1
|
Przybył BJ, Szlis M, Misztal A, Wójcik-Gładysz A. QRFP43 modulates the activity of the hypothalamic-pituitary-thyroid axis in female sheep. Sci Rep 2025; 15:1085. [PMID: 39774489 PMCID: PMC11707026 DOI: 10.1038/s41598-025-85693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Since the early discovery of QRFP43, intensive research has been primarily focused on its role in the modulation of food intake. As is widely recognised, the regulation of the body's energy status is a highly complex process involving numerous systems, hormones and neurotransmitters. Among the most important regulators of energy status, alongside the satiety and hunger centre located in the hypothalamus, is the HPT axis, which directly and indirectly affects the regulation of metabolism in all cells of the body. Therefore, it seems highly important to conduct studies aimed at elucidating how QRFP43 may impact the secretory activity of the HPT axis. The objective of this work was to investigate the role of QRFP43 in modulating HPT axis activity in sheep. The study examined mRNA and peptide expression of TRH and TSH in the hypothalamus and pituitary, as well as plasma concentrations of TSH, free T4 (FT4) and free T3 (FT3). Moreover, the relationship between QRFP34 and mRNA expression of the Dio1, Dio2, and Dio3 genes was explored in selected tissues of the HPT axis. The animals (n = 48) were randomly divided into three experimental groups: a control group receiving an ICV infusion of Ringer-Locke solution, and two experimental groups receiving ICV infusions of QRFP43 at doses of 10 and 50 µg per day. Four 50-minute ICV infusions were administered to all sheep at 30 min intervals each of three consecutive days. Hypothalamic, pituitary and thyroid glands were collected and preserved for further immunohistochemical and molecular biological analyses. Additionally, blood samples were collected during the experiment for subsequent RIA determinations. In summary, the results of the experiment have indicated that QRFP43 modulates the secretory activity of the HPT axis at all organisational levels. Moreover, QRFP43 can alter the mRNA expression profiles of DIO1, DIO2 and DIO3 in HPT tissues, leading to discrete changes in the metabolism of the cells studied and their response to signals transmitted by T4 and T3.
Collapse
Affiliation(s)
- Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland.
| | - Anna Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| |
Collapse
|
2
|
Chen YM, Huang J, Fan H, Li WY, Shi TS, Zhao J, Wang CN, Chen WJ, Zhu BL, Qian JJ, Guan W, Jiang B. QRFP and GPR103 in the paraventricular nucleus play a role in chronic stress-induced depressive-like symptomatology by enhancing the hypothalamic-pituitary-adrenal axis. Neuropharmacology 2025; 262:110198. [PMID: 39442911 DOI: 10.1016/j.neuropharm.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for depression neurobiology. As the latest member of the RFamide peptide family in mammals, pyroglutamylated RFamide peptide (QRFP) is closely implicated in neuroendocrine maintenance by activating G-protein-coupled receptor 103 (GPR103). We hypothesized that QRFP and GPR103 might contribute to chronic stress-induced depression by promoting corticotropin-releasing hormone (CRH) release from neurons in the paraventricular nucleus (PVN), and various methods were employed in this study, with male C57BL/6J mice adopted as the experimental subjects. Chronic stress induced not only depression-like behaviors but also significant enhancement in QRFP and GPR103 in the PVN. Genetic overexpression of QRFP/GPR103 and stereotactic infusion of QRFP-26/QRFP-43 peptide in the PVN all mimicked chronic stress that induced various depression-like phenotypes in naïve mice, and this was mediated by promoting CRH biosynthesis and HPA activity. In contrast, genetic knockdown of QRFP/GPR103 in the PVN produced notable antidepressant-like effects in mice exposed to chronic stress. Furthermore, genetic knockout of QRFP also protected against chronic stress in mice. In addition, both the C-terminal biological region of QRFP and the downstream PKA/PKC-CREB signaling coupled to GPR103 stimulation underlie the role of QRFP and GPR103 in depression. Collectively, QRFP and GPR103 in PVN neurons could be viable targets for novel antidepressants.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, Henan, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People's Hospital of Nantong, Nantong, 226011 Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Jie Qian
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
3
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
4
|
Sagi D, Tibi M, Admati I, Lerer-Goldshtein T, Hochgerner H, Zeisel A, Appelbaum L. Single-Cell Profiling Uncovers Evolutionary Divergence of Hypocretin/Orexin Neuronal Subpopulations. J Neurosci 2024; 44:e0095242024. [PMID: 39122556 PMCID: PMC11376333 DOI: 10.1523/jneurosci.0095-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
Brain nuclei are traditionally defined by their anatomy, activity, and expression of specific markers. The hypothalamus contains discrete neuronal populations that coordinate fundamental behavioral functions, including sleep and wakefulness, in all vertebrates. Particularly, the diverse roles of hypocretin/orexin (Hcrt)-releasing neurons suggest functional heterogeneity among Hcrt neurons. Using single-cell RNA sequencing (scRNA-seq) and high-resolution imaging of the adult male and female zebrafish hypothalamic periventricular zone, we identified 21 glutamatergic and 28 GABAergic cell types. Integration of zebrafish and mouse scRNA-seq revealed evolutionary conserved and divergent hypothalamic cell types. The expression of specific genes, including npvf, which encodes a sleep-regulating neuropeptide, was enriched in subsets of glutamatergic Hcrt neurons in both larval and adult zebrafish. The genetic profile, activity, and neurite processing of the neuronal subpopulation that coexpresses both Hcrt and Npvf (Hcrt+Npvf+) differ from other Hcrt neurons. These interspecies findings provide a unified annotation of hypothalamic cell types and suggest that the heterogeneity of Hcrt neurons enables multifunctionality, such as consolidation of both wake and sleep by the Hcrt- and Npvf-releasing neuronal subpopulation.
Collapse
Affiliation(s)
- Dana Sagi
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 590002, Israel
| | - Muhammad Tibi
- The Faculty of Biotechnology and Food Engineering, Technion 3200, Israel
| | - Inbal Admati
- The Faculty of Biotechnology and Food Engineering, Technion 3200, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 590002, Israel
| | - Hannah Hochgerner
- The Faculty of Biotechnology and Food Engineering, Technion 3200, Israel
| | - Amit Zeisel
- The Faculty of Biotechnology and Food Engineering, Technion 3200, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 590002, Israel
| |
Collapse
|
5
|
Devère M, Takhlidjt S, Prévost G, Chartrel N, Leprince J, Picot M. The 26RFa (QRFP)/GPR103 Neuropeptidergic System: A Key Regulator of Energy and Glucose Metabolism. Neuroendocrinology 2024; 115:111-127. [PMID: 38599200 DOI: 10.1159/000538629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.
Collapse
Affiliation(s)
- Mélodie Devère
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Saloua Takhlidjt
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Gaëtan Prévost
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Rouen Normandie, Inserm, Normandie University, NorDiC UMR 1239, CHU Rouen, Rouen, France
| | - Nicolas Chartrel
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Jérôme Leprince
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- University Rouen Normandie, Normandie University, INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen, France
| | - Marie Picot
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| |
Collapse
|
6
|
Vijayasarathy M, Kumar S, Das R, Balaram P. Cysteine-free cone snail venom peptides: Classification of precursor proteins and identification of mature peptides. J Pept Sci 2024; 30:e3554. [PMID: 38009400 DOI: 10.1002/psc.3554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
The cysteine-free acyclic peptides present in marine cone snail venom have been much less investigated than their disulfide bonded counterparts. Precursor protein sequences derived from transcriptomic data, together with mass spectrometric fragmentation patterns for peptides present in venom duct tissue extracts, permit the identification of mature peptides. Twelve distinct gene superfamiles have been identified with precursor lengths between 64 and 158 residues. In the case of Conus monile, three distinct mature peptides have been identified, arising from two distinct protein precursors. Mature acyclic peptides are often post-translationally modified, with C-terminus amidation, a feature characteristic of neuropeptides. In the present study, 20 acyclic peptides from Conus monile and Conus betulinus were identified. The common modifications of C-terminus amidation, gamma carboxylation of glutamic acid (E to ϒ), N-terminus conversion of Gln (Q) to a pyroglutamyl residue (Z), and hydroxylation of Pro (P) to Hyp (O) are observed in one or more peptides identified in this study. Proteolytic trimming of sequences by cleavage at the C-terminus of Asn (N) residues is established. The presence of an asparagine endopeptidase is strengthened by the identification of legumain-like sequences in the transcriptome assemblies from diverse Conus species. Such sequences may be expected to have a cleavage specificity at Asn-Xxx peptide bonds.
Collapse
Affiliation(s)
- Marimuthu Vijayasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sanjeev Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Rajdeep Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
7
|
Le Solliec MA, Arabo A, Takhlidjt S, Maucotel J, Devère M, Berrahmoune H, Bénani A, Nedelec E, Lefranc B, Leprince J, Picot M, Chartrel N, Prévost G. Interactions between the regulatory peptide 26RFa (QRFP) and insulin in the regulation of glucose homeostasis in two complementary models: The high fat 26RFa-deficient mice and the streptozotocin insulin-deficient mice. Neuropeptides 2023; 98:102326. [PMID: 36791581 DOI: 10.1016/j.npep.2023.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
The regulatory peptide 26RFa (QRFP) is involved in the control of glucose homeostasis at the periphery by acting as an incretin, and in the brain by mediating the central antihyperglycemic effect of insulin, indicating the occurrence of a close relationship between 26RFa and insulin in the regulation of glucose metabolism. Here, we investigated the physiological interactions between 26RFa and insulin in two complementary models i.e. a model of obese/hyperglycemic mice deficient for 26RFa and a model of diabetic mice deficient for insulin. For this, transgenic 26RFa-deficient mice were made obese and chronically hyperglycemic by a 3-month high fat diet (HFD) and second group of mice was made diabetic by destruction of the β cells of the pancreatic islets using a single injection of streptozotocin. Our data reveal that 26RFa deficiency does not impact significantly the "glycemic" phenotype of the HFD mice. The pancreatic islets, liver, white adipose tissue masses are not altered by the lack of 26RFa production but the brown adipose tissue (BAT) weight is significantly increased in these animals. In diabetic insulin-deficient mice, the injection of 26RFa does not exhibit any beneficial effect on the impaired glucose homeostasis characterizing this model. Finally, we show that streptozotocin diabetic mice display lowered plasma 26RFa levels as compared to untreated mice, whereas the expression of the peptide in the duodenum is not affected. Taken together, the present results indicate that dysregulation of glucose homeostasis in obese/hyperglycemic mice is not aggravated by the absence of 26RFa that may be compensated by the increase of BAT mass. In diabetic insulin-deficient mice, the antihypergycemic effect of 26RFa is totally blunted probably as a result of the impaired insulin production characterizing this model, avoiding therefore the action of the peptide.
Collapse
Affiliation(s)
| | - Arnaud Arabo
- Univ Rouen Normandie, INSERM US 31, CNRS UAR 2026, HeRacLeS, F-76000 Rouen, France
| | - Saloua Takhlidjt
- Univ Rouen Normandie, INSERM UMR 1239, NorDiC, F-76000 Rouen, France
| | - Julie Maucotel
- Univ Rouen Normandie, INSERM US 31, CNRS UAR 2026, HeRacLeS, F-76000 Rouen, France
| | - Mélodie Devère
- Univ Rouen Normandie, INSERM UMR 1239, NorDiC, F-76000 Rouen, France
| | - Hind Berrahmoune
- Univ Rouen Normandie, INSERM UMR 1239, NorDiC, F-76000 Rouen, France
| | - Alexandre Bénani
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), AgroSup Dijon, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Emmanuelle Nedelec
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), AgroSup Dijon, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Benjamin Lefranc
- Univ Rouen Normandie, INSERM UMR 1239, NorDiC, F-76000 Rouen, France; Univ Rouen Normandie, Cell Imaging Platform of Normandy (PRIMACEN), F-76000 Rouen, France
| | - Jérôme Leprince
- Univ Rouen Normandie, INSERM UMR 1239, NorDiC, F-76000 Rouen, France; Univ Rouen Normandie, Cell Imaging Platform of Normandy (PRIMACEN), F-76000 Rouen, France
| | - Marie Picot
- Univ Rouen Normandie, INSERM UMR 1239, NorDiC, F-76000 Rouen, France
| | - Nicolas Chartrel
- Univ Rouen Normandie, INSERM UMR 1239, NorDiC, F-76000 Rouen, France.
| | - Gaëtan Prévost
- Normandie Univ, UNIROUEN, Inserm U1239, CHU Rouen, Department of Endocrinology, Diabetes and metabolic diseases, F-76000 Rouen, France
| |
Collapse
|
8
|
Værøy H, Takhlidjt S, Cherifi Y, Lahaye E, Chartrel N, Fetissov SO. Blood Levels of Neuropeptide 26RFa in Relation to Anxiety and Aggressive Behavior in Humans-An Exploratory Study. Brain Sci 2023; 13:brainsci13020237. [PMID: 36831780 PMCID: PMC9954400 DOI: 10.3390/brainsci13020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
26RFa, also referred to as QRFP, is a hypothalamic neuropeptide mainly known for its role in the regulation of appetite and glucose metabolism. Its possible relevance to emotional regulation is largely unexplored. To address this, in the present exploratory study, we analyzed the plasma concentrations of 26RFa in humans characterized by different levels of anxiety and aggressive behavior. For this purpose, the study included 13 prison inmates who have committed violent crimes and 19 age-matched healthy men from the general population as controls. Anxiety, depression and aggressive behavior were evaluated in both groups using standard questionnaires. The inmate group was characterized by increased aggression and anxiety compared to the controls. We found that the mean plasma levels of 26RFa did not significantly differ between the inmates and the controls. However, several high outliers were present only in the inmate group. The plasma levels of 26RFa correlated positively with the anxiety scores in all the studied subjects and controls. After removing the high outliers in the inmate group, positive correlations of 26RFa with anxiety and a subscale of hostility in the aggression scale were also recorded in this group. No significant correlations of 26RFa with depression scores or other parameters of aggressive behavior were found. Thus, the present results did not support an involvement of 26RFa in aggressive behavior in humans but pointed to a link between this neuropeptide and anxiety. Nevertheless, considering the exploratory nature of the present study, this conclusion should be verified in a larger cohort, including the clinical degree of anxiety.
Collapse
Affiliation(s)
- Henning Værøy
- Department of Psychiatric Research, Akershus University Hospital, N-1478 Nordbyhagen, Norway
| | - Saloua Takhlidjt
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
| | - Yamina Cherifi
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
| | - Emilie Lahaye
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
| | - Nicolas Chartrel
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
| | - Serguei O. Fetissov
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
- Correspondence:
| |
Collapse
|
9
|
El Mehdi M, Takhlidjt S, Devère M, Arabo A, Le Solliec MA, Maucotel J, Bénani A, Nedelec E, Duparc C, Lefranc B, Leprince J, Anouar Y, Prévost G, Chartrel N, Picot M. The 26RFa (QRFP)/GPR103 neuropeptidergic system in mice relays insulin signalling into the brain to regulate glucose homeostasis. Diabetologia 2022; 65:1198-1211. [PMID: 35476025 DOI: 10.1007/s00125-022-05706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS 26RFa (pyroglutamilated RFamide peptide [QRFP]) is a biologically active peptide that regulates glucose homeostasis by acting as an incretin and by increasing insulin sensitivity at the periphery. 26RFa is also produced by a neuronal population localised in the hypothalamus. In this study we investigated whether 26RFa neurons are involved in the hypothalamic regulation of glucose homeostasis. METHODS 26Rfa+/+, 26Rfa-/- and insulin-deficient male C57Bl/6J mice were used in this study. Mice received an acute intracerebroventricular (i.c.v.) injection of 26RFa, insulin or the 26RFa receptor (GPR103) antagonist 25e and were subjected to IPGTTs, insulin tolerance tests, acute glucose-stimulated insulin secretion tests and pyruvate tolerance tests (PTTs). Secretion of 26RFa by hypothalamic explants after incubation with glucose, leptin or insulin was assessed. Expression and quantification of the genes encoding 26RFa, agouti-related protein, the insulin receptor and GPR103 were evaluated by quantitative reverse transcription PCR and RNAscope in situ hybridisation. RESULTS Our data indicate that i.c.v.-injected 26RFa induces a robust antihyperglycaemic effect associated with an increase in insulin production by the pancreatic islets. In addition, we found that insulin strongly stimulates 26Rfa expression and secretion by the hypothalamus. RNAscope experiments revealed that neurons expressing 26Rfa are mainly localised in the lateral hypothalamic area, that they co-express the gene encoding the insulin receptor and that insulin induces the expression of 26Rfa in these neurons. Concurrently, the central antihyperglycaemic effect of insulin is abolished in the presence of a GPR103 antagonist and in 26RFa-deficient mice. Finally, our data indicate that the hypothalamic 26RFa neurons are not involved in the central inhibitory effect of insulin on hepatic glucose production, but mediate the central effects of the hormone on its own peripheral production. CONCLUSION/INTERPRETATION We have identified a novel mechanism in the hypothalamic regulation of glucose homeostasis, the 26RFa/GPR103 system, and we provide evidence that this neuronal peptidergic system is a key relay for the central regulation of glucose metabolism by insulin.
Collapse
Affiliation(s)
- Mouna El Mehdi
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Saloua Takhlidjt
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Mélodie Devère
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Arnaud Arabo
- Department of Biological Resources (SRB), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Marie-Anne Le Solliec
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Julie Maucotel
- Department of Biological Resources (SRB), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Alexandre Bénani
- Centre for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nedelec
- Centre for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Céline Duparc
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Benjamin Lefranc
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
- Cell Imaging Platform of Normandy, Normandie Université, Rouen, France
| | - Jérôme Leprince
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
- Cell Imaging Platform of Normandy, Normandie Université, Rouen, France
| | - Youssef Anouar
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| | - Gaëtan Prévost
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Université, UNIROUEN, Rouen University Hospital, Rouen, France
| | - Nicolas Chartrel
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France.
| | - Marie Picot
- Inserm, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, Rouen, France
| |
Collapse
|
10
|
Point-Substitution of Phenylalanine Residues of 26RFa Neuropeptide: A Structure-Activity Relationship Study. Molecules 2021; 26:molecules26144312. [PMID: 34299587 PMCID: PMC8307317 DOI: 10.3390/molecules26144312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
26RFa is a neuropeptide that activates the rhodopsin-like G protein-coupled receptor QRFPR/GPR103. This peptidergic system is involved in the regulation of a wide array of physiological processes including feeding behavior and glucose homeostasis. Herein, the pharmacological profile of a homogenous library of QRFPR-targeting peptide derivatives was investigated in vitro on human QRFPR-transfected cells with the aim to provide possible insights into the structural determinants of the Phe residues to govern receptor activation. Our work advocates to include in next generations of 26RFa(20–26)-based QRFPR agonists effective substitutions for each Phe unit, i.e., replacement of the Phe22 residue by a constrained 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid moiety, and substitution of both Phe24 and Phe26 by their para-chloro counterpart. Taken as a whole, this study emphasizes that optimized modifications in the C-terminal part of 26RFa are mandatory to design selective and potent peptide agonists for human QRFPR.
Collapse
|
11
|
Wang W, Jiang C, Xu Y, Ma Q, Yang J, Shi Y, Zhou N. Functional characterization of neuropeptide 26RFa receptors GPR103A and GPR103B in zebrafish, Danio rerio. Cell Signal 2020; 73:109677. [PMID: 32470519 DOI: 10.1016/j.cellsig.2020.109677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/10/2020] [Accepted: 05/23/2020] [Indexed: 11/25/2022]
Abstract
The hypothalamic neuropeptide 26RFa is the most recently identified member of the RFamide peptide family, and this 26RFa signaling system has been shown to be implicated in regulating a variety of physiological processes. In zebrafish,26RFa and two putative receptors, DrGPR103A and DrGPR103B, have been in silico identified, and in vivo data derived from overexpression and loss of function mutation experiments suggest the 26RFa signaling system plays an important role in the hypothalamic regulation of sleep. However, the biochemical and pharmacological information on DrGPR103A/B receptors is still unknown. Here, after cloning of cDNAs of two putative 26RFa receptor genes, DrGPR103A and B, from the total RNA of zebrafish whole body, functional assays demonstrated that both receptors were activated by synthetic zebrafish 26RFa neuropeptide, leading to a significant increase in CRE-driven luciferase activity and intracellular Ca2+ mobilization in a Gαq inhibitor- and Gαi/o inhibitor-sensitive manner. Upon activation by 26RFa, DrGPR103A and B evoked ERK1/2 phosphorylation and underwent internalization. Further functional determination also revealed that zebrafish kisspeptin-1 exhibited a slight potency for activating both DrGPR103A and B, and vice versa, zebrafish 26RFa also showed some activity at zebrafish GPR54A and B. Our findings provided evidence that zebrafish GPR103A and B are two functional Gαq- and Gαi/o-dually coupled receptors for 26RFa, enabling the further elucidation of the endocrinological roles of zebrafish 26RFa signaling system in the regulation of physiological activities.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Chaohui Jiang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Yue Xu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Qiang Ma
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Zhejiang, Hangzhou, 310058, China.
| |
Collapse
|
12
|
El-Mehdi M, Takhlidjt S, Khiar F, Prévost G, do Rego JL, do Rego JC, Benani A, Nedelec E, Godefroy D, Arabo A, Lefranc B, Leprince J, Anouar Y, Chartrel N, Picot M. Glucose homeostasis is impaired in mice deficient in the neuropeptide 26RFa (QRFP). BMJ Open Diabetes Res Care 2020; 8:8/1/e000942. [PMID: 32114486 PMCID: PMC7050347 DOI: 10.1136/bmjdrc-2019-000942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION 26RFa (pyroglutamyl RFamide peptide (QRFP)) is a biologically active peptide that has been found to control feeding behavior by stimulating food intake, and to regulate glucose homeostasis by acting as an incretin. The aim of the present study was thus to investigate the impact of 26RFa gene knockout on the regulation of energy and glucose metabolism. RESEARCH DESIGN AND METHODS 26RFa mutant mice were generated by homologous recombination, in which the entire coding region of prepro26RFa was replaced by the iCre sequence. Energy and glucose metabolism was evaluated through measurement of complementary parameters. Morphological and physiological alterations of the pancreatic islets were also investigated. RESULTS Our data do not reveal significant alteration of energy metabolism in the 26RFa-deficient mice except the occurrence of an increased basal metabolic rate. By contrast, 26RFa mutant mice exhibited an altered glycemic phenotype with an increased hyperglycemia after a glucose challenge associated with an impaired insulin production, and an elevated hepatic glucose production. Two-dimensional and three-dimensional immunohistochemical experiments indicate that the insulin content of pancreatic β cells is much lower in the 26RFa-/- mice as compared with the wild-type littermates. CONCLUSION Disruption of the 26RFa gene induces substantial alteration in the regulation of glucose homeostasis, with in particular a deficit in insulin production by the pancreatic islets. These findings further support the notion that 26RFa is an important regulator of glucose homeostasis.
Collapse
|
13
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
14
|
Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019; 116:17061-17070. [PMID: 31375626 PMCID: PMC6708384 DOI: 10.1073/pnas.1902148116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypocretin/orexin (HCRT) and melanin concentrating hormone (MCH) neuropeptides are exclusively produced by the lateral hypothalamus and play important roles in sleep, metabolism, reward, and motivation. Loss of HCRT (ligands or receptors) causes the sleep disorder narcolepsy with cataplexy in humans and in animal models. How these neuropeptides are produced and involved in diverse functions remain unknown. Here, we developed methods to sort and purify HCRT and MCH neurons from the mouse late embryonic hypothalamus. RNA sequencing revealed key factors of fate determination for HCRT (Peg3, Ahr1, Six6, Nr2f2, and Prrx1) and MCH (Lmx1, Gbx2, and Peg3) neurons. Loss of Peg3 in mice significantly reduces HCRT and MCH cell numbers, while knock-down of a Peg3 ortholog in zebrafish completely abolishes their expression, resulting in a 2-fold increase in sleep amount. We also found that loss of HCRT neurons in Hcrt-ataxin-3 mice results in a specific 50% decrease in another orexigenic neuropeptide, QRFP, that might explain the metabolic syndrome in narcolepsy. The transcriptome results were used to develop protocols for the production of HCRT and MCH neurons from induced pluripotent stem cells and ascorbic acid was found necessary for HCRT and BMP7 for MCH cell differentiation. Our results provide a platform to understand the development and expression of HCRT and MCH and their multiple functions in health and disease.
Collapse
|
15
|
Prévost G, Picot M, Le Solliec MA, Arabo A, Berrahmoune H, El Mehdi M, Cherifi S, Benani A, Nédélec E, Gobet F, Brunel V, Leprince J, Lefebvre H, Anouar Y, Chartrel N. The neuropeptide 26RFa in the human gut and pancreas: potential involvement in glucose homeostasis. Endocr Connect 2019; 8:941-951. [PMID: 31234144 PMCID: PMC6612231 DOI: 10.1530/ec-19-0247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Recent studies performed in mice revealed that the neuropeptide 26RFa regulates glucose homeostasis by acting as an incretin and by increasing insulin sensitivity. However, in humans, an association between 26RFa and the regulation of glucose homeostasis is poorly documented. In this study, we have thus investigated in detail the distribution of 26RFa and its receptor, GPR103, in the gut and the pancreas, and determined the response of this peptidergic system to an oral glucose challenge in obese patients. DESIGN AND METHODS Distribution of 26RFa and GPR103 was examined by immunohistochemistry using gut and pancreas tissue sections. Circulating 26RFa was determined using a specific radioimmunoassay in plasma samples collected during an oral glucose tolerance test. RESULTS 26RFa and GPR103 are present all along the gut but are more abundant in the stomach and duodenum. In the stomach, the peptide and its receptor are highly expressed in the gastric glands, whereas in the duodenum, ileum and colon they are present in the enterocytes and the goblet cells. In the pancreatic islets, the 26RFa/GPR103 system is mostly present in the β cells. During an oral glucose tolerance test, plasma 26RFa profile is different between obese patients and healthy volunteers, and we found strong positive correlations between 26RFa blood levels and the BMI, and with various parameters of insulin secretion and insulin resistance. CONCLUSION The present data suggest an involvement of the 26RFa/GPR103 peptidergic system in the control of human glucose homeostasis.
Collapse
Affiliation(s)
- Gaëtan Prévost
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
- Centre d’Investigation Clinique (CIC-CRB)-INSERM 1404, Rouen University Hospital, Rouen, France
- Correspondence should be addressed to G Prévost:
| | - Marie Picot
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Marie-Anne Le Solliec
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Arnaud Arabo
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Hind Berrahmoune
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
- Centre d’Investigation Clinique (CIC-CRB)-INSERM 1404, Rouen University Hospital, Rouen, France
| | - Mouna El Mehdi
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Saloua Cherifi
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Alexandre Benani
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon , France
| | - Emmanuelle Nédélec
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon , France
| | - Françoise Gobet
- Department of Anatomopathophysiology, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
| | - Valéry Brunel
- Department of Biochemistry, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Hervé Lefebvre
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
- Centre d’Investigation Clinique (CIC-CRB)-INSERM 1404, Rouen University Hospital, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Nicolas Chartrel
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| |
Collapse
|
16
|
Prévost G, Arabo A, Le Solliec MA, Bons J, Picot M, Maucotel J, Berrahmoune H, El Mehdi M, Cherifi S, Benani A, Nédélec E, Coëffier M, Leprince J, Nordqvist A, Brunel V, Déchelotte P, Lefebvre H, Anouar Y, Chartrel N. Neuropeptide 26RFa (QRFP) is a key regulator of glucose homeostasis and its activity is markedly altered in obese/hyperglycemic mice. Am J Physiol Endocrinol Metab 2019; 317:E147-E157. [PMID: 31084498 DOI: 10.1152/ajpendo.00540.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent studies have shown that the hypothalamic neuropeptide 26RFa regulates glucose homeostasis by acting as an incretin and increasing insulin sensitivity. In this study, we further characterized the role of the 26RFa/GPR103 peptidergic system in the global regulation of glucose homeostasis using a 26RFa receptor antagonist and also assessed whether a dysfunction of the 26RFa/GPR103 system occurs in obese hyperglycemic mice. First, we demonstrate that administration of the GPR103 antagonist reduces the global glucose-induced incretin effect and insulin sensitivity whereas, conversely, administration of exogenous 26RFa attenuates glucose-induced hyperglycemia. Using a mouse model of high-fat diet-induced obesity and hyperglycemia, we found a loss of the antihyperglcemic effect and insulinotropic activity of 26RFa, accompanied with a marked reduction of its insulin-sensitive effect. Interestingly, this resistance to 26RFa is associated with a downregulation of the 26RFa receptor in the pancreatic islets, and insulin target tissues. Finally, we observed that the production and release kinetics of 26RFa after an oral glucose challenge is profoundly altered in the high-fat mice. Altogether, the present findings support the view that 26RFa is a key regulator of glucose homeostasis whose activity is markedly altered under obese/hyperglycemic conditions.
Collapse
Affiliation(s)
- Gaëtan Prévost
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen , France
| | - Arnaud Arabo
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Marie-Anne Le Solliec
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Justine Bons
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen , France
| | - Marie Picot
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Julie Maucotel
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Hind Berrahmoune
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen , France
| | - Mouna El Mehdi
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Saloua Cherifi
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Alexandre Benani
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté , Dijon , France
| | - Emmanuelle Nédélec
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté , Dijon , France
| | - Moïse Coëffier
- Normandie University, UNIROUEN, INSERM U1073 Nutrition, Inflammation and dysfunction of gut-brain axis, Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Nutrition , Rouen , France
| | - Jérôme Leprince
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Anneli Nordqvist
- Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Mölndal , Sweden
| | - Valéry Brunel
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Biochemistry , Rouen , France
| | - Pierre Déchelotte
- Normandie University, UNIROUEN, INSERM U1073 Nutrition, Inflammation and dysfunction of gut-brain axis, Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Nutrition , Rouen , France
| | - Hervé Lefebvre
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen , France
| | - Youssef Anouar
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Nicolas Chartrel
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| |
Collapse
|
17
|
Yoshida K, Nonaka T, Nakamura S, Araki M, Yamamoto T. Microinjection of 26RFa, an endogenous ligand for the glutamine RF-amide peptide receptor (QRFP receptor), into the rostral ventromedial medulla (RVM), locus coelureus (LC), and periaqueductal grey (PAG) produces an analgesic effect in rats. Peptides 2019; 115:1-7. [PMID: 30772446 DOI: 10.1016/j.peptides.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/14/2023]
Abstract
26RFa is an endogenous ligand for the QRFP receptor. We previously found that intracerebroventricular injection of 26RFa produces an analgesic effect in a rat formalin test. In the present study, we directly tested the hypothesis that the analgesic effects of 26RFa in the formalin test are mediated in well-recognized regions of the descending inhibitory pain pathways, such as the rostral ventromedial medulla (RVM), locus coeruleus (LC), and periaqueductal grey (PAG) in rats. Injection cannulae were stereotaxically placed in the RVM, LC, or PAG through a burr hole. 26RFa (15 μg) or saline was delivered in a total volume of 0.5 μL. In a formalin test, 50 μL of 5% formalin was injected subcutaneously into the hind paw. In an antagonist study, idazoxan, an α-2 antagonist, or naloxone, an opioid receptor antagonist, was administered. Microinjection of 26RFa into the RVM had no effect compared with that in saline-injected rats. Microinjection of 26RFa into the LC contralateral, but not ipsilateral, to the formalin injection site significantly decreased the number of flinching behaviors compared with that of saline-injected rats. This effect was antagonized by intrathecal injection of idazoxan. Microinjection of 26RFa into the contralateral, but not ipsilateral, PAG produced an analgesic effect, and this effect was partly antagonized by intraperitoneal naloxone. These data suggest that 26RFa microinjected into the contralateral LC induced noradrenaline release in the spinal cord and produced an analgesic effect. In the contralateral PAG, 26RFa activated the opioid system, and some analgesic effects were mediated by opioid system activation.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Takahiro Nonaka
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Shingo Nakamura
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Miki Araki
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Tatsuo Yamamoto
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan.
| |
Collapse
|
18
|
Alim K, Lefranc B, Sopkova-de Oliveira Santos J, Dubessy C, Picot M, Boutin JA, Vaudry H, Chartrel N, Vaudry D, Chuquet J, Leprince J. Design, Synthesis, Molecular Dynamics Simulation, and Functional Evaluation of a Novel Series of 26RFa Peptide Analogues Containing a Mono- or Polyalkyl Guanidino Arginine Derivative. J Med Chem 2018; 61:10185-10197. [PMID: 30358997 DOI: 10.1021/acs.jmedchem.8b01332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
26RFa, the endogenous QRFPR ligand, is implicated in several physiological and pathological conditions such as the regulation of glucose homeostasis and bone mineralization; hence, QRFPR ligands display therapeutic potential. At the molecular level, functional interaction occurs between residues Arg25 of 26RFa and Gln125 of QRFPR. We have designed 26RFa(20-26) analogues incorporating arginine derivatives modified by alkylated substituents. We found that the Arg25 side chain length was necessary to retain the activity of 26RFa(20-26) and that N-monoalkylation of arginine was accommodated by the QRFPR active site. In particular, [(Me)ωArg25]26RFa(20-26) (5b, LV-2186) appeared to be 25-fold more potent than 26RFa(20-26) and displayed a position in a QRFPR homology model slightly different to that of the unmodified heptapeptide. Other peptides were less potent than 26RFa(20-26), exhibited partial agonistic activity, or were totally inactive in accordance to different ligand-bound structures. In vivo, [(Me)ωArg25]26RFa(20-26) exerted a delayed 26RFa-like hypoglycemic effect. Finally, N-methyl substituted arginine-containing peptides represent lead compounds for further development of QRFPR agonists.
Collapse
Affiliation(s)
- Karima Alim
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - Benjamin Lefranc
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | | | - Christophe Dubessy
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | - Marie Picot
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier , 50 rue Carnot , 92150 Suresnes , France
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | - Nicolas Chartrel
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - David Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | - Julien Chuquet
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| |
Collapse
|
19
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Alavi MS, Shamsizadeh A, Azhdari-Zarmehri H, Roohbakhsh A. Orphan G protein-coupled receptors: The role in CNS disorders. Biomed Pharmacother 2017; 98:222-232. [PMID: 29268243 DOI: 10.1016/j.biopha.2017.12.056] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
There are various types of receptors in the central nervous system (CNS). G protein-coupled receptors (GPCRs) have the highest expression with a wide range of physiological functions. A newer sub group of these receptors namely orphan GPCRs have been discovered. GPR3, GPR6, GPR17, GPR26, GPR37, GPR39, GPR40, GPR50, GPR52, GPR54, GPR55, GPR85, GPR88, GPR103, and GPR139 are the selected orphan GPCRs for this article. Their roles in the central nervous system have not been understood well so far. However, recent studies show that they may have very important functions in the CNS. Hence, in the present study, we reviewed most recent findings regarding the physiological roles of the selected orphan GPCRs in the CNS. After a brief presentation of each receptor, considering the results from genetic and pharmacological manipulation of the receptors, their roles in the pathophysiology of different diseases and disorders including anxiety, depression, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, and substance abuse will be discussed. At present, our knowledge regarding the role of GPCRs in the brain is very limited. However, previous limited studies show that orphan GPCRs have an important place in psychopharmacology and these receptors are potential new targets for the treatment of major CNS diseases.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Basic Medical Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Chartrel N, Picot M, El Medhi M, Arabo A, Berrahmoune H, Alexandre D, Maucotel J, Anouar Y, Prévost G. The Neuropeptide 26RFa (QRFP) and Its Role in the Regulation of Energy Homeostasis: A Mini-Review. Front Neurosci 2016; 10:549. [PMID: 27965532 PMCID: PMC5126098 DOI: 10.3389/fnins.2016.00549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023] Open
Abstract
This mini-review deals with the neuropeptide 26RFa (or QRFP) which is a member of the RFamide peptide family discovered simultaneously by three groups in 2003. 26RFa (or its N-extended form 43RFa) was subsequently shown to be the endogenous ligand of the human orphan receptor GPR103. In the brain, 26RFa and GPR103mRNA are primarily expressed in hypothalamic nuclei involved in the control of feeding behavior, and at the periphery, the neuropeptide and its receptor are present in abundance in the gut and the pancreatic islets, suggesting that 26RFa is involved in the regulation of energy metabolism. Indeed, 26RFa stimulates food intake when injected centrally, and its orexigenic effect is even more pronounced in obese animals. The expression of 26RFa is up-regulated in the hypothalamus of obese animals, supporting that the 26RFa/GPR103 system may play a role in the development and/or maintenance of the obese status. Recent data indicate that 26RFa is also involved in the regulation of glucose homeostasis. 26RFa reduces glucose-induced hyperglycemia, increases insulin sensitivity and insulinemia. Furthermore, an oral ingestion of glucose strongly stimulates 26RFa release by the gut, indicating that 26RFa is a novel incretin. Finally, 26RFa is able to prevent pancreatic β cell death and apoptosis. This brief overview reveals that 26RFa is a key neuropeptide in the regulation of energy metabolism. Further fields of research are suggested including the pathophysiological implication of the 26RFa/GPR103 system.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Marie Picot
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Mouna El Medhi
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Arnaud Arabo
- University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Hind Berrahmoune
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy UniversityMont-Saint-Aignan, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedecine, University Hospital of Rouen, University of Rouen, Normandy UniversityRouen, France
| | - David Alexandre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Julie Maucotel
- University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Youssef Anouar
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Gaëtan Prévost
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy UniversityMont-Saint-Aignan, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedecine, University Hospital of Rouen, University of Rouen, Normandy UniversityRouen, France
| |
Collapse
|
22
|
Lebbe EKM, Tytgat J. In the picture: disulfide-poor conopeptides, a class of pharmacologically interesting compounds. J Venom Anim Toxins Incl Trop Dis 2016; 22:30. [PMID: 27826319 PMCID: PMC5100318 DOI: 10.1186/s40409-016-0083-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
During evolution, nature has embraced different strategies for species to survive. One strategy, applied by predators as diverse as snakes, scorpions, sea anemones and cone snails, is using venom to immobilize or kill a prey. This venom offers a unique and extensive source of chemical diversity as it is driven by the evolutionary pressure to improve prey capture and/or to protect their species. Cone snail venom is an example of the remarkable diversity in pharmacologically active small peptides that venoms can consist of. These venom peptides, called conopeptides, are classified into two main groups based on the number of cysteine residues, namely disulfide-rich and disulfide-poor conopeptides. Since disulfide-poor conotoxins are minor components of this venom cocktail, the number of identified peptides and the characterization of these peptides is far outclassed by its cysteine-rich equivalents. This review provides an overview of 12 families of disulfide-poor peptides identified to date as well as the state of affairs.
Collapse
Affiliation(s)
- Eline K M Lebbe
- Toxicology and Pharmacology, KU Leuven, O&N2, Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N2, Box 922, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Palotai M, Telegdy G. Anxiolytic effect of the GPR103 receptor agonist peptide P550 (homolog of neuropeptide 26RFa) in mice. Involvement of neurotransmitters. Peptides 2016; 82:20-25. [PMID: 27224020 DOI: 10.1016/j.peptides.2016.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
The GPR103 receptor is a G protein-coupled receptor, which plays a role in several physiological functions. However, the role of the GPR103 receptor in anxiety has not been clarified. The first aim of our study was to elucidate the involvement of the GPR103 receptor in anxious behavior. Mice were treated with peptide P550, which is the mouse homolog of neuropeptide 26RFa and has similar activity for the GPR103 receptor as neuropeptide 26RFa. The anxious behavior was investigated using an elevated plus-maze paradigm. The second aim of our study was to investigate the underlying neurotransmissions. Accordingly, mice were pretreated with a nonselective muscarinic acetylcholine receptor antagonist, atropine, a γ-aminobutyric acid subunit A (GABAA) receptor antagonist, bicuculline, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a nonselective β-adrenergic receptor antagonist, propranolol. Our results demonstrated that peptide P550 reduces anxious behavior in elevated plus maze test in mice. Our study shows also that GABAA-ergic, α- and β-adrenergic transmissions are all involved in this action, whereas 5-HT1 and 5-HT2 serotonergic, muscarinic cholinergic and D2, D3, D4 dopaminergic mechanisms may not be implicated.
Collapse
Affiliation(s)
- Miklos Palotai
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary.
| | - Gyula Telegdy
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary; Neuroscience Research Group of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
24
|
Abstract
UNLABELLED The hypothalamus plays an important role in regulating sleep, but few hypothalamic sleep-promoting signaling pathways have been identified. Here we demonstrate a role for the neuropeptide QRFP (also known as P518 and 26RFa) and its receptors in regulating sleep in zebrafish, a diurnal vertebrate. We show that QRFP is expressed in ∼10 hypothalamic neurons in zebrafish larvae, which project to the hypothalamus, hindbrain, and spinal cord, including regions that express the two zebrafish QRFP receptor paralogs. We find that the overexpression of QRFP inhibits locomotor activity during the day, whereas mutation of qrfp or its receptors results in increased locomotor activity and decreased sleep during the day. Despite the restriction of these phenotypes to the day, the circadian clock does not regulate qrfp expression, and entrained circadian rhythms are not required for QRFP-induced rest. Instead, we find that QRFP overexpression decreases locomotor activity largely in a light-specific manner. Our results suggest that QRFP signaling plays an important role in promoting sleep and may underlie some aspects of hypothalamic sleep control. SIGNIFICANCE STATEMENT The hypothalamus is thought to play a key role in regulating sleep in vertebrate animals, but few sleep-promoting signaling pathways that function in the hypothalamus have been identified. Here we use the zebrafish, a diurnal vertebrate, to functionally and anatomically characterize the neuropeptide QRFP. We show that QRFP is exclusively expressed in a small number of neurons in the larval zebrafish hypothalamus that project widely in the brain. We also show that QRFP overexpression reduces locomotor activity, whereas animals that lack QRFP signaling are more active and sleep less. These results suggest that QRFP signaling participates in the hypothalamic regulation of sleep.
Collapse
|
25
|
Gorwood P, Blanchet-Collet C, Chartrel N, Duclos J, Dechelotte P, Hanachi M, Fetissov S, Godart N, Melchior JC, Ramoz N, Rovere-Jovene C, Tolle V, Viltart O, Epelbaum J. New Insights in Anorexia Nervosa. Front Neurosci 2016; 10:256. [PMID: 27445651 PMCID: PMC4925664 DOI: 10.3389/fnins.2016.00256] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022] Open
Abstract
Anorexia nervosa (AN) is classically defined as a condition in which an abnormally low body weight is associated with an intense fear of gaining weight and distorted cognitions regarding weight, shape, and drive for thinness. This article reviews recent evidences from physiology, genetics, epigenetics, and brain imaging which allow to consider AN as an abnormality of reward pathways or an attempt to preserve mental homeostasis. Special emphasis is put on ghrelino-resistance and the importance of orexigenic peptides of the lateral hypothalamus, the gut microbiota and a dysimmune disorder of neuropeptide signaling. Physiological processes, secondary to underlying, and premorbid vulnerability factors-the "pondero-nutritional-feeding basements"- are also discussed.
Collapse
Affiliation(s)
- Philip Gorwood
- Centre Hospitalier Sainte-Anne (CMME)Paris, France; UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| | | | - Nicolas Chartrel
- Institut National de la Santé et de la Recherche Médicale U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in BiomedicineRouen, France; Normandy UniversityCaen, France; University of RouenRouen, France
| | - Jeanne Duclos
- Adolescents and Young Adults Psychiatry Department, Institut Mutualiste MontsourisParis, France; CESP, Institut National de la Santé et de la Recherche Médicale, Université Paris-Descartes, USPCParis, France; University Reims, Champagne-Ardenne, Laboratoire Cognition, Santé, Socialisation (C2S)-EA 6291Reims, France
| | - Pierre Dechelotte
- Institut National de la Santé et de la Recherche Médicale U1073 IRIB Normandy UniversityRouen, France; Faculté de Médecine-PharmacieRouen, France
| | - Mouna Hanachi
- Université de Versailles Saint-Quentin-en-Yvelines, Institut National de la Santé et de la Recherche Médicale U1179, équipe Thérapeutiques Innovantes et Technologies Appliquées aux Troubles Neuromoteurs, UFR des Sciences de la Santé Simone VeilMontigny-le-Bretonneux, France; Département de Médecine (Unité de Nutrition), Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de ParisGarches, France
| | - Serguei Fetissov
- Institut National de la Santé et de la Recherche Médicale U1073 IRIB Normandy University Rouen, France
| | - Nathalie Godart
- Adolescents and Young Adults Psychiatry Department, Institut Mutualiste MontsourisParis, France; CESP, Institut National de la Santé et de la Recherche Médicale, Université Paris-Descartes, USPCParis, France
| | - Jean-Claude Melchior
- Université de Versailles Saint-Quentin-en-Yvelines, Institut National de la Santé et de la Recherche Médicale U1179, équipe Thérapeutiques Innovantes et Technologies Appliquées aux Troubles Neuromoteurs, UFR des Sciences de la Santé Simone VeilMontigny-le-Bretonneux, France; Département de Médecine (Unité de Nutrition), Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de ParisGarches, France
| | - Nicolas Ramoz
- UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| | - Carole Rovere-Jovene
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Centre National de la Recherche Scientifique Valbonne, France
| | - Virginie Tolle
- UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| | - Odile Viltart
- Université Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer Lille, France
| | - Jacques Epelbaum
- UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| |
Collapse
|
26
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
27
|
Wójcik-Gładysz A, Wańkowska M, Gajewska A, Misztal T, Zielińska-Górska M, Szlis M, Polkowska J. Effects of intracerebroventricular infusions of ghrelin on secretion of follicle-stimulating hormone in peripubertal female sheep. Reprod Fertil Dev 2016; 28:2065-2074. [DOI: 10.1071/rd16028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
Reproduction depends on mechanisms responsible for the regulation of energy homeostasis and puberty is a developmental period when reproductive and somatic maturity are achieved. Ghrelin affects the activity of the hypothalamo–pituitary–gonadal axis under conditions of energy insufficiency. An in vivo model based on intracerebroventricular (i.c.v.) infusions was used to determine whether centrally administered acyl ghrelin affects transcriptional and translational activity of FSH in peripubertal lambs and whether ghrelin administration mimics the effects of short-term fasting. Standard-fed lambs received either Ringer–Lock (R-L) solution (120 µL h–1) or ghrelin (120 µL h–1, 100 µg day–1). Animals experiencing a short-term (72 h) fast were treated only with R-L solution. In each experimental group, i.c.v. infusions occurred for 3 consecutive days. Immunohistochemistry, in situ hybridisation and real-time reverse transcription quantitative polymerase chain reaction analyses revealed that short-term fasting, as well as exogenous acyl ghrelin administration to standard-fed peripubertal lambs, augmented FSHβ mRNA expression and immunoreactive FSH accumulation. In addition to the effects of ghrelin on FSH synthesis in standard-fed animals, effects on gonadotrophin release were also observed. Acyl ghrelin increased the pulse amplitude for gonadotrophin release, which resulted in an elevation in mean serum FSH concentrations. In conclusion, the present data suggest that ghrelin participates in an endocrine network that modulates gonadotrophic activity in peripubertal female sheep.
Collapse
|
28
|
Chartrel N, Prévost G, El Medhi M, Arabo A, Berrahmoune H, Maucotel J, Anouar Y, Picot M. [The neuropeptide 26RFa and its role in the regulation of energy metabolism]. Biol Aujourdhui 2016; 210:227-235. [PMID: 28327281 DOI: 10.1051/jbio/2016024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/14/2022]
Abstract
The neuropeptide 26RFa, also referred to as QRFP (for pyroglutamilated RFamide peptide), is the latest member of the RFamide peptide family to be discovered. 26RFa and its N-extended form, 43RFa, have been characterized in all vertebrate classes as the endogenous ligands of the human orphan receptor GPR103. In the brain, 26RFa and GPR103mRNA are primarily expressed in hypothalamic nuclei involved in the control of feeding behavior, and in the periphery, the neuropeptide and its receptor are present in abundance in the gut and the pancreatic islets, suggesting that 26RFa is involved in the regulation of energy metabolism. Indeed, 26RFa stimulates food intake when centrally injected, and its orexigenic effect is even more pronounced in obese animals. The expression of 26RFa is up-regulated in the hypothalamus of obese animals, supporting the view that 26RFa may play a role in the development and/or maintenance of the obese status. Recent data indicate that 26RFa is also involved in the regulation of glucose homeostasis. 26RFa reduces glucose-induced hyperglycemia, increases insulin sensitivity and insulinemia. Furthermore, an oral ingestion of glucose strongly stimulates 26RFa release by the gut, indicating that 26RFa is a novel incretin. Finally, 26RFa is able to prevent pancreatic β cell death and apoptosis. In conclusion, this overview of the literature reveals that 26RFa is a key neuropeptide in the regulation of energy metabolism. Further fields of research are suggested including the pathophysiological implication of the 26RFa/GPR103 system.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Gaëtan Prévost
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France - Service d'Endocrinologie, Diabète et Maladies Métaboliques, Institut de Recherche et d'Innovation Biomédicale (IRIB), Centre Hospitalier Universitaire de Rouen, Université de Rouen, Normandie Université, Rouen, France
| | - Mouna El Medhi
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Arnaud Arabo
- Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Hind Berrahmoune
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France - Service d'Endocrinologie, Diabète et Maladies Métaboliques, Institut de Recherche et d'Innovation Biomédicale (IRIB), Centre Hospitalier Universitaire de Rouen, Université de Rouen, Normandie Université, Rouen, France
| | - Julie Maucotel
- Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Youssef Anouar
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Marie Picot
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
29
|
Zagorácz O, Kovács A, László K, Ollmann T, Péczely L, Lénárd L. Effects of direct QRFP-26 administration into the medial hypothalamic area on food intake in rats. Brain Res Bull 2015; 118:58-64. [PMID: 26385088 DOI: 10.1016/j.brainresbull.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
The RFamide peptide family comprises a number of biologically active peptides sharing RF motif at their C-terminal end. These peptides are involved in the control of multiple physiological functions including regulation of metabolism and feeding behavior. QRFP-43 as well as its 26-aminoacid residue QRFP-26 are able to cause orexigenic effect when administered to the rodents' cerebral ventricles. QRFPs have been suggested as the endogenous ligands of the previously orphan GPR103 receptors. GPR103 receptors share amino acid identity with other receptors of neuropeptides involved in feeding (NPY, NPFF, galanin). QRFP-26 expressing neurons and binding sites are densely present in the rat medial hypothalamus (MHA), an area directly responsible for the regulation of feeding. QRFP-26 was delivered to the target area by direct intrahypothalamic microinjection, and the consumption of liquid food was measured over a 60 min period. Both doses (100 and 200 ng) significantly increased food intake. Non-specific receptor antagonist BIBP3226 eliminated the orexigenic effect caused by QRFP-26 administration. Effective doses of QRFP-26 did not modify general locomotor activity and behavioral patterns examined in the open-field test. This study is the first reporting feeding modulating effects following direct intrahypothalamic QRFP-26 administration.
Collapse
Affiliation(s)
- Olga Zagorácz
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary; Molecular Neurophysiology Research Group, Pécs University, Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
30
|
Prévost G, Jeandel L, Arabo A, Coëffier M, El Ouahli M, Picot M, Alexandre D, Gobet F, Leprince J, Berrahmoune H, Déchelotte P, Malagon M, Bonner C, Kerr-Conte J, Chigr F, Lefebvre H, Anouar Y, Chartrel N. Hypothalamic Neuropeptide 26RFa Acts as an Incretin to Regulate Glucose Homeostasis. Diabetes 2015; 64:2805-16. [PMID: 25858563 DOI: 10.2337/db14-1864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/02/2015] [Indexed: 11/13/2022]
Abstract
26RFa is a hypothalamic neuropeptide that promotes food intake. 26RFa is upregulated in obese animal models, and its orexigenic activity is accentuated in rodents fed a high-fat diet, suggesting that this neuropeptide might play a role in the development and maintenance of the obese status. As obesity is frequently associated with type 2 diabetes, we investigated whether 26RFa may be involved in the regulation of glucose homeostasis. In the current study, we show a moderate positive correlation between plasma 26RFa levels and plasma insulin in patients with diabetes. Plasma 26RFa concentration also increases in response to an oral glucose tolerance test. In addition, we found that 26RFa and its receptor GPR103 are present in human pancreatic β-cells as well as in the gut. In mice, 26RFa attenuates the hyperglycemia induced by a glucose load, potentiates insulin sensitivity, and increases plasma insulin concentrations. Consistent with these data, 26RFa stimulates insulin production by MIN6 insulinoma cells. Finally, we show, using in vivo and in vitro approaches, that a glucose load induces a massive secretion of 26RFa by the small intestine. Altogether, the present data indicate that 26RFa acts as an incretin to regulate glucose homeostasis.
Collapse
Affiliation(s)
- Gaëtan Prévost
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Lydie Jeandel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Arnaud Arabo
- Normandy University, Caen, France University of Rouen, Rouen, France
| | - Moïse Coëffier
- Normandy University, Caen, France University of Rouen, Rouen, France INSERM U1073, Institute for Research and Innovation in Biomedicine, Rouen, France Department of Nutrition, University Hospital of Rouen, Rouen, France
| | - Mariama El Ouahli
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France Biological Engineering Laboratory, Life Sciences, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Marie Picot
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - David Alexandre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Françoise Gobet
- Normandy University, Caen, France University of Rouen, Rouen, France Department of Pathology, University Hospital of Rouen, Rouen, France
| | - Jérôme Leprince
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Hind Berrahmoune
- Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Pierre Déchelotte
- Normandy University, Caen, France University of Rouen, Rouen, France INSERM U1073, Institute for Research and Innovation in Biomedicine, Rouen, France Department of Nutrition, University Hospital of Rouen, Rouen, France
| | - Maria Malagon
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba/Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Caroline Bonner
- INSERM U859, Biotherapies of Diabetes, Faculty of Medicine, University of Lille, Lille, France
| | - Julie Kerr-Conte
- INSERM U859, Biotherapies of Diabetes, Faculty of Medicine, University of Lille, Lille, France
| | - Fatiha Chigr
- Biological Engineering Laboratory, Life Sciences, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Hervé Lefebvre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Youssef Anouar
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| |
Collapse
|
31
|
Trebak F, Alaoui A, Alexandre D, El Ouezzani S, Anouar Y, Chartrel N, Magoul R. Impact of aflatoxin B1 on hypothalamic neuropeptides regulating feeding behavior. Neurotoxicology 2015; 49:165-73. [PMID: 26141519 DOI: 10.1016/j.neuro.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 01/17/2023]
Abstract
The presence of mycotoxins in food is a major problem of public health as they produce immunosuppressive, hepatotoxic and neurotoxic effects. Mycotoxins also induce mutagenic and carcinogenic effects after long exposure. Among mycotoxins that contaminate food are aflatoxins (AF) such as AFB1, which is the most powerful natural carcinogen. The AF poisoning results in symptoms of depression, anorexia, diarrhea, jaundice or anemia that can lead to death, but very few studies have explored the impact of AF on neuroendocrine regulations. To better understand the neurotoxic effects of AF related to anorexia, we explored in rat the impact of AFB1 on the major hypothalamic neuropeptides regulating feeding behavior, either orexigenic (NPY, Orexin, AgRP, MCH) or anorexigenic (α-MSH, CART, TRH). We also studied the effect of AFB1 on a novel neuropeptide, the secretogranin II (SgII)-derived peptide EM66, which has recently been linked to the control of food intake. For this, adult male rats were orally treated twice a week for 5 weeks with a low dose (150 μg/kg) or a high dose (300 μg/kg) of AFB1 dissolved in corn oil. Repeated exposure to AFB1 resulted in reduced body weight gain, which was highly significant for the high dose of AF. Immunocytochemical and quantitative PCR experiments revealed a dose-related decrease in the expression of all the hypothalamic neuropeptides studied in response to AFB1. Such orexigenic and anorexigenic alterations may underlie appetite disorders as they are correlated to a dose-dependent decrease in body weight gain of treated rats as compared to controls. We also found a decrease in the number of EM66-containing neurons in the arcuate nucleus of AFB1-treated animals, which was associated with a lower expression of its precursor SgII. These findings show for the first time that repeated consumption of AFB1 disrupts the hypothalamic regulation of neuropeptides involved in feeding behavior, which may contribute to the lower body weight gain associated to AF exposure.
Collapse
Affiliation(s)
- Fatima Trebak
- Laboratory of Neuroendocrinology & Nutritional and climatic Environment, University Sidi Mohamed Ben Abdellah, Faculty of Sciences DM, Fez, Morocco; INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Institute for Research and Innovation in Biomedicine (IRIB), 76821 Mont-Saint-Aignan, France; Normandy University, Caen, France
| | - Abdelilah Alaoui
- Laboratory of Neuroendocrinology & Nutritional and climatic Environment, University Sidi Mohamed Ben Abdellah, Faculty of Sciences DM, Fez, Morocco
| | - David Alexandre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Institute for Research and Innovation in Biomedicine (IRIB), 76821 Mont-Saint-Aignan, France; Normandy University, Caen, France
| | - Seloua El Ouezzani
- Laboratory of Neuroendocrinology & Nutritional and climatic Environment, University Sidi Mohamed Ben Abdellah, Faculty of Sciences DM, Fez, Morocco
| | - Youssef Anouar
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Institute for Research and Innovation in Biomedicine (IRIB), 76821 Mont-Saint-Aignan, France; Normandy University, Caen, France.
| | - Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Institute for Research and Innovation in Biomedicine (IRIB), 76821 Mont-Saint-Aignan, France; Normandy University, Caen, France
| | - Rabia Magoul
- Laboratory of Neuroendocrinology & Nutritional and climatic Environment, University Sidi Mohamed Ben Abdellah, Faculty of Sciences DM, Fez, Morocco
| |
Collapse
|
32
|
Neveu C, Dulin F, Lefranc B, Galas L, Calbrix C, Bureau R, Rault S, Chuquet J, Boutin JA, Guilhaudis L, Ségalas-Milazzo I, Vaudry D, Vaudry H, Santos JSDO, Leprince J. Molecular basis of agonist docking in a human GPR103 homology model by site-directed mutagenesis and structure-activity relationship studies. Br J Pharmacol 2014; 171:4425-39. [PMID: 24913445 DOI: 10.1111/bph.12808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/04/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The neuropeptide 26RFa and its cognate receptor GPR103 are involved in the control of food intake and bone mineralization. Here, we have tested, experimentally, the predicted ligand-receptor interactions by site-directed mutagenesis of GPR103 and designed point-substituted 26RFa analogues. EXPERIMENTAL APPROACH Using the X-ray structure of the β2 -adrenoceptor, a 3-D molecular model of GPR103 has been built. The bioactive C-terminal octapeptide 26RFa(19-26) , KGGFSFRF-NH2 , was docked in this GPR103 model and the ligand-receptor complex was submitted to energy minimization. KEY RESULTS In the most stable complex, the Phe-Arg-Phe-NH2 part was oriented inside the receptor cavity, whereas the N-terminal Lys residue remained outside. A strong intermolecular interaction was predicted between the Arg(25) residue of 26RFa and the Gln(125) residue located in the third transmembrane helix of GPR103. To confirm this interaction experimentally, we tested the ability of 26RFa and Arg-modified 26RFa analogues to activate the wild-type and the Q125A mutant receptors transiently expressed in CHO cells. 26RFa (10(-6) M) enhanced [Ca(2+) ]i in wild-type GPR103-transfected cells, but failed to increase [Ca(2+) ]i in Q125A mutant receptor-expressing cells. Moreover, asymmetric dimethylation of the side chain of arginine led to a 26RFa analogue, [ADMA(25) ]26RFa(20-26) , that was unable to activate the wild-type GPR103, but antagonized 26RFa-evoked [Ca(2+) ]i increase. CONCLUSION AND IMPLICATIONS Altogether, these data provide strong evidence for a functional interaction between the Arg(25) residue of 26RFa and the Gln(125) residue of GPR103 upon ligand-receptor activation, which can be exploited for the rational design of potent GPR103 agonists and antagonists.
Collapse
Affiliation(s)
- C Neveu
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Institute for Research and Innovation in Biomedicine (IRIB); Cell Imaging Platform of Normandy (PRIMACEN), IRIB; Normandie Univ, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Georgsson J, Bergström F, Nordqvist A, Watson MJ, Blundell CD, Johansson MJ, Petersson AU, Yuan ZQ, Zhou Y, Kristensson L, Kakol-Palm D, Tyrchan C, Wellner E, Bauer U, Brodin P, Svensson Henriksson A. GPR103 Antagonists Demonstrating Anorexigenic Activity in Vivo: Design and Development of Pyrrolo[2,3-c]pyridines That Mimic the C-Terminal Arg-Phe Motif of QRFP26. J Med Chem 2014; 57:5935-48. [DOI: 10.1021/jm401951t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Martin J. Watson
- C4X Discovery Ltd., Unit 310 Ducie House, Ducie Street, Manchester M1 2JW, U.K
| | - Charles D. Blundell
- C4X Discovery Ltd., Unit 310 Ducie House, Ducie Street, Manchester M1 2JW, U.K
| | | | | | | | - Yiqun Zhou
- Pharmaron Beijing, Co.
Ltd., 6 Taihe Road, BDA, Beijing, 100176, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Granata R, Settanni F, Trovato L, Gallo D, Gesmundo I, Nano R, Gallo MP, Bergandi L, Volante M, Alloatti G, Piemonti L, Leprince J, Papotti M, Vaudry H, Ong H, Ghigo E. RFamide peptides 43RFa and 26RFa both promote survival of pancreatic β-cells and human pancreatic islets but exert opposite effects on insulin secretion. Diabetes 2014; 63:2380-93. [PMID: 24622796 DOI: 10.2337/db13-1522] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RFamide peptides 43RFa and 26RFa have been shown to promote food intake and to exert different peripheral actions through G-protein-coupled receptor 103 (GPR103) binding. Moreover, 26RFa was found to inhibit pancreatic insulin secretion, whereas the role of 43RFa on β-cell function is unknown, as well as the effects of both peptides on β-cell survival. Herein, we investigated the effects of 43RFa and 26RFa on survival and apoptosis of pancreatic β-cells and human pancreatic islets. In addition, we explored the role of these peptides on insulin secretion and the underlying signaling mechanisms. Our results show that in INS-1E β-cells and human pancreatic islets both 43RFa and 26RFa prevented cell death and apoptosis induced by serum starvation, cytokine synergism, and glucolipotoxicity, through phosphatidylinositol 3-kinase/Akt- and extracellular signal-related kinase 1/2-mediated signaling. Moreover, 43RFa promoted, whereas 26RFa inhibited, glucose- and exendin-4-induced insulin secretion, through Gαs and Gαi/o proteins, respectively. Inhibition of GPR103 expression by small interfering RNA blocked 43RFa insulinotropic effect, but not the insulinostatic action of 26RFa. Finally, 43RFa, but not 26RFa, induced cAMP increase and glucose uptake. In conclusion, because of their survival effects along with the effects on insulin secretion, these findings suggest potential for 43RFa and 26RFa as therapeutic targets in the treatment of diabetes.
Collapse
Affiliation(s)
- Riccarda Granata
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fabio Settanni
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Letizia Trovato
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Davide Gallo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Iacopo Gesmundo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Rita Nano
- Diabetes Research Institute, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | - Marco Volante
- Department of Oncology, University of Torino, Torino, Italy
| | - Giuseppe Alloatti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, International Associated Laboratory Samuel de Champlain, Institute for Research and Innovation in Biomedicine, INSERM U-982, University of Rouen, Rouen, France
| | - Mauro Papotti
- Department of Oncology, University of Torino, Torino, Italy
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, International Associated Laboratory Samuel de Champlain, Institute for Research and Innovation in Biomedicine, INSERM U-982, University of Rouen, Rouen, France
| | - Huy Ong
- Faculty of Pharmacy, University of Montréal, Montréal, Québec, Canada
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
35
|
Abstract
Neuropeptides possessing the Arg-Phe-NH2 (RFamide) motif at their C-termini (designated as RFamide peptides) have been characterized in a variety of animals. Among these, neuropeptide 26RFa (also termed QRFP) is the latest member of the RFamide peptide family to be discovered in the hypothalamus of vertebrates. The neuropeptide 26RFa/QRFP is a 26-amino acid residue peptide that was originally identified in the frog brain. It has been shown to exert orexigenic activity in mammals and to be a ligand for the previously identified orphan G protein-coupled receptor, GPR103 (QRFPR). The cDNAs encoding 26RFa/QRFP and QRFPR have now been characterized in representative species of mammals, birds, and fish. Functional studies have shown that, in mammals, the 26RFa/QRFP-QRFPR system may regulate various functions, including food intake, energy homeostasis, bone formation, pituitary hormone secretion, steroidogenesis, nociceptive transmission, and blood pressure. Several biological actions have also been reported in birds and fish. This review summarizes the current state of identification, localization, and understanding of the functions of 26RFaQRFP and its cognate receptor, QRFPR, in vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Tomohiro Osugi
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
36
|
Nordqvist A, Kristensson L, Johansson KE, Isaksson da Silva K, Fex T, Tyrchan C, Svensson Henriksson A, Nilsson K. New Hits as Antagonists of GPR103 Identified by HTS. ACS Med Chem Lett 2014; 5:527-32. [PMID: 24900874 DOI: 10.1021/ml400519h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/22/2014] [Indexed: 12/31/2022] Open
Abstract
Preclinical data indicate that GPR103 receptor and its endogenous neuropeptides QRFP26 and QRFP43 are involved in appetite regulation. A high throughput screening (HTS) for small molecule GPR103 antagonists was performed with the clinical goal to target weight management by modulation of appetite. A high hit rate from the HTS and initial low confirmation with respect to functional versus affinity data challenged us to revise the established screening cascade. To secure high quality data while increasing throughput, the binding assay was optimized on quality to run at single concentration. This strategy enabled evaluation of a larger fraction of chemical clusters and singletons delivering 17 new compound classes for GPR103 antagonism. Representative compounds from three clusters are presented. One of the identified clusters was further investigated, and an initial structure-activity relationship study is reported. The most potent compound identified had a pIC50 of 7.9 with an improved ligand lipophilic efficiency.
Collapse
Affiliation(s)
- Anneli Nordqvist
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Lisbeth Kristensson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Kjell E. Johansson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Krystle Isaksson da Silva
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Tomas Fex
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Christian Tyrchan
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Anette Svensson Henriksson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Kristina Nilsson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|
37
|
Zhu Y, Duan Z, Mo G, Shen C, Lv L, Chen W, Lai R. A novel 26RFa peptide containing both analgesic and anti-inflammatory functions from Chinese tree shrew. Biochimie 2014; 102:112-6. [PMID: 24632209 DOI: 10.1016/j.biochi.2014.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/28/2014] [Indexed: 11/29/2022]
Abstract
26RFa is one of neuroendocrine peptide groups in the RFamide peptide family containing conserved Arg-Phe/Tyr-NH2 motif at their C-terminus. They exert multiple biological functions in vertebrates. A novel 26RFa peptide (TC26RFa) with unique structure is identified from the tree shrew of Tupaia belangeri chinensis in the present study. In structure, different from other 26RFa peptides containing conserved Phe-Arg-Phe-NH2 motif at their C-terminus, there is a Phe-Arg-Tyr-NH2 C-terminus in TC26RFa. It has been found that TC26RFa of intraperitoneal injection exerts strong analgesic activities in several mice models including acetic acid-induced abdominal writhing, formalin-induced paw licking, and thermal pain-induced tail withdrawal. It shows comparable analgesic ability with morphine. In addition, this peptide has been found to inhibit inflammatory factor secretion (including tumor necrosis factor-α, interleukin-6, and interleukin-1β) induced by lipopolysaccharides (LPS). Furthermore, it stimulates secretion of the anti-inflammatory factor, interleukin-10. In addition to the identification of a novel 26RFa peptide from tree shrew, a new type of function (anti-inflammation) involved in 26RFa peptide is discovered.
Collapse
Affiliation(s)
- Yuqin Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Life Sciences College of Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zilei Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Guoxiang Mo
- Life Sciences College of Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chuanbin Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Longbao Lv
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Wenlin Chen
- Yunnan Clinical Research Center of Breast Cancer, The Third Affiliated Hospital of Kunming Medical College, Kunming 650032, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Life Sciences College of Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
38
|
Jossart C, Mulumba M, Granata R, Gallo D, Ghigo E, Marleau S, Servant MJ, Ong H. Pyroglutamylated RF-amide peptide (QRFP) gene is regulated by metabolic endotoxemia. Mol Endocrinol 2014; 28:65-79. [PMID: 24284825 PMCID: PMC5426650 DOI: 10.1210/me.2013-1027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/15/2013] [Indexed: 01/22/2023] Open
Abstract
Pyroglutamylated RF-amide peptide (QRFP) is involved in the regulation of food intake, thermogenesis, adipogenesis, and lipolysis. The expression of QRFP in adipose tissue is reduced in diet-induced obesity, a mouse model in which plasma concentrations of endotoxins are slightly elevated. The present study investigated the role of metabolic endotoxemia (ME) on QRFP gene regulation. Our results uncovered the expression of QRFP in murine macrophages and cell lines. This expression has been found to be decreased in mice with ME. Low doses of lipopolysaccharide (LPS) transiently down-regulated QRFP by 59% in RAW264.7 macrophages but not in 3T3-L1 adipocytes. The effect of LPS on QRFP expression in macrophages was dependent on the inhibitor of kB kinase and TIR-domain-containing adapter-inducing interferon (IFN)-β (TRIF) but not myeloid differentiation primary response gene 88. IFN-β was induced by ME in macrophages. IFN-β sustainably reduced QRFP expression in macrophages (64%) and adipocytes (49%). IFN-γ down-regulated QRFP (74%) in macrophages only. Both IFNs inhibited QRFP secretion from macrophages. LPS-stimulated macrophage-conditioned medium reduced QRFP expression in adipocytes, an effect blocked by IFN-β neutralizing antibody. The effect of IFN-β on QRFP expression was dependent on phosphoinositide 3-kinase, p38 MAPK, and histone deacetylases. The effect of IFN-γ was dependent on MAPK/ERK kinase 1/2 and histone deacetylases. Macrophage-conditioned medium containing increased amounts of QRFP preserved adipogenesis in adipocytes. In conclusion, LPS induces IFN-β release from macrophages, which reduces QRFP expression in both macrophages and adipocytes in an autocrine/paracrine-dependent manner, suggesting QRFP as a potential biomarker in ME.
Collapse
Affiliation(s)
- Christian Jossart
- Faculty of Pharmacy (C.J., M.M., S.M., M.J.S., H.O.), Université de Montréal C.P. 6128, Succursale Centre-Ville, Québec, Canada, H3C 3J7; and Laboratory of Molecular and Cellular Endocrinology (R.G., D.G., E.G.), Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ayachi S, Simonin F. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents. Front Endocrinol (Lausanne) 2014; 5:158. [PMID: 25324831 PMCID: PMC4183120 DOI: 10.3389/fendo.2014.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/17/2014] [Indexed: 01/04/2023] Open
Abstract
Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.
Collapse
Affiliation(s)
- Safia Ayachi
- UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
- *Correspondence: Frédéric Simonin, UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, 300 Boulevard Sébastien Brant, Illkirch 67412, France e-mail:
| |
Collapse
|
40
|
Elphick MR, Mirabeau O. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates. Front Endocrinol (Lausanne) 2014; 5:93. [PMID: 24994999 PMCID: PMC4062910 DOI: 10.3389/fendo.2014.00093] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022] Open
Abstract
Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide-receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates - urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom.
Collapse
Affiliation(s)
- Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- *Correspondence: Maurice R. Elphick, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK e-mail:
| | - Olivier Mirabeau
- Institut Curie, Cancer Genetics Unit, Inserm U830, Paris, France
| |
Collapse
|
41
|
Abstract
QRFP, a member of the RFamide-related peptide family, is a strongly conserved hypothalamic neuropeptide that has been characterized in various species. Prepro-QRFP mRNA expression is localized to select regions of the hypothalamus, which are involved in the regulation of feeding behavior. The localization of the peptide precursor has led to the assessment of QRFP on feeding behaviors and the orexigenic effects of QRFP have been detected in mice, rats, and birds. QRFP acts in a macronutrient specific manner in satiated rats to increase the intake of a high fat diet, but not the intake of a low fat diet, and increases the intake of chow in food-restricted rats. Studies suggest that QRFP's effects on food intake are mediated by the adiposity signal, leptin, and hypothalamic neuropeptides. Additionally, QRFP regulates the expression and release of hypothalamic Neuropeptide Y and proopiomelanocortin/α-Melanocyte-Stimulating Hormone. QRFP binds to receptors throughout the brain, including regions associated with food intake and reward. Taken together, these data suggest that QRFP is a mediator of motivated behaviors, particularly the drive to ingest high fat food. The present review discusses the role of QRFP in the regulation of feeding behavior, with emphasis on the intake of dietary fat.
Collapse
Affiliation(s)
- S. D. Primeaux
- Joint Diabetes, Endocrinology & Metabolism Program, Louisiana State University System, Louisiana State University Health Science Center-New Orleans, New Orleans, USA
| | - M. J. Barnes
- Pennington Biomedical Research Center, Baton Rouge, USA
| | - H. D. Braymer
- Pennington Biomedical Research Center, Baton Rouge, USA
| |
Collapse
|
42
|
Ukena K, Tachibana T, Tobari Y, Leprince J, Vaudry H, Tsutsui K. Identification, localization and function of a novel neuropeptide, 26RFa, and its cognate receptor, GPR103, in the avian hypothalamus. Gen Comp Endocrinol 2013; 190:42-6. [PMID: 23548680 DOI: 10.1016/j.ygcen.2013.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 02/06/2023]
Abstract
Several neuropeptides possessing the RFamide motif at their C-termini (designated RFamide peptides) have been characterized in the hypothalamus of a variety of vertebrates. Since the discovery of the 26-amino acid RFamide peptide (termed 26RFa) from the frog brain, 26RFa has been shown to exert orexigenic activity in mammals and to be a ligand of the previously identified orphan G protein-coupled receptor GPR103. Recently, we have identified 26RFa in the avian brain by molecular cloning of the cDNA encoding the 26RFa precursor and mass spectrometry analysis of the mature peptide. 26RFa-producing neurons are exclusively located in the hypothalamus whereas GPR103 is widely distributed in the avian brain. Furthermore, avian 26RFa stimulates feeding behavior in broiler chicks. This review summarizes the advances in the identification, localization, and functions of 26RFa and its cognate receptor GPR103 in vertebrates and highlights recent progress made in birds.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Pierry C, Couve-Bonnaire S, Guilhaudis L, Neveu C, Marotte A, Lefranc B, Cahard D, Ségalas-Milazzo I, Leprince J, Pannecoucke X. Fluorinated pseudopeptide analogues of the neuropeptide 26RFa: synthesis, biological, and structural studies. Chembiochem 2013; 14:1620-33. [PMID: 23940098 DOI: 10.1002/cbic.201300325] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Indexed: 11/05/2022]
Abstract
A series of four fluorinated dipeptide analogues each containing a fluoro-olefin moiety as peptide bond surrogate has been designed and synthesized. These motifs have been successfully introduced into the bioactive C-terminal heptapeptide of the neuropeptide 26RFa by conventional SPPS. We then evaluated the ability of the generated pseudopeptides to increase [Ca²⁺](i) in GPR103-transfected cells. For these fluorinated analogues, greater stability in human serum was observed. Their conformations were also investigated, leading to the valuable identification of differences depending on the position of the fluoro-olefin moiety in the sequence.
Collapse
Affiliation(s)
- Camille Pierry
- UMR 6014 COBRA, INSA and University of Rouen, IRCOF, 1 rue Tesnière, 76130 Mont-Saint-Aignan (France)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors. Neuropharmacology 2013; 75:164-71. [PMID: 23911743 DOI: 10.1016/j.neuropharm.2013.07.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/23/2022]
Abstract
Mammalian RF-amide peptides are encoded by five different genes and act through five different G protein-coupled receptors. RF-amide-related peptides-1 and -3, neuropeptides AF and FF, Prolactin releasing peptides, Kisspeptins and RFa peptides are currently considered endogenous peptides for NPFF1, NPFF2, GPR10, GPR54 and GPR103 receptors, respectively. However, several studies suggest that the selectivity of these peptides for their receptors is low and indicate that expression patterns for receptors and their corresponding ligands only partially overlap. In this study, we took advantage of the cloning of the five human RF-amide receptors to systematically examine their affinity for and their activation by all human RF-amide peptides. Binding experiments, performed on membranes from CHO cells expressing GPR10, GPR54 and GPR103 receptors, confirmed their high affinity and remarkable selectivity for their cognate ligands. Conversely, NPFF1 and NPFF2 receptors displayed high affinity for all RF-amide peptides. Moreover, GTPγS and cAMP experiments showed that almost all RF-amide peptides efficiently activate NPFF1 and NPFF2 receptors. As NPFF is known to modulate morphine analgesia, we undertook a systematic analysis in mice of the hyperalgesic and anti morphine-induced analgesic effects of a representative set of endogenous RF-amide peptides. All of them induced hyperalgesia and/or prevented morphine analgesia following intracerebroventricular administration. Importantly, these effects were prevented by administration of RF9, a highly selective NPFF1/NPFF2 antagonist. Altogether, our results show that all endogenous RF-amide peptides display pain-modulating properties and point to NPFF receptors as essential players for these effects.
Collapse
|
45
|
Alonzeau J, Alexandre D, Jeandel L, Courel M, Hautot C, Yamani FZE, Gobet F, Leprince J, Magoul R, Amarti A, Pfister C, Yon L, Anouar Y, Chartrel N. The neuropeptide 26RFa is expressed in human prostate cancer and stimulates the neuroendocrine differentiation and the migration of androgeno-independent prostate cancer cells. Eur J Cancer 2013; 49:511-9. [DOI: 10.1016/j.ejca.2012.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/07/2012] [Accepted: 05/27/2012] [Indexed: 11/15/2022]
|
46
|
Neveu C, Lefranc B, Tasseau O, Do-Rego JC, Bourmaud A, Chan P, Bauchat P, Le Marec O, Chuquet J, Guilhaudis L, Boutin JA, Ségalas-Milazzo I, Costentin J, Vaudry H, Baudy-Floc'h M, Vaudry D, Leprince J. Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-β3-pseudopeptide agonist. J Med Chem 2012; 55:7516-24. [PMID: 22800498 DOI: 10.1021/jm300507d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
26RFa, a novel RFamide neuropeptide, is the endogenous ligand of the former orphan receptor GPR103. Intracerebroventricular injection of 26RFa and its C-terminal heptapeptide, 26RFa((20-26)), stimulates food intake in rodents. To develop potent, stable ligands of GPR103 with low molecular weight, we have designed a series of aza-β(3)-containing 26RFa((20-26)) analogues for their propensity to establish intramolecular hydrogen bonds, and we have evaluated their ability to increase [Ca(2+)](i) in GPR103-transfected cells. We have identified a compound, [Cmpi(21),aza-β(3)-Hht(23)]26RFa((21-26)), which was 8-fold more potent than 26RFa((20-26)) in mobilizing [Ca(2+)](i). This pseudopeptide was more stable in serum than 26RFa((20-26)) and exerted a longer lasting orexigenic effect in mice. This study constitutes an important step toward the development of 26RFa analogues that could prove useful for the treatment of feeding disorders.
Collapse
Affiliation(s)
- Cindy Neveu
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), INSERM U982, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Galusca B, Jeandel L, Germain N, Alexandre D, Leprince J, Anouar Y, Estour B, Chartrel N. Orexigenic neuropeptide 26RFa: new evidence for an adaptive profile of appetite regulation in anorexia nervosa. J Clin Endocrinol Metab 2012; 97:2012-8. [PMID: 22466335 DOI: 10.1210/jc.2011-3396] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Restrictive anorexia nervosa (AN) presents an adaptive appetite regulating profile including mainly high levels of ghrelin. Because this adaptive mechanism is not effective on food intake, other appetite-regulating peptides need to be explored. 26RFa is a hypothalamic neuropeptide that stimulates appetite, gonadotropin release, and bone metabolism. OBJECTIVE The objective of the study was to evaluate the circadian levels of 26RFa in AN patients compared with healthy subjects, other eating disorders, and constitutional thinness (CT). DESIGN AND SETTINGS This was a cross-sectional study performed in an endocrine unit and an academic laboratory. INVESTIGATED SUBJECTS Five groups of age-matched young women were included in the study: 19 restrictive AN, 10 AN with bingeing/purging episodes, 14 with CT, 10 bulimic, and 10 normal-weight controls. MAIN OUTCOME MEASURES Twelve-point circadian profiles of plasma 26RFa levels were measured in each subject. RESULTS Significant circadian variations of 26 RFA were noticed in controls with higher values in the morning and abrupt decrease at noon. Twenty-four-hour mean 26RFa levels were significantly increased in restrictive AN and AN with bingeing/purging episodes (P < 0.001), predominantly in the afternoon and evening when compared with controls. Preprandial rises of 26 RFA were noticed in AN patients. Mean 26RFa levels trend to be higher in CT than in controls (P = 0.06) and significantly lower than in AN. The bulimic patients presented a circadian profile of 26RFa similar to that of controls. CONCLUSION High levels of circulating 26RFa observed in AN patients might reflect an adaptive mechanism of the organism to promote energy intake and to increase fat stores in response to undernutrition.
Collapse
Affiliation(s)
- Bogdan Galusca
- Endocrinology Department, Centre Hospitalier Universitaire Saint Etienne, 42055 Saint Etienne, Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|