1
|
Das Sarma J. Murine β-coronavirus spike protein: A major determinant of neuropathogenic properties. Virology 2025; 606:110499. [PMID: 40120171 DOI: 10.1016/j.virol.2025.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Coronaviruses have emerged as a significant challenge to human health. While earlier outbreaks of coronaviruses such as SARS-CoV and MERS-CoV posed serious threats, the recent SARS-CoV-2 pandemic has heightened interest in coronavirus research due to its pulmonary pathology, in addition to its neurological manifestations. In addition, the patients who have recovered from SARS-CoV-2 infection show long-term symptoms such as anosmia, brain fog and long COVID. A major hurdle in studying these viruses is the limited availability of specialized research facilities, emphasizing the need for prototype virus-based models to investigate the pathophysiology. The mouse hepatitis virus (MHV), a member of the β-coronavirus family, serves as an excellent model to unravel the mechanisms underlying virus-induced pathogenesis. This review highlights two decades of research efforts aimed at understanding the pathophysiological mechanism of coronavirus-induced diseases, focusing on the development of targeted recombinant strains to identify the minimal essential motif of the spike protein responsible for fusogenicity and neuropathogenicity. By synthesizing findings from these studies, the review identifies the most promising therapeutic targets against coronaviruses, paving the way for the development of pan-coronavirus antivirals.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Biological Science, Indian Institute of Science Education and Research, Kolkata, India; Department of Ophthalmology, University of Pennsylvania, USA.
| |
Collapse
|
2
|
Bartak M, Krahel WD, Gregorczyk-Zboroch K, Chodkowski M, Potârniche AV, Długosz E, Krzyżowska M, Cymerys J. Cytokine Profile Analysis During Sialodacryoadenitis Virus and Mouse Hepatitis Virus JHM Strain Infection in Primary Mixed Microglia and Astrocyte Culture-Preliminary Research. Cells 2025; 14:637. [PMID: 40358160 PMCID: PMC12071255 DOI: 10.3390/cells14090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
The Coronaviridae family has again demonstrated the potential for significant neurological complications in humans during the recent pandemic. In patients, these symptoms persist throughout the infection, often lasting for months. The consequences of most of these post-infection symptoms might be linked with abnormal cytokine production and reactive oxygen species (ROS) expression, resulting in neuron damage. We investigated the effect of infection with the Mouse Hepatitis Virus (MHV) JHM strain and Sialodacryoadenitis Virus (SDAV) on a primary microglia and astrocyte culture by analysing ROS production, cytokine and chemokine expression, and cell death during one month post infection. For this purpose, confocal microscopy, flow cytometry, and a high-throughput Luminex ProcartaPlex immunopanel for 48 cytokines and chemokines were utilised. The replication of MHV-JHM and SDAV in microglia and astrocytes has increased the production of pro-inflammatory cytokines and inhibited the production of anti-inflammatory cytokines. The cytokine expression induced by the two viruses differed, as did their detection after infection. SDAV infection resulted in a much broader cytokine response compared to that of MHV-JHM. Both viruses significantly increased ROS levels and induced apoptosis in a small percentage of the cells, but without necrosis.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| | - Weronika D. Krahel
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| | - Karolina Gregorczyk-Zboroch
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| | - Marcin Chodkowski
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, 01-063 Warsaw, Poland
| | - Adrian Valentin Potârniche
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Ewa Długosz
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| | - Małgorzata Krzyżowska
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, 01-063 Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| |
Collapse
|
3
|
Caliman-Sturdza OA, Gheorghita R, Lobiuc A. Neuropsychiatric Manifestations of Long COVID-19: A Narrative Review of Clinical Aspects and Therapeutic Approaches. Life (Basel) 2025; 15:439. [PMID: 40141784 PMCID: PMC11943530 DOI: 10.3390/life15030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
The COVID-19 (C-19) pandemic has highlighted the significance of understanding the long-term effects of this disease on the quality of life of those infected. Long COVID-19 (L-C19) presents as persistent symptoms that continue beyond the main illness period, usually lasting weeks to years. One of the lesser-known but significant aspects of L-C19 is its impact on neuropsychiatric manifestations, which can have a profound effect on an individual's quality of life. Research shows that L-C19 creates neuropsychiatric issues such as mental fog, emotional problems, and brain disease symptoms, along with sleep changes, extreme fatigue, severe head pain, tremors with seizures, and pain in nerves. People with cognitive problems plus fatigue and mood disorders experience great difficulty handling everyday activities, personal hygiene, and social interactions. Neuropsychiatric symptoms make people withdraw from social activity and hurt relationships, thus causing feelings of loneliness. The unpredictable state of L-C19 generates heavy psychological pressure through emotional suffering, including depression and anxiety. Neuropsychiatric changes such as cognitive impairment, fatigue, and mood swings make it hard for people to work or study effectively, which decreases their output at school or work and lowers their job contentment. The purpose of this narrative review is to summarize the clinical data present in the literature regarding the neuropsychiatric manifestations of L-C19, to identify current methods of diagnosis and treatment that lead to correct management of the condition, and to highlight the impact of these manifestations on patients' quality of life.
Collapse
Affiliation(s)
- Olga Adriana Caliman-Sturdza
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (O.A.C.-S.); (A.L.)
- Emergency Clinical Hospital Suceava, 720224 Suceava, Romania
| | - Roxana Gheorghita
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (O.A.C.-S.); (A.L.)
| | - Andrei Lobiuc
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (O.A.C.-S.); (A.L.)
| |
Collapse
|
4
|
Yang T, Tang Y, Liu X, Gong S, Yao E. Microglia synchronizes with the circadian rhythm of the glymphatic system and modulates glymphatic system function. IUBMB Life 2024; 76:1209-1222. [PMID: 39223969 PMCID: PMC11580365 DOI: 10.1002/iub.2903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Microglia, as immune cells in the central nervous system, possess the ability to adapt morphologically and functionally to their environment. Glymphatic system, the principal waste clearance system in the brain, exhibits circadian rhythms. However, the impact of microglia on the glymphatic system function remains unknown. In this study, we explored the intricate relationship between microglia and the glymphatic system. Examining diurnal patterns, we identified synchronized behaviors in glymphatic activity and microglial morphology, peaking during sleep and exhibiting distinct changes in branching complexity. Depleting microglia using PLX5622 or in P2Y12 knockout mice enhanced glymphatic function. Chemogenetic manipulation of microglia demonstrated that activating HM3D improved glymphatic function, while inhibiting HM4D unexpectedly increased microglial complexity. These findings highlight the dynamic influence of microglia on the glymphatic system.
Collapse
Affiliation(s)
- Ting Yang
- Department of NeurologyThe First Affiliated Hospital of Shihezi UniversityShiheziXinjiangChina
| | - Yan Tang
- Department of GeriatricThe First Affiliated Hospital of Shihezi UniversityShiheziXinjiangChina
| | - Xinghua Liu
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Song Gong
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ensheng Yao
- Department of NeurologyThe First Affiliated Hospital of Shihezi UniversityShiheziXinjiangChina
| |
Collapse
|
5
|
Jiang Y, Neal J, Sompol P, Yener G, Arakaki X, Norris CM, Farina FR, Ibanez A, Lopez S, Al‐Ezzi A, Kavcic V, Güntekin B, Babiloni C, Hajós M. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia. Alzheimers Dement 2024; 20:7296-7319. [PMID: 39206795 PMCID: PMC11485397 DOI: 10.1002/alz.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024]
Abstract
Many coronavirus disease 2019 (COVID-19) positive individuals exhibit abnormal electroencephalographic (EEG) activity reflecting "brain fog" and mild cognitive impairments even months after the acute phase of infection. Resting-state EEG abnormalities include EEG slowing (reduced alpha rhythm; increased slow waves) and epileptiform activity. An expert panel conducted a systematic review to present compelling evidence that cognitive deficits due to COVID-19 and to Alzheimer's disease and related dementia (ADRD) are driven by overlapping pathologies and neurophysiological abnormalities. EEG abnormalities seen in COVID-19 patients resemble those observed in early stages of neurodegenerative diseases, particularly ADRD. It is proposed that similar EEG abnormalities in Long COVID and ADRD are due to parallel neuroinflammation, astrocyte reactivity, hypoxia, and neurovascular injury. These neurophysiological abnormalities underpinning cognitive decline in COVID-19 can be detected by routine EEG exams. Future research will explore the value of EEG monitoring of COVID-19 patients for predicting long-term outcomes and monitoring efficacy of therapeutic interventions. HIGHLIGHTS: Abnormal intrinsic electrophysiological brain activity, such as slowing of EEG, reduced alpha wave, and epileptiform are characteristic findings in COVID-19 patients. EEG abnormalities have the potential as neural biomarkers to identify neurological complications at the early stage of the disease, to assist clinical assessment, and to assess cognitive decline risk in Long COVID patients. Similar slowing of intrinsic brain activity to that of COVID-19 patients is typically seen in patients with mild cognitive impairments, ADRD. Evidence presented supports the idea that cognitive deficits in Long COVID and ADRD are driven by overlapping neurophysiological abnormalities resulting, at least in part, from neuroinflammatory mechanisms and astrocyte reactivity. Identifying common biological mechanisms in Long COVID-19 and ADRD can highlight critical pathologies underlying brain disorders and cognitive decline. It elucidates research questions regarding cognitive EEG and mild cognitive impairment in Long COVID that have not yet been adequately investigated.
Collapse
Affiliation(s)
- Yang Jiang
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jennifer Neal
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Görsev Yener
- Faculty of MedicineDept of Neurologyİzmir University of EconomicsİzmirTurkey
- IBG: International Biomedicine and Genome CenterİzmirTurkey
| | - Xianghong Arakaki
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Agustin Ibanez
- BrainLat: Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiagoChile
- Cognitive Neuroscience CenterUniversidad de San AndrésVictoriaBuenos AiresArgentina
- GBHI: Global Brain Health InstituteTrinity College DublinThe University of DublinDublin 2Ireland
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
| | - Abdulhakim Al‐Ezzi
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Mihály Hajós
- Cognito TherapeuticsCambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
6
|
Salvio AL, Fernandes RA, Ferreira HFA, Duarte LA, Gutman EG, Raposo-Vedovi JV, Filho CHFR, da Costa Nunes Pimentel Coelho WL, Passos GF, Andraus MEC, da Costa Gonçalves JP, Cavalcanti MG, Amaro MP, Kader R, de Andrade Medronho R, Figueiredo CP, Amado-Leon LA, Alves-Leon SV. High Levels of NfL, GFAP, TAU, and UCH-L1 as Potential Predictor Biomarkers of Severity and Lethality in Acute COVID-19. Mol Neurobiol 2024; 61:3545-3558. [PMID: 37996731 PMCID: PMC11087339 DOI: 10.1007/s12035-023-03803-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Few studies showed that neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tubulin-associated unit (TAU), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) may be related to neurological manifestations and severity during and after SARS-CoV-2 infection. The objective of this work was to investigate the relationship among nervous system biomarkers (NfL, TAU, GFAP, and UCH-L1), biochemical parameters, and viral loads with heterogeneous outcomes in a cohort of severe COVID-19 patients admitted in Intensive Care Unit (ICU) of a university hospital. For that, 108 subjects were recruited within the first 5 days at ICU. In parallel, 16 mild COVID-19 patients were enrolled. Severe COVID-19 group was divided between "deceased" and "survivor." All subjects were positive for SARS-CoV-2 detection. NfL, total TAU, GFAP, and UCH-L1 quantification in plasma was performed using SIMOA SR-X platform. Of 108 severe patients, 36 (33.33%) presented neurological manifestation and 41 (37.96%) died. All four biomarkers - GFAP, NfL, TAU, and UCH-L1 - were significantly higher among deceased patients in comparison to survivors (p < 0.05). Analyzing biochemical biomarkers, higher Peak Serum Ferritin, D-Dimer Peak, Gamma-glutamyltransferase, and C-Reactive Protein levels were related to death (p < 0.0001). In multivariate analysis, GFAP, NfL, TAU, UCH-L1, and Peak Serum Ferritin levels were correlated to death. Regarding SARS-CoV-2 viral load, no statistical difference was observed for any group. Thus, Ferritin, NFL, GFAP, TAU, and UCH-L1 are early biomarkers of severity and lethality of SARS-COV-2 infection and may be important tools for therapeutic decision-making in the acute phase of disease.
Collapse
Affiliation(s)
- Andreza Lemos Salvio
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Renan Amphilophio Fernandes
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Helena França Alcaraz Ferreira
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Larissa Araujo Duarte
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Elisa Gouvea Gutman
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Jessica Vasques Raposo-Vedovi
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | | | | | | | - Maria Emília Cosenza Andraus
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil
| | - Marta Guimarães Cavalcanti
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Marisa Pimentel Amaro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- School of Medicine, Post-Graduate Program in Infectious and Parasitic Diseases, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Rafael Kader
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- School of Medicine, Post-Graduate Program in Infectious and Parasitic Diseases, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Roberto de Andrade Medronho
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | | | - Luciane Almeida Amado-Leon
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| | - Soniza Vieira Alves-Leon
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, 22290-240, Brazil.
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
7
|
Barrios-González DA, Philibert-Rosas S, Martínez-Juárez IE, Sotelo-Díaz F, Rivas-Alonso V, Sotelo J, Sebastián-Díaz MA. Frequency and Focus of in Vitro Studies of Microglia-Expressed Cytokines in Response to Viral Infection: A Systematic Review. Cell Mol Neurobiol 2024; 44:21. [PMID: 38349562 PMCID: PMC10864563 DOI: 10.1007/s10571-024-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
It is well known that as part of their response to infectious agents such as viruses, microglia transition from a quiescent state to an activated state that includes proinflammatory and anti-inflammatory phases; this behavior has been described through in vitro studies. However, recent in vivo studies on the function of microglia have questioned the two-phase paradigm; therefore, a change in the frequency of in vitro studies is expected. A systematic review was carried out to identify the microglial cytokine profile against viral infection that has been further evaluated through in vitro studies (pro-inflammatory or anti-inflammatory), along with analysis of its publication frequency over the years. For this review, 531 articles published in the English language were collected from PubMed, Web of Science, EBSCO and ResearchGate. Only 27 papers met the inclusion criteria for this systematic review. In total, 19 cytokines were evaluated in these studies, most of which are proinflammatory; the most common are IL-6, followed by TNF-α and IL-1β. It should be pointed out that half of the studies were published between 2015 and 2022 (raw data available in https://github.com/dadriba05/SystematicReview.git ). In this review, we identified that evaluation of pro-inflammatory cytokines released by microglia against viral infections has been performed more frequently than that of anti-inflammatory cytokines; additionally, a higher frequency of evaluation of the response of microglia cells to viral infection through in vitro studies from 2015 and beyond was noted.
Collapse
Affiliation(s)
| | | | | | - Fernando Sotelo-Díaz
- Epilepsy Clinic. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Verónica Rivas-Alonso
- Multiple Sclerosis Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Julio Sotelo
- Department of Neuroimmunology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Mario A Sebastián-Díaz
- Nephrology Department, South Central High Specialty Hospital PEMEX, Anillo Periférico 4019 Fuentes del Pedregal, Tlalpan, 1440, Mexico City, Mexico.
| |
Collapse
|
8
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
9
|
Steardo L, Steardo L, Scuderi C. Astrocytes and the Psychiatric Sequelae of COVID-19: What We Learned from the Pandemic. Neurochem Res 2023; 48:1015-1025. [PMID: 35922744 PMCID: PMC9362636 DOI: 10.1007/s11064-022-03709-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
COVID-19, initially regarded as specific lung disease, exhibits an extremely broad spectrum of symptoms. Extrapulmonary manifestations of the disease also include important neuropsychiatric symptoms with atypical characteristics. Are these disturbances linked to stress accompanying every systemic infection, or are due to specific neurobiological changes associated with COVID-19? Evidence accumulated so far indicates that the pathophysiology of COVID-19 is characterized by systemic inflammation, hypoxia resulting from respiratory failure, and neuroinflammation (either due to viral neurotropism or in response to cytokine storm), all affecting the brain. It is reasonable to hypothesize that all these events may initiate or worsen psychiatric and cognitive disorders. Damage to the brain triggers a specific type of reactive response mounted by neuroglia cells, in particular by astrocytes which are the homeostatic cell par excellence. Astrocytes undergo complex morphological, biochemical, and functional remodeling aimed at mobilizing the regenerative potential of the central nervous system. If the brain is not directly damaged, resolution of systemic pathology usually results in restoration of the physiological homeostatic status of neuroglial cells. The completeness and dynamics of this process in pathological conditions remain largely unknown. In a subset of patients, glial cells could fail to recover after infection thus promoting the onset and progression of COVID-19-related neuropsychiatric diseases. There is evidence from post-mortem examinations of the brains of COVID-19 patients of alterations in both astrocytes and microglia. In conclusion, COVID-19 activates a huge reactive response of glial cells, that physiologically act as the main controller of the inflammatory, protective and regenerative events. However, in some patients the restoration of glial physiological state does not occur, thus compromising glial function and ultimately resulting in homeostatic failure underlying a set of specific neuropsychiatric symptoms related to COVID-19.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
- Università Giustino Fortunato, Benevento, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Levin OS, Vashchilin VV, Pikija S, Khasanova DR, Turuspekova ST, Bogolepova AN, Shmonin AA, Maltceva MN, Vozniuk IA, Yanishevskiy SN, Huseynov DK, Karakulova YV, Obidov FK. [Current approaches in the treatment and rehabilitation of patients with neurological diseases after COVID-19. Resolution of the International Experts Forum]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:44-51. [PMID: 36843458 DOI: 10.17116/jnevro202312302144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Despite the significant shift in global attention away from the pandemic, the problem of a new coronavirus infection remains important in the medical community. Almost 3 years after the start of the COVID-19 pandemic the issues of rehabilitation and management of delayed manifestations and sequelae of the disease are especially important. According to numerous available data, the new coronavirus infection is characterized by multiorgan lesions. Respiratory dysfunction, clotting disorders, myocardial dysfunction and various arrhythmias, acute coronary syndrome, acute renal failure, GI disorders, hepatocellular damage, hyperglycemia and ketosis, dermatological complications, ophthalmological symptoms and neurological disorders may be found. Significant prevalence of the latter in the post-coronavirus period necessitated this International Expert Forum to develop unified approaches to the management of patients with neurological complications and sequelae of new coronavirus infection based on practical experience and considering the scientific information available on COVID-19. The expert council developed a resolution formulating the tactics for the management of patients with neurological manifestations of COVID-19.
Collapse
Affiliation(s)
- O S Levin
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - V V Vashchilin
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Republic of Belarus
| | - S Pikija
- Paracelsus Private Medical University, Salzburg, Austria
| | | | - S T Turuspekova
- Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - A N Bogolepova
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnology, Moscow, Russia
| | - A A Shmonin
- Pavlov First Saint Petersburg Medical University, St. Petersburg, Russia
| | - M N Maltceva
- Pavlov First Saint Petersburg Medical University, St. Petersburg, Russia.,Russian Canis-therapy Support and Development Association, St. Petersburg, Russia
| | - I A Vozniuk
- Dzhanelidze Saint Petersburg Research Institute of Emergency Medicine, St. Petersburg, Russia
| | - S N Yanishevskiy
- Kirov Military Medical Academy, St. Petersburg, Russia.,Almazov National Medical Research Centre, St. Petersburg, Russia
| | - D K Huseynov
- Mingachevir City Hospital, Mingachevir, Republic of Azerbaijan
| | | | - F Kh Obidov
- Regional Hospital of Samarkand Region, Samarkand, Republic of Uzbekistan
| |
Collapse
|
11
|
Immune Functions of Astrocytes in Viral Neuroinfections. Int J Mol Sci 2023; 24:ijms24043514. [PMID: 36834929 PMCID: PMC9960577 DOI: 10.3390/ijms24043514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuroinfections of the central nervous system (CNS) can be triggered by various pathogens. Viruses are the most widespread and have the potential to induce long-term neurologic symptoms with potentially lethal outcomes. In addition to directly affecting their host cells and inducing immediate changes in a plethora of cellular processes, viral infections of the CNS also trigger an intense immune response. Regulation of the innate immune response in the CNS depends not only on microglia, which are fundamental immune cells of the CNS, but also on astrocytes. These cells align blood vessels and ventricle cavities, and consequently, they are one of the first cell types to become infected after the virus breaches the CNS. Moreover, astrocytes are increasingly recognized as a potential viral reservoir in the CNS; therefore, the immune response initiated by the presence of intracellular virus particles may have a profound effect on cellular and tissue physiology and morphology. These changes should be addressed in terms of persisting infections because they may contribute to recurring neurologic sequelae. To date, infections of astrocytes with different viruses originating from genetically distinct families, including Flaviviridae, Coronaviridae, Retroviridae, Togaviridae, Paramyxoviridae, Picomaviridae, Rhabdoviridae, and Herpesviridae, have been confirmed. Astrocytes express a plethora of receptors that detect viral particles and trigger signaling cascades, leading to an innate immune response. In this review, we summarize the current knowledge on virus receptors that initiate the release of inflammatory cytokines from astrocytes and depict the involvement of astrocytes in immune functions of the CNS.
Collapse
|
12
|
Adesse D, Gladulich L, Alvarez-Rosa L, Siqueira M, Marcos AC, Heider M, Motta CS, Torices S, Toborek M, Stipursky J. Role of aging in Blood-Brain Barrier dysfunction and susceptibility to SARS-CoV-2 infection: impacts on neurological symptoms of COVID-19. Fluids Barriers CNS 2022; 19:63. [PMID: 35982454 PMCID: PMC9386676 DOI: 10.1186/s12987-022-00357-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
COVID-19, which is caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), has resulted in devastating morbidity and mortality worldwide due to lethal pneumonia and respiratory distress. In addition, the central nervous system (CNS) is well documented to be a target of SARS-CoV-2, and studies detected SARS-CoV-2 in the brain and the cerebrospinal fluid of COVID-19 patients. The blood-brain barrier (BBB) was suggested to be the major route of SARS-CoV-2 infection of the brain. Functionally, the BBB is created by an interactome between endothelial cells, pericytes, astrocytes, microglia, and neurons, which form the neurovascular units (NVU). However, at present, the interactions of SARS-CoV-2 with the NVU and the outcomes of this process are largely unknown. Moreover, age was described as one of the most prominent risk factors for hospitalization and deaths, along with other comorbidities such as diabetes and co-infections. This review will discuss the impact of SARS-CoV-2 on the NVU, the expression profile of SARS-CoV-2 receptors in the different cell types of the CNS and the possible role of aging in the neurological outcomes of COVID-19. A special emphasis will be placed on mitochondrial functions because dysfunctional mitochondria are also a strong inducer of inflammatory reactions and the "cytokine storm" associated with SARS-CoV-2 infection. Finally, we will discuss possible drug therapies to treat neural endothelial function in aged patients, and, thus, alleviate the neurological symptoms associated with COVID-19.
Collapse
Affiliation(s)
- Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Luis Gladulich
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Liandra Alvarez-Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele Siqueira
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anne Caroline Marcos
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Marialice Heider
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Caroline Soares Motta
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Joice Stipursky
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
de Melo BAG, Mundim MV, Lemes RMR, Cruz EM, Ribeiro TN, Santiago CF, da Fonsêca JHL, Benincasa JC, Stilhano RS, Mantovani N, Santana LC, Durães‐Carvalho R, Diaz RS, Janini LMR, Maricato JT, Porcionatto MA. 3D Bioprinted Neural-Like Tissue as a Platform to Study Neurotropism of Mouse-Adapted SARS-CoV-2. Adv Biol (Weinh) 2022; 6:e2200002. [PMID: 35521969 PMCID: PMC9347594 DOI: 10.1002/adbi.202200002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Indexed: 01/28/2023]
Abstract
The effects of neuroinvasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) become clinically relevant due to the numerous neurological symptoms observed in Corona Virus Disease 2019 (COVID-19) patients during infection and post-COVID syndrome or long COVID. This study reports the biofabrication of a 3D bioprinted neural-like tissue as a proof-of-concept platform for a more representative study of SARS-CoV-2 brain infection. Bioink is optimized regarding its biophysical properties and is mixed with murine neural cells to construct a 3D model of COVID-19 infection. Aiming to increase the specificity to murine cells, SARS-CoV-2 is mouse-adapted (MA-SARS-CoV-2) in vitro, in a protocol first reported here. MA-SARS-CoV-2 reveals mutations located at the Orf1a and Orf3a domains and is evolutionarily closer to the original Wuhan SARS-CoV-2 strain than SARS-CoV-2 used for adaptation. Remarkably, MA-SARS-CoV-2 shows high specificity to murine cells, which present distinct responses when cultured in 2D and 3D systems, regarding cell morphology, neuroinflammation, and virus titration. MA-SARS-CoV-2 represents a valuable tool in studies using animal models, and the 3D neural-like tissue serves as a powerful in vitro platform for modeling brain infection, contributing to the development of antivirals and new treatments for COVID-19.
Collapse
Affiliation(s)
- Bruna A. G. de Melo
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Mayara V. Mundim
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Robertha M. R. Lemes
- Department of Biological SciencesUniversidade Federal de São PauloDiadema09920‐540Brazil
| | - Elisa M. Cruz
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Tais N. Ribeiro
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Carolina F. Santiago
- Department of MicrobiologyImmunology and ParasitoloyEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Jéssica H. L. da Fonsêca
- Department of Manufacturing and Materials EngineeringFaculdade de Engenharia MecânicaUniversidade Estadual de CampinasCampinasSP13083‐860Brazil
| | - Julia C. Benincasa
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Roberta S. Stilhano
- Department of Physiological SciencesFaculdade de Ciências MédicasSanta Casa de São PauloSão Paulo01221‐020Brazil
| | - Nathalia Mantovani
- Department of MedicineEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Luiz C. Santana
- Department of MedicineEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Ricardo Durães‐Carvalho
- Department of MicrobiologyImmunology and ParasitoloyEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Ricardo S. Diaz
- Department of MedicineEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Luiz M. R. Janini
- Department of MicrobiologyImmunology and ParasitoloyEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Juliana T. Maricato
- Department of MicrobiologyImmunology and ParasitoloyEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Marimelia A. Porcionatto
- Department of BiochemistryEscola Paulista de MedicinaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| |
Collapse
|
14
|
Paoletti AM, Melilli MG, Vecchio I. Experimental Models of SARS-COV-2 Infection in the Central Nervous System. J Cent Nerv Syst Dis 2022; 14:11795735221102231. [PMID: 35783991 PMCID: PMC9247991 DOI: 10.1177/11795735221102231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has raised serious concerns worldwide due to
its great impact on human health and forced scientists racing to find effective
therapies to control the infection and a vaccine for the virus. To this end,
intense research efforts have focused on understanding the viral biology of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for
COVID-19. The ever-expanding list of cases, reporting clinical neurological
complications in COVID-19 patients, strongly suggests the possibility of the
virus invading the nervous system. The pathophysiological processes responsible
for the neurological impact of COVID-19 are not fully understood. Some
neurodegenerative disorders sometimes take more than a decade to manifest, so
the long-term pathophysiological outcomes of SARS-CoV-2 neurotropism should be
regarded as a challenge for researchers in this field. There is no documentation
on the long-term impact of SARS-CoV-2 on the human central nervous system (CNS).
Most of the data relating to neurological damage during SARS-CoV-2 infection
have yet to be established experimentally. The purpose of this review is to
describe the knowledge gained, from experimental models, to date, on the
mechanisms of neuronal invasion and the effects produced by infection. The hope
is that, once the processes are understood, therapies can be implemented to
limit the damage produced. Long-term monitoring and the use of appropriate and
effective therapies could reduce the severity of symptoms and improve quality of
life of the most severely affected patients, with a special focus on those have
required hospital care and assisted respiration.
Collapse
Affiliation(s)
- Anna Maria Paoletti
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| | | | - Immacolata Vecchio
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| |
Collapse
|
15
|
Xuan X, Zhou G, Chen C, Shao A, Zhou Y, Li X, Zhou J. Glymphatic System: Emerging Therapeutic Target for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6189170. [PMID: 35726332 PMCID: PMC9206554 DOI: 10.1155/2022/6189170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
The newly discovered glymphatic system acts as pseudolymphatic vessels subserving brain waste clearance and is functionally dependent on astrocytic aquaporin-4 channels. The glymphatic system primarily functions during sleep as an interchange between cerebrospinal fluid and interstitial fluid, with cerebrospinal fluid flowing into the parenchyma via the perivascular spaces and then exchanging with interstitial fluid. The discovery of meningeal lymphatics helps refine the conceptual framework of glymphatic pathway, as certain waste products collected alongside perivascular spaces ultimately drain into the cervical lymph nodes via meningeal lymphatics, whose function regulates the functioning of the glymphatic system. The glymphatic and meningeal lymphatic systems are critical for the homeostasis of central nervous system, and their malfunctions complicate cerebral dysfunction and diseases. The present review will shed light on the structure, regulation, functions, and interrelationships of the glymphatic system and meningeal lymphatics. We will also expound on their impairments and corresponding targeted intervention in neurodegenerative diseases, traumatic brain injury, stroke, and infectious/autoimmune diseases, offering valuable references for future research.
Collapse
Affiliation(s)
- Xianjun Xuan
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Guoyi Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Caihong Chen
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Li
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| |
Collapse
|
16
|
Haidar MA, Shakkour Z, Reslan MA, Al-Haj N, Chamoun P, Habashy K, Kaafarani H, Shahjouei S, Farran SH, Shaito A, Saba ES, Badran B, Sabra M, Kobeissy F, Bizri M. SARS-CoV-2 involvement in central nervous system tissue damage. Neural Regen Res 2022; 17:1228-1239. [PMID: 34782556 PMCID: PMC8643043 DOI: 10.4103/1673-5374.327323] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, it became evident that the SARS-CoV-2 virus infects multiple organs including the brain. Several clinical studies revealed that patients with COVID-19 infection experience an array of neurological signs ranging in severity from headaches to life-threatening strokes. Although the exact mechanism by which the SARS-CoV-2 virus directly impacts the brain is not fully understood, several theories have been suggested including direct and indirect pathways induced by the virus. One possible theory is the invasion of SARS-CoV-2 to the brain occurs either through the bloodstream or via the nerve endings which is considered to be the direct route. Such findings are based on studies reporting the presence of viral material in the cerebrospinal fluid and brain cells. Nevertheless, the indirect mechanisms, including blood-clotting abnormalities and prolonged activation of the immune system, can result in further tissue and organ damages seen during the course of the disease. This overview attempts to give a thorough insight into SARS-CoV-2 coronavirus neurological infection and highlights the possible mechanisms leading to the neurological manifestations observed in infected patients.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadine Al-Haj
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Perla Chamoun
- Faculty of Medicine, University of Balamand, Koura, Lebanon
| | - Karl Habashy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Shima Shahjouei
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah H. Farran
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Esber S. Saba
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Mirna Sabra
- Faculty of Medicine, Lebanese University, Neuroscience Research Center (NRC), Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Institute, Neurology Department, Geisinger Health System, PA, USA
| | - Maya Bizri
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
17
|
Seehusen F, Clark JJ, Sharma P, Bentley EG, Kirby A, Subramaniam K, Wunderlin-Giuliani S, Hughes GL, Patterson EI, Michael BD, Owen A, Hiscox JA, Stewart JP, Kipar A. Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses 2022; 14:1020. [PMID: 35632761 PMCID: PMC9146514 DOI: 10.3390/v14051020] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.
Collapse
Affiliation(s)
- Frauke Seehusen
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (F.S.); (S.W.-G.)
| | - Jordan J. Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Eleanor G. Bentley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Adam Kirby
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Krishanthi Subramaniam
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Sabina Wunderlin-Giuliani
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (F.S.); (S.W.-G.)
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.); (E.I.P.)
| | - Edward I. Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.); (E.I.P.)
| | - Benedict D. Michael
- Department of Clinical Infection Microbiology and Immunology and NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK;
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool L9 7AL, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L3 3NY, UK;
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (F.S.); (S.W.-G.)
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| |
Collapse
|
18
|
Oxidative stress and inflammatory markers in patients with COVID-19: Potential role of RAGE, HMGB1, GFAP and COX-2 in disease severity. Int Immunopharmacol 2022; 104:108502. [PMID: 35063743 PMCID: PMC8730710 DOI: 10.1016/j.intimp.2021.108502] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
Background SARS-CoV-2 infection can lead to the abnormal induction of cytokines and a dysregulated hyperinflammatory state that is implicated in disease severity and risk of death. There are several molecules present in blood associated with immune cellular response, inflammation, and oxidative stress that could be used as severity markers in respiratory viral infections such as COVID-19. However, there is a lack of clinical studies evaluating the role of oxidative stress-related molecules including glial fibrillary acidic protein (GFAP), the receptor for advanced glycation end products (RAGE), high mobility group box-1 protein (HMGB1) and cyclo-oxygenase-2 (COX-2) in COVID-19 pathogenesis. Aim To evaluate the role of oxidative stress-related molecules in COVID-19. Method An observational study with 93 Brazilian participants from September 2020 to April 2021, comprising 23 patients with COVID-19 admitted to intensive care unit (ICU), 19 outpatients with COVID-19 with mild to moderate symptoms, 17 individuals reporting a COVID-19 history, and 34 healthy controls. Blood samples were taken from all participants and western blot assay was used to determine the RAGE, HMGB1, GFAP, and COX-2 immunocontent. Results We found that GFAP levels were higher in patients with severe or critical COVID-19 compared to outpatients (p = 0.030) and controls (p < 0.001). A significant increase in immunocontents of RAGE (p < 0.001) and HMGB1 (p < 0.001) were also found among patients admitted to the ICU compared to healthy controls, as well as an overexpression of the inducible COX-2 (p < 0.001). In addition, we found a moderate to strong correlation between RAGE, GFAP and HMGB1 proteins. Conclusion SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, HMGB1, and COX-2 in patients with the most severe forms of COVID-19.
Collapse
|
19
|
Bakhtazad A, Garmabi B, Joghataei MT. Neurological manifestations of coronavirus infections, before and after COVID-19: a review of animal studies. J Neurovirol 2021; 27:864-884. [PMID: 34727365 PMCID: PMC8561685 DOI: 10.1007/s13365-021-01014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus, which was first identified in December 2019 in China, has resulted in a yet ongoing viral pandemic. Coronaviridae could potentially cause several disorders in a wide range of hosts such as birds and mammals. Although infections caused by this family of viruses are predominantly limited to the respiratory tract, Betacoronaviruses are potentially able to invade the central nervous system (CNS) as well as many other organs, thereby inducing neurological damage ranging from mild to lethal in both animals and humans. Over the past two decades, three novel CoVs, SARS-CoV-1, MERS-CoV, and SARS-CoV-2, emerging from animal reservoirs have exhibited neurotropic properties causing severe and even fatal neurological diseases. The pathobiology of these neuroinvasive viruses has yet to be fully known. Both clinical features of the previous CoV epidemics (SARS-CoV-1 and MERS-CoV) and lessons from animal models used in studying neurotropic CoVs, especially SARS and MERS, constitute beneficial tools in comprehending the exact mechanisms of virus implantation and in illustrating pathogenesis and virus dissemination pathways in the CNS. Here, we review the animal research which assessed CNS infections with previous more studied neurotropic CoVs to demonstrate how experimental studies with appliable animal models can provide scientists with a roadmap in the CNS impacts of SARS-CoV-2. Indeed, animal studies can finally help us discover the underlying mechanisms of damage to the nervous system in COVID-19 patients and find novel therapeutic agents in order to reduce mortality and morbidity associated with neurological complications of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Haft-Tir Sq, University Blv, 3614773947 Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| |
Collapse
|
20
|
Groppa SA, Ciolac D, Duarte C, Garcia C, Gasnaș D, Leahu P, Efremova D, Gasnaș A, Bălănuță T, Mîrzac D, Movila A. Molecular Mechanisms of SARS-CoV-2/COVID-19 Pathogenicity on the Central Nervous System: Bridging Experimental Probes to Clinical Evidence and Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:1-27. [PMID: 34735712 DOI: 10.1007/5584_2021_675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has dramatically impacted the global healthcare systems, constantly challenging both research and clinical practice. Although it was initially believed that the SARS-CoV-2 infection is limited merely to the respiratory system, emerging evidence indicates that COVID-19 affects multiple other systems including the central nervous system (CNS). Furthermore, most of the published clinical studies indicate that the confirmed CNS inflammatory manifestations in COVID-19 patients are meningitis, encephalitis, acute necrotizing encephalopathy, acute transverse myelitis, and acute disseminated encephalomyelitis. In addition, the neuroinflammation along with accelerated neurosenescence and susceptible genetic signatures in COVID-19 patients might prime the CNS to neurodegeneration and precipitate the occurrence of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Thus, this review provides a critical evaluation and interpretive analysis of existing published preclinical as well as clinical studies on the key molecular mechanisms modulating neuroinflammation and neurodegeneration induced by the SARS-CoV-2. In addition, the essential age- and gender-dependent impacts of SARS-CoV-2 on the CNS of COVID-19 patients are also discussed.
Collapse
Affiliation(s)
- Stanislav A Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Dumitru Ciolac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Carolina Duarte
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christopher Garcia
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Daniela Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Pavel Leahu
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Efremova
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Tatiana Bălănuță
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Mîrzac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Institute of Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
21
|
Jesuthasan A, Massey F, Manji H, Zandi MS, Wiethoff S. Emerging potential mechanisms and predispositions to the neurological manifestations of COVID-19. J Neurol Sci 2021; 428:117608. [PMID: 34391037 PMCID: PMC8332920 DOI: 10.1016/j.jns.2021.117608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/10/2021] [Accepted: 08/01/2021] [Indexed: 12/23/2022]
Abstract
A spectrum of neurological disease associated with COVID-19 is becoming increasingly apparent. However, the mechanisms behind these manifestations remain poorly understood, significantly hindering their management. The present review subsequently attempts to address the evolving molecular, cellular and systemic mechanisms of NeuroCOVID, which we have classified as the acute and long-term neurological effects of COVID-19. We place particular emphasis on cerebrovascular, demyelinating and encephalitic presentations, which have been reported. Several mechanisms are presented, especially the involvement of a "cytokine storm". We explore the genetic and demographic factors that may predispose individuals to NeuroCOVID. The increasingly evident long-term neurological effects are also presented, including the impact of the virus on cognition, autonomic function and mental wellbeing, which represent an impending burden on already stretched healthcare services. We subsequently reinforce the need for cautious surveillance, especially for those with predisposing factors, with effective clinical phenotyping, appropriate investigation and, if possible, prompt treatment. This will be imperative to prevent downstream neurological sequelae, including those related to the long COVID phenotypes that are being increasingly recognised.
Collapse
Affiliation(s)
- Aaron Jesuthasan
- University College Hospital, University College London Hospitals NHS Foundation Trust, London, UK.
| | - Flavia Massey
- University College London Medical School, Gower Street, London, UK
| | - Hadi Manji
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael S Zandi
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Sarah Wiethoff
- UCL Institute of Neurology, Queen Square, London, UK; Klinik für Neurologie mit Institut für Translationale Neurologie, Albert Schweitzer Campus 1, Gebäude A1, D-48149 Münster, Germany
| |
Collapse
|
22
|
Sepehrinezhad A, Gorji A, Sahab Negah S. SARS-CoV-2 may trigger inflammasome and pyroptosis in the central nervous system: a mechanistic view of neurotropism. Inflammopharmacology 2021; 29:1049-1059. [PMID: 34241783 PMCID: PMC8266993 DOI: 10.1007/s10787-021-00845-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can enter the central nervous system and cause several neurological manifestations. Data from cerebrospinal fluid analyses and postmortem samples have been shown that SARS-CoV-2 has neuroinvasive properties. Therefore, ongoing studies have focused on mechanisms involved in neurotropism and neural injuries of SARS-CoV-2. The inflammasome is a part of the innate immune system that is responsible for the secretion and activation of several pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and interleukin-18. Since cytokine storm has been known as a major mechanism followed by SARS-CoV-2, inflammasome may trigger an inflammatory form of lytic programmed cell death (pyroptosis) following SARS-CoV-2 infection and contribute to associated neurological complications. We reviewed and discussed the possible role of inflammasome and its consequence pyroptosis following coronavirus infections as potential mechanisms of neurotropism by SARS-CoV-2. Further studies, particularly postmortem analysis of brain samples obtained from COVID-19 patients, can shed light on the possible role of the inflammasome in neurotropism of SARS-CoV-2.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Society for Brain Mapping and Therapeutics, Iranian Chapter, SBMT, Los Angeles, USA.
| |
Collapse
|
23
|
Boulkrane MS, Ilina V, Melchakov R, Arisov M, Fedotova J, Gozzo L, Drago F, Lu W, Sarapultsev A, Tceilikman V, Baranenko D. The impact of SARS-Cov-2 on the Nervous system and Mental Health. Curr Neuropharmacol 2021; 20:412-431. [PMID: 34191699 PMCID: PMC9413788 DOI: 10.2174/1570159x19666210629151303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
The World Health Organization declared the pandemic situation caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) in March 2020, but the detailed pathophysiological mechanisms of Coronavirus disease 2019 (COVID-19) are not yet completely understood. Therefore, to date, few therapeutic options are available for patients with mild-moderate or serious disease. In addition to systemic and respiratory symptoms, several reports have documented various neurological symptoms and impairments of mental health. The current review aims to provide the available evidence about the effects of SARS-CoV-2 infection on mental health. The present data suggest that SARS-CoV-2 produces a wide range of impairments and disorders of the brain. However, a limited number of studies investigated the neuroinvasive potential of SARS-CoV-2. Although the main features and outcomes of COVID-19 are linked to severe acute respiratory illness, the possible damages on the brain should be considered, too.
Collapse
Affiliation(s)
- Mohamed Said Boulkrane
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Victoria Ilina
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Roman Melchakov
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Mikhail Arisov
- All-Russian Scientific Research Institute for Fundamental and Applied Parasitology of Animals and Plants - a branch of the Federal State Budget Scientific Institution "Federal Scientific Centre VIEV", Moscow, Russian Federation
| | - Julia Fedotova
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Lucia Gozzo
- Department of Biomedical and Biotechnological Sciences, Biological Tower, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Biological Tower, School of Medicine, University of Catania, Catania, Italy
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China
| | - Alexey Sarapultsev
- School of Medical Biology, South Ural State University, 76 Lenin prospect, Chelaybinsk, Russian Federation
| | - Vadim Tceilikman
- School of Medical Biology, South Ural State University, 76 Lenin prospect, Chelaybinsk, Russian Federation
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| |
Collapse
|
24
|
Bandala C, Cortes-Altamirano JL, Reyes-Long S, Lara-Padilla E, Ilizaliturri-Flores I, Alfaro-Rodríguez A. Putative mechanism of neurological damage in COVID-19 infection. Acta Neurobiol Exp (Wars) 2021; 81:69-79. [PMID: 33949163 DOI: 10.21307/ane-2021-008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/28/2021] [Indexed: 11/11/2022]
Abstract
The recent pandemic of the coronavirus infectious disease 2019 (COVID-19) has affected around 192 countries, and projections have shown that around 40% to 70% of world population could be infected in the next months. COVID-19 is caused by the virus SARS- CoV-2, it enters the cells through the ACE2 receptor (angiotensin converting enzyme 2). It is well known that SARS-CoV-2 could develop mild, moderate, and severe respiratory symptoms that could lead to death. The virus receptor is expressed in different organs such as the lungs, kidney, intestine, and brain, among others. In the lung could cause pneumonia and severe acute respiratory syndrome (SARS). The brain can be directly affected by cellular damage due to viral invasion, which can lead to an inflammatory response, by the decrease in the enzymatic activity of ACE2 that regulates neuroprotective, neuro-immunomodulatory and neutralizing functions of oxidative stress. Another severe damage is hypoxemia in patients that do not receive adequate respiratory support. The neurological symptoms that the patient presents, will depend on factors that condition the expression of ACE2 in the brain such as age and sex, as well as the mechanism of neuronal invasion, the immune response and the general state of the patient. Clinical and histopathological studies have described neurological alterations in human patients with COVID-19. These conditions could have a possible contribution to the morbidity and mortality caused by this disease and may even represent the onset of neurodegenerative activity in recovered patients. The recent pandemic of the coronavirus infectious disease 2019 (COVID-19) has affected around 192 countries, and projections have shown that around 40% to 70% of world population could be infected in the next months. COVID-19 is caused by the virus SARS- CoV-2, it enters the cells through the ACE2 receptor (angiotensin converting enzyme 2). It is well known that SARS-CoV-2 could develop mild, moderate, and severe respiratory symptoms that could lead to death. The virus receptor is expressed in different organs such as the lungs, kidney, intestine, and brain, among others. In the lung could cause pneumonia and severe acute respiratory syndrome (SARS). The brain can be directly affected by cellular damage due to viral invasion, which can lead to an inflammatory response, by the decrease in the enzymatic activity of ACE2 that regulates neuroprotective, neuro-immunomodulatory and neutralizing functions of oxidative stress. Another severe damage is hypoxemia in patients that do not receive adequate respiratory support. The neurological symptoms that the patient presents, will depend on factors that condition the expression of ACE2 in the brain such as age and sex, as well as the mechanism of neuronal invasion, the immune response and the general state of the patient. Clinical and histopathological studies have described neurological alterations in human patients with COVID-19. These conditions could have a possible contribution to the morbidity and mortality caused by this disease and may even represent the onset of neurodegenerative activity in recovered patients.
Collapse
Affiliation(s)
- Cindy Bandala
- División de Neurociencias , Instituto Nacional de Rehabilitación , México ; Escuela Superior de Medicina , Instituto Politécnico Nacional , México
| | - José Luis Cortes-Altamirano
- División de Neurociencias , Instituto Nacional de Rehabilitación , México ; Universidad Estatal del Valle de Ecatepec , México
| | - Samuel Reyes-Long
- División de Neurociencias , Instituto Nacional de Rehabilitación , México ; Escuela Superior de Medicina , Instituto Politécnico Nacional , México
| | | | | | | |
Collapse
|
25
|
Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. J Diet Suppl 2021; 20:218-253. [PMID: 33977807 DOI: 10.1080/19390211.2021.1922567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overall mental health depends in part on the blood-brain barrier, which regulates nutrient transfer in-and-out of the brain and its central nervous system. Lactoferrin, an innate metal-transport protein, synthesized in the substantia nigra, particularly in dopaminergic neurons and activated microglia is vital for brain physiology. Lactoferrin rapidly crosses the blood-brain barrier via receptor-mediated transcytosis and accumulates in the brain capillary endothelial cells. Lactoferrin receptors are additionally present on glioma cells, brain micro-vessels, and neurons. As a regulator of neuro-redox, microglial lactoferrin is critical for protection/repair of neurons and healthy brain function. Iron imbalance and oxidative stress are common among patients with neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, dementia, depression, and multiple sclerosis. As an endogenous iron-chelator, lactoferrin prevents iron accumulation and dopamine depletion in Parkinson's disease patients. Oral lactoferrin supplementation could modulate the p-Akt/PTEN pathway, reduce Aβ deposition, and ameliorate cognitive decline in Alzheimer's disease. Novel lactoferrin-based nano-therapeutics have emerged as effective drug-delivery systems for clinical management of neurodegenerative disorders. Recent emergence of the Coronavirus disease-2019 (COVID-19) pandemic, initially considered a respiratory illness, demonstrated a broader virulence spectrum with the ability to cross the blood-brain barrier and inflict a plethora of neuropathological manifestations in the brain - the Neuro-COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are widely reported in Parkinson's disease, Alzheimer's disease, dementia, and multiple sclerosis patients with aggravated clinical outcomes. Lactoferrin, credited with several neuroprotective benefits in the brain could serve as a potential adjuvant in the clinical management of Neuro-COVID-19.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Washington, District of Columbia, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, California, USA
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California, USA
- Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
26
|
Chong ZZ, Souayah N. SARS-CoV-2 Induced Neurological Manifestations Entangles Cytokine Storm That Implicates For Therapeutic Strategies. Curr Med Chem 2021; 29:2051-2074. [PMID: 33970839 DOI: 10.2174/0929867328666210506161543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
The new coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can present with neurological symptoms and induce neurological complications. The involvement in both the central and peripheral nervous systems in COVID-19 patients has been associated with direct invasion of the virus and the induction of cytokine storm. This review discussed the pathways for the virus invasion into the nervous system and characterized the SARS-CoV-2 induced cytokine storm. In addition, the mechanisms underlying the immune responses and cytokine storm induction after SARS-CoV-2 infection were also discussed. Although some neurological symptoms are mild and disappear after recovery from infection, some severe neurological complications contribute to the mortality of COVID-19 patients. Therefore, the insight into the cause of SARS-CoV-2 induced cytokine storm in context with neurological complications will formulate the novel management of the disease and further identify new therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Zhao-Zhong Chong
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Nizar Souayah
- Department of Neurology, Rutgers New Jersey Medical School, 90 Bergen Street Room Suite 8100, Newark, NJ 07101, United States
| |
Collapse
|
27
|
Hosseini SM, Abrishami M, Zamani G, Hemmati A, Momtahen S, Hassani M, Omidtabrizi A. Acute Bilateral Neuroretinitis and Panuveitis in A Patient with Coronavirus Disease 2019: A Case Report. Ocul Immunol Inflamm 2021; 29:677-680. [PMID: 33830840 DOI: 10.1080/09273948.2021.1894457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: Herein, we report a case of bilateral neuroretinitis and panuveitis in a patient recovered from coronavirus disease 2019 (COVID-19).Case presentation: A 37-year-old male patient with a history of recovered COVID-19, which was confirmed with nasopharyngeal reverse transcriptase polymerase chain reaction (RT-PCR) for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), about one-month ago was referred with one-week history of bilateral severe vision loss. Visual acuity was counting fingers, and bilateral retinitis and panuveitis were revealed in ocular examination. The result of the vitreous sample using RT-PCR was positive for SARS-CoV-2 and negative for Herpesviridae viruses and mycobacterium tuberculosis. The patient was successfully treated with corticosteroid.Conclusion: We report a case of bilateral neuroretinitis and panuveitisin a recovered COVID-19 patient and positive RT-PCR of the vitreous sample. It is suggested to apply intraocular sampling and evaluation for COVID-19 in patients with the new-onset of uveitis and/or retinitis during the pandemic.
Collapse
Affiliation(s)
| | - Mojtaba Abrishami
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghodsieh Zamani
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Armin Hemmati
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Solmaz Momtahen
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Hassani
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Omidtabrizi
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Chakravarty D, Das Sarma J. Murine-β-coronavirus-induced neuropathogenesis sheds light on CNS pathobiology of SARS-CoV2. J Neurovirol 2021; 27:197-216. [PMID: 33547593 PMCID: PMC7864135 DOI: 10.1007/s13365-021-00945-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
The pandemic caused by SARS-CoV-2 has caused widespread infection and significant mortality across the globe. Combined virology perspective of SARS-CoV-2 with a deep-rooted understanding of pathophysiological and immunological processes underlying the clinical manifestations of COVID-19 is of prime importance. The characteristic symptom of COVID-19 is respiratory distress with diffused alveolar damage, but emerging evidence suggests COVID-19 might also have neurologic consequences. Dysregulated homeostasis in the lungs has proven to be fatal, but one cannot ignore that the inability to breathe might be due to defects in the respiratory control center of the brainstem. While the mechanism of pulmonary distress has been documented in the literature, awareness of neurological features and their pathophysiology is still in the nascent state. This review makes references to the neuro-immune axis and neuro-invasive potential of SARS-CoV and SARS-CoV2, as well as the prototypic H-CoV strains in human brains. Simultaneously, considerable discussion on relevant experimental evidence of mild to severe neurological manifestations of fellow neurotropic murine-β-CoVs (m-CoVs) in the mouse model will help understand the underpinning mechanisms of Neuro-COVID. In this review, we have highlighted the neuroimmunopathological processes in murine CoVs. While MHV infection in mice and SARS-CoV-2 infection in humans share numerous parallels, there are critical differences in viral recognition and viral entry. These similarities are highlighted in this review, while differences have also been emphasized. Though CoV-2 Spike does not favorably interact with murine ACE2 receptor, modification of murine SARS-CoV2 binding domain or development of transgenic ACE-2 knock-in mice might help in mediating consequential infection and understanding human CoV2 pathogenesis in murine models. While a global animal model that can replicate all aspects of the human disease remains elusive, prior insights and further experiments with fellow m-β-CoV-induced cause-effect experimental models and current human COVID-19 patients data may help to mitigate the SARS-CoV-2-induced multifactorial multi-organ failure.
Collapse
Affiliation(s)
- Debanjana Chakravarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Haringhata, 741246, Mohanpur, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Haringhata, 741246, Mohanpur, India.
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Aslan C, Nikfarjam S, Asadzadeh M, Jafari R. Neurological manifestations of COVID-19: with emphasis on Iranian patients. J Neurovirol 2021; 27:217-227. [PMID: 33710597 PMCID: PMC7953513 DOI: 10.1007/s13365-021-00964-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has instigated a global pandemic as a formidable and highly contagious infectious disease. Although the respiratory system remains the most frequently affected organ, several case reports have revealed that the complications are not merely limited to the respiratory system, and neurotropic and neuroinvasive properties have also been observed, leading to neurological diseases. In the present paper, it was intended to review the possible neuroinvasive routes of SARS-CoV-2 and its mechanisms that may cause neurological damage. Additionally, the neurological manifestations of COVID-19 across the globe were discussed with emphasis on Iran, while highlighting the impact of SARS-CoV-2 on the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Cynthia Aslan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Nikfarjam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asadzadeh
- Department of Radiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
30
|
Gonçalves de Andrade E, Šimončičová E, Carrier M, Vecchiarelli HA, Robert MÈ, Tremblay MÈ. Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic. Front Cell Neurosci 2021; 15:647378. [PMID: 33737867 PMCID: PMC7961561 DOI: 10.3389/fncel.2021.647378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is marked by cardio-respiratory alterations, with increasing reports also indicating neurological and psychiatric symptoms in infected individuals. During COVID-19 pathology, the central nervous system (CNS) is possibly affected by direct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invasion, exaggerated systemic inflammatory responses, or hypoxia. Psychosocial stress imposed by the pandemic further affects the CNS of COVID-19 patients, but also the non-infected population, potentially contributing to the emergence or exacerbation of various neurological or mental health disorders. Microglia are central players of the CNS homeostasis maintenance and inflammatory response that exert their crucial functions in coordination with other CNS cells. During homeostatic challenges to the brain parenchyma, microglia modify their density, morphology, and molecular signature, resulting in the adjustment of their functions. In this review, we discuss how microglia may be involved in the neuroprotective and neurotoxic responses against CNS insults deriving from COVID-19. We examine how these responses may explain, at least partially, the neurological and psychiatric manifestations reported in COVID-19 patients and the general population. Furthermore, we consider how microglia might contribute to increased CNS vulnerability in certain groups, such as aged individuals and people with pre-existing conditions.
Collapse
Affiliation(s)
| | - Eva Šimončičová
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Marie-Ève Robert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 2021; 91:740-755. [PMID: 33039660 PMCID: PMC7543714 DOI: 10.1016/j.bbi.2020.10.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Central nervous system (CNS) innate immunity plays essential roles in infections, neurodegenerative diseases, and brain or spinal cord injuries. Astrocytes and microglia are the principal cells that mediate innate immunity in the CNS. Pattern recognition receptors (PRRs), expressed by astrocytes and microglia, sense pathogen-derived or endogenous ligands released by damaged cells and initiate the innate immune response. Toll-like receptors (TLRs) are a well-characterized family of PRRs. The contribution of microglial TLR signaling to CNS pathology has been extensively investigated. Even though astrocytes assume a wide variety of key functions, information about the role of astroglial TLRs in CNS disease and injuries is limited. Because astrocytes display heterogeneity and exhibit phenotypic plasticity depending on the effectors present in the local milieu, they can exert both detrimental and beneficial effects. TLRs are modulators of these paradoxical astroglial properties. The goal of the current review is to highlight the essential roles played by astroglial TLRs in CNS infections, injuries and diseases. We discuss the contribution of astroglial TLRs to host defense as well as the dissemination of viral and bacterial infections in the CNS. We examine the link between astroglial TLRs and the pathogenesis of neurodegenerative diseases and present evidence showing the pivotal influence of astroglial TLR signaling on sterile inflammation in CNS injury. Finally, we define the research questions and areas that warrant further investigations in the context of astrocytes, TLRs, and CNS dysfunction.
Collapse
Affiliation(s)
- Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Robert F. Heary
- Department of Neurological Surgery, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
32
|
ElBini Dhouib I. Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2. Drug Discov Ther 2020; 14:262-272. [PMID: 33390561 DOI: 10.5582/ddt.2020.03106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in 2019 in Wuhan, China. Clinically, respiratory tract symptoms as well as other organs disorders are observed in patients positively diagnosed coronavirus disease 2019 (COVID-19). In addition, neurological symptoms, mainly anosmia, ageusia and headache were observed in many patients. Once in the central nervous system (CNS), the SARS-CoV-2 can reside either in a quiescent latent state, or eventually in actively state leading to severe acute encephalitis, characterized by neuroinflammation and prolonged neuroimmune activation. SRAS-CoV-2 requires angiotensin-converting enzyme 2 (ACE2) as a cell entry receptor. The expression of this receptor in endothelial cells of blood-brain barrier (BBB) shows that SRAS-CoV-2 may have higher neuroinvasive potential compared to known coronaviruses. This review summarizes available information regarding the impact of SRAS-CoV-2 in the brain and tended to identify its potential pathways of neuroinvasion. We offer also an understanding of the long-term impact of latently form of SARS-CoV-2 on the development of neurodegenerative disorders. As a conclusion, the persistent infection of SRAS-CoV-2 in the brain could be involved on human neurodegenerative diseases that evolve a gradual process, perhapes, over several decades.
Collapse
Affiliation(s)
- Ines ElBini Dhouib
- Institut Pasteur de Tunis, Laboratoire des Biomolécules, Venins et Applications Théranostiques, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
33
|
Rodriguez M, Soler Y, Perry M, Reynolds JL, El-Hage N. Impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the Nervous System: Implications of COVID-19 in Neurodegeneration. Front Neurol 2020; 11:583459. [PMID: 33304309 PMCID: PMC7701115 DOI: 10.3389/fneur.2020.583459] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), began in December 2019, in Wuhan, China and was promptly declared as a pandemic by the World Health Organization (WHO). As an acute respiratory disease, COVID-19 uses the angiotensin-converting enzyme 2 (ACE2) receptor, which is the same receptor used by its predecessor, SARS-CoV, to enter and spread through the respiratory tract. Common symptoms of COVID-19 include fever, cough, fatigue and in a small population of patients, SARS-CoV-2 can cause several neurological symptoms. Neurological malaise may include severe manifestations, such as acute cerebrovascular disease and meningitis/encephalitis. Although there is evidence showing that coronaviruses can invade the central nervous system (CNS), studies are needed to address the invasion of SARS-CoV-2 in the CNS and to decipher the underlying neurotropic mechanisms used by SARS-CoV-2. This review summarizes current reports on the neurological manifestations of COVID-19 and addresses potential routes used by SARS-CoV-2 to invade the CNS.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Yemmy Soler
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Marissa Perry
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jessica L Reynolds
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nazira El-Hage
- Department of Immunology and Nano-medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
34
|
Murta V, Villarreal A, Ramos AJ. Severe Acute Respiratory Syndrome Coronavirus 2 Impact on the Central Nervous System: Are Astrocytes and Microglia Main Players or Merely Bystanders? ASN Neuro 2020; 12:1759091420954960. [PMID: 32878468 PMCID: PMC7476346 DOI: 10.1177/1759091420954960] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With confirmed coronavirus disease 2019 (COVID-19) cases surpassing the 18 million mark around the globe, there is an imperative need to gain comprehensive understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are associated with respiratory or intestinal symptoms, reports of neurological signs and symptoms are increasing. The etiology of these neurological manifestations remains obscure, and probably involves several direct pathways, not excluding the direct entry of the virus to the central nervous system (CNS) through the olfactory epithelium, circumventricular organs, or disrupted blood–brain barrier. Furthermore, neuroinflammation might occur in response to the strong systemic cytokine storm described for COVID-19, or due to dysregulation of the CNS rennin-angiotensin system. Descriptions of neurological manifestations in patients in the previous coronavirus (CoV) outbreaks have been numerous for the SARS-CoV and lesser for Middle East respiratory syndrome coronavirus (MERS-CoV). Strong evidence from patients and experimental models suggests that some human variants of CoV have the ability to reach the CNS and that neurons, astrocytes, and/or microglia can be target cells for CoV. A growing body of evidence shows that astrocytes and microglia have a major role in neuroinflammation, responding to local CNS inflammation and/or to disbalanced peripheral inflammation. This is another potential mechanism for SARS-CoV-2 damage to the CNS. In this comprehensive review, we will summarize the known neurological manifestations of SARS-CoV-2, SARS-CoV and MERS-CoV; explore the potential role for astrocytes and microglia in the infection and neuroinflammation; and compare them with the previously described human and animal CoV that showed neurotropism to propose possible underlying mechanisms.
Collapse
Affiliation(s)
- Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alberto J Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
35
|
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), first appeared in December 2019, in Wuhan, China and evolved into a pandemic. As Angiotensin-Converting Enzyme 2 (ACE2) is one of the potential target receptors for SARS-CoV-2 in human body, which is expressed in different tissues, multiple organs might become affected. In the initial phase of the current pandemic, a handful of post-mortem case-series revealed COVID-19-related pathological changes in various organs. Although pathological examination is not a feasible method of diagnosis, it can elucidate pathological changes, pathogenesis of the disease, and the cause of death in COVID-19 cases. Herein, we thoroughly reviewed multiple organs including lung, gastrointestinal tract, liver, kidney, skin, heart, blood, spleen, lymph nodes, brain, blood vessels, and placenta in terms of COVID-19-related pathological alterations. Also, these findings were compared with SARS and MERS infection, wherever applicable. We found a diverse range of pathological changes, some of which resemble those found in SARS and MERS.
Collapse
|
36
|
Battaglini D, Brunetti I, Anania P, Fiaschi P, Zona G, Ball L, Giacobbe DR, Vena A, Bassetti M, Patroniti N, Schenone A, Pelosi P, Rocco PRM, Robba C. Neurological Manifestations of Severe SARS-CoV-2 Infection: Potential Mechanisms and Implications of Individualized Mechanical Ventilation Settings. Front Neurol 2020; 11:845. [PMID: 32903391 PMCID: PMC7434832 DOI: 10.3389/fneur.2020.00845] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
In December 2019, an outbreak of illness caused by a novel coronavirus (2019-nCoV, subsequently renamed SARS-CoV-2) was reported in Wuhan, China. Coronavirus disease 2019 (COVID-19) quickly spread worldwide to become a pandemic. Typical manifestations of COVID-19 include fever, dry cough, fatigue, and respiratory distress. In addition, both the central and peripheral nervous system can be affected by SARS-CoV-2 infection. These neurological changes may be caused by viral neurotropism, by a hyperinflammatory and hypercoagulative state, or even by mechanical ventilation-associated impairment. Hypoxia, endothelial cell damage, and the different impacts of different ventilatory strategies may all lead to increased stress and strain, potentially exacerbating the inflammatory response and leading to a complex interaction between the lungs and the brain. To date, no studies have taken into consideration the possible secondary effect of mechanical ventilation on brain recovery and outcomes. The aim of our review is to provide an updated overview of the potential pathogenic mechanisms of neurological manifestations in COVID-19, discuss the physiological issues related to brain-lung interactions, and propose strategies for optimization of respiratory support in critically ill patients with SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
- Denise Battaglini
- Department of Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Iole Brunetti
- Department of Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Pasquale Anania
- Department of Neurosurgery, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Pietro Fiaschi
- Department of Neurosurgery, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Gianluigi Zona
- Department of Neurosurgery, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Department of Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Disease Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Antonio Vena
- Infectious Disease Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Matteo Bassetti
- Infectious Disease Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Nicolò Patroniti
- Department of Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Department of Neurology, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Ministry of Science, Technology, and Innovation, Brasília, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| |
Collapse
|
37
|
Vargas G, Medeiros Geraldo LH, Gedeão Salomão N, Viana Paes M, Regina Souza Lima F, Carvalho Alcantara Gomes F. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and glial cells: Insights and perspectives. Brain Behav Immun Health 2020; 7:100127. [PMID: 32838339 PMCID: PMC7423575 DOI: 10.1016/j.bbih.2020.100127] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
In December 2019, a pneumonia outbreak was reported in Wuhan, Hubei province, China. Since then, the World Health Organization declared a public health emergency of international concern due to a growing number of deaths around the globe, as well as unparalleled economic and sociodemographic consequences. The disease called coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel form of human coronavirus. Although coronavirus infections have been associated with neurological manifestations such as febrile seizures, convulsions, change in mental status, and encephalitis, less is known about the impact of SARS-CoV-2 in the brain. Recently, emerging evidence suggests that SARS-CoV-2 is associated with neurological alterations in COVID-19 patients with severe clinical manifestations. The molecular and cellular mechanisms involved in this process, as well as the neurotropic and neuroinvasive properties of SARS-CoV-2, are still poorly understood. Glial cells, such as astrocytes and microglia, play pivotal roles in the brain response to neuroinflammatory insults and neurodegenerative diseases. Further, accumulating evidence has shown that those cells are targets of several neurotropic viruses that severely impact their function. Glial cell dysfunctions have been associated with several neuroinflammatory diseases, suggesting that SARS-CoV-2 likely has a primary effect on these cells in addition to a secondary effect from neuronal damage. Here, we provide an overview of these data and discuss the possible implications of glial cells as targets of SARS-CoV-2. Considering the roles of microglia and astrocytes in brain inflammatory responses, we shed light on glial cells as possible drivers and potential targets of therapeutic strategies against neurological manifestations in patients with COVID-19. The main goal of this review is to highlight the need to consider glial involvement in the progression of COVID-19 and potentially include astrocytes and microglia as mediators of SARS-CoV-2-induced neurological damage.
Collapse
Affiliation(s)
- Gabriele Vargas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Natália Gedeão Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Marciano Viana Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
38
|
Pearce L, Davidson SM, Yellon DM. The cytokine storm of COVID-19: a spotlight on prevention and protection. Expert Opin Ther Targets 2020; 24:723-730. [PMID: 32594778 DOI: 10.1080/14728222.2020.1783243] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The cytokine release syndrome (CRS) of COVID-19 is associated with the development of critical illness requiring multi-organ support. Further research is required to halt progression of multi-organ injury induced by hyper-inflammation. AREAS COVERED PubMed/MEDLINETM databases were accessed between May 9th-June 9th, 2020, to review the latest perspectives on the treatment and pathogenesis of CRS. EXPERT OPINION Over-activity of chemotaxis triggers a macrophage activation syndrome (MAS) resulting in the release of pro-inflammatory cytokines. IL-6 and TNF- α are at the forefront of hyper-inflammation. The inflammatory cascade induces endothelial activation and capillary leak, leading to circulatory collapse and shock. As endothelial dysfunction persists, there is activation of the clotting cascade and microvascular obstruction. Continued endothelial activation results in multi-organ failure, regardless of pulmonary tissue damage. We propose that targeting the endothelium may interrupt this cycle. Immuno-modulating therapies have been suggested, however, further data is necessary to confirm that they do not jeopardize adaptive immunity. Inhibition of IL-6 and the Janus Kinase, signal transducer and activator of transcription proteins pathway (JAK/STAT), are favorable targets. Remote ischemic conditioning (RIC) reduces the inflammation of sepsis in animal models and should be considered as a low risk intervention, in combination with cardiovascular protection.
Collapse
Affiliation(s)
- Lucie Pearce
- The Hatter Cardiovascular Institute, University College London , London, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London , London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London , London, UK
| |
Collapse
|