1
|
Folahan JT, Barabutis N. NEK kinases in cell cycle regulation, DNA damage response, and cancer progression. Tissue Cell 2025; 94:102811. [PMID: 40037068 PMCID: PMC11912005 DOI: 10.1016/j.tice.2025.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
The NIMA-related kinase (NEK) family of serine/threonine kinases is essential for the regulation of cell cycle progression, mitotic spindle assembly, and genomic stability. In this review, we explore the structural and functional diversity of NEK kinases, highlighting their roles in both canonical and non-canonical cellular processes. We examine recent preclinical findings on NEK inhibition, showcasing promising results for NEK-targeted therapies, particularly in cancer types characterized by high NEK expression. We discussed the therapeutic potential of targeting NEKs as modulators of cell cycle and DDR pathways, with a focus on identifying strategies to exploit NEK activity for enhanced treatment efficacy. Future research directions are proposed to further elucidate NEK-mediated mechanisms and to develop selective inhibitors that target NEK-related pathways.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
2
|
Mannan A, Mohan M, Singh TG. Revenge unraveling the fortress: Exploring anticancer drug resistance mechanisms in BC for enhanced therapeutic strategies. Crit Rev Oncol Hematol 2025; 210:104707. [PMID: 40122355 DOI: 10.1016/j.critrevonc.2025.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Breast cancer (BC) is the most prevalent form of cancer in women worldwide and the main cause of cancer-related fatalities in females. BC can be classified into various types based on where cancer has begun to grow or spread, specific characteristics that influence how cancer behaves, and treatment choices. BC is multifaceted, and due to its diverse nature, the mechanisms involved are complex and have not yet been understood. Overexpression and expression of various factors involved in the functioning of mechanisms lead to abnormal changes, providing an environment supporting cancer cell growth. Understanding BC risk factors and early diagnosis through screening techniques like mammography and diagnostic techniques such as imaging and biopsies has advanced significantly. A wide range of treatment options, including surgery, radiation, chemotherapy, targeted treatments, and hormonal therapies, are now available. Daily advancements are being made in the clinical treatment of BC. Still, BC drug resistance cases remain highly prevalent and are currently one of the biggest problems faced by medical science. To increase response rates and possibly lengthen survival, there is a critical requirement for novel medicines with minimal sensitivity to overcome drug resistance. This review classifies different mechanisms that are involved in the development of BC and workable pharmacological targets and explains how they relate to the development of BC drug resistance. By concentrating on the mechanisms covered in this review, we can have a deep understanding of different mechanisms and learn innovative ways to develop novel therapeutics for the disease to combat medication resistance.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
3
|
Huang F, Liu Y, Huang J, He D, Wu Q, Zeng Y, Zhao B, Mei W. Small molecule as potent hepatocellular carcinoma progression inhibitor through stabilizing G-quadruplex DNA to activate replication stress responded DNA damage. Chem Biol Interact 2025; 412:111469. [PMID: 40057014 DOI: 10.1016/j.cbi.2025.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
G-quadruplex (G4) DNA, prevalent in tumor cells, offers a potential anticancer target. This study examined TA-1, a tanshinone IIA derivative, for its antitumor activity against liver cancer. We found that TA-1 binds and stabilizes multiple G4 DNA,triggering DNA damage, suppressing the angiogenesis in vitro and in vivo and leading to cancer cell death. Notably, we confirmed TA-1's inhibitory effect on liver cancer cells and explored its mechanism, which involves stabilizing G4 DNA to mediate replication-stress-dependent DNA damage. Furthermore, TA-1 promotes 53BP1 expression, activating toxic NHEJ repair and leading to apoptotic cell death via the ATM-Chk2-p53 pathway. In vivo studies further supported these findings. In summary, TA-1 is a potent VEGF G-quadruplex stabilizer that inhibits liver cancer progression.
Collapse
Affiliation(s)
- Fei Huang
- School of Pharmacy, Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Liu
- School of Pharmacy, Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jinhua Huang
- School of Pharmacy, Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dongqing He
- School of Pharmacy, Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiong Wu
- School of Pharmacy, Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongchang Zeng
- Department of Pharmacy, Guangzhou Institute of Traditional Chinese Medicine, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 518000, China.
| | - Bin Zhao
- Guangdong Jiangmen Chinese Medical College, Jiangmen Engineering Technology Research Centre of Health Products, Jiangmen, 529000, China.
| | - Wenjie Mei
- School of Pharmacy, Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Pasaol JC, Śmieszek A, Pawlak A. Exploring the Therapeutic Potential of BRCA1 and BRCA2 as Targets in Canine Oncology: A Comprehensive Review of Their Role in Cancer Development and Treatment. Int J Mol Sci 2025; 26:1768. [PMID: 40004231 PMCID: PMC11855874 DOI: 10.3390/ijms26041768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor diseases represent a significant global health challenge, impacting both humans and companion animals, notably dogs. The parallels observed in the pathophysiology of cancer between humans and dogs underscore the importance of advancing comparative oncology and translational research methodologies. Furthermore, dogs serve as valuable models for human cancer research due to shared environments, genetics, and treatment responses. In particular, breast cancer gene 1 (BRCA1) and breast cancer gene 2 (BRCA2), which are critical in human cancer, also influence the development and progression of canine tumors. The role of BRCA1 and BRCA2 in canine cancers remains underexplored, but its potential significance as therapeutic targets is strongly considered. This systematic review aims to broaden the discussion of BRCA1 and BRCA2 beyond mammary tumors, exploring their implications in various canine cancers. By emphasizing the shared genetic underpinnings between species and advocating for a comparative approach, the review indicates the potential of BRCA genes as targets for innovative cancer therapies in dogs, contributing to advances in human and veterinary oncology.
Collapse
Affiliation(s)
| | | | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (J.C.P.); (A.Ś.)
| |
Collapse
|
5
|
Luo J, Huang Y, Lai J, Liang J, Luo X, Li C, Zhang Y, Zhao M. Effects of tritium pollution on photosynthesis, respiration and redox of microalgae under rising temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177766. [PMID: 39644631 DOI: 10.1016/j.scitotenv.2024.177766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Due to rising sea surface temperatures and thermal emissions from nuclear power plants, temperature has been recognized as a significant factor in evaluating the potential biological effect of tritium. In this work, tritium pollution in a freshwater system was simulated, and the dynamic changes of microalgal growth in semi-natural state were monitored in real time. The effects of tritium exposure on photosynthesis and respiration of Chlamydomonas reinhardtii (C. reinhardtii) were further analyzed in the context of rising temperatures. It was found that under tritium exposure (3.7 × 106 Bq/L, 12.17 μGy/h, resulting in a dose for 96 h of exposure is about 1 mGy), elevated temperature promoted the accumulation of organically bound tritium (OBT) and reactive oxygen species (ROS), which damaged the cell structure, reduced the photosynthetic performance and photosynthetic energy transfer efficiency, and interfered with the energy levels and redox states in C. reinhardtii. At the transcriptional level, elevated temperature exacerbated the inhibition of tritium exposure on key metabolic pathways related to photosynthetic system and respiratory metabolism of C. reinhardtii, while simultaneously causing double-stranded DNA damage in algal cells. Under the low-dose of tritium exposure with elevated temperature, the accumulation of ROS may lead to the disruption of algae's defense mechanisms, subsequently reducing their ability to resist genetic damage. This study provides insights for reassessing the potential risks to aquatic ecosystem considering the discharge of low-level tritium-containing wastewater in the context of global warming.
Collapse
Affiliation(s)
- Jing Luo
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, China
| | - Yan Huang
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jinlong Lai
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | | | - Xuegang Luo
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Chen Li
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yu Zhang
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, China.
| |
Collapse
|
6
|
Liu H, Wang Q, Lan W, Liu D, Huang J, Yao J. Radiosensitization effect of quinoline-indole-schiff base derivative 10E on non-small cell lung cancer cells in vitro and in tumor xenografts. Invest New Drugs 2024; 42:405-417. [PMID: 38880855 DOI: 10.1007/s10637-024-01451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
Radioresistance is an inevitable obstacle in the clinical treatment of inoperable patients with non-small cell lung cancer (NSCLC). Combining treatment with radiosensitizers may improve the efficacy of radiotherapy. Previously, the quinoline derivative 10E as new exporter of Nur77 has shown superior antitumor activity in hepatocellular carcinoma. Here, we aimed to investigate the radiosensitizing activity and acting mechanisms of 10E. In vitro, A549 and H460 cells were treated with control, ionizing radiation (IR), 10E, and 10E + IR. Cell viability, apoptosis, and cycle were examined using CCK-8 and flow cytometry assays. Protein expression and localization were examined using western blotting and immunofluorescence. Tumor xenograft models were established to evaluate the radiosensitizing effect of 10E in vivo. 10E significantly inhibited cell proliferation and increased their radiosensitivity while reducing level of p-BCRA1, p-DNA-PKs, and 53BP1 involved in the DNA damage repair pathway, indicating that its radiosensitizing activity is closely associated with repressing DNA damage repair. A549 cells showed low level of Nur77 and a low response to IR but 10E-treated A549 cells showed high level of Nur77 indicating that Nur77 is a core radiosensitivity factor and 10E restores the expression of Nur77. Nur77 and Ku80 extranuclear co-localization in the 10E-treated A549 cells suggested that 10E-modulated Nur77 nuclear exportation inhibits DNA damage repair pathways and increases IR-triggered apoptosis. The combination of 10E and IR significantly inhibits tumor growth in a tumor xenograft model. Our findings suggest that 10E acts as a radiosensitizer and that combining 10E with radiotherapy may be a potential strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Hongwei Liu
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Qianqian Wang
- West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Wanying Lan
- Guixi Community Health Center of the Chengdu Hi-Tech Zone, Chengdu, 610000, China
| | - Duanya Liu
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Jiangang Huang
- Xingzhi College, Zhejiang Normal University, Jinhua, 321004, China
| | - Jie Yao
- Centre for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
7
|
Slootbeek PHJ, Tolmeijer SH, Mehra N, Schalken JA. Therapeutic biomarkers in metastatic castration-resistant prostate cancer: does the state matter? Crit Rev Clin Lab Sci 2024; 61:178-204. [PMID: 37882463 DOI: 10.1080/10408363.2023.2266482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been fundamentally transformed by our greater understanding of its complex biological mechanisms and its entrance into the era of precision oncology. A broad aim is to use the extreme heterogeneity of mCRPC by matching already approved or new targeted therapies to the correct tumor genotype. To achieve this, tumor DNA must be obtained, sequenced, and correctly interpreted, with individual aberrations explored for their druggability, taking into account the hierarchy of driving molecular pathways. Although tumor tissue sequencing is the gold standard, tumor tissue can be challenging to obtain, and a biopsy from one metastatic site or primary tumor may not provide an accurate representation of the current genetic underpinning. Sequencing of circulating tumor DNA (ctDNA) might catalyze precision oncology in mCRPC, as it enables real-time observation of genomic changes in tumors and allows for monitoring of treatment response and identification of resistance mechanisms. Moreover, ctDNA can be used to identify mutations that may not be detected in solitary metastatic lesions and can provide a more in-depth understanding of inter- and intra-tumor heterogeneity. Finally, ctDNA abundance can serve as a prognostic biomarker in patients with mCRPC.The androgen receptor (AR)-axis is a well-established therapeutical target for prostate cancer, and through ctDNA sequencing, insights have been obtained in (temporal) resistance mechanisms that develop through castration resistance. New third-generation AR-axis inhibitors are being developed to overcome some of these resistance mechanisms. The druggability of defects in the DNA damage repair machinery has impacted the treatment landscape of mCRPC in recent years. For patients with deleterious gene aberrations in genes linked to homologous recombination, particularly BRCA1 or BRCA2, PARP inhibitors have shown efficacy compared to the standard of care armamentarium, but platinum-based chemotherapy may be equally effective. A hierarchy exists in genes associated with homologous recombination, where, besides the canonical genes in this pathway, not every other gene aberration predicts the same likelihood of response. Moreover, evidence is emerging on cross-resistance between therapies such as PARP inhibitors, platinum-based chemotherapy and even radioligand therapy that target this genotype. Mismatch repair-deficient patients can experience a beneficial response to immune checkpoint inhibitors. Activation of other cellular signaling pathways such as PI3K, cell cycle, and MAPK have shown limited success with monotherapy, but there is potential in co-targeting these pathways with combination therapy, either already witnessed or anticipated. This review outlines precision medicine in mCRPC, zooming in on the role of ctDNA, to identify genomic biomarkers that may be used to tailor molecularly targeted therapies. The most common druggable pathways and outcomes of therapies matched to these pathways are discussed.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Sofie H Tolmeijer
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Jack A Schalken
- Department of Experimental Urology, Research Institute of Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Huang Z, Zhuang Y, Li W, Ma M, Lei F, Qu Y, Li J, Luo H, Li C, Lu L, Ma L, Zhang X, Kou X, Jiang L, Mao X, Shi S. Apoptotic vesicles are required to repair DNA damage and suppress premature cellular senescence. J Extracell Vesicles 2024; 13:e12428. [PMID: 38581089 PMCID: PMC10997816 DOI: 10.1002/jev2.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
It is well known that DNA damage can cause apoptosis. However, whether apoptosis and its metabolites contribute to DNA repair is largely unknown. In this study, we found that apoptosis-deficient Fasmut and Bim- /- mice show significantly elevated DNA damage and premature cellular senescence, along with a significantly reduced number of 16,000 g apoptotic vesicles (apoVs). Intravenous infusion of mesenchymal stromal cell (MSC)-derived 16,000 g apoVs rescued the DNA damage and premature senescence in Fasmut and Bim-/- mice. Moreover, a sublethal dose of radiation exposure caused more severe DNA damage, reduced survival rate, and loss of body weight in Fasmut mice than in wild-type mice, which can be recovered by the infusion of MSC-apoVs. Mechanistically, we showed that apoptosis can assemble multiple nuclear DNA repair enzymes, such as the full-length PARP1, into 16,000 g apoVs. These DNA repair components are directly transferred by 16,000 g apoVs to recipient cells, leading to the rescue of DNA damage and elimination of senescent cells. Finally, we showed that embryonic stem cell-derived 16,000 g apoVs have superior DNA repair capacity due to containing a high level of nuclear DNA repair enzymes to rescue lethal dose-irradiated mice. This study uncovers a previously unknown role of 16,000 g apoVs in safeguarding tissues from DNA damage and demonstrates a strategy for using stem cell-derived apoVs to ameliorate irradiation-induced DNA damage.
Collapse
Affiliation(s)
- Zhiqing Huang
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Yuzhi Zhuang
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Wenwen Li
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Mingchen Ma
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
- Department of Oral ImplantologySchool and Hospital of StomatologyChina Medical UniversityShenyangLiaoningChina
| | - Fangcao Lei
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Yan Qu
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Jiaqi Li
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Huigen Luo
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat‐Sen University), Ministry of EducationGuangzhouChina
| | - Lu Lu
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Lan Ma
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Xiao Zhang
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Xiaoxing Kou
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat‐Sen University), Ministry of EducationGuangzhouChina
| | - Linjia Jiang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xueli Mao
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
| | - Songtao Shi
- Hospital of Stomatology, Sun Yat‐sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell ResearchGuangzhouChina
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat‐Sen University), Ministry of EducationGuangzhouChina
- International Center for Aging and Cancer (ICAC)Hainan Medical UniversityHaikouHainanChina
| |
Collapse
|
9
|
Thakur A, Rana N, Kumar R. Altered hormone expression induced genetic changes leads to breast cancer. Curr Opin Oncol 2024; 36:115-122. [PMID: 38441060 DOI: 10.1097/cco.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW Breast cancer ranks first among gynecological cancer in India. It is associated with urbanization, changes in lifestyle and obesity. Hormones also play a crucial role in the development of breast cancer. Steroid hormones play critical role in development of breast cancer. RECENT FINDING Breast cancer is caused due to alteration in different hormone expressions leading to genetic instability. Loss or gains of functions due to genetic instability were associated with the alterations in housekeeping genes. Up-regulation in c-myc, signal transducer and activator of transcription (STAT), CREB-regulated transcription coactivator (CRTC), and eukaryotic translation initiation factor 4E (eIF4E) may cause the development of breast cancer. Peptide hormones are commonly following the phosphoinositide 3-kinases (PI3K) pathway for activation of cell cycle causing uncontrolled proliferation. Although steroid hormones are following the Ras/Raf/mitogen-activated protein kinase (MEK) pathway, their hyper-activation of these pathways causes extracellular-signal-regulated kinase (ERK) and MAPK activation, leading to carcinogenesis. SUMMARY Alteration in cell cycle proteins, oncogenes, tumor suppressor genes, transcription and translation factors lead to breast cancer. Apoptosis plays a vital role in the elimination of abnormal cells but failure in any of these apoptotic pathways may cause tumorigenesis. Hence, a complex interplay of hormonal and genetic factors is required to maintain homeostasis in breast cells. Imbalance in homeostasis of these hormone and genes may lead to breast cancer.
Collapse
Affiliation(s)
- Anchal Thakur
- Department of Animal sciences, Central University of Himachal Pradesh, Dharamshala, H.P
| | - Navya Rana
- Department of Animal sciences, Central University of Himachal Pradesh, Dharamshala, H.P
| | - Ranjit Kumar
- Department of Zoology, Nagaland University, Lumami, Nagaland
| |
Collapse
|
10
|
Zhang C, Chen L, Xie C, Wang F, Wang J, Zhou H, Liu Q, Zeng Z, Li N, Huang J, Zhao Y, Liu H. YTHDC1 delays cellular senescence and pulmonary fibrosis by activating ATR in an m6A-independent manner. EMBO J 2024; 43:61-86. [PMID: 38177310 PMCID: PMC10883269 DOI: 10.1038/s44318-023-00003-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 01/06/2024] Open
Abstract
Accumulation of DNA damage in the lung induces cellular senescence and promotes age-related diseases such as idiopathic pulmonary fibrosis (IPF). Hence, understanding the mechanistic regulation of DNA damage repair is important for anti-aging therapies and disease control. Here, we identified an m6A-independent role of the RNA-binding protein YTHDC1 in counteracting stress-induced pulmonary senescence and fibrosis. YTHDC1 is primarily expressed in pulmonary alveolar epithelial type 2 (AECII) cells and its AECII expression is significantly decreased in AECIIs during fibrosis. Exogenous overexpression of YTHDC1 alleviates pulmonary senescence and fibrosis independent of its m6A-binding ability, while YTHDC1 deletion enhances disease progression in mice. Mechanistically, YTHDC1 promotes the interaction between TopBP1 and MRE11, thereby activating ATR and facilitating DNA damage repair. These findings reveal a noncanonical function of YTHDC1 in delaying cellular senescence, and suggest that enhancing YTHDC1 expression in the lung could be an effective treatment strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Canfeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liping Chen
- The Center for Medical Research, The First People's Hospital of Nanning City, Nanning, 530021, China
| | - Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fengwei Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Juan Wang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haoxian Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qianyi Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuo Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Na Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Bourgade R, Rabilloud N, Perennec T, Pécot T, Garrec C, Guédon AF, Delnatte C, Bézieau S, Lespagnol A, de Tayrac M, Henno S, Sagan C, Toquet C, Mosnier JF, Kammerer-Jacquet SF, Loussouarn D. Deep Learning for Detecting BRCA Mutations in High-Grade Ovarian Cancer Based on an Innovative Tumor Segmentation Method From Whole Slide Images. Mod Pathol 2023; 36:100304. [PMID: 37580018 DOI: 10.1016/j.modpat.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
BRCA1 and BRCA2 genes play a crucial role in repairing DNA double-strand breaks through homologous recombination. Their mutations represent a significant proportion of homologous recombination deficiency and are a reliable effective predictor of sensitivity of high-grade ovarian cancer (HGOC) to poly(ADP-ribose) polymerase inhibitors. However, their testing by next-generation sequencing is costly and time-consuming and can be affected by various preanalytical factors. In this study, we present a deep learning classifier for BRCA mutational status prediction from hematoxylin-eosin-safran-stained whole slide images (WSI) of HGOC. We constituted the OvarIA cohort composed of 867 patients with HGOC with known BRCA somatic mutational status from 2 different pathology departments. We first developed a tumor segmentation model according to dynamic sampling and then trained a visual representation encoder with momentum contrastive learning on the predicted tumor tiles. We finally trained a BRCA classifier on more than a million tumor tiles in multiple instance learning with an attention-based mechanism. The tumor segmentation model trained on 8 WSI obtained a dice score of 0.915 and an intersection-over-union score of 0.847 on a test set of 50 WSI, while the BRCA classifier achieved the state-of-the-art area under the receiver operating characteristic curve of 0.739 in 5-fold cross-validation and 0.681 on the testing set. An additional multiscale approach indicates that the relevant information for predicting BRCA mutations is located more in the tumor context than in the cell morphology. Our results suggest that BRCA somatic mutations have a discernible phenotypic effect that could be detected by deep learning and could be used as a prescreening tool in the future.
Collapse
Affiliation(s)
- Raphaël Bourgade
- Department of Pathology, University Hospital of Nantes, Nantes, France.
| | - Noémie Rabilloud
- Laboratoire du Traitement du Signal et de l'Image - Inserm U1099, University of Rennes, Rennes, France
| | - Tanguy Perennec
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest Nantes, Saint-Herblain, France
| | - Thierry Pécot
- Facility for Artificial Intelligence and Image Analysis (FAIIA), Biosit UAR 3480 CNRS-US18 INSERM, University of Rennes, Rennes, France
| | - Céline Garrec
- Department of Medical Genetics, University Hospital of Nantes, Nantes, France
| | - Alexis F Guédon
- National Institute of Health and Medical Research, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne University, Paris, France
| | - Capucine Delnatte
- Department of Medical Genetics, University Hospital of Nantes, Nantes, France
| | - Stéphane Bézieau
- Department of Medical Genetics, University Hospital of Nantes, Nantes, France
| | - Alexandra Lespagnol
- Department of Molecular Genetics and Genomics, University Hospital of Rennes, Rennes, France
| | - Marie de Tayrac
- Department of Molecular Genetics and Genomics, University Hospital of Rennes, Rennes, France
| | - Sébastien Henno
- Department of Pathology, University Hospital of Rennes, Rennes, France
| | - Christine Sagan
- Department of Pathology, University Hospital of Nantes, Nantes, France
| | - Claire Toquet
- Department of Pathology, University Hospital of Nantes, Nantes, France
| | | | - Solène-Florence Kammerer-Jacquet
- Laboratoire du Traitement du Signal et de l'Image - Inserm U1099, University of Rennes, Rennes, France; Department of Pathology, University Hospital of Rennes, Rennes, France
| | | |
Collapse
|
12
|
Nelson N, Jigo R, Clark GJ. BRCA1 and NORE1A Form a Her2/Ras Regulated Tumor Suppressor Complex Modulating Senescence. Cancers (Basel) 2023; 15:4133. [PMID: 37627161 PMCID: PMC10452424 DOI: 10.3390/cancers15164133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BRCA1 is a tumor suppressor with a complex mode of action. Hereditary mutations in BRCA1 predispose carriers to breast cancer, and spontaneous breast cancers often exhibit defects in BRCA1 expression. However, haploinsufficiency or suppression of BRCA1 expression leads to defects in DNA repair, which can induce DNA damage responses, leading to senescence. Activating mutation or overexpression of the Her2 oncoprotein are also frequent drivers of breast cancer. Yet, over-activation of Her2, working through the RAS oncoprotein, can also induce senescence. It is thought that additional defects in the p53 and Rb tumor suppressor machinery must occur in such tumors to allow an escape from senescence, thus permitting tumor development. Although BRCA1 mutant breast cancers are usually Her2 negative, a significant percentage of Her2 positive tumors also lose their expression of BRCA1. Such Her2+/BRCA1- tumors might be expected to have a particularly high senescence barrier to overcome. An important RAS senescence effector is the protein NORE1A, which can modulate both p53 and Rb. It is an essential senescence effector of the RAS oncoprotein, and it is often downregulated in breast tumors by promotor methylation. Here we show that NORE1A forms a Her2/RAS regulated, endogenous complex with BRCA1 at sites of replication fork arrest. Suppression of NORE1A blocks senescence induction caused by BRCA1 inactivation and Her2 activation. Thus, NORE1A forms a tumor suppressor complex with BRCA1. Its frequent epigenetic inactivation may facilitate the transformation of Her2+/BRCA1- mediated breast cancer by suppressing senescence.
Collapse
Affiliation(s)
- Nicholas Nelson
- Department of Chemistry, US Naval Academy, Annapolis, MD 21402, USA
| | - Raphael Jigo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Geoffrey J. Clark
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
13
|
Mukherjee A, Debnath S, Bhowmik A, Biswas S. DNA interactive property of poly-L-lysine induces apoptosis in MCF-7 cells through DNA interaction. J Biochem Mol Toxicol 2023; 37:e23378. [PMID: 37114286 DOI: 10.1002/jbt.23378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/16/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Poly-L-lysine (PLL) is known to be an encapsulating agent in drug formulation and delivery. PLL also has apoptotic and antiproliferative activities that enable blocking of the tumorigenesis process. However, the dose-selective activities of PLL in exerting apoptosis against cancer are unclear. Therefore, this study has been designed to explore the potential role and dose of PLL in apoptosis, if any. For this, PLL was administered at several doses in cancer cell lines and was found to be more potent against MCF-7 cells. PLL causes mitochondria-mediated apoptotic death through the upregulation of cleaved caspase-3. To investigate the mechanism responsible for this activity, we have analyzed if PLL could have the DNA interactive property or not. For this, molecular docking analysis was carried out to prove whether it has the property to bind with DNA or not. Studies have revealed that PLL is a potent DNA binder and it probably performs such apoptotic activities through the binding of cellular DNA early in an exposure. Simultaneous upregulation of both ROS-mediated stress and also in key protein expressions like γ-H2AX could also help us to confirm that PLL induces apoptosis through DNA interaction. This finding leads us to believe that PLL could play an interfering role with other chemotherapeutic compounds when used as a drug-coating material as it exerts an apoptotic effect on cancer cells, which should be avoided by using a much lower concentration.
Collapse
Affiliation(s)
- Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
14
|
Ozmen Yaylaci A, Canbek M. The role of ubiquitin signaling pathway on liver regeneration in rats. Mol Cell Biochem 2023; 478:131-147. [PMID: 35750978 DOI: 10.1007/s11010-022-04482-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
The ubiquitin signalling pathway is a large system associated with numerous intracellular mechanisms. However, its function in the liver regeneration process remains unknown. This particular study investigates the intracellular effect mechanisms of the ubiquitin signalling pathway. It also determines the differences in the expression of 88 genes belonging to the ubiquitin pathway using the RT-PCR array method. To conduct this research, three genes-that differed in the expression analysis were selected. Moreover, their proteins were analysed by western blot analysis while using Ki67 immunohistochemical analysis that determines proliferation rates by hour. It was determined that BRCA1 and BARD1, which are effective in DNA repair, play an active role at PH24. Similarly, Ube2t expression, which belongs to the Fanconi anaemia pathway associated with DNA repair, was also found to be high at PH12-72 h. In addition, it was revealed that the expressions of Anapc2, Anapc11, Cdc20 belonging to the APC/CCdc20 complex, which participate in cell cycle regulation, differed at different hours after PH. Expression of Mul1, which is involved in mitochondrial biogenesis and mitophagy mechanisms, peaked at PH12 under the observation. Considering the Mul1 gene expression difference, MUL1-mediated mitophagy and mitochondrial fission mechanism may be associated with liver regeneration. It was also determined that PARKIN-mediated mitophagy mechanisms are not active in 0-72 h of liver regeneration since PARKIN expression did not show a significant change in PH groups.
Collapse
Affiliation(s)
- Ayse Ozmen Yaylaci
- Department of Biology, Faculty of Arts and Science, Hitit University, 19030, Corum, Turkey.
| | - Mediha Canbek
- Department of Biology, Faculty of Arts and Science, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| |
Collapse
|
15
|
Wang T, Meng Y, Tu Y, Zhang G, Wang K, Gong S, Zhang Y, Wang T, Li A, Christiani DC, Au W, Xia ZL. Associations between DNA methylation and genotoxicity among lead-exposed workers in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120528. [PMID: 36341824 DOI: 10.1016/j.envpol.2022.120528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Studies have shown that lead (Pb) exposure caused genotoxicity, however, the underlying mechanisms remain unclear. A mechanism may be via DNA methylation which is one of the most widely studied epigenetic regulations for cellular activities. Whether this is involved in Pb-induced genotoxicity has rarely been studied. Our study aimed to examine whether DNA methylation was associated with Pb exposure and genotoxicity, and to explore its potential mediating roles. A total of 250 Pb-exposed workers were enrolled. Blood lead levels (BLLs) and genotoxic biomarkers (Micronuclei and Comet) were analyzed. Methylation levels at CpG sites of LINE1 and Alu and promoter region of P53, BRCA1, TRIM36 and OGG1 were measured by pyrosequencing. Generalized linear model (GLM) combined with restricted cubic splines (RCS) were used to analyze relationships between Pb exposure, DNA methylation and genotoxicity. Mediation effect was used to explore mediating roles of DNA methylation. The distribution of BLLs was right-skewed and showed wide ranges from 23.7 to 636.2 μg/L with median (P25, P75) being 218.4 (106.1, 313.9) μg/L among all workers. Micronuclei frequencies showed Poisson distribution [1.94 ± 1.88‰] and Comet tail intensity showed normal distribution [1.69 ± 0.93%]. GLM combined with RCS showed that Alu methylation was negatively associated with BLLs, while P53 and OGG1 methylation were positively associated with BLLs. Micronuclei were negatively associated with Alu and TRIM36 methylation but positively with P53 methylation. Comet was positively associated with P53 and BRCA1 methylation. Mediation effect showed that Alu methylation mediated 7% effects on association between Pb exposure and micronuclei, whereas, P53 methylation mediated 14% and BRCA1 mediated 9% effects on association between Pb exposure and Comet. Our data show that Pb exposure induced changes of global and gene-specific DNA methylation which mediated Pb-induced genotoxicity.
Collapse
Affiliation(s)
- Tuanwei Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China; Department of Environmental Health, School of Public Health, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Yu Meng
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yuting Tu
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Guanghui Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Kan Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Shiyang Gong
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yunxia Zhang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Tongshuai Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Anqi Li
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - David C Christiani
- Environmental Medicine and Epidemiology Program, Department of Environmental Health, Harvard University TH Chan School of Public Health, Boston, MA, USA
| | - William Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania, and University of Texas Medical Branch, Galveston, TX, USA
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China; School of Public Health, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
16
|
Triple negative breast cancer: approved treatment options and their mechanisms of action. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04189-6. [PMID: 35976445 DOI: 10.1007/s00432-022-04189-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Breast cancer, the most prevalent cancer worldwide, consists of 4 main subtypes, namely, Luminal A, Luminal B, HER2-positive, and Triple-negative breast cancer (TNBC). Triple-negative breast tumors, which do not express estrogen, progesterone, and HER2 receptors, account for approximately 15-20% of breast cancer cases. The lack of traditional receptor targets contributes to the heterogenous, aggressive, and refractory nature of these tumors, resulting in limited therapeutic strategies. METHODS Chemotherapeutics such as taxanes and anthracyclines have been the traditional go to treatment regimens for TNBC patients. Paclitaxel, docetaxel, doxorubicin, and epirubicin have been longstanding, Food and Drug Administration (FDA)-approved therapies against TNBC. Additionally, the FDA approved PARP inhibitors such as olaparib and atezolizumab to be used in combination with chemotherapies, primarily to improve their efficiency and reduce adverse patient outcomes. The immunotherapeutic Keytruda was the latest addition to the FDA-approved list of drugs used to treat TNBC. RESULTS The following review aims to elucidate current FDA-approved therapeutics and their mechanisms of action, shedding a light on the various strategies currently used to circumvent the treatment-resistant nature of TNBC cases. CONCLUSION The recent approval and use of therapies such as Trodelvy, olaparib and Keytruda has its roots in the development of an understanding of signaling pathways that drive tumour growth. In the future, the emergence of novel drug delivery methods may help increase the efficiency of these therapies whiel also reducing adverse side effects.
Collapse
|
17
|
Lavoro A, Scalisi A, Candido S, Zanghì GN, Rizzo R, Gattuso G, Caruso G, Libra M, Falzone L. Identification of the most common BRCA alterations through analysis of germline mutation databases: Is droplet digital PCR an additional strategy for the assessment of such alterations in breast and ovarian cancer families? Int J Oncol 2022; 60:58. [PMID: 35383859 PMCID: PMC8997337 DOI: 10.3892/ijo.2022.5349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022] Open
Abstract
Breast and ovarian cancer represent two of the most common tumor types in females worldwide. Over the years, several non‑modifiable and modifiable risk factors have been associated with the onset and progression of these tumors, including age, reproductive factors, ethnicity, socioeconomic status and lifestyle factors, as well as family history and genetic factors. Of note, BRCA1 and BRCA2 are two tumor suppressor genes with a key role in DNA repair processes, whose mutations may induce genomic instability and increase the risk of cancer development. Specifically, females with a family history of breast or ovarian cancer harboring BRCA1/2 germline mutations have a 60‑70% increased risk of developing breast cancer and a 15‑40% increased risk for ovarian cancer. Different databases have collected the most frequent germline mutations affecting BRCA1/2. Through the analysis of such databases, it is possible to identify frequent hotspot mutations that may be analyzed with next‑generation sequencing (NGS) and novel innovative strategies. In this context, NGS remains the gold standard method for the assessment of BRCA1/2 mutations, while novel techniques, including droplet digital PCR (ddPCR), may improve the sensitivity to identify such mutations in the hereditary forms of breast and ovarian cancer. On these bases, the present study aimed to provide an update of the current knowledge on the frequency of BRCA1/2 mutations and cancer susceptibility, focusing on the diagnostic potential of the most recent methods, such as ddPCR.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Aurora Scalisi
- Italian League Against Cancer, Section of Catania, I‑95122 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical‑Surgical Specialties, Policlinico‑Vittorio Emanuele Hospital, University of Catania, I‑95123 Catania, Italy
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione 'G. Pascale', I‑80131 Naples, Italy
| |
Collapse
|
18
|
Wang M, Rogers CM, Alimbetov D, Zhao W. In Vitro Reconstitution of BRCA1-BARD1/RAD51-Mediated Homologous DNA Pairing. Methods Mol Biol 2022; 2444:207-225. [PMID: 35290640 DOI: 10.1007/978-1-0716-2063-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RAD51-mediated homologous recombination (HR) is a conserved mechanism for the repair of DNA double-strand breaks and the maintenance of DNA replication forks. Several breast and ovarian tumor suppressors, including BRCA1 and BARD1, have been implicated in HR since their discovery in the 1990s. However, a holistic understanding of how they participate in HR has been hampered by the immense challenge of expressing and purifying these large and unstable protein complexes for mechanistic analysis. Recently, we have overcome such a challenge for the BRCA1-BARD1 complex, allowing us to demonstrate its pivotal role in HR via the promotion of RAD51-mediated DNA strand invasion. In this chapter, we describe detailed procedures for the expression and purification of the BRCA1-BARD1 complex and in vitro assays using this tumor suppressor complex to examine its ability to promote RAD51-mediated homologous DNA pairing. This includes two distinct biochemical assays, namely, D-loop formation and synaptic complex assembly. These methods are invaluable for studying the BRCA1-BARD1 complex and its functional interplay with other factors in the HR process.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dauren Alimbetov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
19
|
Li W, Zhang L, Shinohara A, Keeney S. Editorial: Meiosis: From Molecular Basis to Medicine. Front Cell Dev Biol 2021; 9:812292. [PMID: 34926477 PMCID: PMC8671932 DOI: 10.3389/fcell.2021.812292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY, United States
| |
Collapse
|
20
|
Li Q, Engebrecht J. BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Front Cell Dev Biol 2021; 9:668309. [PMID: 33996823 PMCID: PMC8121103 DOI: 10.3389/fcell.2021.668309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Meiosis is a specialized cell cycle that results in the production of haploid gametes for sexual reproduction. During meiosis, homologous chromosomes are connected by chiasmata, the physical manifestation of crossovers. Crossovers are formed by the repair of intentionally induced double strand breaks by homologous recombination and facilitate chromosome alignment on the meiotic spindle and proper chromosome segregation. While it is well established that the tumor suppressors BRCA1 and BRCA2 function in DNA repair and homologous recombination in somatic cells, the functions of BRCA1 and BRCA2 in meiosis have received less attention. Recent studies in both mice and the nematode Caenorhabditis elegans have provided insight into the roles of these tumor suppressors in a number of meiotic processes, revealing both conserved and organism-specific functions. BRCA1 forms an E3 ubiquitin ligase as a heterodimer with BARD1 and appears to have regulatory roles in a number of key meiotic processes. BRCA2 is a very large protein that plays an intimate role in homologous recombination. As women with no indication of cancer but carrying BRCA mutations show decreased ovarian reserve and accumulated oocyte DNA damage, studies in these systems may provide insight into why BRCA mutations impact reproductive success in addition to their established roles in cancer.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Cho EJ, Kim JK, Baek HJ, Kim SE, Park EJ, Choi BK, Kim TH, Shin DH, Lim YK, Deng CX, Kim SS. Preclinical evaluation of radiation therapy of BRCA1-associated mammary tumors using a mouse model. Int J Biol Sci 2021; 17:689-701. [PMID: 33767581 PMCID: PMC7975707 DOI: 10.7150/ijbs.53667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022] Open
Abstract
Although germline mutations in BRCA1 highly predispose women towards breast and ovarian cancer, few substantial improvements in preventing or treating such cancers have been made. Importantly, BRCA1 function is closely associated with DNA damage repair, which is required for genetic stability. Here, we examined the efficacy of radiotherapy, assessing the accumulation of genetic instabilities, in the treatment of BRCA1-associated breast cancer using a Brca1-mutant mouse model. Treatment of Brca1-mutant tumor-engrafted mice with X-rays reduced tumor progression by 27.9% compared with untreated controls. A correlation analysis of irradiation responses and biomarker profiles in tumors at baseline identified differences between responders and non-responders at the protein level (pERα, pCHK2, p53, and EpCAM) and at the SOX2 target expression level. We further demonstrated that combined treatment of Brca1-mutant mammary tumors with irradiation and AZD2281, which inhibits PARP, significantly reduced tumor progression and extended survival. Our findings enhance the understanding of DNA damage and biomarker responses in BRCA1-associated mammary tumors and provide preclinical evidence that radiotherapy with synthetic DNA damage is a potential strategy for the therapeutic management of BRCA1-associated breast cancer.
Collapse
Affiliation(s)
- Eun Ju Cho
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Jong Kwang Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Hye Jung Baek
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Sun Eui Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Eun Jung Park
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Bum Kyu Choi
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Tae Hyun Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea.,Proton Therapy Center, National Cancer Center Hospital, Goyang, 10408, Korea
| | - Dong Hoon Shin
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Young Kyung Lim
- Proton Therapy Center, National Cancer Center Hospital, Goyang, 10408, Korea
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Sang Soo Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| |
Collapse
|
22
|
Zhang J, Yang S, Guan H, Zhou J, Gao Y. Xanthatin synergizes with cisplatin to suppress homologous recombination through JAK2/STAT4/BARD1 axis in human NSCLC cells. J Cell Mol Med 2021; 25:1688-1699. [PMID: 33439503 PMCID: PMC7875932 DOI: 10.1111/jcmm.16271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Xanthatin (Xa) is a bicyclic sesquiterpene lactone identified from the plant Xanthium L. with impressive antitumor activity, but the role of Xa in non‐small cell lung cancer (NSCLC) is not known. Here we found that Xa inhibits proliferation, migration, invasion and induces apoptosis in NSCLC cells. RNA sequencing and Gene set enrichment analysis revealed that Xa significantly activates p53 pathway and suppresses E2F targets, G2M checkpoint and MYC targets in A549 cells. Among these changed genes, the down‐regulated gene BARD1 triggered by Xa was identified as a candidate involved in Xa’s antitumor effect because of its vital role in homologous recombination (HR). Further studies demonstrated that Xa inhibits HR through the BARD1/BRCA1/RAD51 axis, which enhances cell sensitivity to cisplatin. Mechanistic studies showed that Xa inhibits BARD1 through the JAK2/STAT4 pathway. Our study revealed that Xa is a promising drug to treat NSCLC, especially in combination with conventional chemotherapy.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sheng Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongmei Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jueyu Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Fan Z, Luo H, Zhou J, Wang F, Zhang W, Wang J, Li S, Lai Q, Xu Y, Wang G, Liang A, Xu J. Checkpoint kinase‑1 inhibition and etoposide exhibit a strong synergistic anticancer effect on chronic myeloid leukemia cell line K562 by impairing homologous recombination DNA damage repair. Oncol Rep 2020; 44:2152-2164. [PMID: 32901871 PMCID: PMC7551253 DOI: 10.3892/or.2020.7757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Leukemia, a malignant hematological disease, has poor therapeutic outcomes due to chemotherapeutic resistance. Increasing evidence has confirmed that the elevated capacity for DNA damage repair in cancer cells is a major mechanism of acquired chemotherapeutic resistance. Thus, combining chemotherapy with inhibitors of DNA damage repair pathways is potentially an ideal strategy for treating leukemia. Checkpoint kinase 1 (CHK1) is an important component of the DNA damage response (DDR) and is involved in the G2/M DNA damage checkpoint. In the present study, we demonstrated that shRNA-mediated CHK1 silencing suppressed cell proliferation and enhanced the cytotoxic effects of etoposide (VP16) in the chronic myeloid leukemia (CML) cell line K562 through the results of CCK-8, and comet assay. The results demonstrated that shRNA-induced CHK1 silencing can override G2/M arrest and impair homologous recombination (HR) repair by reducing breast cancer susceptibility gene 1 (BRCA1) expression. Cells had no time, and thus limited ability, to repair the damage and were thus more sensitive to chemotherapy after CHK1 downregulation. Second, we tested the therapeutic effect of VP16 combined with CCT245737, an orally bioavailable CHK1 inhibitor, and observed strong synergistic anticancer effects in K562 cells. Moreover, we discovered that CCT245737 significantly prevented the G2/M arrest caused by acute exposure to VP16. Interestingly, CCT245737 inhibited both BRCA1 and Rad51, the most important component of the HR repair pathway. In conclusion, these results revealed that CHK1 is potentially an ideal therapeutic target for the treatment of CML and that CCT245737 should be considered a candidate drug.
Collapse
Affiliation(s)
- Zhuoyi Fan
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jie Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Fangce Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jian Wang
- East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Shuo Li
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Qian Lai
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yueshuang Xu
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
24
|
Fang CB, Wu HT, Zhang ML, Liu J, Zhang GJ. Fanconi Anemia Pathway: Mechanisms of Breast Cancer Predisposition Development and Potential Therapeutic Targets. Front Cell Dev Biol 2020; 8:160. [PMID: 32300589 PMCID: PMC7142266 DOI: 10.3389/fcell.2020.00160] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
The maintenance of genomic stability is crucial for species survival, and its failure is closely associated with tumorigenesis. The Fanconi anemia (FA) pathway, involving 22 identified genes, plays a central role in repairing DNA interstrand cross-links. Importantly, a germline defect in any of these genes can cause Fanconi's anemia, a heterogeneous genetic disorder, characterized by congenital growth abnormalities, bone marrow failure, and predisposition to cancer. On the other hand, the breast cancer susceptibility genes, BRCA1 and BRCA2, also known as FANCS and FANCD1, respectively, are involved in the FA pathway; hence, researchers have studied the association between the FA pathway and cancer predisposition. Here, we mainly focused on and systematically reviewed the clinical and mechanistic implications of the predisposition of individuals with abnormalities in the FA pathway to cancer, especially breast cancer.
Collapse
Affiliation(s)
- Can-Bin Fang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Man-Li Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- Department of Physiology, Shantou University Medical College, Shantou, China
| | - Guo-Jun Zhang
- Chang Jiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
- The Cancer Center and the Department of Breast-Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiang’an, China
| |
Collapse
|
25
|
Martínez-Nava GA, Gómez R, Burguete-García AI, Vázquez-Salas RA, Ventura-Bahena A, Torres-Sánchez L. BRCA1 and VDR gene polymorphisms are associated with prostate cancer risk in Mexican men. Mol Carcinog 2020; 59:629-639. [PMID: 32219892 DOI: 10.1002/mc.23187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/24/2023]
Abstract
Prostate cancer (PC) is a polygenic disease with broad differences across ethnicities. BRCA1/2 and VDR have exhibited a featured genetic contribution to PC development in European populations. Nonetheless, its contribution in Latino populations specifically among Mexican men, where 70% of PC cases are detected in advanced stages, is still unknown. The contribution of seven polymorphisms in BRCA1/2 and VDR genes to PC susceptibility was evaluated in 370 incident PC cases and 759 age-matched (±5 years) controls belonging to the Mexican population. Based on Gleason score at diagnosis, PC cases were classified as well-differentiated PC (Gleason <7) and moderate or poorly differentiated PC (Gleason ≥7). Age at diagnosis was used to divided PC cases in earlier (<60 years) and late-onset PC (≥60 years). Prostate and breast cancer family histories were obtained through interview. Our results provided evidences about the contribution of BRCA1-rs1799966 (ORCC genotype = 2.30; 95% confidence interval [CI] = 1.36-3.91) to the moderate or poorly differentiated PC risk, independently of the family history of prostate, breast or ovary cancer. Further, VDR-rs2238135-G allele was associated with early-onset PC (ORG allele = 2.05; 95% CI = 1.06-3.95), and marginally with moderate or poorly differentiated PC risk. The present study revealed the crucial role of BRCA1 in PC aggressiveness risk, outstanding the gender imbalance regarding the breast cancer risk in women.
Collapse
Affiliation(s)
- Gabriela Angélica Martínez-Nava
- Synovial Liquid Laboratory, National Institute of Rehabilitation "Luis Guillermo Ibarra Ibarra" (INR), Mexico City, Mexico.,Research Center for Infectious Diseases (CISEI), Genetic Epidemiology Department, National Institute of Public Health (INSP), Cuernavaca, Morelos, Mexico
| | - Rocío Gómez
- Toxicology Department, Cinvestav-IPN, Mexico City, Mexico City, México
| | - Ana Isabel Burguete-García
- Research Center for Infectious Diseases (CISEI), Genetic Epidemiology Department, National Institute of Public Health (INSP), Cuernavaca, Morelos, Mexico
| | - Ruth Argelia Vázquez-Salas
- Population Health Research Center (CISP), Reproductive Health (INSP), National Institute of Public Health/CONACYT, Cuernavaca, Morelos, Mexico
| | - Arianna Ventura-Bahena
- Population Health Research Center (CISP), Reproductive Health department, National Institute of Public Health (INSP), Cuernavaca, Morelos, Mexico
| | - Luisa Torres-Sánchez
- Population Health Research Center (CISP), Reproductive Health department, National Institute of Public Health (INSP), Cuernavaca, Morelos, Mexico
| |
Collapse
|
26
|
Sun HB, Wang HY, Wu B, Wang ZF, Wang LZ, Li FQ, Wu JD, Zhang LN. The inhibitory effects of cisplatin-radiation combination treatment on malignant osteosarcoma MG-63 cells and BRCA1-p53 pathways are more efficient than single treatments. Oncol Lett 2019; 18:6385-6396. [PMID: 31807162 PMCID: PMC6876329 DOI: 10.3892/ol.2019.11019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/22/2019] [Indexed: 01/07/2023] Open
Abstract
The poor prognosis of patients with osteosarcoma remains a persistent problem, in particular for patients with unresectable tumors or metastasis. Therefore, combination of radiotherapy and chemotherapy has been considered for patients with metastasis or recurrence, patients unsuitable for surgery and patients refusing surgery. The present study aimed to investigate the effect of the combined treatment with cisplatin and radiation therapy on the biological characteristics of the osteosarcoma cell line MG-63 and the breast cancer 1 (BRCA1)-associated signaling pathways. Cell proliferation was determined using Cell Counting kit-8 assay, and cell apoptosis and cell cycle were assessed by flow cytometry. Cell migration was examined by Transwell assay. The mRNA and protein expression levels of candidate genes, including BRCA1 and p53, were determined by reverse transcription-quantitative PCR and western blotting, respectively. The results demonstrated that combined treatment with radiation and cisplatin significantly inhibited MG-63 cell proliferation compared with radiation or cisplatin treatment alone. Furthermore, radiation, cisplatin or the combined treatment with radiation and cisplatin increased the apoptosis rate of MG-63 cells, which resulted in G2 phase arrest, and significantly decreased the migratory capacity of MG-63 cells. In addition, the apoptosis rate of MG-63 cells following combined radiation and cisplatin treatment was higher compared with the cisplatin group, but lower compared with the radiation group. Furthermore, combined treatment with radiation and cisplatin decreased the mRNA and protein expression levels of BRCA1 and p53. Additionally, combined treatment with radiation and cisplatin had a more potent inhibitory effect on p53 expression than on BRCA1 expression. In addition, combination of radiation and cisplatin had a higher inhibitory effect on Bax protein level and a higher inductive effect on Bcl-2 protein level compared with treatments with radiation and cisplatin alone. The results demonstrated that combined treatment of radiation and cisplatin exhibited superior therapeutic effects on osteosarcoma MG-63 cells compared with radiation or cisplatin treatment alone, which may be mediated by the BRCA1-p53 signaling pathway.
Collapse
Affiliation(s)
- Hong-Bin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - He-Yuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhong-Feng Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li-Zhe Wang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fu-Qiang Li
- Eye Center of The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jun-Duo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Le-Ning Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
27
|
Cifuentes-C L, Rivera-Herrera AL, Barreto G. BRCA1 and BRCA2 mutations in a sample of breast and ovarian cancer families from the Colombian pacific. Colomb Med (Cali) 2019; 50:163-175. [PMID: 32284662 PMCID: PMC7141151 DOI: 10.25100/cm.v50i3.2385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Introduction: Breast cancer is the most common neoplasia of women from all over the world especially women from Colombia. 5%10% of all cases are caused by hereditary factors, 25% of those cases have mutations in the BRCA1/BRCA2 genes. Objective: The purpose of this study was to identify the mutations associated with the risk of familial breast and/or ovarian cancer in a population of Colombian pacific. Methods: 58 high-risk breast and/or ovarian cancer families and 20 controls were screened for germline mutations in BRCA1 and BRCA2, by Single Strand Conformation Polymorphism (SSCP) and sequencing. Results: Four families (6.9%) were found to carry BRCA1 mutations and eight families (13.8%) had mutations in BRCA2. In BRCA1, we found three Variants of Uncertain Significance (VUS), of which we concluded, using in silico tools, that c.8112C>G and c.3119G>A (p.Ser1040Asn) are probably deleterious, and c.3083G>A (p.Arg1028His) is probably neutral. In BRCA2, we found three variants of uncertain significance: two were previously described and one novel mutation. Using in silico analysis, we concluded that c.865A>G (p.Asn289Asp) and c.6427T>C (p.Ser2143Pro) are probably deleterious and c.125A>G (p.Tyr42Cys) is probably neutral. Only one of them has previously been reported in Colombia. We also identified 13 polymorphisms (4 in BRCA1 and 9 in BRCA2), two of them are associated with a moderate increase in breast cancer risk (BRCA2 c.1114A>C and c.875566T>C). Conclusion: According to our results, the Colombian pacific population presents diverse mutational spectrum for BRCA genes that differs from the findings in other regions in the country.
Collapse
Affiliation(s)
- Laura Cifuentes-C
- Universidad del Valle, Departamento de Biología, Human Molecular Genetics Lab, Cali, Colombia
| | | | - Guillermo Barreto
- Universidad del Valle, Departamento de Biología, Human Molecular Genetics Lab, Cali, Colombia
| |
Collapse
|
28
|
|
29
|
Ferreira EN, Brianese RC, de Almeida RVB, Drummond RD, de Souza JE, da Silva IT, de Souza SJ, Carraro DM. Influence of BRCA1 Germline Mutations in the Somatic Mutational Burden of Triple-Negative Breast Cancer. Transl Oncol 2019; 12:1453-1460. [PMID: 31419696 PMCID: PMC6706625 DOI: 10.1016/j.tranon.2019.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022] Open
Abstract
The majority of the hereditary triple-negative breast cancers (TNBCs) are associated with BRCA1 germline mutations. Nevertheless, the understanding of the role of BRCA1 deficiency in the TNBC tumorigenesis is poor. In this sense, we performed whole-exome sequencing of triplet samples (leucocyte, tumor, and normal-adjacent breast tissue) for 10 cases of early-onset TNBC, including 5 hereditary (with BRCA1 germline pathogenic mutation) and 5 sporadic (with no BRCA1 or BRCA2 germline pathogenic mutations), for assessing the somatic mutation repertoire. Protein-affecting somatic mutations were identified for both mammary tissues, and Ingenuity Pathway Analysis was used to investigate gene interactions. BRCA1 and RAD51C somatic promoter methylation in tumor samples was also investigated by bisulfite sequencing. Sporadic tumors had higher proportion of driver mutations (≥25% allele frequency) than BRCA1 hereditary tumors, whereas no difference was detected in the normal breast samples. Distinct gene networks were obtained from the driver genes in each group. The Cancer Genome Atlas data analysis of TNBC classified as hereditary and sporadic reinforced our findings. The data presented here indicate that in the absence of BRCA1 germline mutations, a higher number of driver mutations are required for tumor development and that different defective processes are operating in the tumorigenesis of hereditary and sporadic TNBC in young women.
Collapse
Affiliation(s)
| | | | | | | | - Jorge Estefano de Souza
- Instituto Metrópole Digital, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Israel Tojal da Silva
- CIPE, International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Sandro José de Souza
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil; Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Dirce Maria Carraro
- CIPE, International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil; National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
You Y, Bi F, Jiang Y, Xu Y, An Y, Li D, Yang Q. BRCA1 affects the resistance and stemness of SKOV3-derived ovarian cancer stem cells by regulating autophagy. Cancer Med 2019; 8:656-668. [PMID: 30636383 PMCID: PMC6382722 DOI: 10.1002/cam4.1975] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer 1 (BRCA1) and autophagy both play a significant role in drug resistance. However, little is known about the dynamic cross talk between BRCA1 and autophagy in the regulation of drug sensitivity. Here, we investigated the drug resistance-associated regulation of BRCA1 in epithelial ovarian cancer stem cells (EOCSCs). The results indicated that BRCA1 could regulate drug resistance in EOCSCs. Autophagy played a significant role in the stemness maintenance and was a key mechanism underlying the survival against chemotherapy in EOCSCs. Further investigation found that BRCA1 could regulate drug resistance of EOCSCs through autophagy. Meanwhile, changes in the level of autophagy provided feedback regarding the expression of BRCA1. Inhibition of autophagy activity could effectively reduce the resistance of EOCSCs caused by BRCA1. In addition, BRCA1 was able to regulate cellular apoptosis and cell cycle progression under the action of cisplatin through autophagy, indirectly affecting the drug sensitivity of EOCSCs. The present results highlight a novel relationship between BRCA1 and autophagy, which may provide insight into the etiology of BRCA1-associated ovarian cancer, and improve our understanding of resistance mechanisms in ovarian cancer.
Collapse
Affiliation(s)
- Yue You
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Fang‐Fang Bi
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ying Jiang
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticut
| | - Ye‐Tao Xu
- Department of Obstetrics, Gynecology, and Reproductive SciencesYale School of MedicineNew HavenConnecticut
| | - Yuan‐Yuan An
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Da Li
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Qing Yang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
31
|
Baek HJ, Kim SE, Kim JK, Shin DH, Kim TH, Kim KG, Deng CX, Kim SS. Inhibition of AKT suppresses the initiation and progression of BRCA1-associated mammary tumors. Int J Biol Sci 2018; 14:1769-1781. [PMID: 30443181 PMCID: PMC6231214 DOI: 10.7150/ijbs.29242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
Despite the high incidence of BRCA1-mutant breast cancer, few substantial improvements in preventing or treating such cancers have been made. Using a Brca1-mutant mouse model, we examined the contribution of AKT to the incidence and growth of Brca1-mutated mammary tumors. A haploinsufficiency of Akt1 in Brca1-mutant mouse model significantly decreased mammary tumor formation from 54% in Brca1co/coMMTV-Cre mice to 22% in Brca1 co/coMMTV-Cre Akt1+/- mice. Notably, treatment of tumor-bearing Brca1-mutant mice with the AKT-inhibitor, MK-2206, yielded partial response or stable disease up to 91% of mice in maximum response. MK-2206 treatment also significantly reduced tumor volume and delayed recurrence in allograft and adjuvant studies, respectively. A correlation analysis of MK-2206 responses with gene expression profiles of tumors at baseline identified seven genes that were differentially expressed between tumors that did and did not respond to MK-2206 treatment. Our findings enhance our understanding of the involvement of AKT signaling in BRCA1-deficient mammary tumors and provide preclinical evidence that targeted AKT inhibition is a potential strategy for the prevention and therapeutic management of BRCA1-associated breast cancer.
Collapse
Affiliation(s)
- Hye Jung Baek
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Sun Eui Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Jong Kwang Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Dong Hoon Shin
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Tae Hyun Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Kwang Gi Kim
- Department of Biomedical Engineering, Gachon University College of Medicine, Incheon, 21565, Korea
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Sang Soo Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| |
Collapse
|
32
|
Xu P, Liu Q, Xie Y, Shi X, Li Y, Peng M, Guo H, Sun R, Li J, Hong Y, Liu X, Xu G. Breast cancer susceptibility protein 1 (BRCA1) rescues neurons from cerebral ischemia/reperfusion injury through NRF2-mediated antioxidant pathway. Redox Biol 2018; 18:158-172. [PMID: 30014904 PMCID: PMC6068089 DOI: 10.1016/j.redox.2018.06.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022] Open
Abstract
Cellular oxidative stress plays a vital role in the pathological process of neural damage in cerebral ischemia/reperfusion (I/R). The breast cancer susceptibility protein 1 (BRCA1), a tumor suppressor, can modulate cellular antioxidant response and DNA repair. Yet the role of BRCA1 in cerebral I/R injury has not been explored. In this study, we observed that BRCA1 was mainly expressed in neurons and was up-regulated in response to I/R insult. Overexpression of BRCA1 attenuated reactive oxygen species production and lipid peroxidation. Enhanced BRCA1 expression promoted DNA double strand break repair through non-homologous end joining pathway. These effects consequently led to neuronal cell survival and neurological recovery. Mechanically, BRCA1 can interact with the nuclear factor (erythroid-derived 2)-like 2 (NRF2) through BRCA1 C-terminal (BRCT) domain. The cross-talk between BRCT and NRF2 activated the NRF2/Antioxidant Response Element signaling pathway and thus protected injured neurons during cerebral I/R. In conclusion, enhanced BRCA1 after cerebral I/R injury may attenuate or prevent neural damage from I/R via NRF2-mediated antioxidant pathway. The finding may provide a potential therapeutic target against ischemic stroke. BRCA1 was up-regulated after cerebral ischemia/reperfusion injury. Up-regulated BRCA1 attenuated cerebral ischemia/reperfusion injury and cognitive impairment. BRCA1 binding to NRF2 via BRCT domain triggered NRF2-mediated antioxidant response. BRCA1 promoted DSBs repair via non-homologous end joining-pathway.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaolei Shi
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada; Department of Neurology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Yunzi Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Mengna Peng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Hongquan Guo
- Department of Neurology, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Rui Sun
- Department of Neurology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Juanji Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ye Hong
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
33
|
Liu X, Wu J, Shi W, Shi W, Liu H, Wu X. Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells. Med Sci Monit 2018; 24:4295-4304. [PMID: 29933360 PMCID: PMC6045917 DOI: 10.12659/msm.908425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells. Material/Methods The TK6 cells were incubated with various concentrations of Pb(Ac)2 for 6 h, 12 h, or 24 h. Cell viability was detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence assay was used to detect γ-H2AX foci formation. The promoter methylation was assessed by methylation-specific PCR. The protein levels were determined by Western blot assay. Results The results showed that after exposure to lead, cell viability was obviously decreased and γ-H2AX foci formation was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were increased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methylation in TK6 cells after exposure to lead. Conclusions Taken together, our study provides the first published evidence that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells.
Collapse
Affiliation(s)
- Xiangquan Liu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Jingying Wu
- Department of Preventive Medicine, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Wenyan Shi
- Department of Clinical Nutrition, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Wenhua Shi
- Department of Occupational Health, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Hekun Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xiaonan Wu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
34
|
Sensitization of tamoxifen-resistant breast cancer cells by Z-ligustilide through inhibiting autophagy and accumulating DNA damages. Oncotarget 2018; 8:29300-29317. [PMID: 28431397 PMCID: PMC5438731 DOI: 10.18632/oncotarget.16832] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/26/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy plays a pro-survival role in the tamoxifen-resistant breast cancer cells. Herein we found that autophagy was concomitantly induced in tamoxifen-resistant MCF-7 (MCF-7TR5) cells through the dissociation of Bcl-2 from Beclin 1 and subsequent enhancement of interaction among the ATG14-Beclin1-PI3KC3 complex. Moreover, higher level of DNA damage was observed in MCF-7TR5 cells with the decreased BRCA1 and RAD51 level and the increased Ku80 level. Interestingly, Nur77 was selectively degraded by autophagy, which causes the release of Ku80 from the Nur77-Ku80 complex, resulting in the increase of the DNA binding of Ku80 and DNA-PKcs. Meanwhile, Z-ligustilide, a phthalide compound from Radix Angelica sinensis, was shown to inhibit the autophagic flux by blocking the autophagosome-lysosome fusion. Importantly, Z-ligustilide-mediated autophagy inhibition restored Nur77 expression in MCF-7TR5 cells. Furthermore, Z-ligustilide promoted the interaction of Nur77 with Ku80 and thereby abolished the association of DNA-PKcs with DNA ends. Moreover, Z-ligustilide sensitized MCF-7TR5 cells in a caspase-independent cell death and enhanced the DNA damage caused by tamoxifen, which was found to be attenuated by shNur77. Together, these findings not only provide important insights into the formation of tamoxifen resistance in breast cancer cells, but also suggest Z-ligustilide may function as a novel autophagy inhibitor to overcome chemoresistance.
Collapse
|
35
|
Musella A, Bardhi E, Marchetti C, Vertechy L, Santangelo G, Sassu C, Tomao F, Rech F, D'Amelio R, Monti M, Palaia I, Muzii L, Benedetti Panici P. Rucaparib: An emerging parp inhibitor for treatment of recurrent ovarian cancer. Cancer Treat Rev 2018; 66:7-14. [PMID: 29605737 DOI: 10.1016/j.ctrv.2018.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/28/2023]
Abstract
Recently, Poly-ADP-Ribose Polymerase (PARP) inhibitors are one of the most intensively studied group of antiblastic agents for the management of recurrent ovarian cancer. Among this family, Olaparib was the first to be approved by European Medicines Agency as maintenance therapy post-response to platinum-based chemotherapy for recurrent ovarian cancer in women with deleterious BRCA1/2 mutation. Following that, the Food and Drug Administration (FDA) approved Olaparib monotherapy as fourth or later line of treatment in advanced ovarian cancer with deleterious germ-line BRCA1/2 mutation. On March 2017, Niraparib, was approved as maintenance treatment of patients with recurrent epithelial ovarian, who are in complete or partial response to platinum-based chemotherapy, independently of BRCA mutation. Rucaparib inhibits PARP-1, 2 and 3, PARP-4, -12, -15 and -16, as well as tankyrase 1 and 2. On December 2016, it was granted accelerated approval by the FDA, based on data from two multicenter, single arm, phase II trials that evaluated the efficacy of Rucaparib in patients with deleterious, germline and/or somatic BRCA mutation-associated, advanced OC, who have been treated with two or more lines of chemotherapy. The maximum tolerated dose reported was 600 mg twice a day administered orally. Phase III studies are currently ongoing to further validate the efficacy of Rucaparib in the treatment setting and explore its usefulness in a maintenance setting as well. The focus of our review is to report the most recent investigations and clinical progress regarding Rucaparib for treatment of recurrent ovarian cancer.
Collapse
Affiliation(s)
- Angela Musella
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Erlisa Bardhi
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy.
| | - Claudia Marchetti
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Laura Vertechy
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Giusy Santangelo
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Carolina Sassu
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Federica Tomao
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Francesco Rech
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Renzo D'Amelio
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Monti
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Innocenza Palaia
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Ludovico Muzii
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecological-Obstetrical Sciences, and Urological Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
36
|
He X, Fan S. hsa-miR-212 modulates the radiosensitivity of glioma cells by targeting BRCA1. Oncol Rep 2018; 39:977-984. [PMID: 29286157 PMCID: PMC5802039 DOI: 10.3892/or.2017.6156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
Abstract
Radioresistance remains a major challenge in the treatment of glioma, and the response of patients to radio-therapy varies considerably. MicroRNAs (miRNAs) are involved in various biological processes. The purpose of the present study was to investigate miRNAs involved in the response to radiation in glioma cell lines. Total RNA was isolated from human glioma U251 cells 30 min after γ-ray exposure and hybridized to an miRNA chip array. miRNA expression profiles were analyzed by quantitative real-time PCR. pcDNA3/EGFP-miR-212 mimic transfection was used to verify the function of miR-212 in colony formation tests, and the effect of miR-212 overexpression on U251 cells was examined by western blot analysis of apoptosis-related proteins (Bcl-2, Bax, caspase-3 and cytochrome c). The target genes of miR-212 were predicted using bioinformatic tools including miRNA databases, and breast cancer susceptibility gene 1 (BRCA1) was selected for further confirmation by EGFP fluorescence reporter and loss- and gain-of-function assays. Of the 16 candidate miRNAs showing altered expression, five were assessed by real-time PCR; miR-212 was identified as contributing to the radioresistance of glioma cells and was shown to attenuate radiation-induced apoptosis. miR-212 negatively regulated BRCA1 expression by interacting with its 3'-untranslated region, suggesting a correlation between BRCA1 expression and radiosensitivity in glioma cells. U-118MG and SHG-44 cell lines were used to confirm these observations. The response of glioma cells to radiation involves the miR-212-mediated modulation of BRCA1 gene expression, suggesting that the miR-212/BRCA1 axis may play a potential role in the radiotherapy of gliomas.
Collapse
Affiliation(s)
- Xin He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, P.R. China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, P.R. China
| |
Collapse
|
37
|
Zhao W, Steinfeld JB, Liang F, Chen X, Maranon DG, Ma CJ, Kwon Y, Rao T, Wang W, Chen S, Song X, Deng Y, Jimenez-Sainz J, Lu L, Jensen RB, Xiong Y, Kupfer GM, Wiese C, Greene EC, Sung P. BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature 2017; 550:360-365. [PMID: 28976962 PMCID: PMC5800781 DOI: 10.1038/nature24060] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
The tumour suppressor complex BRCA1-BARD1 functions in the repair of DNA double-stranded breaks by homologous recombination. During this process, BRCA1-BARD1 facilitates the nucleolytic resection of DNA ends to generate a single-stranded template for the recruitment of another tumour suppressor complex, BRCA2-PALB2, and the recombinase RAD51. Here, by examining purified wild-type and mutant BRCA1-BARD1, we show that both BRCA1 and BARD1 bind DNA and interact with RAD51, and that BRCA1-BARD1 enhances the recombinase activity of RAD51. Mechanistically, BRCA1-BARD1 promotes the assembly of the synaptic complex, an essential intermediate in RAD51-mediated DNA joint formation. We provide evidence that BRCA1 and BARD1 are indispensable for RAD51 stimulation. Notably, BRCA1-BARD1 mutants with weakened RAD51 interactions show compromised DNA joint formation and impaired mediation of homologous recombination and DNA repair in cells. Our results identify a late role of BRCA1-BARD1 in homologous recombination, an attribute of the tumour suppressor complex that could be targeted in cancer therapy.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Justin B. Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyong Chen
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G. Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Chu Jian Ma
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timsi Rao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sheng Chen
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xuemei Song
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gary M. Kupfer
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
38
|
Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer. J Control Release 2017; 261:287-296. [PMID: 28700899 DOI: 10.1016/j.jconrel.2017.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Success of cancer treatment is often hampered by the emergence of multidrug resistance (MDR) mediated by P-glycoprotein (ABCB1/Pgp). Doxorubicin (DOX) is recognized by Pgp and therefore it can induce therapy resistance in breast cancer patients. In this study our aim was to evaluate the susceptibility of the pegylated liposomal formulation of doxorubicin (PLD/Doxil®/Caelyx®) to MDR. We show that cells selected to be resistant to DOX are cross-resistant to PLD and PLD is also ineffective in an allograft model of doxorubicin-resistant mouse B-cell leukemia. In contrast, PLD was far more efficient than DOX as reflected by a significant increase of both relapse-free and overall survival of Brca1-/-;p53-/- mammary tumor bearing mice. Increased survival could be explained by the delayed onset of drug resistance. Consistent with the higher Pgp levels needed to confer resistance, PLD administration was able to overcome doxorubicin insensitivity of the mouse mammary tumors. Our results indicate that the favorable pharmacokinetics achieved with PLD can effectively overcome Pgp-mediated resistance, suggesting that PLD therapy could be a promising strategy for the treatment of therapy-resistant breast cancer patients.
Collapse
|
39
|
Penha RCC, Lima SCS, Boroni M, Ramalho-Oliveira R, Viola JP, de Carvalho DP, Fusco A, Pinto LFR. Intrinsic LINE-1 Hypomethylation and Decreased Brca1 Expression are Associated with DNA Repair Delay in Irradiated Thyroid Cells. Radiat Res 2017; 188:144-155. [PMID: 28574327 DOI: 10.1667/rr14532.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to ionizing radiation greatly increases the risk of developing papillary thyroid carcinoma (PTC), especially during childhood, mainly due to gradual inactivation of DNA repair genes and DNA damages. Recent molecular characterization of PTC revealed DNA methylation deregulation of several promoters of DNA repair genes. Thus, epigenetic silencing might be a plausible mechanism for the activity loss of tumor suppressor genes in radiation-induced thyroid tumors. Herein, we investigated the impact of ionizing radiation on global methylation and CpG islands within promoter regions of homologous recombination (HR) and non-homologous end joining (NHEJ) genes, as well as its effects on gene expression, using two well-established normal differentiated thyroid cell lines (FRTL5 and PCCL3). Our data reveal that X-ray exposure promoted G2/M arrest in normal thyroid cell lines. The FRTL5 cells displayed a slower kinetics of double-strand breaks (DSB) repair and a lower long interspersed nuclear element-1 (LINE-1) methylation than the PCCL3 cells. Nevertheless, acute X-ray exposure does not alter the expression of genes involved in HR and NHEJ pathways, apart from the downregulation of Brca1 in thyroid cells. On the other hand, HR and NHEJ gene expressions were upregulated in radiation-induced senescent thyroid cells. Taken together, these data suggest that FRTL5 cells intrinsically have less efficient DNA DSB repair machinery than PCCL3 cells, as well as genomic instability, which could predispose the FRTL5 cells to unrepaired DSB lesions and, therefore, gene mutations.
Collapse
Affiliation(s)
| | | | - Mariana Boroni
- a Instituto Nacional de Câncer - INCA, Rio de Janeiro, Brazil
| | | | - João P Viola
- a Instituto Nacional de Câncer - INCA, Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- c Instituto de Biofisica Carlos Chagas Filho - CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alfredo Fusco
- a Instituto Nacional de Câncer - INCA, Rio de Janeiro, Brazil.,b Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | |
Collapse
|
40
|
Lehmann-Che J, Poirot B, Boyer JC, Evrard A. La génétique somatique des tumeurs solides, un incontournable à l’ère de la médecine de précision. Therapie 2017; 72:217-230. [DOI: 10.1016/j.therap.2016.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022]
|
41
|
So A, Le Guen T, Lopez BS, Guirouilh-Barbat J. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS J 2017; 284:2324-2344. [PMID: 28244221 DOI: 10.1111/febs.14053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to profound genome rearrangements and/or cell death. They routinely occur in genomes due to endogenous or exogenous stresses. Efficient repair systems, canonical non-homologous end-joining and homologous recombination exist in the cell and not only ensure the maintenance of genome integrity but also, via specific programmed DNA double-strand breaks, permit its diversity and plasticity. However, these repair systems need to be tightly controlled because they can also generate genomic rearrangements. Thus, when DSB repair is not properly regulated, genome integrity is no longer guaranteed. In this review, we will focus on non-programmed genome rearrangements generated by DSB repair, in somatic cells. We first discuss genome rearrangements induced by homologous recombination and end-joining. We then discuss recently described rearrangement mechanisms, driven by microhomologies, that do not involve the joining of DNA ends but rather initiate DNA synthesis (microhomology-mediated break-induced replication, fork stalling and template switching and microhomology-mediated template switching). Finally, we discuss chromothripsis, which is the shattering of a localized region of the genome followed by erratic rejoining.
Collapse
Affiliation(s)
- Ayeong So
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Tangui Le Guen
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Josée Guirouilh-Barbat
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| |
Collapse
|
42
|
Lehmann-Che J, Poirot B, Boyer JC, Evrard A. Cancer genomics guide clinical practice in personalized medicine. Therapie 2017; 72:439-451. [PMID: 28258721 DOI: 10.1016/j.therap.2016.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 01/04/2023]
Abstract
Targeted therapies have revolutionized the treatment of many cancers. Widely developed over the last decade, this new concept of precision medicine relies on the use of genomic technologies to analyze tumor samples in order to identify actionable targets and biomarkers of resistance. The goal is to optimize treatment by identifying which therapeutic approach is best for each patient, i.e. the treatment that is effective, has minimal adverse effects, and avoids unnecessary intervention and cost. The purpose of this review is to highlight, using a few seminal examples of therapeutic targets, the important contribution of appropriate analysis of key oncogenes or driver genes in making clinical decisions. Cancer genomics is now an indispensable part of clinical management. Furthermore, the development of next generation sequencing (NGS) will enable exploration of more and more genes of interest, leading to new treatment options for personalized medicine.
Collapse
Affiliation(s)
- Jacqueline Lehmann-Che
- Laboratoire d'oncologie moléculaire, hôpital Saint-Louis, 1, avenue Claude-Vellefaux 75475 Paris cedex 10, France; Unité CNRS UMR7212/U944, équipe de recherche translationnelle en oncologie, bâtiment Jean-Bernard, 75475 Paris, France.
| | - Brigitte Poirot
- Laboratoire d'oncologie moléculaire, hôpital Saint-Louis, 1, avenue Claude-Vellefaux 75475 Paris cedex 10, France; Unité CNRS UMR7212/U944, équipe de recherche translationnelle en oncologie, bâtiment Jean-Bernard, 75475 Paris, France
| | - Jean-Christophe Boyer
- Laboratoire de biochimie, CHU de Nîmes Carémeau, 30029 Nîmes, France; EA 2415, « Aide à la décision médicale personnalisée : aspects méthodologiques » IURC, faculté de médecine de Montpellier, 34093 Montpellier, France
| | - Alexandre Evrard
- Laboratoire de biochimie, CHU de Nîmes Carémeau, 30029 Nîmes, France; Unité Inserm U1194, Institut de recherche en cancérologie de Montpellier (IRCM), 34298 Montpellier, France
| |
Collapse
|
43
|
Krause CJ, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget 2016; 7:10414-32. [PMID: 26871287 PMCID: PMC4891129 DOI: 10.18632/oncotarget.7248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded chemokine receptor vGPCR acts as an oncogene in Kaposi's sarcomagenesis. Until now, the molecular mechanisms by which the vGPCR contributes to tumor development remain incompletely understood. Here, we show that the KSHV-vGPCR contributes to tumor progression through microRNA (miR)-34a-mediated induction of genomic instability. Large-scale analyses on the DNA, gene and protein level of cell lines derived from a mouse model of vGPCR-driven tumorigenesis revealed that a vGPCR–induced upregulation of miR-34a resulted in a broad suppression of genome maintenance genes. A knockdown of either the vGPCR or miR-34a largely restored the expression of these genes and confirmed miR-34a as a downstream effector of the KSHV-vGPCR that compromises genome maintenance mechanisms. This novel, protumorigenic role of miR-34a questions the use of miR-34a mimetics in cancer therapy as they could impair genome stability.
Collapse
Affiliation(s)
- Claudia J Krause
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Oliver Popp
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nanthakumar Thirunarayanan
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Martin Lipp
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerd Müller
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
44
|
Węsierska-Gądek J, Mauritz M, Mitulovic G, Cupo M. Differential Potential of Pharmacological PARP Inhibitors for Inhibiting Cell Proliferation and Inducing Apoptosis in Human Breast Cancer Cells. J Cell Biochem 2016; 116:2824-39. [PMID: 25981734 DOI: 10.1002/jcb.25229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
BRCA1/2-mutant cells are hypersensitive to inactivation of poly(ADP-ribose) polymerase 1 (PARP-1). We recently showed that inhibition of PARP-1 by NU1025 is strongly cytotoxic for BRCA1-positive BT-20 cells, but not BRCA1-deficient SKBr-3 cells. These results raised the possibility that other PARP-1 inhibitors, particularly those tested in clinical trials, may be more efficacious against BRCA1-deficient SKBr-3 breast cancer cells than NU1025. Thus, in the presented study the cytotoxicity of four PARP inhibitors under clinical evaluation (olaparib, rucaparib, iniparib and AZD2461) was examined and compared to that of NU1025. The sensitivity of breast cancer cells to the PARP-1 inhibition strongly varied. Remarkably, BRCA-1-deficient SKBr-3 cells were almost completely insensitive to NU1025, olaparib and rucaparib, whereas BRCA1-expressing BT-20 cells were strongly affected by NU1025 even at low doses. In contrast, iniparib and AZD2461 were cytotoxic for both BT-20 and SKBr-3 cells. Of the four tested PARP-1 inhibitors only AZD2461 strongly affected cell cycle progression. Interestingly, the anti-proliferative and pro-apoptotic potential of the tested PARP-1 inhibitors clearly correlated with their capacity to damage DNA. Further analyses revealed that proteomic signatures of the two studied breast cancer cell lines strongly differ, and a set of 197 proteins was differentially expressed in NU1025-treated BT-20 cancer cells. These results indicate that BT-20 cells may harbor an unknown defect in DNA repair pathway(s) rendering them sensitive to PARP-1 inhibition. They also imply that therapeutic applicability of PARP-1 inhibitors is not limited to BRCA mutation carriers but can be extended to patients harboring deficiencies in other components of the pathway(s).
Collapse
Affiliation(s)
- Józefa Węsierska-Gądek
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Vienna, Austria
| | - Matthias Mauritz
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Vienna, Austria
| | - Goran Mitulovic
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University of Vienna, Borschkegasse 8a, Vienna, 1090, Austria
| | - Maria Cupo
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Vienna, Austria
| |
Collapse
|
45
|
Abstract
Recent advances in the development of functional materials offer new tools to dissect human health and disease mechanisms. The use of tunable surfaces is especially appealing as substrates can be tailored to fit applications involving specific cell types or tissues. Here we use tunable materials to facilitate the three-dimensional (3D) analysis of BRCA1 gene regulatory complexes derived from human cancer cells. We employed a recently developed microchip platform to isolate BRCA1 protein assemblies natively formed in breast cancer cells with and without BRCA1 mutations. The captured assemblies proved amenable to cryo-electron microscopy (EM) imaging and downstream computational analysis. Resulting 3D structures reveal the manner in which wild-type BRCA1 engages the RNA polymerase II (RNAP II) core complex that contained K63-linked ubiquitin moieties—a putative signal for DNA repair. Importantly, we also determined that molecular assemblies harboring the BRCA15382insC mutation exhibited altered protein interactions and ubiquitination patterns compared to wild-type complexes. Overall, our analyses proved optimal for developing new structural oncology applications involving patient-derived cancer cells, while expanding our knowledge of BRCA1’s role in gene regulatory events.
Collapse
|
46
|
Baert A, Depuydt J, Van Maerken T, Poppe B, Malfait F, Storm K, van den Ende J, Van Damme T, De Nobele S, Perletti G, De Leeneer K, Claes KBM, Vral A. Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation. Breast Cancer Res 2016; 18:52. [PMID: 27184744 PMCID: PMC4869288 DOI: 10.1186/s13058-016-0709-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/23/2016] [Indexed: 01/08/2023] Open
Abstract
Background Breast cancer risk increases drastically in individuals carrying a germline BRCA1 mutation. The exposure to ionizing radiation for diagnostic or therapeutic purposes of BRCA1 mutation carriers is counterintuitive, since BRCA1 is active in the DNA damage response pathway. The aim of this study was to investigate whether healthy BRCA1 mutations carriers demonstrate an increased radiosensitivity compared with healthy individuals. Methods We defined a novel radiosensitivity indicator (RIND) based on two endpoints measured by the G2 micronucleus assay, reflecting defects in DNA repair and G2 arrest capacity after exposure to doses of 2 or 4 Gy. We investigated if a correlation between the RIND score and nonsense-mediated decay (NMD) could be established. Results We found significantly increased radiosensitivity in the cohort of healthy BRCA1 mutation carriers compared with healthy controls. In addition, our analysis showed a significantly different distribution over the RIND scores (p = 0.034, Fisher’s exact test) for healthy BRCA1 mutation carriers compared with non-carriers: 72 % of mutation carriers showed a radiosensitive phenotype (RIND score 1–4), whereas 72 % of the healthy volunteers showed no radiosensitivity (RIND score 0). Furthermore, 28 % of BRCA1 mutation carriers had a RIND score of 3 or 4 (not observed in control subjects). The radiosensitive phenotype was similar for relatives within several families, but not for unrelated individuals carrying the same mutation. The median RIND score was higher in patients with a mutation leading to a premature termination codon (PTC) located in the central part of the gene than in patients with a germline mutation in the 5′ end of the gene. Conclusions We show that BRCA1 mutations are associated with a radiosensitive phenotype related to a compromised DNA repair and G2 arrest capacity after exposure to either 2 or 4 Gy. Our study confirms that haploinsufficiency is the mechanism involved in radiosensitivity in patients with a PTC allele, but it suggests that further research is needed to evaluate alternative mechanisms for mutations not subjected to NMD. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0709-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annelot Baert
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Julie Depuydt
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katrien Storm
- Department of Medical Genetics, University of Antwerp/University Hospital of Antwerp, Antwerp, Belgium
| | - Jenneke van den Ende
- Department of Medical Genetics, University of Antwerp/University Hospital of Antwerp, Antwerp, Belgium
| | - Tim Van Damme
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sylvia De Nobele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Gianpaolo Perletti
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.,Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, Busto Arsizio, Italy
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | - Anne Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
47
|
De Picciotto N, Cacheux W, Roth A, Chappuis PO, Labidi-Galy SI. Ovarian cancer: Status of homologous recombination pathway as a predictor of drug response. Crit Rev Oncol Hematol 2016; 101:50-9. [DOI: 10.1016/j.critrevonc.2016.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 12/23/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
|
48
|
Vaidyanathan S, Thangavelu PU, Duijf PHG. Overexpression of Ran GTPase Components Regulating Nuclear Export, but not Mitotic Spindle Assembly, Marks Chromosome Instability and Poor Prognosis in Breast Cancer. Target Oncol 2016; 11:677-686. [DOI: 10.1007/s11523-016-0432-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Samadder P, Aithal R, Belan O, Krejci L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther 2016; 161:111-131. [PMID: 26899499 DOI: 10.1016/j.pharmthera.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.
Collapse
Affiliation(s)
- Pounami Samadder
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| | - Rakesh Aithal
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Belan
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
50
|
Panesar S, Neethirajan S. Microfluidics: Rapid Diagnosis for Breast Cancer. NANO-MICRO LETTERS 2016; 8:204-220. [PMID: 30460281 PMCID: PMC6223681 DOI: 10.1007/s40820-015-0079-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/04/2015] [Indexed: 05/06/2023]
Abstract
Breast cancer affected 1.7 million people worldwide in 2012 and accounts for approximately 23.3 % of all cancers diagnosed in women. The disease is characterized by a genetic mutation, either inherited or resulting from environmental factors, that causes uncontrollable cellular growth of breast tissue or adjacent tissues. Current means of diagnosing this disease depend on the individual analyzing the results from bulky, highly technical, and expensive equipment that is not globally accessible. As a result, patients can go undiagnosed due to a lack of available equipment or be over-diagnosed due to human error. This review attempts to highlight current means of diagnosing breast cancer and critically analyze their effectiveness and usefulness in terms of patient survival. An alternative means based on microfluidics biomarker detection is then presented. This method can be considered as a primary screening tool for diagnosing breast cancer based on its robustness, high throughput, low energy requirements, and accessibility to the general public.
Collapse
Affiliation(s)
- Satvinder Panesar
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|