1
|
Goldie K, Chernoff G, Corduff N, Davies O, van Loghem J, Viscomi B. Consensus Agreements on Regenerative Aesthetics: A Focus on Regenerative Biostimulation With Calcium Hydroxylapatite. Dermatol Surg 2024; 50:S172-S176. [PMID: 39480041 DOI: 10.1097/dss.0000000000004437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND A growing population of patients is seeking treatments that not only affect their overlying features but also restore a more biologically youthful structure and function to the underlying tissue. These strategies are part of what is known as regenerative aesthetics (RA). As an emergent field, clarity regarding the precise definitions and aims of RA and methods to measure the regenerative capacity of RA treatments are lacking. METHODS A panel of 6 multidisciplinary experts discussed the foundational aspects of RA. Consensus statements covered aspects of RA including terminology, goals of treatment, treatment strategies, and biological benchmarks indicating regeneration. Consensus on a statement was defined as ≥75% agreement. RESULTS Panelists emphasized the importance of natural, youthful tissue architecture and function including cellular and extracellular components. Replacement of a single biological component was not considered sufficient for an aesthetic treatment to be described as regenerative. Rather, the relative amounts, ratios, types, and organization are important to determine regenerative potential. Calcium hydroxylapatite is an example of an aesthetic injectable with evidence of regenerative capacity, as demonstrated by its ability to improve collagen type I/III ratios as well as induce the production of elastin and proteoglycans, which ultimately improve measures of skin quality.
Collapse
Affiliation(s)
- Kate Goldie
- Kate Goldie, Clinic 77, London, United Kingdom
| | | | | | - Owen Davies
- School of Sport Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | | | | |
Collapse
|
2
|
Pi Z, Huang J, Wang S, Xie H, Qu Y, Zhou Z, Wang S, Liu Y, Wang C, Meng F, Cai J. Intrapuparial stage aging and PMI estimation based on the developmental transcriptomes of forensically important Aldrichina grahami (Diptera: Calliphoridae) gene expression. Heliyon 2024; 10:e33319. [PMID: 39027590 PMCID: PMC11255450 DOI: 10.1016/j.heliyon.2024.e33319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Background The expression profiles of differentially expressed genes (DEGs) during pupal development have been demonstrated to be vital in age estimation of forensic entomological study. Here, using forensically important Aldrichina grahami (Diptera: Calliphoridae), we aimed to explore the potential of intrapuparial stage aging and postmortem interval (PMI) estimation based on characterization of successive developmental transcriptomes and gene expression patterns. Methods We collected A. grahami pupae at 11 successive intrapuparial stages at 20 °C and used the RNA-seq technique to build the transcriptome profiles of their intrapuparial stages. The DEGs were identified during the different intrapuparial stages using comparative transcriptome analysis. The selected marker DEGs were classified and clustered for intrapuparial stage aging and PMI estimation and then further verified for transcriptome data validation. Ultimately, we categorized the overall gene expression levels as the dependent variable and the age of intrapuparial A. grahami as the independent variable to conduct nonlinear regression analysis. Results We redefined the intrapuparial stages of A. grahami into five key successive substages (I, II, III, IV, and V), based on the overall gene expression patterns during pupal development. We screened 99 specific time-dependent expressed genes (stage-specific DEGs) to determine the different intrapuparial stages based on comparison of the gene expression levels during the 11 developmental intrapuparial stages of A. grahami. We observed that 55 DEGs showed persistent upregulation during the development of intrapuparial A. grahami. We then selected four DEGs (act79b, act88f, up and ninac) which presented consistent upregulation using RT-qPCR (quantitative real-time PCR) analysis, along with consideration of the maximum fold changes during the pupal development. We conducted nonlinear regression analysis to simulate the calculations of the relationships between the expression levels of the four selected DEGs and the developmental time of intrapuparial A. grahami and constructed fitting curves. The curves demonstrated that act79b and ninac showed continuous relatively increasing levels. Conclusions This study redefined the intrapuparial stages of A. grahami based on expression profiles of developmental transcriptomes for the first time. The stage-specific DEGs and those with consistent tendencies of expression were found to have potential in age estimation of intrapuparial A. grahami and could be supplementary to a more accurate prediction of PMI.
Collapse
Affiliation(s)
- Zhiyun Pi
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jingjing Huang
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shiwen Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yihong Qu
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ziqi Zhou
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shujuan Wang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yishu Liu
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Chudong Wang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Fanming Meng
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Cai
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Shi P, Liao K, Xu J, Wang Y, Xu S, Yan X. Eicosapentaenoic acid mitigates palmitic acid-induced heat shock response, inflammation and repair processes in fish intestine. FISH & SHELLFISH IMMUNOLOGY 2022; 124:362-371. [PMID: 35421576 DOI: 10.1016/j.fsi.2022.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Understanding the metabolic effects of fatty acids on fish intestine is critical to the substitution of fish oil with vegetable oils in aquaculture. In this study, the effects of eicosapentaenoic acid (EPA) and palmitic acid (PA) on fish intestine were evaluated in vitro and in vivo. As the first step for in vitro study, an intestinal cell line (SPIF) was established from silver pomfret (Pampus argenteus). Thereafter, the effects of EPA and PA on cell viability, prostaglandin E2 (PGE2) production, and the expression of genes related to heat shock response, inflammation, extracellular matrix (ECM) formation and degradation were examined in SPIF cells. Finally, these metabolic effects of EPA and PA on the intestine were examined in zebrafish (Danio rerio) larvae. Results showed that all tested fatty acids (PA, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid, and docosahexaenoic acid) except EPA reduced SPIF viability to distinct degrees at the same concentrations. PA decreased SPIF viability accompanied by an increase in PGE2 level. Meanwhile, PA increased the expression of genes related to heat shock response (grp78, grp94, hsp70, and hsp90) and inflammation (nf-κb, il-1β, and cox2). Furthermore, PA reduced the expression of collagen type I (col1a1a and col1a1b) and extracellular matrix (ECM) degradation-related gene mmp2, while up-regulating timp2 mRNA expression. In vivo, PA also increased hsp70, il-1β, and cox2 mRNA levels and limited the expression of collagen type I in the larval zebrafish intestine. Interestingly, the combination of EPA and PA partially recovered the PA-induced changes in cell viability, PGE2 production, and mRNA expression in vitro and in vivo. These results suggest that PA may result in heat shock and inflammatory responses, as well as alter ECM formation and degradation in fish intestine, while EPA could at least partially mitigate these negative effects caused by PA.
Collapse
Affiliation(s)
- Peng Shi
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China.
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Shanliang Xu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| |
Collapse
|
4
|
Wang AY, Coelho NM, Arora PD, Wang Y, Eymael D, Ji C, Wang Q, Lee W, Xu J, Kapus A, Carneiro KMM, McCulloch CA. DDR1 associates with TRPV4 in cell-matrix adhesions to enable calcium-regulated myosin activity and collagen compaction. J Cell Physiol 2022; 237:2451-2468. [PMID: 35150133 DOI: 10.1002/jcp.30696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Tissue fibrosis manifests as excessive deposition of compacted, highly aligned collagen fibrils, which interfere with organ structure and function. Cells in collagen-rich lesions often exhibit marked overexpression of discoidin domain receptor 1 (DDR1), which is linked to increased collagen compaction through the association of DDR1 with the Ca2+ -dependent nonmuscle myosin IIA (NMIIA). We examined the functional relationship between DDR1 and the transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable ion channel that is implicated in collagen compaction. Fibroblasts expressing high levels of DDR1 were used to model cells in lesions with collagen compaction. In these cells, the expression of the β1 integrin was deleted to simplify studies of DDR1 function. Compared with DDR1 wild-type cells, high DDR1 expression was associated with increased Ca2+ influx through TRPV4, enrichment of TRPV4 in collagen adhesions, and enhanced contractile activity mediated by NMIIA. At cell adhesion sites to collagen, DDR1 associated with TRPV4, which enhanced DDR1-mediated collagen alignment and compaction. We conclude that DDR1 regulates Ca2+ influx through the TRPV4 channel to promote critical, DDR1-mediated processes that are important in lesions with collagen compaction and alignment.
Collapse
Affiliation(s)
- Andrew Y Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Pamma D Arora
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Denise Eymael
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Qin Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Wilson Lee
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Xu
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital and Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karina M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Christopher A McCulloch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Torres-Gomez A, Cabañas C, Lafuente EM. Phagocytic Integrins: Activation and Signaling. Front Immunol 2020; 11:738. [PMID: 32425937 PMCID: PMC7203660 DOI: 10.3389/fimmu.2020.00738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Phagocytic integrins are endowed with the ability to engulf and dispose of particles of different natures. Evolutionarily conserved from worms to humans, they are involved in pathogen elimination and apoptotic and tumoral cell clearance. Research in the field of integrin-mediated phagocytosis has shed light on the molecular events controlling integrin activation and their effector functions. However, there are still some aspects of the regulation of the phagocytic process that need to be clarified. Here, we have revised the molecular events controlling phagocytic integrin activation and the downstream signaling driving particle engulfment, and we have focused particularly on αMβ2/CR3, αXβ2/CR4, and a brief mention of αVβ5/αVβ3integrins.
Collapse
Affiliation(s)
- Alvaro Torres-Gomez
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Cabañas
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,Severo Ochoa Center for Molecular Biology (CSIC-UAM), Madrid, Spain
| | - Esther M Lafuente
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
6
|
Strandt H, Voluzan O, Niedermair T, Ritter U, Thalhamer J, Malissen B, Stoecklinger A, Henri S. Macrophages and Fibroblasts Differentially Contribute to Tattoo Stability. Dermatology 2020; 237:296-302. [PMID: 32344413 DOI: 10.1159/000506540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/17/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Little information is available about the complexity and function of skin cells contributing to the high stability of tattoos. It has been shown that dermal macrophages play an important role in the storage and maintenance of pigment particles. By contrast, the impact of dermal fibroblasts, forming the connective tissue of the skin, on the stability of the tattoo is not known. METHOD In this study, we compared the cell number and the particle load in dermal macrophages versus dermal fibroblasts, isolated from tail skin of tattooed mice. RESULTS Microscopic analysis revealed that both cell populations contained the tattoo particles, although in largely different amounts. A small number of macrophages with high side scatter intensity contained a large quantity of pigment particles, whereas a high number of dermal fibroblasts harbored only a few pigment particles. Using the CD64dtr mouse model that allows for selective, diphtheria toxin-mediated depletion of macrophages, we have previously shown that macrophages hold the tattoo in place by capture-release and recapture cycles. In the tattooed skin of macrophage-depleted mice, the content of pigment particles in fibroblasts did not change; however, the total number of fibroblasts carrying particles increased. CONCLUSION The present study demonstrates that dermal macrophages and fibroblasts contribute in different ways to the tattoo stability and further improves our knowledge on tattoo persistence.
Collapse
Affiliation(s)
- Helen Strandt
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Odessa Voluzan
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Tanja Niedermair
- Department of Orthopaedic Surgery, University of Regensburg, Regensburg, Germany
| | - Uwe Ritter
- Department of Immunology, University of Regensburg, Regensburg, Germany
| | - Josef Thalhamer
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France,
| |
Collapse
|
7
|
Gilchrist AE, Lee S, Hu Y, Harley BA. Soluble Signals and Remodeling in a Synthetic Gelatin-Based Hematopoietic Stem Cell Niche. Adv Healthc Mater 2019; 8:e1900751. [PMID: 31532901 PMCID: PMC6813872 DOI: 10.1002/adhm.201900751] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/21/2019] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow within niches that provide microenvironmental signals in the form of biophysical cues, bound and diffusible biomolecules, and heterotypic cell-cell interactions that influence HSC fate decisions. This study seeks to inform the development of a synthetic culture platform that promotes ex vivo HSC expansion without exhaustion. A library of methacrylamide-functionalized gelatin (GelMA) hydrogels is used to explore remodeling and crosstalk from mesenchymal stromal cells (MSCs) on the expansion and quiescence of murine HSCs. The use of a degradable GelMA hydrogel enables MSC-mediated remodeling, yielding dynamic shifts in the matrix environment over time. An initially low-diffusivity hydrogel for co-culture of hematopoietic stem and progenitor cells to MSCs facilitates maintenance of an early progenitor cell population over 7 days. Excitingly, this platform promotes retention of a quiescent HSC population compared to HSC monocultures. These studies reveal MSC-density-dependent upregulation of MMP-9 and changes in hydrogel mechanical properties (ΔE = 2.61 ± 0.72) suggesting MSC-mediated matrix remodeling may contribute to a dynamic culture environment. Herein, a 3D hydrogel is reported for ex vivo HSC culture, in which HSC expansion and quiescence is sensitive to hydrogel properties, MSC co-culture, and MSC-mediated hydrogel remodeling.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Sunho Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Yuhang Hu
- Department of Woodruff School of Mechanical Engineering, Georgia Institute of Technology Atlanta, GA 30332
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana, IL 61801
| |
Collapse
|
8
|
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, which can lead to organ dysfunction, morbidity, and death. The disease burden caused by fibrosis is substantial, and there are currently no therapies that can prevent or reverse fibrosis. Metabolic alterations are increasingly recognized as an important pathogenic process that underlies fibrosis across many organ types. As a result, metabolically targeted therapies could become important strategies for fibrosis reduction. Indeed, some of the pathways targeted by antifibrotic drugs in development - such as the activation of transforming growth factor-β and the deposition of extracellular matrix - have metabolic implications. This Review summarizes the evidence to date and describes novel opportunities for the discovery and development of drugs for metabolic reprogramming, their associated challenges, and their utility in reducing fibrosis. Fibrotic therapies are potentially relevant to numerous common diseases such as cirrhosis, non-alcoholic steatohepatitis, chronic renal disease, heart failure, diabetes, idiopathic pulmonary fibrosis, and scleroderma.
Collapse
|
9
|
Pajoumshariati SR, Azizi M, Wesner D, Miller PG, Shuler ML, Abbaspourrad A. Microfluidic-Based Cell-Embedded Microgels Using Nonfluorinated Oil as a Model for the Gastrointestinal Niche. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9235-9246. [PMID: 29474057 DOI: 10.1021/acsami.7b16916] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microfluidic-based cell encapsulation has promising potential in therapeutic applications. It also provides a unique approach for studying cellular dynamics and interactions, though this concept has not yet been fully explored. No in vitro model currently exists that allows us to study the interaction between crypt cells and Peyer's patch immune cells because of the difficulty in recreating, with sufficient control, the two different microenvironments in the intestine in which these cell types belong. However, we demonstrate that a microfluidic technique is able to provide such precise control and that these cells can proliferate inside microgels. Current microfluidic-based cell microencapsulation techniques primarily use fluorinated oils. Herein, we study the feasibility and biocompatibility of different nonfluorinated oils for application in gastrointestinal cell encapsulation and further introduce a model for studying intercellular chemical interactions with this approach. Our results demonstrate that cell viability is more affected by the solidification and purification processes that occur after droplet formation rather than the oil type used for the carrier phase. Specifically, a shorter polymer cross-linking time and consequently lower cell exposure to the harsh environment (e.g., acidic pH) results in a high cell viability of over 90% within the protected microgels. Using nonfluorinated oils, we propose a model system demonstrating the interplay between crypt and Peyer's patch cells using this microfluidic approach to separately encapsulate the cells inside distinct alginate/gelatin microgels, which allow for intercellular chemical communication. We observed that the coculture of crypt cells alongside Peyer's patch immune cells improves the growth of healthy organoids inside these microgels, which contain both differentiated and undifferentiated cells over 21 days of coculture. These results indicate the possibility of using droplet-based microfluidics for culturing organoids to expand their applicability in clinical research.
Collapse
|
10
|
Thomas D, O'Brien T, Pandit A. Toward Customized Extracellular Niche Engineering: Progress in Cell-Entrapment Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1703948. [PMID: 29194781 DOI: 10.1002/adma.201703948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The primary aim in tissue engineering is to repair, replace, and regenerate dysfunctional tissues to restore homeostasis. Cell delivery for repair and regeneration is gaining impetus with our understanding of constructing tissue-like environments. However, the perpetual challenge is to identify innovative materials or re-engineer natural materials to model cell-specific tissue-like 3D modules, which can seamlessly integrate and restore functions of the target organ. To devise an optimal functional microenvironment, it is essential to define how simple is complex enough to trigger tissue regeneration or restore cellular function. Here, the purposeful transition of cell immobilization from a cytoprotection point of view to that of a cell-instructive approach is examined, with advances in the understanding of cell-material interactions in a 3D context, and with a view to further application of the knowledge for the development of newer and complex hierarchical tissue assemblies for better examination of cell behavior and offering customized cell-based therapies for tissue engineering.
Collapse
Affiliation(s)
- Dilip Thomas
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
11
|
Laghezza Masci V, Taddei AR, Gambellini G, Giorgi F, Fausto AM. Microvesicles shed from fibroblasts act as metalloproteinase carriers in a 3-D collagen matrix. J Circ Biomark 2016; 5:1849454416663660. [PMID: 28936262 PMCID: PMC5548308 DOI: 10.1177/1849454416663660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/30/2016] [Indexed: 12/29/2022] Open
Abstract
This study shows that fibroblasts migrating into a collagen matrix release numerous microvesicles into the surrounding medium. By spreading in regions of the matrix far distant from cells of origin, microvesicles carry metalloproteinase 9 (MMP-9) to act upon the collagen fibrils. As a result, the collagen matrix is gradually transformed from a laminar to a fibrillar type of architecture. As shown by western blots and gelatin zymography, MMP-9 is secreted as a 92 kDa precursor and activated upon release of 82 kDa product into the culture medium. Activation is more efficient under three-dimensional than in two-dimensional culturing conditions. While MMP-9 labeling is associated with intraluminal vesicles clustered inside the microvesicles, the microvesicle's integrin β1 marker is bound to the outer membrane. The intraluminal vesicles are recruited from the cortical cytoplasm and eventually released following uploading inside the microvesicle. Here, we propose that fusion of the intraluminal vesicles with the outer microvesicle's membrane could work as a mechanism controlling the extent to which MMP-9 is first activated and then released extracellularly.
Collapse
Affiliation(s)
- Valentina Laghezza Masci
- Department of Innovation in Biological, Agrifood and Forestry Systems (DIBAF), Tuscia University, Viterbo, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Tuscia University, Viterbo, Italy
| | - Gabriella Gambellini
- Section of Electron Microscopy, Great Equipment Center, Tuscia University, Viterbo, Italy
| | | | - Anna Maria Fausto
- Department of Innovation in Biological, Agrifood and Forestry Systems, Tuscia University, Viterbo, Italy
| |
Collapse
|
12
|
Tal H, Weinreb M, Shely A, Nemcovsky CE, Moses O. Tetracycline impregnation affects degradation of porcine collagen matrix in healthy and diabetic rats. Clin Oral Investig 2015; 20:1237-42. [PMID: 26445855 DOI: 10.1007/s00784-015-1615-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The present study evaluated the degradation of collagen matrix (CM) immersed in tetracycline (TTC) or phosphate-buffered saline (PBS) in diabetic and normoglycemic rats. MATERIALS AND METHODS Diabetes was induced in 15 rats by systemic streptozotocin (STZ) (experimental); 15 healthy rats served as controls. One day before implantation 60 CM disks, 5 mm in diameter, were labeled with biotin: 30 were immersed in tetracycline (TTC) and 30 in PBS. One disk of each type was implanted subdermally in each rat. Animals were euthanized after 3 weeks, and tissue specimens containing the disks were prepared for histologic analysis. Horseradish peroxidase (HRP)-conjugated streptavidin was used to detect the remaining biotinylated collagen. Residual collagen area within the CM disks was analyzed and compared to baseline. RESULTS Diabetes significantly increased the CM degradation. Immersion of the CM disks in a 50-mg/mL TTC solution before implantation decreased its degradation both in diabetic and normoglycemic rats. CONCLUSIONS Diabetes significantly increases collagen matrix degradation; immersion of collagen matrix in TTC before implantation decreases its degradation in both diabetic and normoglycemic conditions. CLINICAL RELEVANCE Immersion of medical collagen devices in TTC may be an effective means to decrease their resorption rate and increase their effectiveness, especially in situations with increased degradation such as diabetes.
Collapse
Affiliation(s)
- Haim Tal
- Department of Periodontology and Dental Implantology, Tel Aviv University School of Dental Medicine, Ramat Aviv, Tel Aviv, 69978, Israel.
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Shely
- Department of Periodontology and Dental Implantology, Tel Aviv University School of Dental Medicine, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Dental Implantology, Tel Aviv University School of Dental Medicine, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Ofer Moses
- Department of Periodontology and Dental Implantology, Tel Aviv University School of Dental Medicine, Ramat Aviv, Tel Aviv, 69978, Israel
| |
Collapse
|
13
|
Randomized, Blinded, 3-Arm Clinical Trial Assessing Optimal Temperature and Duration for Treatment With Minimally Invasive Fractional Radiofrequency. Dermatol Surg 2015; 41:623-32. [DOI: 10.1097/dss.0000000000000347] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Wang S, Wang Z, Foo SEM, Tan NS, Yuan Y, Lin W, Zhang Z, Ng KW. Culturing fibroblasts in 3D human hair keratin hydrogels. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5187-98. [PMID: 25690726 DOI: 10.1021/acsami.5b00854] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Human hair keratins are readily available, easy to extract, and eco-friendly materials with natural bioactivities. Keratin-based materials have been studied for applications such as cell culture substrates, internal hemostats for liver injury, and conduits for peripheral nerve repair. However, there are limited reports of using keratin-based 3D scaffolds for cell culture in vitro. Here, we describe the development of a 3D hair keratin hydrogel, which allows for living cell encapsulation under near physiological conditions. The convenience of making the hydrogels from keratin solutions in a simple and controllable manner is demonstrated, giving rise to constructs with tunable physical properties. This keratin hydrogel is comparable to collagen hydrogels in supporting the viability and proliferation of L929 murine fibroblasts. Notably, the keratin hydrogels contract less significantly as compared to the collagen hydrogels, over a 16-day culture period. In addition, preliminary in vivo studies in immunocompetent animals show mild acute host tissue response. These results collectively demonstrate the potential of cell-loaded keratin hydrogels as 3D cell culture systems, which may be developed for clinically relevant applications.
Collapse
Affiliation(s)
- Shuai Wang
- School of Materials Science and Engineering, Nanyang Technological University , N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Delgado LM, Pandit A, Zeugolis DI. Influence of sterilisation methods on collagen-based devices stability and properties. Expert Rev Med Devices 2014; 11:305-14. [PMID: 24654928 DOI: 10.1586/17434440.2014.900436] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sterilisation is essential for any implantable medical device in order to prevent infection in patients. The selection of the most appropriate sterilisation method depends on the nature and the physical state of the material to be sterilised; the influence of the sterilisation method on the properties of the device; and the type of the potential contaminant. In this context, herein we review the influence of ethylene oxide, γ-irradiation, e-beam irradiation, gas plasma, peracetic acid and ethanol on structural, biomechanical, biochemical and biological properties of collagen-based devices. Data to-date demonstrate that chemical approaches are associated with cytotoxicity, whilst physical methods are associated with degradation, subject to the device physical characteristics. Thus, the sterilisation method of choice is device dependent.
Collapse
Affiliation(s)
- Luis M Delgado
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | |
Collapse
|
16
|
Heger M, van Golen RF, Broekgaarden M, van den Bos RR, Neumann HAM, van Gulik TM, van Gemert MJC. Endovascular laser–tissue interactions and biological responses in relation to endovenous laser therapy. Lasers Med Sci 2013; 29:405-22. [DOI: 10.1007/s10103-013-1490-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 01/11/2023]
|
17
|
Porter K, Lin Y, Liton PB. Cathepsin B is up-regulated and mediates extracellular matrix degradation in trabecular meshwork cells following phagocytic challenge. PLoS One 2013; 8:e68668. [PMID: 23844232 PMCID: PMC3700899 DOI: 10.1371/journal.pone.0068668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/01/2013] [Indexed: 12/24/2022] Open
Abstract
Cells in the trabecular meshwork (TM), a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment). Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB). Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.
Collapse
Affiliation(s)
- Kristine Porter
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Yizhi Lin
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Paloma B. Liton
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yahyouche A, Zhidao X, Triffitt JT, Czernuszka JT, Clover AJP. Improved angiogenic cell penetration in vitro and in vivo in collagen scaffolds with internal channels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1571-1580. [PMID: 23645077 DOI: 10.1007/s10856-013-4912-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
Porous scaffolds are limited in volume due to diffusion constraint and delay of vascular network formation. Channels have the potential to speed up cellular penetration. Their effectiveness in improving angiogenic cell penetration was assessed in vitro and in vivo in 3-D collagen scaffolds. In vitro, channelled and non-channelled scaffolds were seeded with vascular smooth muscle cells. Results demonstrated that the scaffolds supported angiogenic cell ingrowth in culture and the channels improved the depth of cell penetration into the scaffold (P < 0.05). The cells reside mainly around and migrate along the channels. In vivo, channels increased cell migration into the scaffolds (P < 0.05) particularly angiogenic cells (P < 0.05) resulting in a clear branched vascular network of microvessels after 2 weeks in the channelled samples which was not apparent in the non-channelled samples. Channels could aid production of tissue engineered constructs by offering the possibility of rapid blood vessel infiltration into collagen scaffolds.
Collapse
Affiliation(s)
- Asma Yahyouche
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
| | | | | | | | | |
Collapse
|
19
|
Alexiades-Armenakas M, Newman J, Willey A, Kilmer S, Goldberg D, Garden J, Berman D, Stridde B, Renton B, Berube D, Hantash BM. Prospective Multicenter Clinical Trial of a Minimally Invasive Temperature-Controlled Bipolar Fractional Radiofrequency System for Rhytid and Laxity Treatment. Dermatol Surg 2013; 39:263-73. [DOI: 10.1111/dsu.12065] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Bioengineered matrices--part 1: attaining structural success in biologic skin substitutes. Ann Plast Surg 2012; 68:568-73. [PMID: 22643101 DOI: 10.1097/sap.0b013e31824b3d04] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin defect closure after injury or disease may present significant reconstructive challenges. Traditional epidermal coverage alone in the form of skin grafts often fall short in providing stable cover to restore structure and function of the skin. Excessive wound contraction and scar formation, particularly in defects of dermis and epidermis, may create functional and aesthetic problems. Progress in our understanding of molecular biology and tissue engineering have produced major advances in skin substitute technology, particularly relating to the dynamic cellular/extracellular matrix interaction that is critical to successful incorporation of a skin substitute. However, currently available skin substitutes still exhibit a range of problems including excessive wound contraction and scar formation, poor host tissue incorporation, revascularization and, in some cases, structural deficiencies in matrix design. The design principles and structural composition of the matrix must take into account collagenous forms, inherent resistance, porosity, and hydration. The ultimate matrix should be one that promotes intrinsic regeneration by encouraging cellular incorporation and cellular/extracellular cross communication. Attention to basic structural details rather than reliance on specialized cellular or peptide additions to the mix may well produce the advances we seek in improved incorporation of bioengineered skin substitutes.
Collapse
|
21
|
Diaz PS, Solar PA, Juica NE, Orihuela PA, Cardenas H, Christodoulides M, Vargas R, Velasquez LA. Differential expression of extracellular matrix components in the Fallopian tubes throughout the menstrual cycle. Reprod Biol Endocrinol 2012; 10:56. [PMID: 22897899 PMCID: PMC3489778 DOI: 10.1186/1477-7827-10-56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND One of the unique characteristics of the female genital tract is the extensive tissue remodeling observed throughout the menstrual cycle. Multiple components of the extracellular matrix take part in this tissue rebuilding; however, the individual components involved have not been identified. METHODS In the present study, the expression of extracellular matrix proteins and selected matrix metalloproteinase (MMP) activities in Fallopian tubes (FT) throughout the menstrual cycle were examined by PCR array, immunocytochemistry, zymography and bioinformatics. RESULTS Of the eighty-four genes analyzed, eighty-three were expressed in the FT during at least one stage of the menstrual cycle. We observed a significant increase (>/=2-fold) in ADAMTS1, ADAMTS13, COL7A1, MMP3, MMP9, PECAM1, and THBS3 in the periovulatory phase compared to the follicular phase. Meanwhile, we observed a significant decrease (>/= 2-fold) in COL7A1, ICAM1, ITGA8, MMP16, MMP9, CLEC3B, SELE and TIMP2 in the lutheal phase compared to the periovulatory phase. Immunocytochemistry showed that MMP-3 and MMP-9 were localized in the endosalpinx during all phases of the menstrual cycle. Gelatin zymograms detected non-cycle-dependent protease activity. CONCLUSIONS Several extracellular matrix components were regulated throughout the menstrual cycle in a cyclic pattern, suggesting a possible steroid regulation and a role in tissue remodeling and FT functions.
Collapse
Affiliation(s)
- Patricia S Diaz
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, Universidad de Santiago, Santiago, Chile
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago, Santiago, Chile
| | - Paula A Solar
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, Universidad de Santiago, Santiago, Chile
- Center for integrative medicine and innovative sciences (CIMIS), Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Natalia E Juica
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, Universidad de Santiago, Santiago, Chile
- Center for integrative medicine and innovative sciences (CIMIS), Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Orihuela
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, Universidad de Santiago, Santiago, Chile
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago, Santiago, Chile
| | - Hugo Cardenas
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, Universidad de Santiago, Santiago, Chile
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago, Santiago, Chile
| | - Myron Christodoulides
- Neisseria Research Group, Sir Henry Wellcome Laboratories, Division of Infection, Inflammation and Immunity, University of Southampton Medical School, Southampton, SO16 6YD, England, UK
| | - Renato Vargas
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago, Chile
| | - Luis A Velasquez
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, Universidad de Santiago, Santiago, Chile
- Center for integrative medicine and innovative sciences (CIMIS), Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
22
|
Shoshi A, Schotter J, Schroeder P, Milnera M, Ertl P, Charwat V, Purtscher M, Heer R, Eggeling M, Reiss G, Brueckl H. Magnetoresistive-based real-time cell phagocytosis monitoring. Biosens Bioelectron 2012; 36:116-22. [PMID: 22560105 DOI: 10.1016/j.bios.2012.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
The uptake of large particles by cells (phagocytosis) is an important factor in cell biology and also plays a major role in biomedical applications. So far, most methods for determining the phagocytic properties rely on cell-culture incubation and end-point detection schemes. Here, we present a lab-on-a-chip system for real-time monitoring of magnetic particle uptake by human fibroblast (NHDF) cells. It is based on recording the time evolution of the average position and distribution of magnetic particles during phagocytosis by giant-magnetoresistive (GMR) type sensors. We employ particles with a mean diameter of 1.2 μm and characterize their phagocytosis-relevant properties. Our experiments at physiological conditions reveal a cellular uptake rate of 45 particles per hour and show that phagocytosis reaches saturation after an average uptake time of 27.7h. Moreover, reference phagocytosis experiments at 4°C are carried out to mimic environmental or disease related inhibition of the phagocytic behavior, and our measurements clearly show that we are able to distinguish between cell-membrane adherent and phagocytosed magnetic particles. Besides the demonstrated real-time monitoring of phagocytosis mechanisms, additional nano-biointerface studies can be realized, including on-chip cell adhesion/spreading as well as cell migration, attachment and detachment dynamics. This versatility shows the potential of our approach for providing a multifunctional platform for on-chip cell analysis.
Collapse
Affiliation(s)
- A Shoshi
- AIT Austrian Institute of Technology, Molecular Diagnostics, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G. Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci 2012; 13:32. [PMID: 22439862 PMCID: PMC3326704 DOI: 10.1186/1471-2202-13-32] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/22/2012] [Indexed: 01/24/2023] Open
Abstract
Background Magnetic nanoparticles (MNPs) offer a large range of applications in life sciences. Applications in neurosciences are one focus of interest. Unfortunately, not all groups have access to nanoparticles or the possibility to develop and produce them for their applications. Hence, they have to focus on commercially available particles. Little is known about the uptake of nanoparticles in primary cells. Previously studies mostly reported cellular uptake in cell lines. Here we present a systematic study on the uptake of magnetic nanoparticles (MNPs) by primary cells of the nervous system. Results We assessed the internalization in different cell types with confocal and electron microscopy. The analysis confirmed the uptake of MNPs in the cells, probably with endocytotic mechanisms. Furthermore, we compared the uptake in PC12 cells, a rat pheochromocytoma cell line, which is often used as a neuronal cell model, with primary neuronal cells. It was found that the percentage of PC12 cells loaded with MNPs was significantly higher than for neurons. Uptake studies in primary mixed neuronal/glial cultures revealed predominant uptake of MNPs by microglia and an increase in their number. The number of astroglia and oligodendroglia which incorporated MNPs was lower and stable. Primary mixed Schwann cell/fibroblast cultures showed similar MNP uptake of both cell types, but the Schwann cell number decreased after MNP incubation. Organotypic co-cultures of spinal cord slices and peripheral nerve grafts resembled the results of the dispersed primary cell cultures. Conclusions The commercial MNPs used activated microglial phagocytosis in both disperse and organotypic culture systems. It can be assumed that in vivo application would induce immune system reactivity, too. Because of this, their usefulness for in vivo neuroscientific implementations can be questioned. Future studies will need to overcome this issue with the use of cell-specific targeting strategies. Additionally, we found that PC12 cells took up significantly more MNPs than primary neurons. This difference indicates that PC12 cells are not a suitable model for natural neuronal uptake of nanoparticles and qualify previous results in PC12 cells.
Collapse
Affiliation(s)
- Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str, 44, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
24
|
Aurora A, Mesiha M, Tan CD, Walker E, Sahoo S, Iannotti JP, McCarron JA, Derwin KA. Mechanical characterization and biocompatibility of a novel reinforced fascia patch for rotator cuff repair. J Biomed Mater Res A 2011; 99:221-30. [DOI: 10.1002/jbm.a.33179] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/11/2011] [Accepted: 05/19/2011] [Indexed: 12/26/2022]
|
25
|
Knowles JP, Shi-Wen X, Haque SU, Bhalla A, Dashwood MR, Yang S, Taylor I, Winslet MC, Abraham DJ, Loizidou M. Endothelin-1 stimulates colon cancer adjacent fibroblasts. Int J Cancer 2011; 130:1264-72. [PMID: 21445967 DOI: 10.1002/ijc.26090] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/08/2011] [Indexed: 12/25/2022]
Abstract
Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Jonathan P Knowles
- Department of Surgery, UCL Division of Surgery and Interventional Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang L, Li X, Bi LJ. Alterations of collagen-I, MMP-1 and TIMP-1 in the periodontal ligament of diabetic rats under mechanical stress. J Periodontal Res 2011; 46:448-55. [PMID: 21488874 DOI: 10.1111/j.1600-0765.2011.01359.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVE The present study assessed effects of hyperglycemia on production of proteins involved in remodeling of the periodontal ligament under mechanical stress. MATERIAL AND METHODS Forty-eight Sprague-Dawley rats were randomly divided into the following two groups: nondiabetic (ND) and diabetes induced (DI; n=24 each group). Diabetes was induced in the DI group by a single dose of streptozotocin, and saline solution was injected in the ND group. Rats were killed 1-14d after induction of mechanical pressure (50g) on the first upper left molar. Alterations of collagen type I (Col-I), MMP-1 and TIMP-1 in the upper left periodontal ligament of these rats were measured immunohistochemically and compared with those on the contralateral side of the same rat (control; no force induction). RESULTS The DI group showed a decrease in Col-I and an increase in MMP-1 compared with the ND group. Both Col-I and MMP-1 increased in both groups, whereas TIMP-1 was decreased following mechanical pressure. The DI group exhibited a longer duration of increased MMP-1 and MMP/TIMP ratio compared with the ND group. CONCLUSION Diabetes affects proteins involved in remodeling of periodontal ligament during mechanical pressure. This may delay the reconstruction and remodeling of periodontal ligament in diabetic individuals.
Collapse
Affiliation(s)
- L Zhang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | | | | |
Collapse
|
27
|
Ulbrich S, Friedrichs J, Valtink M, Murovski S, Franz CM, Müller DJ, Funk RHW, Engelmann K. Retinal pigment epithelium cell alignment on nanostructured collagen matrices. Cells Tissues Organs 2011; 194:443-56. [PMID: 21411961 DOI: 10.1159/000323653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2010] [Indexed: 11/19/2022] Open
Abstract
We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration by time-lapse video microscopy. Expression of collagen type I and IV, MMP-2 and of the collagen-binding integrin subunit α(2) were examined by immunofluorescence and Western blotting. SV40-RPE cells quickly attached to the nanostructured collagen matrices and aligned along the collagen fibrils. However, they disrupted both native and cross-linked collagen matrices within 5 h. Primary RPE cells aligned more slowly without destroying either native or cross-linked substrates. Compared to primary RPE cells, ARPE-19 cells showed reduced alignment but partially disrupted the matrices within 20 h after seeding. Expression of the collagen type I-binding integrin subunit α(2) was highest in SV40-RPE cells, lower in primary RPE cells and almost undetectable in ARPE-19 cells. Thus, integrin α(2) expression levels directly correlated with the degree of cell alignment in all examined RPE cell types. Specific integrin subunit α(2)-mediated matrix binding was verified by preincubation with an α(2)-function-blocking antibody, which impaired cell adhesion and alignment to varying degrees in primary and SV40-RPE cells. Since native matrices supported extended and directed primary RPE cell growth, optimizing the matrix production procedure may in the future yield nanostructured collagen matrices serving as transferable cell sheet carriers.
Collapse
Affiliation(s)
- Stefan Ulbrich
- Institute of Anatomy, Biotechnology Center, TU Dresden, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bioreactor system using noninvasive imaging and mechanical stretch for biomaterial screening. Ann Biomed Eng 2011; 39:1390-402. [PMID: 21298345 DOI: 10.1007/s10439-010-0243-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
Screening of biomaterial and tissue systems in vitro, for guidance of performance in vivo, remains a major requirement in the field of tissue engineering. It is critical to understand how culture stimulation affects both tissue construct maturation and function, with the goal of eliminating resource-intensive trial-and-error screening and better matching specifications for various in vivo needs. In this article a multifunctional and robust bioreactor design that addresses this need is presented. The design enables a range of mechanical inputs, durations, and frequencies to be applied in coordination with noninvasive optical assessments. A variety of biomaterial systems, including micro- and nano-fiber and porous sponge biomaterials, as well as cell-laden tissue engineering constructs were used in validation studies to demonstrate the versatility and utility of this new bioreactor design. The silk-based biomaterials highlighted in these studies offered several unique optical signatures for use in label-free nondestructive imaging that allowed for sequential profiling. Both short- and long-term culture studies were conducted to evaluate several practical scenarios of usage: on a short-term basis, the authors demonstrate that construct cellularity can be monitored by usage of nonpermanent dyes; on a more long-term basis, the authors show that cell ingrowth can be monitored by green-fluorescent protein (GFP)-labeling, and construct integrity probed with concurrent load/displacement data. The ability to nondestructively track cells, biomaterials, and new matrix formation without harvesting designated samples at each time point will lead to less resource-intensive studies and should enhance our understanding and the discovery of biomaterial designs related to functional tissue engineering.
Collapse
|
29
|
Yahyouche A, Zhidao X, Czernuszka JT, Clover AJP. Macrophage-mediated degradation of crosslinked collagen scaffolds. Acta Biomater 2011; 7:278-86. [PMID: 20709200 DOI: 10.1016/j.actbio.2010.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 11/16/2022]
Abstract
Biological scaffolds used in tissue engineering are incorporated in vivo by a process of cellular in-growth, followed by host-mediated degradation and replacement of these scaffolds, in which phagocytic cells from the monocyte/macrophage cell lineage play a key role. The chemical degradation of scaffolds with collagenases is well established, but to date this has not been correlated with an in vitro model of cell mediated scaffold degradation. RAW264.7, a murine monocyte/macrophage cell line, was cultured on collagen scaffolds crosslinked either by dehydrothermal treatment (DHT) or by carbodiimide (EDC). These cells attached to collagen scaffolds, proliferated and exhibited macrophage aggregation to form giant cells. Crosslinking the scaffolds by either DHT or EDC increased the resistance of the scaffold to degradation by macrophages. Increasing the amount of crosslinking in the scaffold made them more resistant to degradation by collagenase. However, while EDC increased the scaffolds' thermal and mechanical properties and decreased the swelling ratio, DHT increased the mechanical properties, but decreased the denaturation temperature and swelling ratio. Altering the scaffold properties by crosslinking affects the rate of degradation by macrophages, and this is correlated with chemical degradation (r=0.658, p<0.01). This will help in the design of scaffolds with task-specific profiles for use in tissue engineering.
Collapse
Affiliation(s)
- A Yahyouche
- Department of Materials, University of Oxford, UK.
| | | | | | | |
Collapse
|
30
|
Mala JGS, Rose C. Interactions of heat shock protein 47 with collagen and the stress response: An unconventional chaperone model? Life Sci 2010; 87:579-86. [DOI: 10.1016/j.lfs.2010.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/31/2010] [Accepted: 09/08/2010] [Indexed: 12/25/2022]
|
31
|
Ghaffari A, Li Y, Kilani RT, Ghahary A. 14-3-3 sigma associates with cell surface aminopeptidase N in the regulation of matrix metalloproteinase-1. J Cell Sci 2010; 123:2996-3005. [PMID: 20699358 DOI: 10.1242/jcs.069484] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are implicated in the degradation of the extracellular matrix during development and tissue repair, as well as in pathological conditions such as tumor invasion and fibrosis. MMP expression by stromal cells is partly regulated by signals from the neighboring epithelial cells. Keratinocyte-releasable 14-3-3sigma, or stratifin, acts as a potent MMP-1-stimulatory factor in fibroblasts. However, its mechanism of transmembrane signaling remains unknown. Ectodomain biotin labeling, serial affinity purification and mass spectroscopy analysis revealed that the stratifin associates with aminopeptidase N (APN), or CD13, at the cell surface. The transient knockdown of APN in fibroblasts eliminated the stratifin-mediated p38 MAP kinase activation and MMP-1 expression, implicating APN in a receptor-mediated transmembrane signaling event. Stratifin deletion studies implicated its C-terminus as a potential APN-binding site. Furthermore, the dephosphorylation of APN ectodomains reduced its binding affinity to the stratifin. The presence of a phosphorylated serine or threonine residue in APN has been implicated. Together, these findings provide evidence that APN is a novel cell surface receptor for stratifin and a potential target in the regulation of MMP-1 expression in epithelial-stromal cell communication.
Collapse
Affiliation(s)
- Abdi Ghaffari
- Department of Surgery, BC Professional Firefighter's Burn and Wound Healing Research Laboratory, University of British Columbia, 344A JBRC, 2660 Oak Street, Vancouver, Canada, BC V6H 3Z6
| | | | | | | |
Collapse
|
32
|
Matrix compositions and the development of breast acini and ducts in 3D cultures. In Vitro Cell Dev Biol Anim 2010; 46:673-84. [DOI: 10.1007/s11626-010-9323-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
|
33
|
Pedraza CE, Marelli B, Chicatun F, McKee MD, Nazhat SN. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering. Tissue Eng Part A 2010; 16:781-93. [PMID: 19778181 DOI: 10.1089/ten.tea.2009.0351] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Extracellular matrix (ECM) consists of a complex mixture of macromolecules such as collagens, proteoglycans, glycoproteins, and elastic fibers. ECM is essential to preserving tissue architecture, signaling to cells, and regulating calcification in mineralized tissues. Osteoblasts in culture secrete and assemble an extensive ECM rich in type I collagen, and other noncollagenous proteins that can be mineralized. Three-dimensional matrix models can be used in vitro to most appropriately resemble the geometry and biochemistry of natural ECMs. In the present study, MC3T3-E1 mouse calvarial preosteoblasts were cultured within a dense three-dimensional collagenous ECM-like scaffold produced through the method of plastic compression. Plastic compression rapidly produces scaffolds of collagen density approaching native tissue levels with enhanced biomechanical properties while maintaining the viability of resident cells. The proliferation, morphology, and gene expression of seeded MC3T3s, as well as collagen production and matrix mineralization, were investigated for up to 7 weeks in culture. Soluble collagen secretion ranged in concentration from 5 to 30 microg/mL over a 24-h period, concomitant with a steady rate of collagen mRNA expression. Expression of osteogenic markers such as tissue-nonspecific alkaline phosphatase (Alpl), bone sialoprotein (Bsp), and osteopontin (Opn) examined by biochemical assay and reverse transcription-polymerase chain reaction demonstrated cell differentiation. Pericellular voids of ECM around cells, together with evidence of MMP13 mRNA expression, suggested matrix remodeling. Ultrastructural analyses, X-ray microanalysis, micro-computed tomography, as well as Fourier-transform infrared and imaging all confirmed the formation of a calcium-phosphate mineral phase within the fibrillar collagen matrix. In conclusion, preosteoblastic MC3T3 cells seeded within an ECM-like dense collagen scaffold secrete matrix proteins and induce scaffold mineralization in a manner potentially appropriate for bone tissue engineering uses.
Collapse
|
34
|
Taubenberger AV, Woodruff MA, Bai H, Muller DJ, Hutmacher DW. The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials 2010; 31:2827-35. [DOI: 10.1016/j.biomaterials.2009.12.051] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/18/2009] [Indexed: 12/28/2022]
|
35
|
Fibroblasts express immune relevant genes and are important sentinel cells during tissue damage in rainbow trout (Oncorhynchus mykiss). PLoS One 2010; 5:e9304. [PMID: 20174584 PMCID: PMC2823790 DOI: 10.1371/journal.pone.0009304] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/29/2010] [Indexed: 12/21/2022] Open
Abstract
Fibroblasts have shown to be an immune competent cell type in mammals. However, little is known about the immunological functions of this cell-type in lower vertebrates. A rainbow trout hypodermal fibroblast cell-line (RTHDF) was shown to be responsive to PAMPs and DAMPs after stimulation with LPS from E. coli, supernatant and debris from sonicated RTHDF cells. LPS was overall the strongest inducer of IL-1β, IL-8, IL-10, TLR-3 and TLR-9. IL-1β and IL-8 were already highly up regulated after 1 hour of LPS stimulation. Supernatant stimuli significantly increased the expression of IL-1β, TLR-3 and TLR-9, whereas the debris stimuli only increased expression of IL-1β. Consequently, an in vivo experiment was further set up. By mechanically damaging the muscle tissue of rainbow trout, it was shown that fibroblasts in the muscle tissue of rainbow trout contribute to electing a highly local inflammatory response following tissue injury. The damaged muscle tissue showed a strong increase in the expression of the immune genes IL-1β, IL-8 and TGF-β already 4 hours post injury at the site of injury while the expression in non-damaged muscle tissue was not influenced. A weaker, but significant response was also seen for TLR-9 and TLR-22. Rainbow trout fibroblasts were found to be highly immune competent with a significant ability to express cytokines and immune receptors. Thus fish fibroblasts are believed to contribute significantly to local inflammatory reactions in concert with the traditional immune cells.
Collapse
|
36
|
Araújo URMEFD, Czeczko NG, Ribas-Filho JM, Malafaia O, Budel VM, Balderrama CMSR, Zimmermann E, Dietz UA. Reparo intraperitoneal de defeitos da parede ventral do abdome com telas de poliéster com colágeno e polipropileno com ácido poliglicólico. Rev Col Bras Cir 2009. [DOI: 10.1590/s0100-69912009000300011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJETIVO: Avaliar a incorporação de telas de poliéster revestido em uma de suas faces por colágeno (Parietex, Covidien) e polipropileno recoberto por ácido poliglicólico (Optilene Mesh Elastic e Safil, BBD Aesculap) no reparo de defeitos da parede ventral de coelhos avaliando a cicatrização no aspecto macroscópico, o depósito de colágeno e a imunomarcação tecidual pelos anticorpos MMP-1, MMP-8 e MMP-13. MÉTODOS: Utilizaram-se 16 coelhos, divididos em dois grupos de oito animais, avaliados após eutanásia após 30 e 60 dias de pós-operatório. Os animais foram submetidos à realização de dois defeitos simétricos na parede ventral do abdome, à direita e esquerda da linha alba, que compreendendo todos os folhetos musculares e o peritônio. O reparo dos defeitos foi realizado mediante implante intraperitoneal de dois modelos diferentes de telas. Utilizou-se a tela de poliéster revestido com camada protetora de colágeno (grupo controle) e a tela de polipropilene revestido com malha de ácido poliglicólico (manufaturacao própria, grupo de experimentacao). A avaliacao constou de aspectos clínicos, achados macroscópicos, análise dos colágenos tipos I/III e avaliação imunoistoquímica de metaloproteinases. RESULTADOS: Os resultados da avaliacao clínica e os parâmetros macroscópicos foram semelhantes entre os grupos. 50% dos animais do grupo Parietex tiveram ausência de aderencias intraperitoneais a no 30° dia de pós-operatrório. Em ambos os grupos observou-se reducao das aderências entre o 30° e o 60° dias de pós-operatório, contudo sem diferenca estatística. As aderências observadas foram classificadas principalmente de frouxas. Nao se observou a ocorrencia de complicacoes envolvendo vísceras intraabdominais. No Grupo Parietex houve a ocorrência de formacao de ulceracao da pele que recobria a tela em quatro animais, em comparacao com um no grupo de experimentacao. No Grupo Parietex foi observada uma insuficiencia de reparo após 60 dias. Quanto ao depósito do colágeno tipos I e III, nao houve diferenca significativa entre os grupos. Os resultados da imunoistoquímica referentes aos anticorpos MMP-1 e MMP-8 também não demonstraram diferença significativa entre as telas. CONCLUSÃO: As duas telas pesquisadas obtiveram resultados semelhantes tanto nos aspectos macro como nos microscópicos, podendo ser consideradas semelhantes quanto ao reparo de defeitos cirúrgicos da parede ventral do abdome em coelhos.
Collapse
|
37
|
Moses O, Frenkel T, Tal H, Weinreb M, Bornstein MM, Nemcovsky CE. Effect of systemic tetracycline on the degradation of tetracycline-impregnated bilayered collagen membranes: an animal study. Clin Implant Dent Relat Res 2009; 12:331-7. [PMID: 19438957 DOI: 10.1111/j.1708-8208.2009.00173.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Premature collagen membrane degradation may compromise the outcome of osseous regenerative procedures. Tetracyclines (TTCs) inhibit the catalytic activities of human metalloproteinases. Preprocedural immersion of collagen membranes in TTC and systemic administration of TTC may be possible alternatives to reduce the biodegradation of native collagen membranes. AIM To evaluate the in vivo degradation of collagen membranes treated by combined TTC immersion and systemic administration. MATERIALS AND METHODS Seventy-eight bilayered porcine collagen membrane disks were divided into three groups and were immersed in 0, 50, or 100 mg/mL TTC solution. Three disks, one of each of the three groups, were implanted on the calvaria of each of 26 Wistar rats. Thirteen (study group) were administered with systemic TTC (10 mg/kg), while the remaining 13 received saline injections (control group). Calvarial tissues were retrieved after 3 weeks, and histological sections were analyzed by image analysis software. RESULTS Percentage of remaining collagen area within nonimpregnated membranes was 52.26 ± 20.67% in the study group, and 32.74 ± 13.81% in the control group. Immersion of membranes in 100 mg/mL TTC increased the amount of residual collagen to 63.46 ± 18.19% and 42.82 ± 12.99% (study and control groups, respectively). Immersion in 50 mg/mL TTC yielded maximal residual collagen values: 80.75 ± 14.86% and 59.15 ± 8.01% (study and control groups, respectively). Differences between the TTC concentrations, and between the control and the study groups were statistically significant. CONCLUSIONS Immersion of collagen membranes in TTC solution prior to their implantation and systemic administration of TTC significantly decreased the membranes' degradation.
Collapse
Affiliation(s)
- Ofer Moses
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
38
|
Liton PB, Lin Y, Gonzalez P, Epstein DL. Potential role of lysosomal dysfunction in the pathogenesis of primary open angle glaucoma. Autophagy 2009; 5:122-4. [PMID: 19001861 DOI: 10.4161/auto.5.1.7304] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Primary open angle glaucoma (POAG) is a late onset disease usually accompanied by elevated intraocular pressure (IOP) that results from the failure of the trabecular meshwork (TM) to maintain normal levels of aqueous humor outflow resistance. Cells in the TM are subjected to chronic oxidative stress through reactive oxygen species (ROS) present in the aqueous humor (AH) and generated by normal metabolism. Exposure to ROS is thought to contribute to the morphological and physiological alterations of the outflow pathway in aging and POAG. Our results indicate that chronic exposure of TM cells to oxidative stress causes the accumulation of nondegradable material within the lysosomal compartment leading to diminished lysosomal activity and increased SA-beta-Gal expression. Because the lysosomal compartment is responsible for maintaining general cellular turnover, such impaired activity may lead to a progressive cellular decline in the TM cell function and thus contribute to the progression of POAG.
Collapse
Affiliation(s)
- Paloma B Liton
- Department of Ophthalmology, Duke University, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
39
|
|
40
|
Abraham LC, Zuena E, Perez-Ramirez B, Kaplan DL. Guide to collagen characterization for biomaterial studies. J Biomed Mater Res B Appl Biomater 2008; 87:264-85. [PMID: 18386843 DOI: 10.1002/jbm.b.31078] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Leah C Abraham
- Departments of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
41
|
Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 2008; 121:255-64. [PMID: 18216330 DOI: 10.1242/jcs.006064] [Citation(s) in RCA: 684] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) regulates cell behavior by influencing cell proliferation, survival, shape, migration and differentiation. Far from being a static structure, the ECM is constantly undergoing remodeling--i.e. assembly and degradation--particularly during the normal processes of development, differentiation and wound repair. When misregulated, this can contribute to disease. ECM assembly is regulated by the 3D environment and the cellular tension that is transmitted through integrins. Degradation is controlled by complex proteolytic cascades, and misregulation of these results in ECM damage that is a common component of many diseases. Tissue engineering strives to replace damaged tissues with stem cells seeded on synthetic structures designed to mimic the ECM and thus restore the normal control of cell function. Stem cell self-renewal and differentiation is influenced by the 3D environment within the stem cell niche. For tissue-engineering strategies to be successful, the intimate dynamic relationship between cells and the ECM must be understood to ensure appropriate cell behavior.
Collapse
Affiliation(s)
- William P Daley
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | |
Collapse
|
42
|
Denatured collagen modulates the phenotype of normal and wounded human skin equivalents. J Invest Dermatol 2008; 128:1830-7. [PMID: 18200055 DOI: 10.1038/sj.jid.5701240] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epithelial-mesenchymal interactions are known to play an important role in modulating homeostasis and repair. However, it remains unclear how the composition of the extracellular matrix may regulate the ability of dermal fibroblasts to engage in such cross talk. To address this, we studied how fibroblast phenotype was linked to the behavior of normal and wounded human skin equivalents (HSE) by comparing human dermal fibroblasts (HDF) incorporated into the three-dimensional tissues to those extensively cultivated in two-dimensional (2D) monolayer culture on denatured collagen (DC) matrix, native collagen, or tissue culture plastic before incorporation into HSEs. We first established that prolonged passage and growth of HDF on DC increased their migratory potential in a 2D monolayer culture. When HDF variants were grown in HSEs, we found that extended passage on DC and incorporation of DC directly into the collagen gel enhanced proliferation of both HDF and basal keratinocytes in HSEs. By adapting HSEs to study wound reepithelialization, we found that the extended passage of HDF on DC accelerated the rate of wound healing by 38%. Thus, extensive ex vivo expansion on DC was able to modify the phenotype of skin fibroblasts by augmenting their reparative properties in skin-like HSEs.
Collapse
|
43
|
Krishnamoorthy G, Madhan B, Sadulla S, Rao JR, Madhulatha W. Stabilization of collagen by the plant polyphenolicsAcacia mollissima andTerminalia chebula. J Appl Polym Sci 2008. [DOI: 10.1002/app.27430] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Bitar M, Brown RA, Salih V, Kidane AG, Knowles JC, Nazhat SN. Effect of Cell Density on Osteoblastic Differentiation and Matrix Degradation of Biomimetic Dense Collagen Scaffolds. Biomacromolecules 2007; 9:129-35. [DOI: 10.1021/bm701112w] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Malak Bitar
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Robert A. Brown
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Vehid Salih
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Asmeret G. Kidane
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| | - Showan N. Nazhat
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London, WC1X 8LD, United Kingdom, Materials Biology Interactions Group, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland, UCL Tissue Repair & Engineering Centre, Institute of Orthopaedics, Stanmore Campus, London, HA7 4LP, United Kingdom, Academic Division of Surgery & Interventional Sciences, Royal Free & University College Medical
| |
Collapse
|