/ijms21218289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Transglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of TGM family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e., heavy-lean twin pairs. We report that F13A1 is the only TGM family member showing significantly altered, higher expression in adipose tissue of the heavier twin. Our previous work linked adipocyte F13A1 to increased weight, body fat mass, adipocyte size, and pro-inflammatory pathways. Here, we explored further the link of F13A1 to adipocyte size in the MZ twins via a previously conducted TWA study that was further mined for genes that specifically associate to hypertrophic adipocytes. We report that differential expression of F13A1 (ΔHeavy-Lean) associated with 47 genes which were linked via gene enrichment analysis to immune response, leucocyte and neutrophil activation, as well as cytokine response and signaling. Our work brings further support to the role of F13A1 in the human adipose tissue pathology, suggesting a role in the cascade that links hypertrophic adipocytes with inflammation.
Collapse
Affiliation(s)
- Mari T. Kaartinen
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
- Faculty of Dentistry (Biomedical Sciences), McGill University, Montreal, QC H3A 0J7, Canada
| | - Mansi Arora
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, 00100 Helsinki, Finland;
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
- Abdominal Center, Obesity Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland
| |
Collapse
|
7
|
Transglutaminase 2-Mediated p53 Depletion Promotes Angiogenesis by Increasing HIF-1α-p300 Binding in Renal Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21145042. [PMID: 32708896 PMCID: PMC7404067 DOI: 10.3390/ijms21145042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 01/28/2023] Open
Abstract
Angiogenesis and the expression of vascular endothelial growth factor (VEGF) are increased in renal cell carcinoma (RCC). Transglutaminase 2 (TGase 2), which promotes angiogenesis in endothelial cells during wound healing, is upregulated in RCC. Tumor angiogenesis involves three domains: cancer cells, the extracellular matrix, and endothelial cells. TGase 2 stabilizes VEGF in the extracellular matrix and promotes VEGFR-2 nuclear translocation in endothelial cells. However, the role of TGase 2 in angiogenesis in the cancer cell domain remains unclear. Hypoxia-inducible factor (HIF)-1α-mediated VEGF production underlies the induction of angiogenesis in cancer cells. In this study, we show that p53 downregulated HIF-1α in RCC, and p53 overexpression decreased VEGF production. Increased TGase 2 promoted angiogenesis by inducing p53 degradation, leading to the activation of HIF-1α. The interaction of HIF-1α and p53 with the cofactor p300 is required for stable transcriptional activation. We found that TGase 2-mediated p53 depletion increased the availability of p300 for HIF-1α-p300 binding. A preclinical xenograft model suggested that TGase 2 inhibition can reverse angiogenesis in RCC.
Collapse
|
8
|
Seow BKL, McDougall ARA, Short KL, Wallace MJ, Hooper SB, Cole TJ. Identification of Betamethasone-Regulated Target Genes and Cell Pathways in Fetal Rat Lung Mesenchymal Fibroblasts. Endocrinology 2019; 160:1868-1884. [PMID: 31107524 DOI: 10.1210/en.2018-01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Preterm birth is characterized by severe lung immaturity that is frequently treated antenatally or postnatally with the synthetic steroid betamethasone. The underlying cellular targets and pathways stimulated by betamethasone in the fetal lung are poorly defined. In this study, betamethasone was compared with corticosterone in steroid-treated primary cultures of fetal rat lung fibroblasts stimulated for 6 hours and analyzed by whole-cell transcriptome sequencing and glucocorticoid (GC) receptor (GR) chromatin immunoprecipitation sequencing (ChIP-Seq) analysis. Strikingly, betamethasone stimulated a much stronger transcriptional response compared with corticosterone for both induced and repressed genes. A total of 483 genes were significantly stimulated by betamethasone or corticosterone, with 476 stimulated by both steroids, indicating a strong overlap in regulation. Changes in mRNA levels were confirmed by quantitative PCR for eight induced and repressed target genes. Pathway analysis identified cell proliferation and cytoskeletal/cell matrix remodeling pathways as key processes regulated by both steroids. One target, transglutaminase 2 (Tgm2), was localized to fetal lung mesenchymal cells. Tgm2 mRNA and protein levels were strongly increased in fibroblasts by both steroids. Whole-genome GR ChIP-Seq analysis with betamethasone identified GC response element-binding sites close to the previously characterized GR target genes Per1, Dusp1, Fkbp5, and Sgk1 and near the genes identified by transcriptome sequencing encoding Crispld2, Tgm2, Hif3α, and Kdr, defining direct genomic induction of expression in fetal lung fibroblasts via the GR. These results demonstrate that betamethasone stimulates specific genes and cellular pathways controlling cell proliferation and extracellular matrix remodeling in lung mesenchymal fibroblasts, providing a basis for betamethasone's treatment efficacy in preterm birth.
Collapse
Affiliation(s)
- Bennet K L Seow
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Annie R A McDougall
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Kelly L Short
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Division of Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Martucciello S, Paolella G, Esposito C, Lepretti M, Caputo I. Anti-type 2 transglutaminase antibodies as modulators of type 2 transglutaminase functions: a possible pathological role in celiac disease. Cell Mol Life Sci 2018; 75:4107-4124. [PMID: 30136165 PMCID: PMC11105699 DOI: 10.1007/s00018-018-2902-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Auto-antibodies to the ubiquitous enzyme type-2 transglutaminase (TG2) are a specific hallmark of celiac disease (CD), a widely diffused, multi-factorial disease, affecting genetically predisposed subjects. In CD an inflammatory response, at the intestinal level, is triggered by diet consumption of gluten-containing cereals. Intestinal mucosa displays various degrees of atrophy and hyperplasia, with consequent global intestinal dysfunction and other relevant extra-intestinal symptoms. Through deamidation of specific glutamines of gluten-derived gliadin peptides, TG2 strongly enhances gliadin immunogenicity. In addition, TG2 cross-linking activity may generate complexes between TG2 itself and gliadin peptides, and these complexes seem to cause the auto-immune response by means of an apten-carrier-like mechanism of antigen presentation. Anti-TG2 antibodies can be early detected in the intestinal mucosa of celiac patients and are also abundantly present into the serum, thus potentially reaching other organs and tissues by blood circulation. Recently, the possible pathogenetic role of auto-antibodies to TG2 in CD has been investigated. Here, we report an overview about the genesis of these antibodies, their specificity, their modulating ability toward TG2 enzymatic or non-enzymatic activities and their biological effects exerted by interacting with extracellular TG2 or with cell-surface TG2. We also discuss the auto-immune response occurring in CD against other TG members (i.e. type 3 and type 6) and analyze the occurrence of anti-TG2 antibodies in other auto-immune CD-related diseases. Data now available let us to suppose that, even if antibodies to TG2 do not represent the triggering molecules in CD, they could be important players in disease progression and manifestations.
Collapse
Affiliation(s)
- Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy.
| |
Collapse
|
10
|
Algarni AS, Hargreaves AJ, Dickenson JM. Activation of transglutaminase 2 by nerve growth factor in differentiating neuroblastoma cells: A role in cell survival and neurite outgrowth. Eur J Pharmacol 2017; 820:113-129. [PMID: 29242118 DOI: 10.1016/j.ejphar.2017.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022]
Abstract
NGF (nerve growth factor) and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 transamidase activity by NGF in retinoic acid-induced differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. The role of TG2 in NGF-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with NGF in N2a and SH-SY5Y cells. NGF mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON (Z-ZON-Val-Pro-Leu-OMe; Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-l-valinyl-l-prolinyl-l-leucinmethylester) and R283 (1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride) and by pharmacological inhibition of extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB) and protein kinase C (PKC), and removal of extracellular Ca2+. Fluorescence microscopy demonstrated NGF induced in situ TG2 activity. TG2 inhibition blocked NGF-induced attenuation of hypoxia-induced cell death and neurite outgrowth in both cell lines. Together, these results demonstrate that NGF stimulates TG2 transamidase activity via a ERK1/2, PKB and PKC-dependent pathway in differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. Furthermore, NGF-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results suggest a novel and important role of TG2 in the cellular functions of NGF.
Collapse
Affiliation(s)
- Alanood S Algarni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - John M Dickenson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
11
|
Transglutaminase 2 modulation of NF-κB signaling in astrocytes is independent of its ability to mediate astrocytic viability in ischemic injury. Brain Res 2017; 1668:1-11. [PMID: 28522262 DOI: 10.1016/j.brainres.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that can contribute to cell death and cell survival processes in a variety of disease contexts. Within the brain, TG2 has been shown to promote cell death in ischemic injury when expressed in astrocytes (Colak and Johnson, 2012). However, the specific functions and characteristics of astrocytic TG2 that mediate this effect are largely unknown. Therefore, the goal of this study was to investigate the role of astrocytic TG2 in mediating cellular viability processes in the context of ischemic injury, with a specific focus on its contributions to intracellular signaling cascades. We show that, in response to oxygen/glucose deprivation (OGD), acute lentiviral-mediated knockdown of TG2, as well as inhibition with an irreversible TG2 inhibitor, enhances cell survival. We also show that TG2 depletion increases nuclear factor-κB (NF-κB) signaling, whereas inhibition reduces NF-κB activity. Despite its clear contribution to NF-κB signaling, however, TG2 modulation of NF-κB signaling is not likely to be a major contributor to its ability to mediate astrocytic viability in this context. Overall, the results of this study provide insight into the role of TG2 in astrocytes and suggest possible avenues for future study of the relationship between astrocytic TG2 and ischemic injury.
Collapse
|
12
|
Agnihotri N, Mehta K. Transglutaminase-2: evolution from pedestrian protein to a promising therapeutic target. Amino Acids 2016; 49:425-439. [PMID: 27562794 DOI: 10.1007/s00726-016-2320-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
The ability of cancer cells to metastasize represents the most devastating feature of cancer. Currently, there are no specific biomarkers or therapeutic targets that can be used to predict the risk or to treat metastatic cancer. Many recent reports have demonstrated elevated expression of transglutaminase 2 (TG2) in multiple drug-resistant and metastatic cancer cells. TG2 is a multifunctional protein mostly known for catalyzing Ca2+-dependent -acyl transferase reaction to form protein crosslinks. Besides this transamidase activity, many Ca2+-independent and non-enzymatic activities of TG2 have been identified. Both, the enzymatic and non-enzymatic activities of TG2 have been implicated in diverse pathophysiological processes such as wound healing, cell growth, cell survival, extracellular matrix modification, apoptosis, and autophagy. Tumors have been frequently referred to as 'wounds that never heal'. Based on the observation that TG2 plays an important role in wound healing and inflammation is known to facilitate cancer growth and progression, we discuss the evidence that TG2 can reprogram inflammatory signaling networks that play fundamental roles in cancer progression. TG2-regulated signaling bestows on cancer cells the ability to proliferate, to resist cell death, to invade, to reprogram glucose metabolism and to metastasize, the attributes that are considered important hallmarks of cancer. Therefore, inhibiting TG2 may offer a novel therapeutic approach for managing and treatment of metastatic cancer. Strategies to inhibit TG2-regulated pathways will also be discussed.
Collapse
Affiliation(s)
- Navneet Agnihotri
- Department of Experimental Therapeutics, Unit 1950, University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA. .,Department of Biochemistry, Panjab University, Sector 14, Chandigarh, 110 014, India.
| | - Kapil Mehta
- Department of Experimental Therapeutics, Unit 1950, University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA. .,MolQ Personalized Medicine, 4505 Maple Street, Bellaire, TX, 77401, USA.
| |
Collapse
|
13
|
Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 2016; 7:e2244. [PMID: 27253408 PMCID: PMC5143380 DOI: 10.1038/cddis.2016.150] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca2+-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies.
Collapse
Affiliation(s)
- H Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Y Furutani
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - K Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - S Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Xie J, He G, Chen Q, Sun J, Dai Q, Lu J, Li G, Wu H, Li R, Chen J, Xu W, Xu B. Syndecan-4 Signaling Is Required for Exercise-Induced Cardiac Hypertrophy. Mol Med 2016; 22:192-201. [PMID: 26835698 DOI: 10.2119/molmed.2015.00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 01/20/2016] [Indexed: 01/28/2023] Open
Abstract
Cardiac hypertrophy can be broadly classified as either physiological or pathological. Physiological stimuli such as exercise cause adaptive cardiac hypertrophy and normal heart function. Pathological stimuli including hypertension and aortic valvular stenosis cause maladaptive cardiac remodeling and ultimately heart failure. Syndecan-4 (synd4) is a transmembrane proteoglycan identified as being involved in cardiac adaptation after injury, but whether it takes part in physiological cardiac hypertrophy is unclear. We observed upregulation of synd4 in exercise-induced hypertrophic myocardium. To evaluate the role of synd4 in the physiological form of cardiac hypertrophy, mice lacking synd4 (synd4-/-) were exercised by swimming for 4 wks. Ultrasonic cardiogram (UCG) and histological analysis revealed that swimming induced the hypertrophic phenotype but was blunted in synd4-/- compared with wild-type (WT) mice. The swimming-induced activation of Akt, a key molecule in physiological hypertrophy was also more decreased than in WT controls. In cultured cardiomyocytes, synd4 overexpression could induce cell enlargement, protein synthesis and distinct physiological molecular alternation. Akt activation also was observed in synd4-overexpressed cardiomyocytes. Furthermore, inhibition of protein kinase C (PKC) prevented the synd4-induced hypertrophic phenotype and Akt phosphorylation. This study identified an essential role of synd4 in mediation of physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jun Xie
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guixin He
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Department of Cardiology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qinhua Chen
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jiayin Sun
- Department of VIP, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qin Dai
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jianrong Lu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guannan Li
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Han Wu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ran Li
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jianzhou Chen
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wei Xu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
15
|
Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:2422-38. [PMID: 26367079 PMCID: PMC4624607 DOI: 10.1016/j.bbagen.2015.09.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiogenesis is the process of neovascularization from pre-existing vasculature and is involved in various physiological and pathological processes. Inhibitors of angiogenesis, administered either as individual drugs or in combination with other chemotherapy, have been shown to benefit patients with various cancers. Endostatin, a 20-kDa C-terminal fragment of type XVIII collagen, is one of the most potent inhibitors of angiogenesis. SCOPE OF REVIEW We discuss the biology behind endostatin in the context of its endogenous production, the various receptors to which it binds, and the mechanisms by which it acts. We focus on its inhibitory role in angiogenesis, lymphangiogenesis, and cancer metastasis. We also present emerging clinical applications for endostatin and its potential as a therapeutic agent in the form a short peptide. MAJOR CONCLUSIONS The delicate balance between pro- and anti-angiogenic factors can be modulated to result in physiological wound healing or pathological tumor metastasis. Research in the last decade has emphasized an emerging clinical potential for endostatin as a biomarker and as a therapeutic short peptide. Moreover, elevated or depressed endostatin levels in diseased states may help explain the pathophysiological mechanisms of the particular disease. GENERAL SIGNIFICANCE Endostatin was once sought after as the 'be all and end all' for cancer treatment; however, research throughout the last decade has made it apparent that endostatin's effects are complex and involve multiple mechanisms. A better understanding of newly discovered mechanisms and clinical applications still has the potential to lead to future advances in the use of endostatin in the clinic.
Collapse
Affiliation(s)
- Amit Walia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jessica F Yang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Kanchan K, Fuxreiter M, Fésüs L. Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 2015; 72:3009-35. [PMID: 25943306 PMCID: PMC11113818 DOI: 10.1007/s00018-015-1909-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2's non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.
Collapse
Affiliation(s)
- Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Mónika Fuxreiter
- MTA-DE Momentum Laboratory of Protein Dynamics, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- MTA-DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|
17
|
Beckouche N, Bignon M, Lelarge V, Mathivet T, Pichol-Thievend C, Berndt S, Hardouin J, Garand M, Ardidie-Robouant C, Barret A, Melino G, Lortat-Jacob H, Muller L, Monnot C, Germain S. The interaction of heparan sulfate proteoglycans with endothelial transglutaminase-2 limits VEGF165-induced angiogenesis. Sci Signal 2015; 8:ra70. [PMID: 26175493 DOI: 10.1126/scisignal.aaa0963] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sprouting angiogenesis is stimulated by vascular endothelial growth factor (VEGF165) that is localized in the extracellular matrix (ECM) and binds to heparan sulfate (HS)-bearing proteins known as heparan sulfate proteoglycans (HSPGs). VEGF165 presentation by HSPGs enhances VEGF receptor-2 (VEGFR2) signaling. We investigated the effect of TG2, which binds to HSPGs, on the interaction between VEGF165 and HS and angiogenesis. Mice with tg2 deficiency showed transiently enhanced retina vessel formation and increased vascularization of VEGF165-containing Matrigel implants. In addition, endothelial cells in which TG2 was knocked down exhibited enhanced VEGF165-induced sprouting and migration, which was associated with increased phosphorylation of VEGFR2 at Tyr(951) and its targets Src and Akt. TG2 knockdown did not affect the phosphorylation of VEGFR2 at Tyr(1175) or cell proliferation in response to VEGF165 and sprouting or signaling in response to VEGF121. Decreased phosphorylation of VEGFR2 at Tyr(951) was due to ECM-localized TG2, which reduced the binding of VEGF165 to endothelial ECM in a manner that required its ability to bind to HS but not its catalytic activity. Surface plasmon resonance assays demonstrated that TG2 impeded the interaction between VEGF165 and HS. These results show that TG2 controls the formation of VEGF165-HSPG complexes and suggest that this regulation could be pharmacologically targeted to modulate developmental and therapeutic angiogenesis.
Collapse
Affiliation(s)
- Nathan Beckouche
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer. Universite Pierre et Marie Curie (ED 394), Paris F-75005, France
| | - Marine Bignon
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer
| | - Virginie Lelarge
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer. Universite Pierre et Marie Curie (ED 394), Paris F-75005, France
| | - Thomas Mathivet
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France
| | - Cathy Pichol-Thievend
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer. Universite Pierre et Marie Curie (ED 394), Paris F-75005, France
| | - Sarah Berndt
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer
| | - Julie Hardouin
- Universite de Rouen Laboratoire Polymères Biopolymeres Surfaces, UMR CNRS 6270, Mont-Saint-Aignan F-76821, France
| | - Marion Garand
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France
| | - Corinne Ardidie-Robouant
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer
| | - Alain Barret
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer
| | - Gerry Melino
- MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN, UK
| | - Hugues Lortat-Jacob
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble F-38000, France. CNRS, IBS, Grenoble F-38000, France. Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, IBS, Grenoble F-38000, France
| | - Laurent Muller
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer
| | - Catherine Monnot
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer.
| | - Stephane Germain
- Collège de France, Center for Interdisciplinary Research in Biology, Paris F-75005, France. CNRS, UMR 7241, Paris F-75005, France. INSERM U1050, Paris F-75005, France. Equipe Labellisée Ligue Contre le Cancer. Department of Pathology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
| |
Collapse
|
18
|
Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J 2015; 282:3693-721. [PMID: 26096795 DOI: 10.1111/febs.13342] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
20
|
Odii BO, Coussons P. Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family. ScientificWorldJournal 2014; 2014:714561. [PMID: 24778599 PMCID: PMC3981525 DOI: 10.1155/2014/714561] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/30/2013] [Indexed: 02/01/2023] Open
Abstract
Transglutaminase 2 (TG2) is the most widely distributed and most abundantly expressed member of the transglutaminase family of enzymes, a group of intracellular and extracellular proteins that catalyze the Ca²⁺-dependent posttranslational modification of proteins. It is a unique member of the transglutaminase family owing to its specialized biochemical, structural and functional elements, ubiquitous tissue distribution and subcellular localization, and substrate specificity. The broad substrate specificity of TG2 and its flexible interaction with numerous other gene products may account for its multiple biological functions. In addition to the classic Ca²⁺-dependent transamidation of proteins, which is a hallmark of transglutaminase enzymes, additional Ca²⁺-independent enzymatic and nonenzymatic activities of TG2 have been identified. Many such activities have been directly or indirectly implicated in diverse cellular physiological events, including cell growth and differentiation, cell adhesion and morphology, extracellular matrix stabilization, wound healing, cellular development, receptor-mediated endocytosis, apoptosis, and disease pathology. Given the wide range of activities of the transglutaminase gene family it has been suggested that, in the absence of active versions of TG2, its function could be compensated for by other members of the transglutaminase family. It is in the light of this assertion that we review, herein, TG2 activities and the possibilities and premises for compensation for its absence.
Collapse
Affiliation(s)
- Benedict Onyekachi Odii
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| | - Peter Coussons
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| |
Collapse
|
21
|
Sileno S, D'Oria V, Stucchi R, Alessio M, Petrini S, Bonetto V, Maechler P, Bertuzzi F, Grasso V, Paolella K, Barbetti F, Massa O. A possible role of transglutaminase 2 in the nucleus of INS-1E and of cells of human pancreatic islets. J Proteomics 2013; 96:314-27. [PMID: 24291354 PMCID: PMC3919173 DOI: 10.1016/j.jprot.2013.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/16/2013] [Accepted: 11/12/2013] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein with Ca2 +-dependent transamidating and G protein activity. Previously we reported that the role of TG2 in insulin secretion may involve cytoplasmic actin remodeling and a regulative action on other proteins during granule movement. The aim of this study was to gain a better insight into the role of TG2 transamidating activity in mitochondria and in the nucleus of INS-1E rat insulinoma cell line (INS-1E) during insulin secretion. To this end we labeled INS-1E with an artificial donor (biotinylated peptide), in basal condition and after stimulus with glucose for 2, 5, and 8 min. Biotinylated proteins of the nuclear/mitochondrial-enriched fraction were analyzed using two-dimensional electrophoresis and mass spectrometry. Many mitochondrial proteins involved in Ca2 + homeostasis (e.g. voltage-dependent anion-selective channel protein, prohibitin and different ATP synthase subunits) and many nuclear proteins involved in gene regulation (e.g. histone H3, barrier to autointegration factor and various heterogeneous nuclear ribonucleoprotein) were identified among a number of transamidating substrates of TG2 in INS-1E. The combined results provide evidence that a temporal link exists between glucose-stimulation, first phase insulin secretion and the action of TG on histone H3 both in INS-1E and human pancreatic islets. Biological significance Research into the role of transglutaminase 2 during insulin secretion in INS-1E rat insulinoma cellular model is depicting a complex role for this enzyme. Transglutaminase 2 acts in the different INS-1E compartments in the same way: catalyzing a post-translational modification event of its substrates. In this work we identify some mitochondrial and nuclear substrates of INS-1E during first phase insulin secretion. The finding that TG2 interacts with nuclear proteins that include BAF and histone H3 immediately after (2–5 min) glucose stimulus of INS-1E suggests that TG2 may be involved not only in insulin secretion, as suggested by our previous studies in cytoplasmic INS-1E fraction, but also in the regulation of glucose-induced gene transcription. Transglutaminase 2 localizes in the nucleus and in the mitochondrion of INS-1E. TG2 acts as a modifying enzyme in both compartments during FPIS. TG2 may contribute to Ca2 + sensing in mitochondrion through its substrates. TG2 may contribute to chromatin condensation in nucleus through its substrates.
Collapse
Affiliation(s)
- Sara Sileno
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Research Laboratory, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Riccardo Stucchi
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Massimo Alessio
- Proteome Biochemistry Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratory, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Valentina Bonetto
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Geneva University Medical Centre, Geneva 4, Switzerland
| | | | - Valeria Grasso
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Katia Paolella
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Fabrizio Barbetti
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Experimental Medicine and Surgery, University of Tor Vergata, Rome, Italy
| | - Ornella Massa
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
22
|
Deasey S, Nurminsky D, Shanmugasundaram S, Lima F, Nurminskaya M. Transglutaminase 2 as a novel activator of LRP6/β-catenin signaling. Cell Signal 2013; 25:2646-51. [PMID: 23993960 DOI: 10.1016/j.cellsig.2013.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/24/2013] [Indexed: 11/15/2022]
Abstract
The β-catenin signaling axis is critical for normal embryonic development and tissue homeostasis in adults. We have previously shown that extracellular enzyme transglutaminase 2 (TG2) activates β-catenin signaling in vascular smooth muscle cells (VSMCs). In this study, we provide several lines of evidence that TG2 functions as an activating ligand of the LRP5/6 receptors. Specifically, we show that TG2 synergizes with LRP6 in the activation of β-catenin-dependent gene expression in Cos-7 cells. Interfering with the LRP5/6 receptors attenuates TG2-induced activation of β-catenin in Cos-7 cells. Further, we show that TG2 binds directly to the extracellular domain of LRP6, which is also able to act as a substrate for TG2-mediated protein cross-linking. Furthermore, inhibitors of TG2 protein cross-linking quench the observed TG2-induced β-catenin activation, implicating protein cross-linking as a novel regulatory mechanism for this pathway. Together, our findings identify and characterize a new activating ligand of the LRP5/6 receptors and uncover a novel activity of TG2 as an agonist of β-catenin signaling, contributing to the understanding of diverse developmental events and pathological conditions in which transglutaminase and β-catenin signaling are implicated.
Collapse
Affiliation(s)
- S Deasey
- Dept. of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | |
Collapse
|
23
|
Transglutaminases: key regulators of cancer metastasis. Amino Acids 2013; 44:25-32. [PMID: 22302368 DOI: 10.1007/s00726-012-1229-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/19/2012] [Indexed: 02/07/2023]
Abstract
The ability to metastasize represents the most important characteristic of malignant tumors. The biological details of the metastatic process remain somewhat unknown, due to difficulties in studying tumor cell behaviour with high spatial and temporal resolution in vivo. Several lines of evidence involve transglutaminases (TGs) in the key stages of tumor progression cascade, even though the molecular mechanisms remain controversial. TG expression and activity display a different role in the primary tumor or in metastatic cells. In fact, TG expression is low in the primary tumor mass, but augmented when cells acquire the metastatic phenotype. Nevertheless, in other cases, the use of inducers of TG transamidating activity seems to contrast tumor cell plasticity, migration and invasion. In the following review, the function of TGs in cancer cell migration into the extracellular matrix, adhesion to the capillary endothelium and its basement membrane, invasion and angiogenesis is discussed.
Collapse
|
24
|
Yang L, Xu L. GPR56 in cancer progression: current status and future perspective. Future Oncol 2012; 8:431-40. [PMID: 22515446 DOI: 10.2217/fon.12.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell adhesion is a critical process during cancer progression and is mediated by transmembrane receptors. Recently, GPR56, a member of the adhesion family of G protein-coupled receptors, was established as a new type of adhesion receptor that binds to extracellular matrix proteins and shown to play inhibitory roles in melanoma progression. Further studies revealed that the extracellular portion and the seven transmembrane domains of GPR56 function antagonistically to regulate VEGF production and angiogenesis via a signaling pathway mediated by PKCα. Tissue transglutaminase was identified as the first extracellular matrix protein that binds to GPR56. It is a crosslinking enzyme in the extracellular matrix but is also expressed in the cytosol. Tissue transglutaminase plays pleiotropic roles in cancer progression. Whether and how it might mediate GPR56-regulated cancer progression awaits further investigation.
Collapse
Affiliation(s)
- Liquan Yang
- Department of Biomedical Genetics, Department of Dermatology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
25
|
Cherrington BD, Zhang X, McElwee JL, Morency E, Anguish LJ, Coonrod SA. Potential role for PAD2 in gene regulation in breast cancer cells. PLoS One 2012; 7:e41242. [PMID: 22911765 PMCID: PMC3404060 DOI: 10.1371/journal.pone.0041242] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/24/2012] [Indexed: 11/18/2022] Open
Abstract
The peptidylarginine deiminase (PAD) family of enzymes post-translationally convert positively charged arginine residues in substrate proteins to the neutral, non-standard residue citrulline. PAD family members 1, 2, 3, and 6 have previously been localized to the cell cytoplasm and, thus, their potential to regulate gene activity has not been described. We recently demonstrated that PAD2 is expressed in the canine mammary gland epithelium and that levels of histone citrullination in this tissue correlate with PAD2 expression. Given these observations, we decided to test whether PAD2 might localize to the nuclear compartment of the human mammary epithelium and regulate gene activity in these cells. Here we show, for the first time, that PAD2 is specifically expressed in human mammary gland epithelial cells and that a portion of PAD2 associates with chromatin in MCF-7 breast cancer cells. We investigated a potential nuclear function for PAD2 by microarray, qPCR, and chromatin immunoprecipitation analysis. Results show that the expression of a unique subset of genes is disregulated following depletion of PAD2 from MCF-7 cells. Further, ChIP analysis of two of the most highly up- and down-regulated genes (PTN and MAGEA12, respectively) found that PAD2 binds directly to these gene promoters and that the likely mechanism by which PAD2 regulates expression of these genes is via citrullination of arginine residues 2-8-17 on histone H3 tails. Thus, our findings define a novel role for PAD2 in gene expression in human mammary epithelial cells.
Collapse
Affiliation(s)
- Brian D. Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Xuesen Zhang
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - John L. McElwee
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Eric Morency
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Lynne J. Anguish
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Scott A. Coonrod
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kuo TF, Tatsukawa H, Matsuura T, Nagatsuma K, Hirose S, Kojima S. Free fatty acids induce transglutaminase 2-dependent apoptosis in hepatocytes via ER stress-stimulated PERK pathways. J Cell Physiol 2012; 227:1130-7. [PMID: 21567402 DOI: 10.1002/jcp.22833] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Non-alcoholic steatohepatitis (NASH), a progressive form of fatty liver, shares histological similarities with alcoholic steatohepatitis (ASH), including accumulated fat, hepatic apoptosis, and fibrous tissues in the liver, but the molecular mechanisms responsible for hepatic apoptosis remain unclear. We previously reported that transglutaminase 2 (TG2), induced in the nuclei of ethanol-treated hepatocytes, crosslinks and inactivates the transcription factor Sp1, leading to hepatic apoptosis. In this study, we investigated whether a similar change is involved in NASH, and if so, how TG2 and crosslinked Sp1 (CLSp1) are induced. Elevated nuclear TG2 and CLSp1 formation was demonstrated in NASH patients, as well as increased activation of apoptosis inducing factor (AIF) and release of cytochrome c. In Hc human normal hepatocytes treated with free fatty acids (FFAs), biochemical analyses revealed that ethanol and FFAs provoked fat accumulation, endoplasmic reticulum (ER) stress, increased nuclear factor kappa B (NFκB), and nuclear TG2. Salubrinal, a selective inhibitor of the ER stress-induced pancreatic ER kinase (PERK) signaling pathway, inhibited NFκB activation, nuclear TG2 expression, and apoptosis only if it was induced by FFAs, but not by ethanol. These results suggest that FFAs could increase ER stress and lead to nuclear NFκB activation and TG2 induction through PERK-dependent pathways, resulting in TG2-mediated apoptosis accompanying crosslinking and inactivation of Sp1, activation of AIF, and release of cytochrome c.
Collapse
Affiliation(s)
- Ting-Fang Kuo
- Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Jin T, Lin HX, Lin H, Guo LB, Ge N, Cai XY, Sun R, Chen WK, Li QL, Hu WH. Expression TGM2 and BNIP3 have prognostic significance in laryngeal cancer patients receiving surgery and postoperative radiotherapy: a retrospective study. J Transl Med 2012; 10:64. [PMID: 22458929 PMCID: PMC3362769 DOI: 10.1186/1479-5876-10-64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/30/2012] [Indexed: 12/26/2022] Open
Abstract
Background This study was designed to determine the pattern and correlation between expression of the HIF-1α transcriptional targets TGM2 and BNIP3 in laryngeal cancer, and investigate the association of BNIP3 and TGM2 with clinical outcome in laryngeal squamous cell carcinoma (SCC) patients receiving postoperative radiotherapy. Methods Immunostaining with antibodies specific to BNIP3 and TGM2 was performed in formalin-fixed, paraffin-embedded specimens from 148 laryngeal SCC patients. BNIP3 and TGM2 expression was scored as high or low, based on the number of tumor cells stained and the staining intensity. All patients received postoperative radiotherapy. Patient follow up and clinicopathological data were compared using the Chi-squared test, univariate and multivariate analyses, and survival curves were generated using the Kaplan-Meier method and log-rank test. Results The 3, 5 and 10-year overall survival rates (OS) for all patients were 77.7%, 71.6%, 56.4%, respectively. Primary tumor site, T stage, overall stage, lymph-node metastasis, BNIP3 expression and TGM2 expression were significant prognostic factors for OS in univariate analysis. Negative cervical lymph nodes, high BNIP3 expression and low TGM2 expression were independent prognostic factors of improved OS in multivariate analysis. BNIP3 expression correlates with TGM2 expression in laryngeal SCC (P = 0.012). Conclusions This study indicates that lymph-node metastasis, BNIP3 expression and TGM2 expression are independent prognostic factors in laryngeal SCC patients receiving postoperative radiotherapy. Further studies are required to investigate how BNIP3 and/or TGM2 influence the prognosis of laryngeal SCC patients treated with postoperative radiotherapy, and to determine how TGM2 and BNIP3 expression are regulated.
Collapse
Affiliation(s)
- Ting Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Korte EA, Gaffney PM, Powell DW. Contributions of mass spectrometry-based proteomics to defining cellular mechanisms and diagnostic markers for systemic lupus erythematosus. Arthritis Res Ther 2012; 14:204. [PMID: 22364570 PMCID: PMC3392812 DOI: 10.1186/ar3701] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Systematic lupus erythematosus (SLE) is a complex disease for which molecular diagnostics are limited and pathogenesis is not clearly understood. Important information is provided in this regard by identification and characterization of more specific molecular and cellular targets in SLE immune cells and target tissue and markers of early-onset and effective response to treatment of SLE complications. In recent years, advances in proteomic technologies and applications have facilitated such discoveries. Here we provide a review of insights into SLE pathogenesis, diagnosis and treatment that have been provided by mass spectrometry-based proteomic approaches.
Collapse
Affiliation(s)
- Erik A Korte
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, 570 South Preston St, Baxter Research Building I, Room 204E, Louisville, KY 40202, USA
| | | | | |
Collapse
|
29
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Abstract
Tissue transglutaminase (TG2) is a ubiquitously expressed member of the transglutaminase family of Ca(2+)-dependent crosslinking enzymes. Unlike other family members, TG2 is a multifunctional protein, which has several other well documented enzymatic and non-enzymatic functions. A significant body of evidence accumulated over the last decade reveals multiple and complex activities of this protein on the cell surface and in the extracellular matrix (ECM), including its role in the regulation of cell-ECM interactions and outside-in signaling by several types of transmembrane receptors. Moreover, recent findings indicate a dynamic regulation of the levels and functions of extracellular TG2 by several complementary mechanisms. This review summarizes and assesses recent research into the emerging functions and regulation of extracellular TG2.
Collapse
Affiliation(s)
- Alexey M Belkin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
31
|
Kuo TF, Tatsukawa H, Kojima S. New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 2011; 278:4756-67. [PMID: 22051117 DOI: 10.1111/j.1742-4658.2011.08409.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transglutaminase 2 (TG2; EC 2.3.2.13) is the most abundantly expressed member of the transglutaminase family and exerts opposing effects on cell growth, differentiation and apoptosis via multiple activities, including transamidase, GTPase, cell adhesion, protein disulfide isomerase, kinase and scaffold activities. It is distributed in and around various parts of a cell, including the extracellular matrix, plasma membrane, cytosol, mitochondria and nucleus. Generally, nuclear TG2 represents only 5-7% of the total TG2 in a cell, and various stimuli will increase nuclear TG2 via cellular stress and/or an increased intracellular Ca(2+) concentration. There is increasing evidence indicating the importance of nuclear TG2 in regulating gene expression via post-translational modification of (or interaction with) transcriptional factors and related proteins. These include E2F1, hypoxia inducible factor 1, Sp1 and histones. Through this mechanism, TG2 controls cell growth or survival, differentiation and apoptosis, and is involved in the pathogenesis and/or treatment of neurodegenerative diseases, liver diseases and cancers. The balance between import from the cytoplasm to the nucleus, and export from the nucleus to the cytoplasm, determines the level of TG2 in the nucleus. Selective regulation of the expression, activity or localization of nuclear TG2 will be important for basic research, as well as clinical applications, suggesting a new era for this long-studied enzyme.
Collapse
Affiliation(s)
- Ting-Fang Kuo
- Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | | | |
Collapse
|
32
|
Transglutaminases and receptor tyrosine kinases. Amino Acids 2011; 44:19-24. [DOI: 10.1007/s00726-011-1113-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
|
33
|
Transglutaminase 2: a molecular Swiss army knife. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:406-19. [PMID: 22015769 DOI: 10.1016/j.bbamcr.2011.09.012] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/02/2011] [Accepted: 09/06/2011] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is the most widely distributed member of the transglutaminase family with almost all cell types in the body expressing TG2 to varying extents. In addition to being widely expressed, TG2 is an extremely versatile protein exhibiting transamidating, protein disulphide isomerase and guanine and adenine nucleotide binding and hydrolyzing activities. TG2 can also act as a protein scaffold or linker. This unique protein also undergoes extreme conformational changes and exhibits localization diversity. Being mainly a cytosolic protein; it is also found in the nucleus, associated with the cell membrane (inner and outer side) and with the mitochondria, and also in the extracellular matrix. These different activities, conformations and localization need to be carefully considered while assessing the role of TG2 in physiological and pathological processes. For example, it is becoming evident that the role of TG2 in cell death processes is dependent upon the cell type, stimuli, subcellular localization and conformational state of the protein. In this review we discuss in depth the conformational and functional diversity of TG2 in the context of its role in numerous cellular processes. In particular, we have highlighted how differential localization, conformation and activities of TG2 may distinctly mediate cell death processes.
Collapse
|
34
|
Shanmugasundaram S, Logan-Mauney S, Burgos K, Nurminskaya M. Tissue transglutaminase regulates chondrogenesis in mesenchymal stem cells on collagen type XI matrices. Amino Acids 2011; 42:1045-53. [PMID: 21830118 DOI: 10.1007/s00726-011-1019-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/07/2011] [Indexed: 11/29/2022]
Abstract
Tissue transglutaminase (tTG) is a multifunctional enzyme with a plethora of potential applications in regenerative medicine and tissue bioengineering. In this study, we examined the role of tTG as a regulator of chondrogenesis in human mesenchymal stem cells (MSC) using nanofibrous scaffolds coated with collagen type XI. Transient treatment of collagen type XI films and 3D scaffolds with tTG results in enhanced attachment of MSC and supports rounded cell morphology compared to the untreated matrices or those incubated in the continuous presence of tTG. Accordingly, enhanced cell aggregation and augmented chondrogenic differentiation have been observed on the collagen type XI-coated poly-(L-lactide) nanofibrous scaffolds treated with tTG prior to cell seeding. These changes implicate that MSC chondrogenesis is enhanced by the tTG-mediated modifications of the collagen matrix. For example, exogenous tTG increases resistance to collagenolysis in collagen type XI matrices by catalyzing intermolecular cross-linking, detected by a shift in the denaturation temperature. In addition, tTG auto-crosslinks to collagen type XI as detected by western blot and immunofluorescent analysis. This study identifies tTG as a novel regulator of MSC chondrogenesis further contributing to the expanding use of these cells in cartilage bioengineering.
Collapse
Affiliation(s)
- Shobana Shanmugasundaram
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
35
|
TG2, a novel extracellular protein with multiple functions. Amino Acids 2011; 42:939-49. [PMID: 21818567 DOI: 10.1007/s00726-011-1008-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/22/2011] [Indexed: 01/09/2023]
Abstract
TG2 is multifunctional enzyme which can be secreted to the cell surface by an unknown mechanism where its Ca(2+)-dependent transamidase activity is implicated in a number of events important to cell behaviour. However, this activity may only be transient due to the oxidation of the enzyme in the extracellular environment including its reaction with NO probably accounting for its many other roles, which are transamidation independent. In this review, we discuss the novel roles of TG2 at the cell surface and in the ECM acting either as a transamidating enzyme or as an extracellular scaffold protein involved in cell adhesion. Such roles include its ability to act as an FN co-receptor for β integrins or in a heterocomplex with FN interacting with the cell surface heparan sulphate proteoglycan syndecan-4 leading to activation of PKCα. These different properties of TG2 involve this protein in various physiological processes, which if not regulated appropriately can also lead to its involvement in a number of diseases. These include metastatic cancer, tissue fibrosis and coeliac disease, thus increasing its attractiveness as both a therapeutic target and diagnostic marker.
Collapse
|
36
|
Nurminsky D, Shanmugasundaram S, Deasey S, Michaud C, Allen S, Hendig D, Dastjerdi A, Francis-West P, Nurminskaya M. Transglutaminase 2 regulates early chondrogenesis and glycosaminoglycan synthesis. Mech Dev 2011; 128:234-45. [PMID: 21129482 PMCID: PMC3140913 DOI: 10.1016/j.mod.2010.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/20/2022]
Abstract
The expression pattern for tissue transglutaminase (TG2) suggests that it regulates cartilage formation. We analyzed the role of TG2 in early stages of chondrogenesis using differentiating high-density cultures of mesenchymal cells from chicken limb bud as a model. We demonstrate that TG2 promotes cell differentiation towards a pre-hypertrophic stage without inducing precocious hypertrophic maturation. This finding, combined with distinctive up-regulation of extracellular TG2 in the pre-hypertrophic cartilage of the growth plate, indicates that TG2 is an autocrine regulator of chondrocyte differentiation. We also show that TG2 regulates synthesis of the cartilaginous glycosaminoglycan (GAG)-rich extracellular matrix. Elevated levels of TG2 down-regulate xylosyltransferase activity which mediates the key steps in chondroitin sulfate synthesis. On the contrary, inhibition of endogenous transglutaminase activity in differentiating chondrogenic micromasses results in increased GAG deposition and enhancement of early chondrogenic markers. Regulation of GAG synthesis by TG2 appears independent of TGF-β activity, which is a downstream mediator of the TG2 functions in some biological systems. Instead, our data suggest a major role for cAMP/PKA signaling in transmitting TG2 signals in early chondrogenic differentiation. In summary, we demonstrate that matrix synthesis and early stages of chondrogenic differentiation are regulated through a novel mechanism involving TG2-dependent inhibition of PKA. These findings further advance understanding of cartilage formation and disease, and contribute to cartilage bioengineering.
Collapse
Affiliation(s)
- Dmitry Nurminsky
- Dept. Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shobana Shanmugasundaram
- Dept. Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Stephanie Deasey
- Dept. Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Claire Michaud
- Dept. Anatomy and Cell Biology, Tufts University School of Medicine, Boston, MA 02111
| | | | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin Herz- und Diabeteszentrum, Universität Bochum Bad Oeynhausen, Germany
| | - Akbar Dastjerdi
- Dept. of Craniofacial Development, King's College London, London, UK
| | | | - Maria Nurminskaya
- Dept. Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
37
|
Kao SH, Hsu TC, Yu JS, Chen JT, Li SL, Lai WX, Tzang BS. Proteomic analysis for the anti-apoptotic effects of cystamine on apoptosis-prone macrophage. J Cell Biochem 2010; 110:660-70. [PMID: 20512926 DOI: 10.1002/jcb.22577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increased macrophage vulnerability is associated with progression of systemic lupus erythematosus. Our previous studies have shown that cystamine, an inhibitor of transglutaminase 2 (TG2), alleviated the apoptosis of hepatocyte and brain cell in lupus-prone mice NZB/W-F1. In present study, we further investigated the effects of cystamine on apoptosis-prone macrophages (APMs) in the lupus mice. Using two-dimensional gel electrophoresis (2-DE) analysis, we found that cystamine induced a differential protein expression pattern of APM as comparing to the PBS control. The protein spots presenting differential level between cystamine and PBS treatment were then identified by peptide-mass fingerprinting (PMF). After bioinformatic analysis, these identified proteins were found involved in mitochondrial apoptotic pathway, oxidative stress, and mitogen-activated protein (MAP) kinase-mediated pathway. Further investigation revealed that cystamine significantly decreased the levels of apoptotic Bax and Apaf-1 and the activity of caspase-3, and increased the levels of anti-apoptotic Bcl-2 in APM. We also found that these apoptotic mediators were up-regulated in a correlation with the progression of lupus severity in NZB/W-F1, which were little affected in BALB/c mice. We also found that the reduced serum glutathione was restored by cystamine in NZB/W-F1. Interestingly, the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in APM and the phagocytic ability was diminished in presence of cystamine. In conclusion, our findings indicate that cystamine significantly inhibited mitochondrial pathway, induced antioxidant proteins, and diminished phosphorylation of extracellular ERK1/2, which may alleviate the apoptosis and the phagocytic ability of APM.
Collapse
Affiliation(s)
- Shao-Hsuan Kao
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Filiano AJ, Tucholski J, Dolan PJ, Colak G, Johnson GVW. Transglutaminase 2 protects against ischemic stroke. Neurobiol Dis 2010; 39:334-43. [PMID: 20451610 DOI: 10.1016/j.nbd.2010.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/06/2010] [Accepted: 04/26/2010] [Indexed: 12/11/2022] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that modulates cell survival and death pathways. It is upregulated in numerous ischemic models, and protects primary neurons from oxygen and glucose deprivation. TG2 binds to the hypoxia inducible factor (HIF) 1beta and decreases the upregulation of hypoxic-induced proapoptotic genes. To investigate the role of TG2 in ischemic stroke in vivo, we used the murine, permanent middle cerebral artery (MCA) ligation model. TG2 mRNA levels are increased after MCA ligations, and transgenic mice that express human TG2 in neurons had significantly smaller infarct volumes than wild type littermates. Further, TG2 translocates into the nucleus within 2h post ligation. Nuclear-localized TG2 is also apparent in human stroke cases. TG2 suppressed the upregulation of the HIF-induced, proapoptotic gene, Noxa. The findings of this study indicate that TG2 plays a role in attenuating ischemic-induced cell death possibly by modulating hypoxic-induced transcriptional processes.
Collapse
Affiliation(s)
- A J Filiano
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | | | |
Collapse
|
39
|
Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells. Biochem J 2010; 427:467-75. [PMID: 20156196 DOI: 10.1042/bj20091594] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endostatin, a C-terminal fragment of collagen XVIII, binds to TG-2 (transglutaminase-2) in a cation-dependent manner. Recombinant human endostatin binds to TG-2 with an affinity in the nanomolar range (Kd=6.8 nM). Enzymatic assays indicated that, in contrast with other extracellular matrix proteins, endostatin is not a glutaminyl substrate of TG-2 and is not cross-linked to itself by the enzyme. Two arginine residues of endostatin, Arg27 and Arg139, are crucial for its binding to TG-2. They are also involved in the binding to heparin [Sasaki, Larsson, Kreuger, Salmivirta, Claesson-Welsh, Lindahl, Hohenester and Timpl (1999) EMBO J. 18, 6240-6248], and to alpha5beta1 and alphavbeta3 integrins [Faye, Moreau, Chautard, Jetne, Fukai, Ruggiero, Humphries, Olsen and Ricard-Blum (2009) J. Biol. Chem. 284, 22029-22040], suggesting that endostatin is not able to interact simultaneously with TG-2 and heparan sulfate, or with TG-2 and integrins. Inhibition experiments support the hypothesis that the GTP-binding site of TG-2 is a potential binding site for endostatin. Endostatin and TG-2 are co-localized in the extracellular matrix secreted by endothelial cells under hypoxia, which stimulates angiogenesis. This interaction, occurring in a cellular context, might participate in the concerted regulation of angiogenesis and tumorigenesis by the two proteins.
Collapse
|
40
|
Tissue transglutaminase 2 as a biomarker of cervical intraepithelial neoplasia (CIN) and its relationship to p16INK4A and nuclear factor kappaB expression. Virchows Arch 2009; 456:45-51. [PMID: 19937343 DOI: 10.1007/s00428-009-0860-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 12/26/2022]
Abstract
Tissue transglutaminase 2 (TG2) is a recently identified molecule with multifunctional physiological roles. This is the first report of the expression of TG2 in cervical intraepithelial neoplasia (CIN) and invasive squamous cell carcinoma (SCC). For comparison, the expression of p16, a known surrogate biomarker of HPV infection, was evaluated. The expression of nuclear factor kappa B (NF-kappaB), a molecule crucial to inflammation and neoplasia, was also determined to explore its possible linkage with TG2 expression. Twenty cases each with normal cervical histology, CIN1, CIN2, CIN3, and invasive SCC were analyzed for TG2, p16, and NF-kappaB expression by immunohistochemistry. Intergroup differences were analyzed by Friedman ANOVA. Cytoplasmic as well as nuclear TG2 expression was observed in the epithelial cells. As compared to normal controls, CIN1 showed markedly increased cytoplasmic TG2 expression (p = 0.006). In CIN2/3, additional nuclear TG2 expression was seen (p = 0.009 and 0.031, respectively). Marked extracellular stromal upregulation of TG2 was noted in CIN3/SCC versus normal controls (p = 0.054; p = 0.003). There was no relationship of TG2 with either p16 of NF-kappaB expression. Combining TG2 immunoreactivity with p16 increased the immunolabeling of dysplasia from 35% to 100% in CIN1, 45% to 60% in CIN2, and 60% to 85% in CIN3. TG2 serves as an additional biomarker for all grades of cervical dysplasia, especially for low-grade dysplasia.
Collapse
|
41
|
Faye C, Chautard E, Olsen BR, Ricard-Blum S. The first draft of the endostatin interaction network. J Biol Chem 2009; 284:22041-22047. [PMID: 19542224 DOI: 10.1074/jbc.m109.002964] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endostatin is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds to heparin/heparan sulfate and to a number of proteins, but its molecular mechanisms of action are not fully elucidated. We have used surface plasmon resonance (SPR) arrays to identify new partners of endostatin, and to give further insights on its molecular mechanism of action. New partners of endostatin include glycosaminoglycans (chondroitin and dermatan sulfate), matricellular proteins (thrombospondin-1 and SPARC), collagens (I, IV, and VI), the amyloid peptide Abeta-(1-42), and transglutaminase-2. The biological functions of the endostatin network involve a number of extracellular proteins containing epidermal growth factor and epidermal growth factor-like domains, and able to bind calcium. Depending on the trigger event, and on the availability of its members in a given tissue at a given time, the endostatin network might be involved either in the control of angiogenesis, and tumor growth, or in neurogenesis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Clément Faye
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Emilie Chautard
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| |
Collapse
|
42
|
Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 2009; 12:177-85. [PMID: 19267251 DOI: 10.1007/s10456-009-9141-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/16/2009] [Indexed: 11/30/2022]
Abstract
The cross-talk between receptor tyrosine kinases and integrin receptors are known to be crucial for a number of cellular functions. On endothelial cells, an interaction between integrin alphavbeta3 and VEGFR2 seems to be particularly important process during vascularization. Importantly, the functional association between VEGFR2 and integrin alphavbeta3 is of reciprocal nature since each receptor is able to promote activation of its counterpart. This mutually beneficial relationship regulates a number of cellular activities involved in angiogenesis, including endothelial cell migration, survival and tube formation, and hematopoietic cell functions within vasculature. This article discusses several possible mechanisms reported by different labs which mediate formation of the complex between VEGFR-2 and alphavbeta3 on endothelial cells. The pathological consequences and regulatory events involved in this receptor cross-talk are also presented.
Collapse
Affiliation(s)
- Payaningal R Somanath
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
43
|
Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem Biophys 2008; 53:53-64. [PMID: 19048411 DOI: 10.1007/s12013-008-9040-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2008] [Indexed: 12/22/2022]
Abstract
A sequence of events in vascular and stromal cells maintained in a highly coordinated manner regulates angiogenesis and tissue remodeling. These processes are mediated by the ability of cells to respond to environmental cues and activate surface integrins. Physiological and pathological processes in vascular biology are dependent on the specificity of important signaling mechanisms that are activated through the association between growth factors, their receptors, integrins, and their specific extracellular matrix ligands. A large body of evidence from in vitro and in vivo models demonstrates the importance of coordination of signals from the extracellular environment that activates specific tyrosine kinase receptors and integrins in order to regulate angiogenic processes in vivo. In addition to complex formation between growth factor receptors and integrins, growth factors and cytokines also directly interact with integrins, depending upon their concentration levels in the environment, and differentially regulate integrin-related processes. Recent studies from a number of laboratories including ours have provided important novel insights into the involvement of many signaling events that improve our existing knowledge on the cross-talk between growth factor receptors and integrins in the regulation of angiogenesis. In this review, our focus will be on updating the recent developments in the field of integrin-growth factor receptor associations and their implications in the vascular processes.
Collapse
|
44
|
Pillai A, Veeranan-Karmegam R, Dhandapani KM, Mahadik SP. Cystamine prevents haloperidol-induced decrease of BDNF/TrkB signaling in mouse frontal cortex. J Neurochem 2008; 107:941-51. [PMID: 18786174 DOI: 10.1111/j.1471-4159.2008.05665.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology as well as treatment outcome of schizophrenia. Rodent studies indicate that several antipsychotic drugs have time-dependent (and differential) effects on BDNF levels in the brain. Earlier studies from our laboratory have indicated that long-term treatment with haloperidol (HAL) decreases BDNF, reduced GSH and anti-apoptotic marker, Bcl-xl protein levels and increases the expression of pro-apoptotic proteins in rat frontal cortex. Furthermore, findings from human as well as rodent studies suggest that treatment of schizophrenia must involve the neuroprotective strategies to improve the neuropathology and thereby clinical outcome. In the present study, we investigated the potential of cystamine (CYS), an anti-oxidant and anti-apoptotic compound, to prevent HAL-induced reduction in BDNF, GSH, and Bcl-xl protein levels in mice and the signaling mechanism(s) involved in the beneficial effects of CYS. The results indicated that CYS as well as cysteamine (the FDA-approved precursor of CYS) increased BDNF protein levels in mouse frontal cortex 7 days after treatment. CYS co-treatment prevented chronic HAL treatment-induced reduction in BDNF, GSH, and Bcl-xl protein levels. CYS treatment enhanced TrkB-tyrosine phosphorylation and activated Akt and extracellular signal-regulated kinase (ERK)1/2, downstream molecules of TrkB signaling. In addition, in vitro experiments with mouse cortical neurons showed that CYS prevented the HAL-induced reduction in neuronal cell viability and BDNF protein levels, and increase in apoptosis. BDNF-neutralizing antibody as well as K252a, a selective inhibitor of neurotrophin signaling blocked the CYS-mediated neuroprotection. Moreover, CYS-mediated neuroprotection is also blocked by LY294002, a phosphatidylinositol 3-kinase inhibitor or PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor. Thus, CYS protects cortical neurons through a mechanism involving TrkB receptor activation, and a signaling pathway involving phosphatidylinositol 3-kinase and MAPK. The findings from the present study may be helpful for the development of novel neuroprotective strategies to improve the treatment outcome of schizophrenia.
Collapse
Affiliation(s)
- Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Medical Research Service, Augusta, Georgia 30904, USA.
| | | | | | | |
Collapse
|
45
|
Hwang JY, Mangala LS, Fok JY, Lin YG, Merritt WM, Spannuth WA, Nick AM, Fiterman DJ, Vivas-Mejia PE, Deavers MT, Coleman RL, Lopez-Berestein G, Mehta K, Sood AK. Clinical and biological significance of tissue transglutaminase in ovarian carcinoma. Cancer Res 2008; 68:5849-58. [PMID: 18632639 DOI: 10.1158/0008-5472.can-07-6130] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tissue type transglutaminase (TG2) is a unique multifunctional protein that plays a role in many steps in the cancer metastatic cascade. Here, we examined the clinical (n = 93 epithelial ovarian cancers) and biological (in vitro adhesion, invasion, and survival and in vivo therapeutic targeting) significance of TG2 in ovarian cancer. The overexpression of TG2 was associated with significantly worse overall patient survival in both univariate and multivariate analyses. Transfection of TG2 into SKOV3ip1 cells promoted attachment and spreading on fibronectin-coated surfaces and increased the in vitro invasive potential of these cells. Conversely, TG2 silencing with small interfering RNA (siRNA) of HeyA8 cells significantly decreased the invasive potential of the cells and also increased docetaxel-induced cell death. In vivo therapy experiments using chemotherapy-sensitive (HeyA8) and chemotherapy-resistant (HeyA8-MDR and RMG2) models showed significant antitumor activity both with TG2 siRNA-1,2-dioleoyl-sn-glycero-3-phosphatidylcholine alone and in combination with docetaxel chemotherapy. This antitumor activity was related to decreased proliferation and angiogenesis and increased tumor cell apoptosis in vivo. Taken together, these findings indicate that TG2 overexpression is an adverse prognostic factor in ovarian carcinoma and TG2 targeting may be an attractive therapeutic approach.
Collapse
Affiliation(s)
- Jee Young Hwang
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Understanding the role of integrins in the formation of vascular bed is important for designing new therapeutic approaches to ameliorate or inhibit pathological vascularization. Besides regulating cell adhesion and migration, integrins dynamically participate in a network with soluble molecules and their receptors. This study summarizes recent progress in the understanding of the reciprocal interactions between integrins, tyrosine kinase, and semaphorin receptors. RECENT FINDINGS During angiogenic remodeling, endothelial cells that line blood vessel walls dynamically modify their integrin-mediated adhesive contacts with the surrounding extracellular matrix. During angiogenesis, opposing autocrine and paracrine loops of growth factors and semaphorins regulate endothelial integrin activation and function through tyrosine kinase receptors and the neuropilin/plexins system. Moreover, proangiogenic and antiangiogenic factors can directly bind integrins and regulate endothelial cell behavior. Studies describing these intense research areas are discussed. SUMMARY Alteration in the balance between the angiogenic growth factors and semaphorins results in an impairment of integrin functions and could account for cardiovascular malformation and structural and functional abnormalities of the tumor vasculature.
Collapse
|
47
|
Johnson KA, Rose DM, Terkeltaub RA. Factor XIIIA mobilizes transglutaminase 2 to induce chondrocyte hypertrophic differentiation. J Cell Sci 2008; 121:2256-64. [PMID: 18544639 DOI: 10.1242/jcs.011262] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two transglutaminases (TGs), factor XIIIA (FXIIIA) and TG2, undergo physiologic upregulation in growth plate hypertrophic chondrocytes, and pathological upregulation in osteoarthritic cartilage. Externalization of guanine-nucleotide-bound TG2 drives chondrocyte maturation to hypertrophy, a state linked to matrix remodeling and calcification. Here, we tested the hypothesis that FXIIIA also promotes hypertrophic differentiation. Using human articular chondrocytes, we determined that extracellular FXIIIA induced chondrocyte hypertrophy associated with rapid movement of TG2 to the cell surface. Site-directed mutagenesis revealed that FXIIIA Pro37 bordering the thrombin endoproteolytic Arg38-Gly39 site, but not intrinsic TG catalytic activity, were necessary for FXIIIA to induce chondrocyte hypertrophy. TGs have been demonstrated to interact with certain integrins and, during osteoarthritis (OA), alpha1beta1 integrin is upregulated and associated with hypertrophic chondrocytes. FXIIIA engaged alpha1beta1 integrin in chondrocytes. Antibody crosslinking of alpha1beta1 integrin mobilized TG2. Conversely, an alpha1beta1-integrin-specific blocking antibody inhibited the capacity of FXIIIA to induce TG2 mobilization to the cell surface, phosphorylation of p38 MAP kinase, and chondrocyte hypertrophy. Our results identify a unique functional network between two cartilage TG isoenzymes that accelerates chondrocyte maturation without requirement for TG-catalyzed transamidation by either TG.
Collapse
|
48
|
Dickens S, Vermeulen P, Hendrickx B, Van den Berge S, Vranckx JJ. Regulable vascular endothelial growth factor165 overexpression by ex vivo expanded keratinocyte cultures promotes matrix formation, angiogenesis, and healing in porcine full-thickness wounds. Tissue Eng Part A 2008; 14:19-27. [PMID: 18333801 DOI: 10.1089/ten.a.2007.0060] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intricate wound repair process involves the interplay of numerous cells and proteins. Using a porcine full-thickness wound (FTW) healing model, we hypothesized that the ex vivo gene transfer of vascular endothelial growth factor (VEGF)-transfected basal keratinocyte (KC) cell suspensions may generate cross-talk and induce matrix formation, angiogenesis, and accelerated healing. Moreover, to regulate overexpression of isoform 165 of VEGF and its effect on healing, we introduced a tetracycline (TC)-inducible gene switch in the expression plasmid. Autologous basal KCs were cultivated from the porcine donor and transfected using cationic liposomes. A dose-response curve was established to determine optimal activation of the gene switch by TC. In vivo, FTWs were treated with VEGF-transfected KCs and controls. Wound fluids were collected daily and examined using enzyme-linked immunosorbent assay. Biopsies were evaluated using hematoxylin and eosin and immunostaining for fibronectin, CD144, and lectin BS-1. In vitro, highest regulable VEGF165-expression was obtained with 1 microg/mL of TCs. In vivo, after induction of the gene switch by adding 1 microg/mL of TCs to the FTW, we obtained upregulated VEGF165 levels and enhanced fibronectin deposition and found more endothelial cell tubular formations and higher rates of reepithelialization than in controls. This ex vivo gene transfer model may serve as a platform for vascular induction in full-thickness tissue repair.
Collapse
Affiliation(s)
- Stijn Dickens
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit, Leuven, Belgium
| | | | | | | | | |
Collapse
|
49
|
Johnson KA, Polewski M, Terkeltaub RA. Transglutaminase 2 is central to induction of the arterial calcification program by smooth muscle cells. Circ Res 2008; 102:529-37. [PMID: 18202319 PMCID: PMC2652242 DOI: 10.1161/circresaha.107.154260] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Arterial calcification is a phenotype of vascular repair in atherosclerosis, diabetes, hyperphosphatemic renal failure, and aging. Arterial calcification is modulated by transition of arterial smooth muscle cells (SMCs) from contractile to chondro-osseous differentiation programmed in response to increases in P(i), bone morphogenetic protein-2, and certain other stimuli. Transglutaminase (TG)2 release modulates tissue repair, partly by transamidation-catalyzed covalent crosslinking of extracellular matrix substrates. TG2 regulates cultured SMC differentiation, resistance artery remodeling to vasoconstriction, and atherosclerotic lesion size. Here, TG2 expression was required for the majority of TG activity in mouse and human aortic SMCs. TG2(-/-) SMCs lost the capacity for P(i) donor-induced formation of multicellular bone-like nodules and for increased expression of the type III sodium-dependent P(i) cotransporter Pit-1 and certain osteoblast and chondrocyte genes (tissue-nonspecific alkaline phosphatase, the osteoblast master transcription factor runx2, and chondrocyte-restricted aggrecan), and for P(i) donor- and bone morphogenetic protein-2-induced calcification. Uniquely in TG2(-/-) SMCs, P(i) donor treatment increased expression of the physiological SMC chondro-osseous differentiation and calcification inhibitors osteoprotegerin, matrix Gla protein, and osteopontin. Conversely, TG2(-/-) SMCs, unlike wild-type SMCs, failed to maintain contractile differentiation on laminin. Exogenous catalytically active TG2 augmented calcification by TG2(-/-) SMC in response to P(i) donor treatment. TG2 expression also drove P(i)-stimulated calcification of mouse aortic ring organ cultures, which was suppressed by the TG2 catalytic site-specific inhibitor Boc-DON-Gln-Ile-Val-OMe (10 micromol/L). Our results suggest that TG2 release in injured arteries is critical for programming chondro-osseous SMC differentiation and calcification in response to increased P(i) and bone morphogenetic protein-2.
Collapse
Affiliation(s)
- Kristen A Johnson
- Veterans Affairs Medical Center, University of California at San Diego, La Jolla, USA
| | | | | |
Collapse
|
50
|
Kim Y, Park YW, Lee YS, Jeoung D. Hyaluronic acid induces transglutaminase II to enhance cell motility; role of Rac1 and FAK in the induction of transglutaminase II. Biotechnol Lett 2007; 30:31-9. [PMID: 17680210 DOI: 10.1007/s10529-007-9496-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/17/2007] [Accepted: 07/17/2007] [Indexed: 11/29/2022]
Abstract
The role of transglutaminase II (TGase II) in hyaluronic acid (HA)-promoted melanoma cell motility was investigated. HA induced the expression of TGase II via the nuclear factor kappaB (NF-kB) in melanoma cells. HA increased the Rac1 activity and phosphorylation of focal adhesion kinase (FAK). Transfection by lipofectamine of dominant-negative Rac1, and FAK-related non-kinase (FRNK), an endogenous inhibitor of FAK, suppressed the induction of TGase II. This suggests that Rac1 and FAK mediate induction of TGase II by HA. HA-promoted melanoma cell motility was inhibited by cystamine, an inhibitor of TGase II, and overexpression of TGase II enhanced melanoma cell motility through reactive oxygen species. Taken together, HA promotes melanoma cell motility through activation of Rac1, FAK, and induction of TGase II.
Collapse
Affiliation(s)
- Youngmi Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon 200-701, Korea
| | | | | | | |
Collapse
|