1
|
Bergeron A, Wong‐Chong E, Joncas F, Castonguay C, Calon F, Seidah NG, Blais J, Robitaille K, Bergeron A, Fradet V, Gangloff A. Lipid Profile, PCSK9, ANGPTL3 and Lipoprotein (a) Levels in Men Diagnosed With Localized High-Grade Prostate Cancer and Men At-Risk of Prostate Cancer. Cancer Med 2025; 14:e70587. [PMID: 39888285 PMCID: PMC11783234 DOI: 10.1002/cam4.70587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Some cancers have been found to require abundant supplies of lipids for their development. One example is prostate cancer (PCa). To date, lipid-modifying factors, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like 3 protein (ANGPTL3), and lipoprotein(a) or Lp(a), have not been reported in men with PCa. The present study aimed to verify whether plasma levels of these lipid-related proteins vary in men with PCa compared to at-risk but cancer-free men. METHODS Plasma samples from 35 men with locally advanced PCa Gleason 8 and 9 versus 35 men at risk of PCa were selected as cases and controls. Blood samples were paired according to age and BMI. Apolipoprotein B100 (Apo B), Lp(a), and lipid profiles were measured on an analytical platform (Roche Cobas). PCSK9 and ANGPTL3 levels were determined by ELISA. RESULTS No significant change in lipids and related factors levels was observed between men with localized PCa Gleason 8 or 9 and matched controls. A correlation between ANGPTL3 and HDL levels was only confirmed in controls (ρ = 0.54, p = 0.0009). PCSK9 was inversely associated with PSA levels in the entire cohort (ρ = -0.31, p < 0.01), suggesting that factors influencing PCSK9 could also influence PSA levels. In controls only, PSA levels were correlated with LDL, Apo B, non-HDL, total cholesterol, and triglycerides (all ρ coefficients ≥ 0.35, all p-values < 0.05). PCSK9 was correlated to LDL in PCa men, but the relationship was unexpectedly found to be inverse. CONCLUSIONS In this observational study, lipid profiles, PCSK9, ANGPTL3, and Lp(a) levels did not change in men diagnosed with locally advanced Gleason 8 or 9 PCa compared to at-risk but cancer-free men. The present data suggest a complex interplay between PCSK9, PSA, and the lipid profile in localized PCa.
Collapse
Affiliation(s)
- Ann‐Charlotte Bergeron
- Oncology Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Emilie Wong‐Chong
- Oncology Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
- Division of Molecular Medicine, Faculty of MedicineUniversité LavalQuebec CityQuebecCanada
- Cancer Research Center (CRC)Université LavalQuebec CityQuebecCanada
| | - France‐Hélène Joncas
- Oncology Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
- Cancer Research Center (CRC)Université LavalQuebec CityQuebecCanada
| | - Chloé Castonguay
- Oncology Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Frédéric Calon
- Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center ‐ NutritionHealth and Society of Université LavalQuebec CityQuebecCanada
- Neuroscience Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Nabil G. Seidah
- Laboratory of Biochemical NeuroendocrinologyInstitut de Recherches Cliniques de MontréalMontrealQuebecCanada
| | - Jonatan Blais
- Oncology Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
| | - Karine Robitaille
- Oncology Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
- Cancer Research Center (CRC)Université LavalQuebec CityQuebecCanada
- Department of SurgeryCHU de Québec‐Université Laval, Université LavalQuebec CityQuebecCanada
| | - Alain Bergeron
- Oncology Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
- Cancer Research Center (CRC)Université LavalQuebec CityQuebecCanada
- Department of Molecular Biology, Medical Biochemistry and PathologyCHU de Québec‐Université Laval, Université LavalQuebec CityQuebecCanada
| | - Vincent Fradet
- Oncology Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
- Cancer Research Center (CRC)Université LavalQuebec CityQuebecCanada
- Department of Molecular Biology, Medical Biochemistry and PathologyCHU de Québec‐Université Laval, Université LavalQuebec CityQuebecCanada
| | - Anne Gangloff
- Oncology Research Axis, Centre de Recherche du CHU de Québec‐Université LavalQuebec CityQuebecCanada
- Cancer Research Center (CRC)Université LavalQuebec CityQuebecCanada
- Department of Molecular Biology, Medical Biochemistry and PathologyCHU de Québec‐Université Laval, Université LavalQuebec CityQuebecCanada
| |
Collapse
|
2
|
Frisbie L, Pressimone C, Dyer E, Baruwal R, Garcia G, St Croix C, Watkins S, Calderone M, Gorecki G, Javed Z, Atiya HI, Hempel N, Pearson A, Coffman LG. Carcinoma-associated mesenchymal stem cells promote ovarian cancer heterogeneity and metastasis through mitochondrial transfer. Cell Rep 2024; 43:114551. [PMID: 39067022 PMCID: PMC11420855 DOI: 10.1016/j.celrep.2024.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Ovarian cancer is characterized by early metastatic spread. This study demonstrates that carcinoma-associated mesenchymal stromal cells (CA-MSCs) enhance metastasis by increasing tumor cell heterogeneity through mitochondrial donation. CA-MSC mitochondrial donation preferentially occurs in ovarian cancer cells with low levels of mitochondria ("mito poor"). CA-MSC mitochondrial donation rescues the phenotype of mito poor cells, restoring their proliferative capacity, resistance to chemotherapy, and cellular respiration. Receipt of CA-MSC-derived mitochondria induces tumor cell transcriptional changes leading to the secretion of ANGPTL3, which enhances the proliferation of tumor cells without CA-MSC mitochondria, thus amplifying the impact of mitochondrial transfer. Donated CA-MSC mitochondrial DNA persisted in recipient tumor cells for at least 14 days. CA-MSC mitochondrial donation occurs in vivo, enhancing tumor cell heterogeneity and decreasing mouse survival. Collectively, this work identifies CA-MSC mitochondrial transfer as a critical mediator of ovarian cancer cell survival, heterogeneity, and metastasis and presents a unique therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Emma Dyer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Roja Baruwal
- Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geyon Garcia
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudette St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Calderone
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Grace Gorecki
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zaineb Javed
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Huda I Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alexander Pearson
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Lan G Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Che Y, Yuan J, Tang D, Guo J. Lipid traits and lipid-lowering drug target genes and risk of melanoma: a mendelian randomization study. Arch Dermatol Res 2024; 316:301. [PMID: 38819656 DOI: 10.1007/s00403-024-03100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/19/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Our study aimed to investigate the role of lipids in melanoma risk and the effect of lipid-lowering drug targets on melanoma. Using Mendelian Randomization analysis, we examined the genetic agents of nine lipid-lowering drugs and their association with melanoma risk. We found that genetically proxied inhibition of HMGCR, ABCG5/ABCG8, and ANGPTL3 was associated with a reduced risk of melanoma. On the other hand, inhibition of LPL and Apo-B100 was significantly associated with an increased risk of melanoma. Sensitivity analyses did not reveal any statistical evidence of bias from pleiotropy or genetic confounding. We did not find a robust association between lipid traits NPC1L1, PCSK9, APOC3 inhibition, and melanoma risk. These findings were validated using two independent lipid datasets. Our analysis also revealed that HMGCR, ANGPTL3, and ABCG5/ABCG8 inhibitors reduced melanoma risk independent of their effects on lipids. This suggests that these targets may have potential for melanoma prevention or treatment. In conclusion, our study provides evidence for a causal role of lipids in melanoma risk and highlights specific lipid-lowering drug targets that may be effective in reducing the risk of melanoma. These findings contribute to the understanding of the underlying mechanisms of melanoma development and provide potential avenues for further research and therapeutic interventions.
Collapse
Affiliation(s)
- Yuhui Che
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyao Yuan
- West China Second Hospital of Sichuan University, Chengdu, China
| | - Dadong Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Wong Chong E, Joncas FH, Douville P, Bachvarov D, Diorio C, Calon F, Bergeron AC, Blais J, Leung SOA, Seidah NG, Gangloff A. Pre-operative levels of angiopoietin protein-like 3 (ANGPTL3) in women diagnosed with high-grade serous carcinoma of the ovary. Lipids Health Dis 2024; 23:59. [PMID: 38414008 PMCID: PMC10898078 DOI: 10.1186/s12944-024-02038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer cells need constant supplies of lipids to survive and grow. Lipid dependence has been observed in various types of cancer, including high-grade serous ovarian carcinomas (HGSOC), which is a lethal form of gynecological malignancy. ANGPTL3, PCSK9, and Apo CIII are pivotal lipid-modulating factors, and therapeutic antibodies have been developed against each one (Evinacumab, Evolocumab and Volanesorsen, respectively). The roles -if any- of ANGPTL3, PCSK9, and Apo CIII in HGSOC are unclear. Moreover, levels of these lipid-modulating factors have never been reported before in HGSOC. In this study, circulating levels of ANGPTL3, PCSK9, and Apo CIII, along with lipid profiles, are examined to verify whether one or many of these lipid-regulating factors are associated with HGSOC. Methods ELISA kits were used to measure ANGPTL3, PCSK9 and Apo CIII levels in plasma samples from 31 women with HGSOC and 40 women with benign ovarian lesions (BOL) before treatment and surgery. A Roche Modular analytical platform measured lipid panels, Apo B and Lp(a) levels.Results ANGPTL3 levels were higher in women with HGSOC (84 ng/mL, SD: 29 ng/mL, n = 31) than in women with BOL (67 ng/mL, SD: 31 ng/mL, n = 40; HGSOC vs. BOL P = 0.019). Associations between the lipid panel and ANGPTL3, and the inverse relationship between HDL-cholesterol and triglycerides, were present in women with BOL but not with HGSOC. PCSK9 and Apo CIII were not associated with HGSOC.Conclusions In this cohort of 71 women, ANGPTL3 levels were increased in HGSOC patients. The presence of HGSOC disrupted the classic inverse relationship between HDL and triglycerides, as well as the association between the lipid panel and ANGPTL3. These associations were only maintained in cancer-free women. Given the availability of Evinacumab, a therapeutic antibody against ANGPTL3, the current finding prompts an assessment of whether ANGPTL3 inhibition has therapeutic potential in HGSOC.
Collapse
Affiliation(s)
- Emilie Wong Chong
- Faculty of Medicine, Laval University, Québec, QC, Canada
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | - France-Hélène Joncas
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | - Pierre Douville
- Faculty of Medicine, Laval University, Québec, QC, Canada
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | - Dimcho Bachvarov
- Faculty of Medicine, Laval University, Québec, QC, Canada
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | - Caroline Diorio
- Faculty of Medicine, Laval University, Québec, QC, Canada
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
- Centre des Maladies du Sein Deschênes-Fabia, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Québec, QC, Canada
- Neuroscience Research Division, CHU de Québec- Université Laval, Québec, QC, Canada
| | | | - Jonatan Blais
- Faculty of Medicine, Laval University, Québec, QC, Canada
- CHU de Québec-Université Laval, Lipid Clinic, Room C-00102, 2705 Laurier Blvd, Québec, QC, G1V 4G2, Canada
| | - Shuk On Annie Leung
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| | - Nabil Georges Seidah
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Anne Gangloff
- Faculty of Medicine, Laval University, Québec, QC, Canada.
- Centre de recherche sur le cancer (CRC) de l'Université Laval, Québec, QC, Canada.
- Réseau de Recherche sur le Cancer, 9 McMahon, Québec, QC, G1R 3S3, Canada.
- Oncology Research Division, CHU de Québec- Université Laval, Québec, QC, Canada.
- CHU de Québec-Université Laval, Lipid Clinic, Room C-00102, 2705 Laurier Blvd, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
5
|
Baumann KE, Siamakpour-Reihani S, Dottino J, Dai Y, Bentley R, Jiang C, Zhang D, Sibley AB, Zhou C, Berchuck A, Owzar K, Bae-Jump V, Secord AA. High-fat diet and obesity are associated with differential angiogenic gene expression in epithelial ovarian cancer. Gynecol Oncol 2023; 179:97-105. [PMID: 37956617 PMCID: PMC11510393 DOI: 10.1016/j.ygyno.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE We sought to evaluate the association between diet and angiogenic biomarkers in KpB mice, and the association between these markers, body mass index (BMI), and overall survival (OS) in high-grade serous cancers (HGSC). METHODS Tumors previously obtained from KpB mice subjected to high-fat diets (HFD, n = 10) or low-fat diets (LFD, n = 10) were evaluated for angiogenesis based on CD-31 microvessel density (MVD). Data from prior microarray analysis (Agilent 244 K arrays) conducted in 10 mice were utilized to assess associations between diet and angiogenetic biomarkers. Agilent (mouse) and Affymetrix Human Genome U133a probes were linked to 162 angiogenic-related genes. The associations between biomarkers, BMI, and OS were evaluated in an HGSC internal database (IDB) (n = 40). Genes with unadjusted p < 0.05 were evaluated for association with OS in the TCGA-OV database (n = 339). RESULTS There was no association between CD-31 and diet in mice (p = 0.66). Sixteen angiogenic-related genes passed the p < 0.05 threshold for association with HFD vs. LFD. Transforming growth factor-alpha (TGFA) demonstrated 72% higher expression in HFD vs. LFD mice (p = 0.04). Similar to the mouse study, in our HGSC IDB, higher TGFA expression correlated with higher BMI (p = 0.01) and shorter survival (p = 0.001). In the TCGA-OV dataset, BMI data was not available and there was no association between TGFA and OS (p = 0.48). CONCLUSIONS HFD and obesity may promote tumor progression via differential modulation of TGFA. We were unable to confirm this finding in the TCGA dataset. Further evaluation of TGFA is needed to determine if this is a target unique to obesity-driven HGSC.
Collapse
Affiliation(s)
- Katherine E Baumann
- Department of Obstetrics and Gynecology, Duke School of Medicine, Durham, NC, USA
| | | | - Joseph Dottino
- Department of Medicine, Duke School of Medicine, Durham, NC, USA; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yanwan Dai
- Bioinformatics Shared Resource, Duke Cancer Institute, Durham, NC, USA
| | - Rex Bentley
- Department of Pathology, Duke School of Medicine, Durham, NC, USA
| | - Chen Jiang
- Bioinformatics Shared Resource, Duke Cancer Institute, Durham, NC, USA
| | - Dadong Zhang
- Bioinformatics Shared Resource, Duke Cancer Institute, Durham, NC, USA
| | | | - Chunxiao Zhou
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of North Carolina in Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Berchuck
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke School of Medicine, Durham, NC, USA
| | - Kouros Owzar
- Bioinformatics Shared Resource, Duke Cancer Institute, Durham, NC, USA; Department of Biostatistics and Bioinformatics, Duke School of Medicine, Durham, NC, USA
| | - Victoria Bae-Jump
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of North Carolina in Chapel Hill, Chapel Hill, NC, USA
| | - Angeles Alvarez Secord
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Yang X, Zheng M, Ning Y, Sun J, Yu Y, Zhang S. Prognostic risk factors of serous ovarian carcinoma based on mesenchymal stem cell phenotype and guidance for therapeutic efficacy. J Transl Med 2023; 21:456. [PMID: 37434173 PMCID: PMC10334653 DOI: 10.1186/s12967-023-04284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer is the leading cause of death from gynecologic cancer, in which serous ovarian carcinoma (SOC) is the most common histological subtype. Although PARP inhibitors (PARPi) and antiangiogenics have been accepted as maintenance treatment in SOC, response to immunotherapy of SOC patients is limited. METHODS The source of transcriptomic data of SOC was from the Cancer Genome Atlas database and Gene Expression Omnibus. The abundance scores of mesenchymal stem cells (MSC scores) were estimated for each sample by xCell. Weighted correlation network analysis is correlated the significant genes with MSC scores. Based on prognostic risk model construction with Cox regression analysis, patients with SOC were divided into low- and high-risk groups. And distribution of immune cells, immunosuppressors and pro-angiogenic factors in different risk groups was achieved by single-sample gene set enrichment analysis. The risk model of MSC scores was further validated in datasets of immune checkpoint blockade and antiangiogenic therapy. In the experiment, the mRNA expression of prognostic genes related to MSC scores was detected by real-time polymerase chain reaction, while the protein level was evaluated by immunohistochemistry. RESULTS Three prognostic genes (PER1, AKAP12 and MMP17) were the constituents of risk model. Patients classified as high-risk exhibited worse prognosis, presented with an immunosuppressive phenotype, and demonstrated high micro-vessel density. Additionally, these patients were insensitive to immunotherapy and would achieve a longer overall survival with antiangiogenesis treatment. The validation experiments showed that the mRNA of PER1, AKAP12, and MMP17 was highly expressed in normal ovarian epithelial cells compared to SOC cell lines and there was a positive correlation between protein levels of PER1, AKAP12 and MMP17 and metastasis in human ovarian serous tumors. CONCLUSION This prognostic model established on MSC scores can predict prognosis of patients and provide the guidance for patients receiving immunotherapy and molecular targeted therapy. Because the number of prognostic genes was fewer than other signatures of SOC, it will be easily accessible on clinic.
Collapse
Affiliation(s)
- Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Jie Sun
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yongjun Yu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
7
|
Wang Y, Yi Y, Pan S, Zhang Y, Fu J, Wu X, Qin X. Angiopoietin-like protein 3 promotes colorectal cancer progression and liver metastasis partly via the mitogen-activated protein kinase 14 pathway. Mol Carcinog 2023; 62:546-560. [PMID: 36692110 DOI: 10.1002/mc.23506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies worldwide, and liver metastasis represents a considerable challenge during CRC treatment. Aberrant expression of angiopoietin-like protein 3 (ANGPTL3) has been reported in several human cancer types. However, the function and mechanism of ANGPTL3 in CRC remain unclear. In this study, we first explored ANGPTL3 expression profiles in CRC datasets from ONCOMINE and in local samples from patients with CRC. We then elucidated the function of ANGPTL3 via knockdown and overexpression experiments. Bioinformatic analyses were performed to investigate the biological function and associated molecular mechanisms of ANGPTL3 in CRC oncogenesis and development. Finally, a xenograft model of liver metastasis was used to determine the role of ANGPTL3 in CRC metastasis. Our findings indicated that ANGPTL3 expression was upregulated in human CRC tissues, with high ANGPTL3 expression significantly correlated with poor survival of patients with CRC. ANGPTL3 overexpression promoted the proliferation and migration of CRC cells partially through mitogen-activated protein kinase 14 (MAPK14), while ANGPTL3 silencing had the opposite effect. Moreover, ANGPTL3 downregulation suppressed tumor growth and liver metastasis in xenograft mice. Collectively, the results presented here indicate that ANGPTL3 promotes cell proliferation and liver metastasis partly via MAPK14, suggesting that ANGPTL3 plays a tumor-promoting role in CRC progression and thus may represent a therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Yuexia Wang
- Department of General Surgery, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Yi Yi
- Department of General Surgery, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Shengli Pan
- Department of General Surgery, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Yuhao Zhang
- Department of General Surgery, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Jun Fu
- Department of General Surgery, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Xiaolin Wu
- Central Laboratory, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| | - Xianju Qin
- Department of General Surgery, Jiangsu University Affiliated Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
MALDI-MSI: A Powerful Approach to Understand Primary Pancreatic Ductal Adenocarcinoma and Metastases. Molecules 2022; 27:molecules27154811. [PMID: 35956764 PMCID: PMC9369872 DOI: 10.3390/molecules27154811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer-related deaths are very commonly attributed to complications from metastases to neighboring as well as distant organs. Dissociate response in the treatment of pancreatic adenocarcinoma is one of the main causes of low treatment success and low survival rates. This behavior could not be explained by transcriptomics or genomics; however, differences in the composition at the protein level could be observed. We have characterized the proteomic composition of primary pancreatic adenocarcinoma and distant metastasis directly in human tissue samples, utilizing mass spectrometry imaging. The mass spectrometry data was used to train and validate machine learning models that could distinguish both tissue entities with an accuracy above 90%. Model validation on samples from another collection yielded a correct classification of both entities. Tentative identification of the discriminative molecular features showed that collagen fragments (COL1A1, COL1A2, and COL3A1) play a fundamental role in tumor development. From the analysis of the receiver operating characteristic, we could further advance some potential targets, such as histone and histone variations, that could provide a better understanding of tumor development, and consequently, more effective treatments.
Collapse
|
9
|
Zhao L, Wang W, Niu P, Luan X, Zhao D, Chen Y. The molecular mechanisms of CTHRC1 in gastric cancer by integrating TCGA, GEO and GSA datasets. Front Genet 2022; 13:900124. [PMID: 35928443 PMCID: PMC9343808 DOI: 10.3389/fgene.2022.900124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Collagen triple helix repeat containing-1 (CTHRC1), highly expressed in multiple human solid tumors, has been identified as a tumor associated protein. However, its specific role and mechanism with immune infiltrates in gastric cancer are still unclear. In this study, we systematically explored and validated the expression and prognostic value of CTHRC1 in gastric cancer by integrating the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Genome Sequence Archive (GSA) datasets. Compared to adjacent normal tissues, we observed that CTHRC1 was highly overexpressed in tumor sample of multiple cancers. It was revealed that CTHRC1 overexpression was positively correlated with the T stage in gastric cancer but not lymph nodes metastasis from TCGA dataset. In addition, CTHRC1 expression may induce tumor associated macrophage infiltration though GRN/TNFRSF1A and AnxA1/FPR1 pathways and also tumor angiogenesis in gastric cancer. In this context, our results indicate that CTHRC1 plays a pivotal role in regulating the angiogenesis and macrophage infiltration in tumor microenvironment, and also can predict poor prognosis in gastric cancer, suggesting that CTHRC1 might be a promising novel immunotherapy and angiogenesis target for gastric cancer.
Collapse
|
10
|
Neuropilin-1 as a Potential Biomarker of Prognosis and Invasive-Related Parameters in Liver and Colorectal Cancer: A Systematic Review and Meta-Analysis of Human Studies. Cancers (Basel) 2022; 14:cancers14143455. [PMID: 35884516 PMCID: PMC9318974 DOI: 10.3390/cancers14143455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Neuropilin-1 (NRP1) is a transmembrane protein which has had recently increased interest from cancer researchers. Liver cancer and colorectal cancer (CRC) are two of the most frequent and deadly tumors worldwide. Here, we assessed the prognostic, diagnostic and clinicopathological value of NRP1 in liver cancer and CRC patients by systematic searches in PubMed, Scopus, Web of Science, Embase and Cochrane Library and a meta-analysis. Results obtained showed that NRP1 overexpression was significantly correlated with lower survival in liver cancer patients and with tumor development in hepatocarcinoma patients, and high levels of NRP1 were strongly correlated with an increased risk of vascular invasion in liver cancer and metastasis in CRC and liver tumors. Therefore, these findings could establish novel interest of NRP1 as a useful biomarker for patient prognosis as well as for invasive-related characteristics in patients with liver cancer or CRC. Abstract Neuropilin-1 (NRP1) is a transmembrane protein involved in numerous cellular functions which has had increasing interest from cancer researchers. Liver cancer and colorectal cancer (CRC) are two of the most frequent and deadly tumors with a complex pharmacological framework. Here, we assessed the prognostic, diagnostic and clinicopathological value of NRP1 in liver cancer and CRC patients. We searched PubMed, Scopus, Web of Science, Embase and Cochrane Library databases for articles evaluating the NRP1 correlation with survival parameters, tumor development or clinicopathological features. Hazard ratios and odds ratios with 95% confidence intervals were extracted or estimated by Parmar method and pooled to evaluate the overall effect size with STATA 16 software. Heterogeneity was analyzed by chi-square-based Q test and I2 statistic, along with meta-regression and subgroup analysis, and publication bias was assessed by funnel plot asymmetry and Egger’s test. The study protocol was registered in PROSPERO (CRD42022307062). NRP1 overexpression was significantly correlated with lower survival in liver cancer patients and with tumor development in hepatocarcinoma patients, and was strongly correlated with an increased risk of vascular invasion in liver cancer and metastasis in CRC and liver tumors. These results support the role of NRP1 as a potential and useful biomarker in both types of cancer.
Collapse
|
11
|
Tao D, Wang Y, Zhang X, Wang C, Yang D, Chen J, Long Y, Jiang Y, Zhou X, Zhang N. Identification of Angiogenesis-Related Prognostic Biomarkers Associated With Immune Cell Infiltration in Breast Cancer. Front Cell Dev Biol 2022; 10:853324. [PMID: 35602610 PMCID: PMC9121305 DOI: 10.3389/fcell.2022.853324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background: This study aimed to explore the prognostic value of angiogenesis-related genes (ARGs) and their association with immune cell infiltration (ICI) in breast cancer (BC). Methods: Transcriptome data of BC were obtained from the TCGA and GEO databases. Differentially expressed ARGs were identified by the limma package. The identification of key genes and construction of the risk score model were performed by univariate and multivariate Cox regression algorithms. The prognostic value of the risk score was assessed by ROC curves and nomogram. GO, KEGG pathway, and GSEA were used to investigate the biological functions of differentially expressed genes (DEGs), and CIBERSORT, ssGSEA, and xCell algorithms were performed to estimate the ICI in high-risk and low-risk groups. The correlations between prognostic biomarkers and differentially distributed immune cells were assessed. Moreover, a ceRNA regulatory network based on prognostic biomarkers was constructed and visualized by Cytoscape software. Results: A total of 18 differentially expressed ARGs were identified between tumor and adjacent normal tissue samples. TNFSF12, SCG2, COL4A3, and TNNI3 were identified as key prognostic genes by univariate and multivariate Cox regression analyses. The risk score model was further constructed based on the four-gene signature and validated in GSE7390 and GSE88770 datasets. ROC curves and nomogram indicated that the risk score had good accuracy for determining BC patient survival. Biological function analysis showed that DEGs in high- and low-risk groups had a high enrichment in immune-related biological processes and signaling pathways. Moreover, significantly different ICIs were found between high- and low-risk groups, such as memory B cells, CD8+ T cells, resting memory CD4+ T cells, follicular helper T cells, regulatory T cells, monocytes, M2 macrophages, and neutrophils, and each prognostic biomarker was significantly correlated with one or more immune cell types. Conclusion: The current study identified novel prognostic ARGs and developed a prognostic model for predicting survival in patients with BC. Furthermore, this study indicated that ICI may act as a bond between angiogenesis and BC. These findings enhance our understanding of angiogenesis in BC and provide novel guidance on developing therapeutic targets for BC patients.
Collapse
Affiliation(s)
- Dan Tao
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xin Zhang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Can Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Dingyi Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing Chen
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yanyan Long
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong Jiang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xian Zhou
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Ningning Zhang,
| |
Collapse
|
12
|
Sahmani M, Kianorooz Z, Javadi A, Gheibi N, Chegini KG. A New Insight Into the Anti-Proliferative and Apoptotic Effects of Betatrophin on Human Ovarian Cancer Cell Line Skov-3. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Gunderson CC, Radhakrishnan R, Gomathinayagam R, Husain S, Aravindan S, Moore KM, Dhanasekaran DN, Jayaraman M. Circulating Tumor Cell-Free DNA Genes as Prognostic Gene Signature for Platinum Resistant Ovarian Cancer Diagnosis. Biomark Insights 2022; 17:11772719221088404. [PMID: 35370397 PMCID: PMC8966103 DOI: 10.1177/11772719221088404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical management of gynecological cancer begins by optimal debulking with first-line platinum-based chemotherapy. However, in ~80% patients, ovarian cancer will recur and is lethal. Prognostic gene signature panel identifying platinum-resistance enables better patient stratification for precision therapy. Retrospectively collected serum from 11 "poor" (<6 months progression free interval [PFI]) and 22 "favorable" (>24 months PFI) prognosis patients, were evaluated using circulating cell-free DNA (cfDNA). DNA from both groups showed 50 to 10 000 bp fragments. Pairwise analysis of sequenced cfDNA from patients showed that gene dosages were higher for 29 genes and lower for 64 genes in poor than favorable prognosis patients. Gene ontology analysis of higher dose genes predominantly grouped into cytoskeletal proteins, while lower dose genes, as hydrolases and receptors. Higher dosage genes searched for cancer-relatedness in Reactome database indicated 15 genes were referenced with cancer. Among them 3 genes, TGFBR2, ZMIZ2, and NRG2, were interacting with more than 4 cancer-associated genes. Protein expression analysis of tumor samples indicated that TGFBR2 was downregulated and ZMIZ2 was upregulated in poor prognosis patients. Our results indicate that the cfDNA gene dosage combined with protein expression in tumor samples can serve as gene signature panel for prognosis determination amongst ovarian cancer patients.
Collapse
Affiliation(s)
- Camille C Gunderson
- Section of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Rohini Gomathinayagam
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sanam Husain
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sheeja Aravindan
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathleen M Moore
- Section of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Muralidharan Jayaraman, Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, 975 NE 10th Street, BRC416, Oklahoma City, OK 73104, USA.
| |
Collapse
|
14
|
Zhong L, Tang L, He X. Angiopoietin-like 3 (ANGPTL3) drives cell proliferation, migration and angiogenesis in cervical cancer via binding to integrin alpha v beta 3. Bioengineered 2022; 13:2971-2980. [PMID: 35038961 PMCID: PMC8974177 DOI: 10.1080/21655979.2021.2024951] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) has been uncovered to play an oncogenic role in several kinds of human malignancies. Nevertheless, whether ANGPTL3 functions in cervical cancer (CC) has not yet been reported. This paper is intended to explore the impact of ANGPTL3 on CC cells and elucidate the potential mechanism. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to analyze the ANGPTL3 expression. Western blot was also performed to examine integrin αvβ3 protein level. Cell proliferation was evaluated by MTT assay, EdU staining and Western blot analysis. In addition, the migratory and invasive abilities of cells were, respectively, estimated by wound healing and transwell assays. Tube formation assay was performed to determine endothelial cell angiogenesis. Levels of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) were measured by ELISA. As a result, ANGPTL3 expression was significantly higher in CC cells relative to that in normal cervical cells. Silencing of ANGPTL3 suppressed cell proliferation, migration and invasion. Besides, downregulation of ANGPTL3 inhibited human umbilical vein endothelial cell (HUVEC) angiogenesis and repressed protein level of integrin alpha v beta 3 (αvβ3). Upregulation of αvβ3 offsets the inhibitory effect of ANGPTL3 on proliferation, migration and invasion in CC cells. Upregulated expression of αvβ3 promoted blood vessel formation and secretions of VEGF and VEGFR2. In conclusion, ANGPTL3 silencing may serve as a tumor suppressor in CC through integrin αvβ3, which provides a potentially novel therapeutic target for patients with CC.
Collapse
Affiliation(s)
- Lijun Zhong
- Department of Gynecology, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Lin Tang
- Department of Gynecology, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Xiaoxia He
- Department of Gynecology, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Meng L, Zhang Q, Huang X. Abnormal 5-methylcytosine lncRNA methylome is involved in human high-grade serous ovarian cancer. Am J Transl Res 2021; 13:13625-13639. [PMID: 35035702 PMCID: PMC8748087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Methylcytosine (m5C) is an important posttranscriptional RNA methylation modification. Studies have reported that aberrant RNA methylation can regulate tumorigenesis and development, indicating the importance of exploring the distribution and biological functions of m5C modification in human high-grade serous ovarian cancer (HGSOC) lncRNAs. In the current study, we identified 2,050 dysregulated m5C peaks, 1,767 of which were significantly upregulated, while 283 were significantly downregulated by performing methylated RNA immunoprecipitation sequencing on 3 pairs of human HGSOC tissues and paired normal tissues. GO enrichment analysis showed that genes altered by the m5C peak played a key role in phylogeny, protein metabolism, and gene mismatch repair. KEGG pathway analysis revealed that these genes were enriched in some important pathways in cancer regulation, such as the PI3K-Akt signalling pathway, transcriptional dysregulation in cancer, and mismatch repair pathways. In addition, through joint analysis of MeRIP-seq and RNA-seq data, we identified 1671 differentially methylated m5C peaks and synchronous differentially expressed genes. These genes play a key role in cell growth or maintenance, RNA metabolism and material transport. We analyzed expression of the m5C modification regulatory gene collagen type IV alpha 3 chain (COL4A3) in 80 HGSOC tissue samples by immunohistochemistry and found that high expression of COL4A3 was significantly correlated with CA125 level (P=0.016), lymph node metastasis (P<0.001), degree of interstitial invasion (P<0.001) and FIGO staging (P<0.001) and indicated a poorer prognosis. Our results revealed the critical role of m5C methylation of lncRNAs in HGSOC, and provided a reference for the prognostic stratification and treatment strategy of HGSOC.
Collapse
Affiliation(s)
- Li Meng
- Department of Gynecology, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050011, Hebei, China
| | - Qianqian Zhang
- Department of Gynecology, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050011, Hebei, China
| | - Xianghua Huang
- Department of Gynecology, The Second Hospital of Hebei Medical University 215 Heping West Road, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
16
|
Meta-analysis based gene expression profiling reveals functional genes in ovarian cancer. Biosci Rep 2021; 40:226877. [PMID: 33135729 PMCID: PMC7677829 DOI: 10.1042/bsr20202911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Ovarian cancer causes high mortality rate worldwide, and despite numerous attempts, the outcome for patients with ovarian cancer are still not well improved. Microarray-based gene expressional analysis provides with valuable information for discriminating functional genes in ovarian cancer development and progression. However, due to the differences in experimental design, the results varied significantly across individual datasets. Methods: In the present study, the data of gene expression in ovarian cancer were downloaded from Gene Expression Omnibus (GEO) and 16 studies were included. A meta-analysis based gene expression analysis was performed to identify differentially expressed genes (DEGs). The most differentially expressed genes in our meta-analysis were selected for gene expression and gene function validation. Results: A total of 972 DEGs with P-value < 0.001 were identified in ovarian cancer, including 541 up-regulated genes and 431 down-regulated genes, among which 92 additional DEGs were found as gained DEGs. Top five up- and down-regulated genes were selected for the validation of gene expression profiling. Among these genes, up-regulated CD24 molecule (CD24), SRY (sex determining region Y)-box transcription factor 17 (SOX17), WFDC2, epithelial cell adhesion molecule (EPCAM), innate immunity activator (INAVA), and down-regulated aldehyde oxidase 1 (AOX1) were revealed to be with consistent expressional patterns in clinical patient samples of ovarian cancer. Gene functional analysis demonstrated that up-regulated WFDC2 and INAVA promoted ovarian cancer cell migration, WFDC2 enhanced cell proliferation, while down-regulated AOX1 was functional in inducing cell apoptosis of ovarian cancer. Conclusion: Our study shed light on the molecular mechanisms underlying the development of ovarian cancer, and facilitated the understanding of novel diagnostic and therapeutic targets in ovarian cancer.
Collapse
|
17
|
Batinic-Haberle I, Tovmasyan A, Huang Z, Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I, Alvarez Secord A. H 2O 2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6653790. [PMID: 33815656 PMCID: PMC7987459 DOI: 10.1155/2021/6653790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Mn(III) ortho-N-alkyl- and N-alkoxyalkyl porphyrins (MnPs) were initially developed as superoxide dismutase (SOD) mimics. These compounds were later shown to react with numerous reactive species (such as ONOO-, H2O2, H2S, CO3 •-, ascorbate, and GSH). Moreover, the ability of MnPs to oxidatively modify activities of numerous proteins has emerged as their major mechanism of action both in normal and in cancer cells. Among those proteins are transcription factors (NF-κB and Nrf2), mitogen-activated protein kinases, MAPKs, antiapoptotic bcl-2, and endogenous antioxidative defenses. The lead Mn porphyrins, namely, MnTE-2-PyP5+ (BMX-010, AEOL10113), MnTnBuOE-2-PyP5+ (BMX-001), and MnTnHex-2-PyP5+, were tested in numerous injuries of normal tissue and cellular and animal cancer models. The wealth of the data led to the progression of MnTnBuOE-2-PyP5+ into four Phase II clinical trials on glioma, head and neck cancer, anal cancer, and multiple brain metastases, while MnTE-2-PyP5+ is in Phase II clinical trial on atopic dermatitis and itch.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Weina Duan
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Du
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Zhipeng Cao
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Huaxin Sheng
- Departments of Anesthesiology, Neurobiology, and Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angeles Alvarez Secord
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
18
|
Guo C, Jiang X, Guo J, Wu Y, Bao G. Integrated bioinformatic analysis identifies COL4A3, COL4A4, and KCNJ1 as key biomarkers in Wilms tumor. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:196-208. [PMID: 33564352 PMCID: PMC7868786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Wilms tumor (WT) is one of the most common pediatric solid tumors, affecting 1 in 10,000 children, worldwide. A subset of WT patients has poor prognosis, which is associated with a high risk of advanced and/or recurrent disease. Therefore, candidate markers are urgently needed for the diagnosis and effective treatment of WT. We evaluated three mRNA microarray datasets to identify the differences between normal kidney tissue and WT tissue. Gene expression profiling revealed 130 differentially expressed genes (DEGs). Enrichment analysis and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for the DEGs. Subsequently, we established a protein-protein interaction (PPI) network to reveal the associations among the DEGs and selected 10 hub genes, all of which were downregulated in WT. The expression of COL4A3, COL4A4, KCNJ1, MME, and SLC12A1 in WT tissues was significantly lower than that in normal renal tissues. Survival analyses using the Kaplan-Meier method showed that patients with WT and low expression of COL4A3, COL4A4, and KCNJ1 exhibited remarkably poor overall survival. The correlations among COL4A3, COL4A4, and KCNJ1 in WT were analyzed using cBioPortal; COL4A3, COL4A4, and KCNJ1 were positively correlated with each other. Thus, these genes were considered clinically significant and might therefore play important roles in carcinogenesis and the development of WT.
Collapse
Affiliation(s)
- Changgang Guo
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| | - Xiling Jiang
- Department of Stomatology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
| | - Junsheng Guo
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| | - Yanlong Wu
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
| | - Guochang Bao
- Department of Urology, Affiliated Hospital of Chifeng UniversityChifeng 024000, China
- Urology Research Center, Chifeng UniversityChifeng 024000, China
| |
Collapse
|
19
|
Chen L, Fu C, Zhang Q, He C, Zhang F, Wei Q. The role of CD44 in pathological angiogenesis. FASEB J 2020; 34:13125-13139. [PMID: 32830349 DOI: 10.1096/fj.202000380rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required for normal development and occurs as a pathological step in a variety of disease settings, such as cancer, ocular diseases, and ischemia. Recent studies have revealed the role of CD44, a widely expressed cell surface adhesion molecule, in promoting pathological angiogenesis and the development of its associated diseases through its regulation of diverse function of endothelial cells, such as proliferation, migration, adhesion, invasion, and communication with the microenvironment. Conversely, the absence of CD44 expression or inhibition of its function impairs pathological angiogenesis and disease progression. Here, we summarize the current understanding of the roles of CD44 in pathological angiogenesis and the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Li Chen
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
20
|
Kim SI, Jung M, Dan K, Lee S, Lee C, Kim HS, Chung HH, Kim JW, Park NH, Song YS, Han D, Lee M. Proteomic Discovery of Biomarkers to Predict Prognosis of High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2020; 12:790. [PMID: 32224886 PMCID: PMC7226362 DOI: 10.3390/cancers12040790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022] Open
Abstract
Initial identification of biomarkers predicting the exact prognosis of high-grade serous ovarian carcinoma (HGSOC) is important in precision cancer medicine. This study aimed to investigate prognostic biomarkers of HGSOC through proteomic analysis. We conducted label-free liquid chromatography-mass spectrometry using chemotherapy-naïve, fresh-frozen primary HGSOC specimens, and compared the results between a favorable prognosis group (progression-free survival (PFS) ≥ 18 months, n = 6) and a poor prognosis group (PFS < 18 months, n = 6). Among 658 differentially expressed proteins, 288 proteins were upregulated in the favorable prognosis group and 370 proteins were upregulated in the poor prognosis group. Using hierarchical clustering, we selected α1-antitrypsin (AAT), nuclear factor-κB (NFKB), phosphomevalonate kinase (PMVK), vascular adhesion protein 1 (VAP1), fatty acid-binding protein 4 (FABP4), platelet factor 4 (PF4), apolipoprotein A1 (APOA1), and α1-acid glycoprotein (AGP) for further validation via immunohistochemical (IHC) staining in an independent set of chemotherapy-naïve primary HGSOC samples (n = 107). Survival analyses revealed that high expression of AAT, NFKB, and PMVK were independent biomarkers for favorable PFS. Conversely, high expression of VAP1, FABP4, and PF4 were identified as independent biomarkers for poor PFS. Furthermore, we constructed models predicting the 18-month PFS by combining clinical variables and IHC results. Through leave-one-out cross-validation, the optimal model was based on initial serum CA-125, germline BRCA1/2 mutations, residual tumors after surgery, International Federation of Gynecology and Obstetrics (FIGO) stage, and expression levels of the six proteins. The present results elucidate the proteomic landscape of HGSOC and six protein biomarkers to predict the prognosis of HGSOC.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Minsun Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (M.J.); (C.L.)
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
| | - Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03080, Korea;
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (M.J.); (C.L.)
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Noh Hyun Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| |
Collapse
|
21
|
Siamakpour-Reihani S, Cobb LP, Jiang C, Zhang D, Previs RA, Owzar K, Nixon AB, Alvarez Secord A. Differential expression of immune related genes in high-grade ovarian serous carcinoma. Gynecol Oncol 2020; 156:662-668. [PMID: 31918995 DOI: 10.1016/j.ygyno.2019.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To identify novel immunologic targets and biomarkers associated with overall survival (OS) in high-grade serous ovarian cancer (HGSC). METHODS In this retrospective study, microarray data from 51 HGSC specimens were analyzed (Affymetrix HG-U133A). A panel of 183 immune/inflammatory response related genes linked to 279 probe sets was constructed a priori and screened. Associations between gene expression and OS were assessed using logrank tests. Multiple testing was addressed within the False Discovery Rate (FDR) framework. For external validation, TCGA Ovarian dataset and five GSE publicly available HGSC datasets were evaluated. RESULTS In Duke data, 110 probe sets linked to 83 immunologic/inflammatory-related genes were differentially expressed in tumors from long versus short-term HGSC survivors (adjusted p < 0.05). In TCGA, concordant with the results from the Duke discovery cohort, high expression of one probe (IL6R) demonstrated a consistent significance and concordant association with higher expression in long-term HGSC survivors (Duke q-value = 0.022) and improved OS in the TCGA dataset (p-value = 0.015, HR = 0.8). Thirteen genes in GSE14764 (N = 4) and GSE26712 (N = 9) datasets had significant p-values and consistent concordant with Duke Data. Despite the significant associations of gene expression and OS in the individual GSE datasets, in the GSE meta-analysis no genes were consistently concordant and significantly associated with survival. CONCLUSIONS Evaluation of IL6R expression may be warranted based on higher expression in long-term survivors and association with improved survival in advanced HGSC. The other candidate genes may also be of worthy of further exploration to enhance immuno-oncology drug discovery.
Collapse
Affiliation(s)
- Sharareh Siamakpour-Reihani
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University Medical Center, United States.
| | - Lauren Patterson Cobb
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, United States
| | - Chen Jiang
- Bioinformatics Shared Resource, Duke Cancer Institute, United States.
| | - Dadong Zhang
- Bioinformatics Shared Resource, Duke Cancer Institute, United States.
| | - Rebecca A Previs
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, United States.
| | - Kouros Owzar
- Duke Department of Biostatistics and Bioinformatics, Duke University Medical Center, United States; Bioinformatics Shared Resource, Duke Cancer Institute, United States.
| | - Andrew B Nixon
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University Medical Center, United States.
| | - Angeles Alvarez Secord
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
22
|
MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:3. [PMID: 31898520 PMCID: PMC6939329 DOI: 10.1186/s13046-019-1490-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological malignancy and the second leading cause of cancer-related death in women. Treatment with PARP inhibitors (PARPi), such as Olaparib, has been recently introduced for OC patients, but resistance may occur and underlying mechanisms are still poorly understood. The aim of this study is to identify target genes within the tumor cells that might cause resistance to Olaparib. We focused on Neuropilin 1 (NRP1), a transmembrane receptor expressed in OC and correlated with poor survival, which has been also proposed as a key molecule in OC multidrug resistance. METHODS Using three OC cell lines (UWB, UWB-BRCA and SKOV3) as model systems, we evaluated the biological and molecular effects of Olaparib on OC cell growth, cell cycle, DNA damage and apoptosis/autophagy induction, through MTT and colony forming assays, flow cytometry, immunofluorescence and Western blot analyses. We evaluated NRP1 expression in OC specimens and cell lines by Western blot and qRT-PCR, and used RNA interference to selectively inhibit NRP1. To identify miR-200c as a regulator of NRP1, we used miRNA target prediction algorithms and Pearsons' correlation analysis in biopsies from OC patients. Then, we used a stable transfection approach to overexpress miR-200c in Olaparib-resistant cells. RESULTS We observed that NRP1 is expressed at high levels in resistant cells (SKOV3) and is upmodulated in partially sensitive cells (UWB-BRCA) upon prolonged Olaparib treatment, leading to poor drug response. Our results show that the selective inhibition of NRP1 is able to overcome Olaparib resistance in SKOV3 cells. Moreover, we demonstrated that miR-200c can target NRP1 in OC cells, causing its downmodulation, and that miR-200c overexpression is a valid approach to restore Olaparib sensitivity in OC resistant cells. CONCLUSIONS These data demonstrate that miR-200c significantly enhanced the anti-cancer efficacy of Olaparib in drug-resistant OC cells. Thus, the combination of Olaparib with miRNA-based therapy may represent a promising treatment for drug resistant OC, and our data may help in designing novel precision medicine trials for optimizing the clinical use of PARPi.
Collapse
|
23
|
Nawaz S, Trahearn NA, Heindl A, Banerjee S, Maley CC, Sottoriva A, Yuan Y. Analysis of tumour ecological balance reveals resource-dependent adaptive strategies of ovarian cancer. EBioMedicine 2019; 48:224-235. [PMID: 31648981 PMCID: PMC6838425 DOI: 10.1016/j.ebiom.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/02/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite treatment advances, there remains a significant risk of recurrence in ovarian cancer, at which stage it is usually incurable. Consequently, there is a clear need for improved patient stratification. However, at present clinical prognosticators remain largely unchanged due to the lack of reproducible methods to identify high-risk patients. METHODS In high-grade serous ovarian cancer patients with advanced disease, we spatially define a tumour ecological balance of stromal resource and immune hazard using high-throughput image and spatial analysis of routine histology slides. On this basis an EcoScore is developed to classify tumours by a shift in this balance towards cancer-favouring or inhibiting conditions. FINDINGS The EcoScore provides prognostic value stronger than, and independent of, known risk factors. Crucially, the clinical relevance of mutational burden and genomic instability differ under different stromal resource conditions, suggesting that the selective advantage of these cancer hallmarks is dependent on the context of stromal spatial structure. Under a high resource condition defined by a high level of geographical intermixing of cancer and stromal cells, selection appears to be driven by point mutations; whereas, in low resource tumours featured with high hypoxia and low cancer-immune co-localization, selection is fuelled by aneuploidy. INTERPRETATION Our study offers empirical evidence that cancer fitness depends on tumour spatial constraints, and presents a biological basis for developing better assessments of tumour adaptive strategies in overcoming ecological constraints including immune surveillance and hypoxia.
Collapse
Affiliation(s)
- Sidra Nawaz
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK; Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Nicholas A Trahearn
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK; Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Andreas Heindl
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK; Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | | | - Carlo C Maley
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK; Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK; Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK; Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| |
Collapse
|
24
|
Abstract
Angiopoietins play important roles in angiogenesis and the maintenance of hematopoietic stem cells. Angiopoietin-like proteins (ANGPTLs) are identified as proteins structurally similar to angiopoietins, and the ANGPTL family now consists of eight members. ANGPTLs are secretary proteins, and some ANGPTLs are not only angiogenic factors but also proteins with multiple functions such as glucose metabolism, lipid metabolism, redox regulation and chronic inflammation. Chronic inflammation is one of the key factors in carcinogenesis and cancer growth, proliferation, invasion and metastasis. ANGPTL 2, 3, 4, 6 and 7 are pro-inflammatory factors and regulate cancer progression, while ANGPTL1 inhibits tumor angiogenesis and metastasis. In this review, we describe the roles of ANGPTLs in cancer progression and discuss the possibility of disturbing the progression of cancer by regulating ANGPTLs expression.
Collapse
Affiliation(s)
- Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan
| |
Collapse
|
25
|
Angiopoietin-Like Proteins in Angiogenesis, Inflammation and Cancer. Int J Mol Sci 2018; 19:ijms19020431. [PMID: 29389861 PMCID: PMC5855653 DOI: 10.3390/ijms19020431] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022] Open
Abstract
Altered expression of secreted factors by tumor cells or cells of the tumor microenvironment is a key event in cancer development and progression. In the last decade, emerging evidences supported the autocrine and paracrine activity of the members of the Angiopoietin-like (ANGPTL) protein family in angiogenesis, inflammation and in the regulation of different steps of carcinogenesis and metastasis development. Thus, ANGPTL proteins become attractive either as prognostic or predictive biomarkers, or as novel target for cancer treatment. Here, we outline the current knowledge about the functions of the ANGPTL proteins in angiogenesis, cancer progression and metastasis. Moreover, we discuss the most recent evidences sustaining their role as prognostic or predictive biomarkers for cancer therapy. Although the role of ANGPTL proteins in cancer has not been fully elucidated, increasing evidence suggest their key effects in the proliferative and invasive properties of cancer cells. Moreover, given the common overexpression of ANGPTL proteins in several aggressive solid tumors, and their role in tumor cells and cells of the tumor microenvironment, the field of research about ANGPTL proteins network may highlight new potential targets for the development of future therapeutic strategies.
Collapse
|
26
|
Yeung TL, Leung CS, Li F, Wong SST, Mok SC. Targeting Stromal-Cancer Cell Crosstalk Networks in Ovarian Cancer Treatment. Biomolecules 2016; 6:3. [PMID: 26751490 PMCID: PMC4808797 DOI: 10.3390/biom6010003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/20/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is a histologically, clinically, and molecularly diverse disease with a five-year survival rate of less than 30%. It has been estimated that approximately 21,980 new cases of epithelial ovarian cancer will be diagnosed and 14,270 deaths will occur in the United States in 2015, making it the most lethal gynecologic malignancy. Ovarian tumor tissue is composed of cancer cells and a collection of different stromal cells. There is increasing evidence that demonstrates that stromal involvement is important in ovarian cancer pathogenesis. Therefore, stroma-specific signaling pathways, stroma-derived factors, and genetic changes in the tumor stroma present unique opportunities for improving the diagnosis and treatment of ovarian cancer. Cancer-associated fibroblasts (CAFs) are one of the major components of the tumor stroma that have demonstrated supportive roles in tumor progression. In this review, we highlight various types of signaling crosstalk between ovarian cancer cells and stromal cells, particularly with CAFs. In addition to evaluating the importance of signaling crosstalk in ovarian cancer progression, we discuss approaches that can be used to target tumor-promoting signaling crosstalk and how these approaches can be translated into potential ovarian cancer treatment.
Collapse
Affiliation(s)
- Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Cecilia S Leung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Fuhai Li
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.
| | - Stephen S T Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.
- National Cancer Institute Center for Modeling Cancer Development, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Sanhueza C, Wehinger S, Castillo Bennett J, Valenzuela M, Owen GI, Quest AFG. The twisted survivin connection to angiogenesis. Mol Cancer 2015; 14:198. [PMID: 26584646 PMCID: PMC4653922 DOI: 10.1186/s12943-015-0467-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Survivin, a member of the inhibitor of apoptosis family of proteins (IAPs) that controls cell division, apoptosis, metastasis and angiogenesis, is overexpressed in essentially all human cancers. As a consequence, the gene/protein is considered an attractive target for cancer treatment. Here, we discuss recent findings related to the regulation of survivin expression and its role in angiogenesis, particularly in the context of hypoxia. We propose a novel role for survivin in cancer, whereby expression of the protein in tumor cells promotes VEGF synthesis, secretion and angiogenesis. Mechanistically, we propose the existence of a positive feed-back loop involving PI3-kinase/Akt activation and enhanced β-Catenin-TCF/LEF-dependent VEGF expression followed by secretion. Finally, we elaborate on the possibility that this mechanism operating in cancer cells may contribute to enhanced tumor vascularization by vasculogenic mimicry together with conventional angiogenesis.
Collapse
Affiliation(s)
- C Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - S Wehinger
- Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - J Castillo Bennett
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - M Valenzuela
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - G I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Facultad de Ciencias Biológicas & Center UC Investigation in Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A F G Quest
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| |
Collapse
|