1
|
Tang Y, Tang Z, Zhou Y, Luo Y, Wen X, Yang Z, Jiang T, Luo N. A systematic review of resting-state functional-MRI studies in the diagnosis, comorbidity and treatment of postpartum depression. J Affect Disord 2025; 383:153-166. [PMID: 40288455 DOI: 10.1016/j.jad.2025.04.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Postpartum depression (PPD) is a common and serious mental health problem that affects many new mothers and their families worldwide. In recent years, there has been an increasing number of studies using magnetic resonance techniques (MRI), particularly functional MRI (fMRI), to explore the neuroimaging biomarker of this disease. METHODS PubMed database was used to search for English literature focusing on resting-state fMRI and PPD published up to June 2024. RESULTS After screening, 17 studies were finally identified, among which all 17 studies reported abnormal regions or connectivity compared to health controls (HC), 4 studies reported results considering the differences between PPD and PPD with anxiety (PPD-A), and 2 studies reported biomarkers for the treatment of PPD. The existing studies indicate that PPD is characterized by functional impairments in multiple brain regions, especially the medial prefrontal cortex (MPFC), precentral gyrus and cerebellum. Abnormal functional connectivity has been widely reported in the dorsomedial prefrontal cortex (dmPFC), anterior cingulate cortex (ACC) and the orbitofrontal cortex (OFC). However, none of the four comorbidity studies identified overlapping discriminative biomarkers between PPD and PPD-A. Additionally, the two treatment-related studies consistently reported functional improvements in the amygdala after effective treatment. CONCLUSION The affected brain regions were highly overlapped with major depressive disorder (MDD), suggesting that PPD may be categorized as a potential subtype of MDD. Considering the negative effects of medication on PPD, future efforts should focus on developing non-pharmacological therapies, such as transcranial magnetic stimulation (TMS) and acupuncture, to support women with PPD in overcoming this unique and important phase.
Collapse
Affiliation(s)
- Yanyan Tang
- Yongzhou Central Hospital, Yongzhou 425000, China; Xiaoxiang Institute for Brain Health, Yongzhou 425000, China
| | - Zhongyuan Tang
- Xiaoxiang Institute for Brain Health, Yongzhou 425000, China
| | - Ying Zhou
- Yongzhou Central Hospital, Yongzhou 425000, China; Xiaoxiang Institute for Brain Health, Yongzhou 425000, China
| | - Yi Luo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinyu Wen
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengyi Yang
- Xiaoxiang Institute for Brain Health, Yongzhou 425000, China; Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianzi Jiang
- Xiaoxiang Institute for Brain Health, Yongzhou 425000, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Na Luo
- Xiaoxiang Institute for Brain Health, Yongzhou 425000, China; Beijing Key Laboratory of Brainnetome and Brain-Computer Interface, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Carollo A, Torre L, Bornstein MH, Esposito G. The parental brain: Anatomization of 75 years of neuroscience 1951-2024. Neurosci Res 2025:S0168-0102(25)00052-5. [PMID: 40122391 DOI: 10.1016/j.neures.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Studies of the parental brain have garnered significant attention, revealing neurobiological and psychological changes associated with caregiving. Here, we provide a comprehensive, data-driven overview of the scientific literature on the parental brain, analyzing a large dataset to map the field's knowledge structure. Our objectives include identifying influential authors, contributing countries, publication sources, and commonly used keywords as well as highlighting the most impactful documents and primary thematic areas of research. We analyzed 656 documents (and their 39,302 cited references) from Scopus using CiteSpace software for document co-citation analysis. Our analysis identified 17 key documents, of which the most influential focused on neural correlates of maternal and romantic love and maternal brain responses to infant cues in relation to attachment style. Our analysis additionally identified 10 major thematic domains in the parental brain literature. Qualitative analysis of research clusters revealed a trajectory in the study of the parental brain, progressing from foundational studies on dendritic spine density and maternal memory to the exploration of shared mammalian and human-specific brain networks underlying parental behaviors. Our study points to a growing interest in understanding neurobiological changes in fathers, with parental involvement and exposure to infant cues as moderating factors. The parental brain is a plastic, dynamic network, with bio-behavioral synchrony playing a central role as an interpersonal mechanism that enhances specificity of attachments.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto 38068, Italy
| | - Lucrezia Torre
- Department of Psychology and Cognitive Science, University of Trento, Rovereto 38068, Italy
| | - Marc H Bornstein
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States; United Nations Children's Fund, New York, NY 10017, United States; Institute for Fiscal Studies, London WC1E 7AE, United Kingdom
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto 38068, Italy.
| |
Collapse
|
3
|
Zhang N, Yu M, Zhao Q, Feng B, Deng Y, Bean JC, Liu Q, Eappen BP, He Y, Conde KM, Liu H, Yang Y, Tu L, Wang M, Li Y, Yin N, Liu H, Han J, Threat DA, Xu N, Smiley T, Xu P, Chen L, Zeng T, He Y, Wang C. Altered thermal preference by preoptic estrogen receptor alpha neurons in postpartum females. Mol Metab 2025; 93:102108. [PMID: 39909189 PMCID: PMC11849645 DOI: 10.1016/j.molmet.2025.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE This study aims to investigate how reproductive experience (RE) alters thermal preference and thermoregulation in female mice, with a focus on estrogen receptor alpha (ERα)-expressing neurons in the preoptic area (POA). METHODS Thermal preference and body temperature were measured in female mice with and without RE, and virgin female mice with selective deletion of ERα from the POA (ERαPOA-KO). The number and activity of ERα-expressing POA neurons (ERαPOA) were assessed using immunohistochemistry and in vitro electrophysiology in response to temperature changes and ERα agonist. RESULTS We showed that female mice prefer a cooler environment starting from late pregnancy and persisting long term postpartum. Female mice with RE (>4 weeks post-weaning) displayed lower body temperature and a lower thermal preferred temperature, and lost preference for warm environments (30 °C) but preserved avoidance of cold environments (15 °C). This was associated with a significant decrease in the number of ERαPOA neurons. Importantly, virgin female ERαPOA-KO mice displayed lower thermal preferred temperature and impaired warm preference, mimicking RE mice. We further found that distinct ERαPOA subpopulations can be regulated by temperature changes with or without presynaptic blockers, and by ERα agonist. More importantly, RE decreased the number of warm-activated ERαPOA neurons and reduced the excitatory effects of warmth and estrogen-ERα signaling, while cold-activated ERαPOA neurons were slightly enhanced in female mice with RE. CONCLUSION Our results support that the thermosensing ability and estrogenic effects in ERαPOA neurons are regulated by reproductive experience, altering thermal preference.
Collapse
Affiliation(s)
- Nan Zhang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qianru Zhao
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA; Department of Biological Chemistry, School of Pharmaceutical Sciences, South-central Minzu University, Wuhan, 430074, China
| | - Bing Feng
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Yue Deng
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jonathan C Bean
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qingzhuo Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin P Eappen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kristine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mengjie Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongxiang Li
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Darah Ave Threat
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Nathan Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Taylor Smiley
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China.
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA.
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Chan JC, Salvo GD, Cunningham AM, Dutta S, Brindley EA, Wan E, Zhang C, Maze I. Persistent dopamine-dependent remodeling of the neural transcriptome in response to pregnancy and postpartum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639313. [PMID: 40060435 PMCID: PMC11888212 DOI: 10.1101/2025.02.20.639313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pregnancy and postpartum experiences represent transformative physiological states that impose lasting demands on the maternal body and brain, resulting in lifelong neural adaptations. However, the precise molecular mechanisms driving these persistent alterations remain poorly understood. Here, we used brain-wide transcriptomic profiling to define the molecular landscape of parity-induced neural plasticity, identifying the dorsal hippocampus (dHpc) as a key site of transcriptional remodeling. Combining single-cell RNA sequencing with a maternal-pup separation paradigm, we additionally demonstrated that chronic postpartum stress significantly disrupts dHpc adaptations by altering dopamine dynamics, leading to dysregulated transcription, altered cellular plasticity, and impaired behavior. We further established the sufficiency of dopamine modulation in the regulation of these parity-induced adaptations via chemogenetic suppression of dopamine release into dHpc, which recapitulated key transcriptional and behavioral features of parity in virgin females. In sum, our findings establish dopamine as a central regulator of parity-induced neuroadaptations, revealing a fundamental transcriptional mechanism by which female reproductive experiences remodel the maternal brain to sustain long-term behavioral adaptations.
Collapse
Affiliation(s)
- Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Giuseppina Di Salvo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Ashley M Cunningham
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sohini Dutta
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elizabeth A Brindley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethan Wan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cindy Zhang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
5
|
Erhart A, Watamura S, Olsavsky AK, Dufford A, Tribble R, Yeh T, Kim P. Maternal cortisol concentration is associated with reduced brain activation to infant cry and more intrusive parenting behavior. Psychoneuroendocrinology 2025; 171:107207. [PMID: 39413527 PMCID: PMC11724425 DOI: 10.1016/j.psyneuen.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Previous research indicates that maternal cortisol function and maternal brain response to infant are each in turn related to variations in parenting behavior. However, little is known about how maternal cortisol and maternal brain function are associated, thus studying these two mechanisms together may improve our understanding of how maternal cortisol assessed during interactions with own infant is associated with brain response to infant cry. First-time mothers (N = 59) of infants aged 3-4 months old were recruited to participate. Mothers' cortisol concentration was measured during a naturalistic interaction with their infant and their behavior was coded for two parenting behaviors-- maternal sensitivity and non-intrusiveness. In an fMRI session, mothers listened to their own infant and a control infant crying. Higher cortisol concentration was associated with more intrusive behavior. We found greater cortisol concentration was further associated with decreased activation in the brain to infant cry in the right precentral gyrus, the left culmen extending into the left inferior temporal gyrus and fusiform, two clusters in the superior temporal gyrus, and in the medial frontal gyrus. We also found that lower activation in these regions was associated with more intrusive maternal behavior. These data demonstrate the associations between maternal cortisol concentration and reduced brain activation to infant cry in both motor planning and auditory processing regions in predicting intrusive parenting behavior.
Collapse
Affiliation(s)
- Andrew Erhart
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States; Colorado Department of Public Health and Environment, Denver, Colorado, 4300 Cherry Creek S Dr, Glendale, CO 80246, United States.
| | - Sarah Watamura
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States
| | - Aviva K Olsavsky
- University of Colorado Anschutz School of Medicine/Children's Hospital Colorado, 13123 E. 16th Avenue, CO 80045, United States
| | - Alexander Dufford
- Center for Mental Health Innovation and Department of Psychiatry, Oregon Health & Science University, 3161 SW Pavilion Loop, Portland, OR 97239, United States
| | - Rebekah Tribble
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States
| | - Tom Yeh
- Department of Computer Science, University of Colorado, Boulder, 1111 Engineering Drive, Boulder, CO 80309-0430, United States
| | - Pilyoung Kim
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States; Department of Psychology, Ewah Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea
| |
Collapse
|
6
|
Graf MD, Murgueitio N, Vogel SC, Hicks L, Carlson AL, Propper CB, Kimmel M. Maternal Prenatal Stress and the Offspring Gut Microbiome: A Cross-Species Systematic Review. Dev Psychobiol 2025; 67:e70005. [PMID: 39636074 PMCID: PMC12010507 DOI: 10.1002/dev.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The prenatal period is a critical developmental juncture with enduring effects on offspring health trajectories. An individual's gut microbiome is associated with health and developmental outcomes across the lifespan. Prenatal stress can disrupt an infant's microbiome, thereby increasing susceptibility to adverse outcomes. This cross-species systematic review investigates whether maternal prenatal stress affects the offspring's gut microbiome. The study analyzes 19 empirical, peer-reviewed research articles, including humans, rodents, and non-human primates, that included prenatal stress as a primary independent variable and offspring gut microbiome characteristics as an outcome variable. Prenatal stress appeared to correlate with differences in beta diversity and specific microbial taxa, but not alpha diversity. Prenatal stress is positively correlated with Proteobacteria, Bacteroidaceae, Lachnospiraceae, Prevotellaceae, Bacteroides, and Serratia. Negative correlations were observed for Actinobacteria, Enterobacteriaceae, Streptococcaceae, Bifidobacteria, Eggerthella, Parabacteroides, and Streptococcus. Evidence for the direction of association between prenatal stress and Lactobacillus was mixed. The synthesis of findings was limited by differences in study design, operationalization and timing of prenatal stress, timing of infant microbiome sampling, and microbiome analysis methods.
Collapse
Affiliation(s)
- Michelle D. Graf
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicolas Murgueitio
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah C. Vogel
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Lauren Hicks
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander L. Carlson
- Pediatric Physician Scientist Training Program, Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, California, USA
| | - Cathi B. Propper
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mary Kimmel
- Department of Psychiatry, Washington University in St. Louis., St. Louis, Missouri, USA
| |
Collapse
|
7
|
Wang B, Li M. Does lateral habenula mediate effects of gestational stress on rat maternal behavior? BRAIN BEHAVIOR AND IMMUNITY INTEGRATIVE 2025; 9:100098. [PMID: 40125261 PMCID: PMC11928146 DOI: 10.1016/j.bbii.2024.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This exploratory study investigated the neural substrate underlying the effect of gestational stress on rat maternal behavior. We tested the hypothesis that the lateral habenula (LHb)-centered neural circuitry (e.g., raphe, ventral tegmental area, nucleus accumbens, etc.) mediates the maternal disruptive effect of gestational stress. Pregnant Sprague-Dawley rats were subjected to daily 30-min restraining stress from approximately gestation day (GD) 5 to 21, white noise from GD 5 to 12 and mild foot shock from GD 13 to 21. Maternal behavior in the home cage and pup retrieval on an elevated plus maze (EPM) were observed during the first postpartum week. The gestational stress reduced body weight gain of stressed females, and reduced time that they spent outside of the nest, a sign of increased maternal anxiety and hypervigilant parenting style. On the open arms of EPM, the stressed dams showed higher frequently sniffing pups than non-stressed ones. Testing with pups (pup exposure) on the EPM decreased c-Fos expression in the LHb in the non-stressed control dams, but it increased c-Fos expression in the dorsal and medial raphe regions of the control dams. Gestational stress reduced this pup effect in all three regions, implying that gestational stress attenuated the ability of pup exposure to activate the maternally relevant brain regions. Our findings indicate that gestational stress may act upon the LHb (as a putative center that mediates negative emotion) and its downstream projection sites (i.e., dorsal and median raphe) to compromise the quality of maternal care.
Collapse
Affiliation(s)
- Bo Wang
- College of Biological and Environmental Engineering/Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi’an University, Xi’an 710065, China
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Roszkowicz-Ostrowska K, Młotkowska P, Marciniak E, Szlis M, Barszcz M, Misztal T. Activation of BDNF-TrkB Signaling in Specific Structures of the Sheep Brain by Kynurenic Acid. Cells 2024; 13:1928. [PMID: 39682677 PMCID: PMC11639857 DOI: 10.3390/cells13231928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Fluctuations in kynurenic acid (KYNA) and brain-derived neurotrophic factor (BDNF) levels in the brain reflect its neurological status. The aim of the study was to investigate the effect of transiently elevated KYNA concentrations in the cerebroventricular circulation on the expression of BDNF and its high-affinity tropomyosin-related kinase receptor B (TrkB) in specific structures of the sheep brain. Intracerebroventricularly cannulated anestrous sheep were subjected to a series of four 30 min infusions of KYNA: 4 × 5 μg/60 μL/30 min (KYNA20, n = 6) and 4 × 25 μg/60 μL/30 min (KYNA100, n = 6) or a control infusion (n = 6), at 30 min intervals. Sections of the hippocampal CA3 field, amygdala (AMG), prefrontal cortex (PCx), and the hypothalamic medial-basal (MBH) and preoptic (POA) areas were dissected from the brain immediately after the experiment. The highest concentration of BDNF protein was found in the CA3 field (p < 0.001), which was 8-fold higher than in the AMG and 12-fold higher than that in the PCx (MBH and POA were not analyzed). The most pronounced BDNF mRNA expression was observed in the MBH, followed by the PCx, POA, AMG and CA3, while the highest abundance of TrkB mRNA was recorded in the AMG, followed by the MBH, PCx, CA3, and POA. KYNA increased (p < 0.05-p < 0.01) BDNF protein levels and the expression of its gene in the brain structures were examined, with the effect varying by dose and brain region. KYNA, particularly at the KYNA100 dose, also increased (p < 0.01) TrkB gene expression, except for the AMG, where the lower KYNA20 dose was more effective (p < 0.01). These findings suggest a positive relationship between KYNA levels in the cerebroventricular circulation and BDNF-TrkB expression in specific brain regions in a sheep model. This indicates that a transient increase in the CSF KYNA concentration can potentially restore BDNF production, for which deficiency underlies numerous neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Misztal
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110 Jabłonna, Poland; (K.R.-O.); (P.M.); (E.M.); (M.S.); (M.B.)
| |
Collapse
|
9
|
Mota-Rojas D, Bienboire-Frosini C, Orihuela A, Domínguez-Oliva A, Villanueva García D, Mora-Medina P, Cuibus A, Napolitano F, Grandin T. Mother-Offspring Bonding after Calving in Water Buffalo and Other Ruminants: Sensory Pathways and Neuroendocrine Aspects. Animals (Basel) 2024; 14:2696. [PMID: 39335285 PMCID: PMC11428873 DOI: 10.3390/ani14182696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The cow-calf bonding is a process that must be developed within the first six hours after calving. Both the buffalo dam and the newborn calf receive a series of sensory cues during calving, including olfactory, tactile, auditory, and visual stimuli. These inputs are processed in the brain to develop an exclusive bond where the dam provides selective care to the filial newborn. The limbic system, sensory cortices, and maternal-related hormones such as oxytocin mediate this process. Due to the complex integration of the maternal response towards the newborn, this paper aims to review the development of the cow-calf bonding process in water buffalo (Bubalus bubalis) via the olfactory, tactile, auditory, and visual stimuli. It will also discuss the neuroendocrine factors motivating buffalo cows to care for the calf using examples in other ruminant species where dam-newborn bonding has been extensively studied.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Dina Villanueva García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Alex Cuibus
- Faculty of Animal Science and Biotechnologies. University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Temple Grandin
- Department of Animal Science, Colorado State University, Fort Collins, CO 80526, USA
| |
Collapse
|
10
|
Anarghou H, Malqui H, Ihbour S, Laaroussi M, Essaidi O, Fetoui H, Bouhrim M, Najimi M, Chigr F. Impact of glyphosate-based herbicide exposure through maternal milk on offspring's antioxidant status, neurodevelopment, and behavior. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6591-6609. [PMID: 38466353 DOI: 10.1007/s00210-024-03035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Glyphosate-based Herbicide (GBH) is a widely used pesticide that functions as a broad-spectrum, non-selective herbicide. Despite advanced research to describe the neurotoxic potential of GBH, the harmful effects on maternal behavior and neurodevelopment of offspring remain unclear. This study was conducted to highlight the effects of GBH on the antioxidant system, anxiety traits, social interaction, and cognitive and sensorimotor functions in pups exposed to 25 or 50 mg/l daily via their mother's milk. Concerning the biochemical biomarkers, GBH administered during the early stages of development negatively affected the status of antioxidant enzymes and lipid peroxidation in the brain structures of the pups. Furthermore, our results showed a significant decrease in acetylcholinesterase (AChE) specific activity within the brains of treated pups. The results of the behavioral tests indicated that the treated offspring developed anxiety, memory, and sociability disorders, as evidenced by the Open Field, Y-maze, object recognition task, and social interaction tests. Through neurodevelopmental testing, we also showed sensorimotor impairment (righting reflex and negative geotaxis) and abnormal maternal behavior. Altogether, our study clearly demonstrates that the developing brain is sensitive to GBH.
Collapse
Affiliation(s)
- Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco.
- High Institute of Nursing Professions and Health Techniques Dakhla Annex, Dakhla, Morocco.
| | - Hafsa Malqui
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Said Ihbour
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Meriem Laaroussi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Oumaima Essaidi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, University of Lille, Faculty of Pharmacy, F-59000, Lille, France
| | - Mohamed Najimi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
11
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Farewell CV, Schmiege SJ, Leiferman J. Racial Differences in Psychosocial Resources and Mental and Physical Health Outcomes during Pregnancy: A structural equation modeling approach. RESEARCH SQUARE 2024:rs.3.rs-4617998. [PMID: 39070611 PMCID: PMC11276014 DOI: 10.21203/rs.3.rs-4617998/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Objectives Poor prenatal health is of particular concern among minoritized individuals who may experience adverse social determinants of health contributing to the intergenerational transmission of health disparities. The purpose of this study was to investigate associations between psychosocial resources, and mental and physical health among a prenatal sample, and to explore if these relationships vary by race. Methods English-speaking pregnant individuals living in the United States were recruited using Centiment (n=340). Participants completed a 121-item cross-sectional survey. We conducted a single- and multi-group structural equation model to test hypothesized relationships, and then investigated differences by pregnant White individuals versus Black, Indigenous, and People of Color (BIPOC). Results Our final single-group model exhibited good model fit (χ2 (43) = 99.07, p<.01, CFI = 0.97, SRMR = 0.04, and RMSEA = 0. 06 (0.05 - 0.08)). After controlling for demographic characteristics and social determinants of health, higher levels of mindfulness were statistically significantly related to lower anxiety and depression scores (both p<.01). Higher levels of social supports were statistically significantly related to lower anxiety scores. Scale measurement invariance was confirmed for the multi-group model and the structural model was statistically significantly different between pregnant White individuals and BIPOC in this sample (Δ χ2 (27) = 116.71, p <.01). Conclusions Identification of core components of psychosocial resource interventions, consideration of upstream structural determinants, mindfulness and valued-living (MVL)-based strategies, cultural adaptation, and an emphasis on resilience rather than psychopathology may result in improved prenatal health among pregnant individuals traditionally underrepresented in research.
Collapse
|
13
|
Rotondi V, Allegra M, Kashyap R, Barban N, Sironi M, Reverberi C. Enduring maternal brain changes and their role in mediating motherhood's impact on well-being. Sci Rep 2024; 14:16608. [PMID: 39025996 PMCID: PMC11258333 DOI: 10.1038/s41598-024-67316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Parenthood, particularly motherhood, is known to impact the structure and function of the brain in the short term, but the long-term effects of parenthood and their impacts on well-being are still poorly understood. This study explores the potential longer-term associations between parenthood and the brain, parenthood and well-being, and the potential role of brain modifications in influencing mothers' well-being. Using data from the UK Biobank, which includes brain imaging information from individuals aged 45-82 at the MRI scanning, we discovered differences in brain structure between mothers and non-mothers, with mothers exhibiting widely distributed higher gray matter density, particularly strong in frontal and occipital regions. No brain changes were observed in fathers. Parents reported a higher sense of life's meaning compared to their childless counterparts. Gray matter changes did not mediate the relationship between motherhood and well-being. This suggests that the alterations in gray matter associated with motherhood do not play a deterministic role in shaping long-term changes in well-being.
Collapse
Affiliation(s)
- Valentina Rotondi
- SUPSI, Lugano, Switzerland.
- University of Oxford & Nuffield College, Oxford, UK.
- Milan Center for Neuroscience - NeuroMI, University of Milano-Bicocca, Milan, Italy.
| | | | | | | | | | - Carlo Reverberi
- Milan Center for Neuroscience - NeuroMI, University of Milano-Bicocca, Milan, Italy
- Department of Psychology, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
14
|
de Lange AMG, Leonardsen EH, Barth C, Schindler LS, Crestol A, Holm MC, Subramaniapillai S, Hill D, Alnæs D, Westlye LT. Parental status and markers of brain and cellular age: A 3D convolutional network and classification study. Psychoneuroendocrinology 2024; 165:107040. [PMID: 38636355 DOI: 10.1016/j.psyneuen.2024.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/20/2024]
Abstract
Recent research shows prominent effects of pregnancy and the parenthood transition on structural brain characteristics in humans. Here, we present a comprehensive study of how parental status and number of children born/fathered links to markers of brain and cellular ageing in 36,323 UK Biobank participants (age range 44.57-82.06 years; 52% female). To assess global effects of parenting on the brain, we trained a 3D convolutional neural network on T1-weighted magnetic resonance images, and estimated brain age in a held-out test set. To investigate regional specificity, we extracted cortical and subcortical volumes using FreeSurfer, and ran hierarchical clustering to group regional volumes based on covariance. Leukocyte telomere length (LTL) derived from DNA was used as a marker of cellular ageing. We employed linear regression models to assess relationships between number of children, brain age, regional brain volumes, and LTL, and included interaction terms to probe sex differences in associations. Lastly, we used the brain measures and LTL as features in binary classification models, to determine if markers of brain and cellular ageing could predict parental status. The results showed associations between a greater number of children born/fathered and younger brain age in both females and males, with stronger effects observed in females. Volume-based analyses showed maternal effects in striatal and limbic regions, which were not evident in fathers. We found no evidence for associations between number of children and LTL. Classification of parental status showed an Area under the ROC Curve (AUC) of 0.57 for the brain age model, while the models using regional brain volumes and LTL as predictors showed AUCs of 0.52. Our findings align with previous population-based studies of middle- and older-aged parents, revealing subtle but significant associations between parental experience and neuroimaging-based surrogate markers of brain health. The findings further corroborate results from longitudinal cohort studies following parents across pregnancy and postpartum, potentially indicating that the parenthood transition is associated with long-term influences on brain health.
Collapse
Affiliation(s)
- Ann-Marie G de Lange
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK.
| | | | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Louise S Schindler
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Arielle Crestol
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | - Sivaniya Subramaniapillai
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway
| | - Dónal Hill
- Swiss Data Science Center (SDSC), EPFL-ETHZ, Switzerland
| | - Dag Alnæs
- Department of Psychology, University of Oslo, Oslo, Norway; Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Chen G, Zhang Y, Li R, Jin L, Hao K, Rong J, Duan H, Du Y, Yao L, Xiang D, Liu Z. Environmental enrichment attenuates depressive-like behavior in maternal rats by inhibiting neuroinflammation and apoptosis and promoting neuroplasticity. Neurobiol Stress 2024; 30:100624. [PMID: 38524250 PMCID: PMC10958482 DOI: 10.1016/j.ynstr.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Gestational stress can exacerbate postpartum depression (PPD), for which treatment options remain limited. Environmental enrichment (EE) may be a therapeutic intervention for neuropsychiatric disorders, including depression, but the specific mechanisms by which EE might impact PPD remain unknown. Here we examined the behavioral, molecular, and cellular impact of EE in a stable PPD model in rats developed through maternal separation (MS). Maternal rats subjected to MS developed depression-like behavior and cognitive dysfunction together with evidence of significant neuroinflammation including microglia activation, neuronal apoptosis, and impaired synaptic plasticity. Expanding the duration of EE to throughout pregnancy and lactation, we observed an EE-associated reversal of MS-induced depressive phenotypes, inhibition of neuroinflammation and neuronal apoptosis, and improvement in synaptic plasticity in maternal rats. Thus, EE effectively alleviates neuroinflammation, neuronal apoptosis, damage to synaptic plasticity, and consequent depression-like behavior in mother rats experiencing MS-induced PPD, paving the way for new preventive and therapeutic strategies for PPD.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
16
|
Kirby ED, Andrushko JW, Rinat S, D'Arcy RCN, Boyd LA. Investigating female versus male differences in white matter neuroplasticity associated with complex visuo-motor learning. Sci Rep 2024; 14:5951. [PMID: 38467763 PMCID: PMC10928090 DOI: 10.1038/s41598-024-56453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Magnetic resonance imaging (MRI) has increasingly been used to characterize structure-function relationships during white matter neuroplasticity. Biological sex differences may be an important factor that affects patterns of neuroplasticity, and therefore impacts learning and rehabilitation. The current study examined a participant cohort before and after visuo-motor training to characterize sex differences in microstructural measures. The participants (N = 27) completed a 10-session (4 week) complex visuo-motor training task with their non-dominant hand. All participants significantly improved movement speed and their movement speed variability over the training period. White matter neuroplasticity in females and males was examined using fractional anisotropy (FA) and myelin water fraction (MWF) along the cortico-spinal tract (CST) and the corpus callosum (CC). FA values showed significant differences in the middle portion of the CST tract (nodes 38-51) across the training period. MWF showed a similar cluster in the inferior portion of the tract (nodes 18-29) but did not reach significance. Additionally, at baseline, males showed significantly higher levels of MWF measures in the middle body of the CC. Combining data from females and males would have resulted in reduced sensitivity, making it harder to detect differences in neuroplasticity. These findings offer initial insights into possible female versus male differences in white matter neuroplasticity during motor learning. This warrants investigations into specific patterns of white matter neuroplasticity for females versus males across the lifespan. Understanding biological sex-specific differences in white matter neuroplasticity may have significant implications for the interpretation of change associated with learning or rehabilitation.
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Vancouver, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Vancouver, BC, Canada.
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Lara A Boyd
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
17
|
Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B, Hollis F. Mitochondrial might: powering the peripartum for risk and resilience. Front Behav Neurosci 2023; 17:1286811. [PMID: 38187925 PMCID: PMC10767224 DOI: 10.3389/fnbeh.2023.1286811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
The peripartum period, characterized by dynamic hormonal shifts and physiological adaptations, has been recognized as a potentially vulnerable period for the development of mood disorders such as postpartum depression (PPD). Stress is a well-established risk factor for developing PPD and is known to modulate mitochondrial function. While primarily known for their role in energy production, mitochondria also influence processes such as stress regulation, steroid hormone synthesis, glucocorticoid response, GABA metabolism, and immune modulation - all of which are crucial for healthy pregnancy and relevant to PPD pathology. While mitochondrial function has been implicated in other psychiatric illnesses, its role in peripartum stress and mental health remains largely unexplored, especially in relation to the brain. In this review, we first provide an overview of mitochondrial involvement in processes implicated in peripartum mood disorders, underscoring their potential role in mediating pathology. We then discuss clinical and preclinical studies of mitochondria in the context of peripartum stress and mental health, emphasizing the need for better understanding of this relationship. Finally, we propose mitochondria as biological mediators of resilience to peripartum mood disorders.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nazharee Cloude
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Noelle Frambes
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hannah Brennen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
- USC Institute for Cardiovascular Disease Research, Columbia, SC, United States
| |
Collapse
|
18
|
Howland MA. Recalibration of the stress response system over adult development: Is there a perinatal recalibration period? Dev Psychopathol 2023; 35:2315-2337. [PMID: 37641984 PMCID: PMC10901284 DOI: 10.1017/s0954579423000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
During early life-sensitive periods (i.e., fetal, infancy), the developing stress response system adaptively calibrates to match environmental conditions, whether harsh or supportive. Recent evidence suggests that puberty is another window when the stress system is open to recalibration if environmental conditions have shifted significantly. Whether additional periods of recalibration exist in adulthood remains to be established. The present paper draws parallels between childhood (re)calibration periods and the perinatal period to hypothesize that this phase may be an additional window of stress recalibration in adult life. Specifically, the perinatal period (defined here to include pregnancy, lactation, and early parenthood) is also a developmental switch point characterized by heightened neural plasticity and marked changes in stress system function. After discussing these similarities, lines of empirical evidence needed to substantiate the perinatal stress recalibration hypothesis are proposed, and existing research support is reviewed. Complexities and challenges related to delineating the boundaries of perinatal stress recalibration and empirically testing this hypothesis are discussed, as well as possibilities for future multidisciplinary research. In the theme of this special issue, perinatal stress recalibration may be a mechanism of multilevel, multisystem risk, and resilience, both intra-individually and intergenerationally, with implications for optimizing interventions.
Collapse
Affiliation(s)
- Mariann A Howland
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Gorman-Sandler E, Robertson B, Crawford J, Wood G, Ramesh A, Arishe OO, Webb RC, Hollis F. Gestational stress decreases postpartum mitochondrial respiration in the prefrontal cortex of female rats. Neurobiol Stress 2023; 26:100563. [PMID: 37654512 PMCID: PMC10466928 DOI: 10.1016/j.ynstr.2023.100563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/03/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Postpartum depression (PPD) is a major psychiatric complication of childbirth, affecting up to 20% of mothers, yet remains understudied. Mitochondria, dynamic organelles crucial for cell homeostasis and energy production, share links with many of the proposed mechanisms underlying PPD pathology. Brain mitochondrial function is affected by stress, a major risk factor for development of PPD, and is linked to anxiety-like and social behaviors. Considering the importance of mitochondria in regulating brain function and behavior, we hypothesized that mitochondrial dysfunction is associated with behavioral alterations in a chronic stress-induced rat model of PPD. Using a validated and translationally relevant chronic mild unpredictable stress paradigm during late gestation, we induced PPD-relevant behaviors in adult postpartum Wistar rats. In the mid-postpartum, we measured mitochondrial function in the prefrontal cortex (PFC) and nucleus accumbens (NAc) using high-resolution respirometry. We then measured protein expression of mitochondrial complex proteins and 4-hydroxynonenal (a marker of oxidative stress), and Th1/Th2 cytokine levels in PFC and plasma. We report novel findings that gestational stress decreased mitochondrial function in the PFC, but not the NAc of postpartum dams. However, in groups controlling for the effects of either stress or parity alone, no differences in mitochondrial respiration measured in either brain regions were observed compared to nulliparous controls. This decrease in PFC mitochondrial function in stressed dams was accompanied by negative behavioral consequences in the postpartum, complex-I specific deficits in protein expression, and increased Tumor Necrosis Factor alpha cytokine levels in plasma and PFC. Overall, we report an association between PFC mitochondrial respiration, PPD-relevant behaviors, and inflammation following gestational stress, highlighting a potential role for mitochondrial function in postpartum health.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jesseca Crawford
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Archana Ramesh
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Olufunke O. Arishe
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
- USC Institute for Cardiovascular Disease Research, Columbia, SC, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Columbia VA Health Care Systems, Columbia, SC, 29208, USA
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, SC, USA
- USC Institute for Cardiovascular Disease Research, Columbia, SC, USA
| |
Collapse
|
20
|
Subashi E, Lemaire V, Petroni V, Pietropaolo S. The Impact of Mild Chronic Stress and Maternal Experience in the Fmr1 Mouse Model of Fragile X Syndrome. Int J Mol Sci 2023; 24:11398. [PMID: 37511156 PMCID: PMC10380347 DOI: 10.3390/ijms241411398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Fragile X syndrome (FXS) is a pervasive developmental disorder and the most common monogenic cause of autism spectrum disorder (ASD). Female heterozygous (HET) carriers play a major role in the transmission of the pathology and present several FXS- and ASD-like behavioral alterations. Despite their clear genetic origins, FXS symptoms are known to be modulated by environmental factors, e.g., exposure to chronic stress, especially during critical life periods, such as pregnancy. Pregnancy, together with pups' care, constitutes maternal experience, i.e., another powerful environmental factor affecting several neurobehavioral functions in females. Here we investigated the impact of maternal experience on the long-term effects of stress in Fmr1-HET female mice. Our findings demonstrated that the behavioral abnormalities of HET females, i.e., hyperactivity and memory deficits, were unaffected by stress or maternal experience. In contrast, stress, independently of maternal experience, induced the appearance of cognitive deficits in WT mice. Maternal experience increased anxiety levels in all mice and enhanced their corticosterone levels, concomitantly promoting the effects of stress on social communication and adrenal glands. In translational terms, these results advance our understanding of the environmental modulation of the behavioral alterations observed in FXS female carriers and highlight the long-term impact of maternal experience and its interactions with chronic stress.
Collapse
Affiliation(s)
- Enejda Subashi
- University Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Valerie Lemaire
- University Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Valeria Petroni
- University Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | | |
Collapse
|
21
|
Baxter A, Karaskiewicz CL, Campbell LA, Kinnally EL, Ferrer E, Seelke AHM, Freeman SM, Bales KL. Parental experience is linked with lower vasopressin receptor 1a binding and decreased postpartum androgens in titi monkeys. J Neuroendocrinol 2023; 35:e13304. [PMID: 37267441 PMCID: PMC10521943 DOI: 10.1111/jne.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Parenting induces many neurological and behavioral changes that enable parents to rear offspring. Vasopressin plays an important role in this process via its effects on cognition, affect, and neuroplasticity, and in some cases, via interactions with decreased parental androgens. Thus far, the role of these hormones has been primarily studied in rodents. To address this gap, we explored vasopressin receptors and androgens in titi monkeys, a pair-bonding and biparental primate species. In Studies 1 and 2, we used receptor autoradiography to correlate arginine vasopressin receptor 1a (AVPR1a) binding in the hippocampus (Study 1, n = 10) and the rest of the forebrain (Study 2, n = 23) with parental status, parental experience, parity, infant carrying, and pair affiliation. We found that parents exhibited lower AVPR1a binding than non-parents throughout most brain regions assessed, with especially strong effects in the hippocampus (β = -.61), superior colliculus (β = -.88), lateral septum (β = -.35), and medial preoptic area (β = -.29). The other measures of parental experience also tended to be negatively associated with AVPR1a binding across different brain regions. In Study 3 (n = 44), we compared pre- and postpartum urinary androgen levels in parents and non-parents and found that mothers exhibited a sustained androgen decrease across 3-4 months postpartum (relative to 3 months prepartum; β ranged from -.72 to -.62 for different comparisons). For males, we found that multiparous fathers exhibited decreased androgen levels at 1-2 weeks postpartum (β = -.25) and at 3-4 months postpartum (β = -.40) compared to the prepartum, indicating both immediate and long-term reductions with subsequent paternal experience. Together, the results of this study suggest that decreases in AVPR1a binding and circulating androgens are associated with parental behavior and physiology in titi monkeys.
Collapse
Affiliation(s)
- Alexander Baxter
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Chloe L. Karaskiewicz
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Lindsey A. Campbell
- California National Primate Research Center
- Department of Animal Biology, University of California, Davis
| | - Erin L. Kinnally
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Emilio Ferrer
- Department of Psychology, University of California, Davis
| | - Adele H. M. Seelke
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Sara M. Freeman
- California National Primate Research Center
- Utah State University, Department of Biology
| | - Karen L. Bales
- Department of Psychology, University of California, Davis
- California National Primate Research Center
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis
| |
Collapse
|
22
|
Rupanagunta GP, Nandave M, Rawat D, Upadhyay J, Rashid S, Ansari MN. Postpartum depression: aetiology, pathogenesis and the role of nutrients and dietary supplements in prevention and management. Saudi Pharm J 2023; 31:1274-1293. [PMID: 37304359 PMCID: PMC10250836 DOI: 10.1016/j.jsps.2023.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Postpartum depression (PPD) is a challenging psychological disorder faced by 10-30% of mothers across the globe. In India, it occurs among 22% of mothers. Its aetiology and pathophysiology aren't fully understood as of today but multiple theories on the interplay of hormones, neurotransmitters, genetics, epigenetics, nutrients, socio-environmental factors, etc. exist. Nutrients are not only essential for the synthesis of neurotransmitters, but they may also indirectly influence genomic pathways that methylate DNA, and there is evidence for molecular associations between nutritional quality and psychological well-being. Increased behavioural disorders have been attributed to macro- and micronutrient deficiencies, and dietary supplementation has been effective in treating several neuropsychiatric illnesses. Nutritional deficiencies occur frequently in women, especially during pregnancy and breastfeeding. The aim of this study was to perform a comprehensive literature review of evidence-based research in order to identify, gather and summarize existing knowledge on PPD's aetiology, pathophysiology, and the role of nutrients in its prevention as well as management. The possible mechanisms of action of nutrients are also presented here. Study findings show that the risk of depression increases when omega-3 fatty acid levels are low. Both fish oil and folic acid supplements have been used to effectively treat depression. Antidepressant efficacy is lowered by folate insufficiency. Folate, vitamin B12, iron, etc. deficiencies are more prevalent in depressed people than in non-depressed people. Serum cholesterol levels and plasma tryptophan levels are found to be inversely correlated with PPD. Serum vitamin D levels were associated inversely with perinatal depression. These findings highlight the importance of adequate nutrition in the antepartum period. Given that nutritional therapies can be affordable, safe, simple to use, and are typically well-accepted by patients, more focus should be placed on dietary variables in PPD.
Collapse
Affiliation(s)
- Gnana Prasoona Rupanagunta
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), MB Road, Pushp Vihar, Sector 3, New Delhi 110017, India
| | - Divya Rawat
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
23
|
Muñoz-Mayorga D, Tovar A, Díaz-Muñoz M, Morales T. Lactation attenuates pro-oxidant reactions in the maternal brain. Mol Cell Endocrinol 2023; 565:111888. [PMID: 36804275 DOI: 10.1016/j.mce.2023.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Reactive oxygen species (ROS) are intimately linked to bioenergetics and redox biology, contributing to cellular functioning and physiological signaling, but also acting as toxic agents during oxidative stress. Hence, the balance between pro-oxidant reactions and the activity of antioxidant defenses sustains a basal oxidative status, controls the increase of redox signaling, and mediates potential pathological events during oxidative stress. Maternal experience, especially during nursing, requires high energetic demands and expenditure to ensure the well-being of the offspring. The mother must adapt from satisfying her own needs to additionally fulfilling those of her descendants. Oxidative stress has been proposed as one of the reproductive trade-off hallmarks. However, the oxidative shielding hypothesis has also been proposed in the context of reproduction. The reproductive experience induces a wide range of well-documented changes in the female brain, which potentially lead to protection against the enhanced oxidative activity. To date, the metabolic and cellular mechanisms that underlie lactation-induced neuroprotection against oxidants are unknown. The neuroendocrine changes in the brain of the lactating dam promote diminished propensity to excitotoxic brain injury and stress, as well as enhanced neuroprotection and plasticity. In addition to review studies on the oxidant balance due to motherhood, we included new data from our laboratory, addressing the importance of measuring pro-oxidant reactions in separated brain regions. The hippocampus of lactating rats exhibits lower levels of pro-oxidant reactions than that of virgin rats, supporting the oxidative shielding hypothesis in lactation.
Collapse
Affiliation(s)
- Daniel Muñoz-Mayorga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Adriana Tovar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
24
|
Mota-Rojas D, Marcet-Rius M, Domínguez-Oliva A, Martínez-Burnes J, Lezama-García K, Hernández-Ávalos I, Rodríguez-González D, Bienboire-Frosini C. The Role of Oxytocin in Domestic Animal’s Maternal Care: Parturition, Bonding, and Lactation. Animals (Basel) 2023; 13:ani13071207. [PMID: 37048463 PMCID: PMC10093258 DOI: 10.3390/ani13071207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Oxytocin (OXT) is one of the essential hormones in the birth process; however, estradiol, prolactin, cortisol, relaxin, connexin, and prostaglandin are also present. In addition to parturition, the functions in which OXT is also involved in mammals include the induction of maternal behavior, including imprinting and maternal care, social cognition, and affiliative behavior, which can affect allo-parental care. The present article aimed to analyze the role of OXT and the neurophysiologic regulation of this hormone during parturition, how it can promote or impair maternal behavior and bonding, and its importance in lactation in domestic animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Míriam Marcet-Rius
- Department of Animal Behaviour and Welfare, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| | - Daniela Rodríguez-González
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| |
Collapse
|
25
|
Orchard ER, Rutherford HJV, Holmes AJ, Jamadar SD. Matrescence: lifetime impact of motherhood on cognition and the brain. Trends Cogn Sci 2023; 27:302-316. [PMID: 36609018 PMCID: PMC9957969 DOI: 10.1016/j.tics.2022.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Profound environmental, hormonal, and neurobiological changes mark the transition to motherhood as a major biosocial life event. Despite the ubiquity of motherhood, the enduring impact of caregiving on cognition and the brain across the lifespan is not well characterized and represents a unique window of opportunity to investigate human neural and cognitive development. By integrating insights from the human and animal maternal brain literatures with theories of cognitive ageing, we outline a framework for understanding maternal neural and cognitive changes across the lifespan. We suggest that the increased cognitive load of motherhood provides an initial challenge during the peripartum period, requiring continuous adaptation; yet when these demands are sustained across the lifespan, they result in increased late-life cognitive reserve.
Collapse
Affiliation(s)
- Edwina R Orchard
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, USA; Department of Psychology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA.
| | | | - Avram J Holmes
- Department of Psychology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Sharna D Jamadar
- Turner Institute of Brain and Mental Health & Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Waclawek T, Park SQ. Potential mechanisms and modulators of food intake during pregnancy. Front Nutr 2023; 10:1032430. [PMID: 36742431 PMCID: PMC9895105 DOI: 10.3389/fnut.2023.1032430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Dietary choice during pregnancy is crucial not only for fetal development, but also for long-term health outcomes of both mother and child. During pregnancy, dramatic changes in endocrine, cognitive, and reward systems have been shown to take place. Interestingly, in different contexts, many of these mechanisms play a key role in guiding food intake. Here, we review how food intake may be impacted as a function of pregnancy-induced changes across species. We first summarize changes in endocrine and metabolic signaling in the course of pregnancy. Then, we show how these may be related to cognitive function and reward processing in humans. Finally, we link these to potential drivers of change in eating behavior throughout the course of pregnancy.
Collapse
Affiliation(s)
- Theresa Waclawek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam, Germany
| | - Soyoung Q. Park
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam, Germany,Charité–Universitätsmedizin Berlin, Neuroscience Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany,*Correspondence: Soyoung Q. Park,
| |
Collapse
|
27
|
Mapping the effects of pregnancy on resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture. Nat Commun 2022; 13:6931. [PMID: 36414622 PMCID: PMC9681770 DOI: 10.1038/s41467-022-33884-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
While animal studies have demonstrated a unique reproduction-related neuroplasticity, little is known on the effects of pregnancy on the human brain. Here we investigated whether pregnancy is associated with changes to resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture using a comprehensive pre-conception cohort study. We show that pregnancy leads to selective and robust changes in neural architecture and neural network organization, which are most pronounced in the Default Mode Network. These neural changes correlated with pregnancy hormones, primarily third-trimester estradiol, while no associations were found with other factors such as osmotic effects, stress and sleep. Furthermore, the changes related to measures of maternal-fetal bonding, nesting behavior and the physiological responsiveness to infant cues, and predicted measures of mother-infant bonding and bonding impairments. These findings suggest there are selective pregnancy-related modifications in brain structure and function that may facilitate peripartum maternal processes of key relevance to the mother-infant dyad.
Collapse
|
28
|
Borgsted C, Hoegsted E, Henningsson S, Pinborg A, Ganz M, Frokjaer VG. Hippocampal volume changes in a pharmacological sex-hormone manipulation risk model for depression in women. Horm Behav 2022; 145:105234. [PMID: 35905507 DOI: 10.1016/j.yhbeh.2022.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
Abstract
Hormone transition phases may trigger depression in some women, yet the underlying mechanisms remain elusive. In a pharmacological sex-hormone manipulation model, we previously reported that estradiol reductions, induced with a gonadotropin-releasing hormone agonist (GnRHa), provoked subclinical depressive symptoms in healthy women, especially if neocortical serotonin transporter (SERT) binding also increased. Within this model, we here evaluated if GnRHa, compared to placebo, reduced hippocampal volume, in a manner that depended on the magnitude of the estradiol decrease and SERT binding, and if this decrease translated to the emergence of subclinical depressive symptoms. Sixty-three healthy, naturally cycling women were included in a randomized, double-blind, placebo-controlled GnRHa-intervention study. We quantified the change from baseline to follow-up (n = 60) in serum estradiol (ΔEstradiol), neocortical SERT binding ([11C] DASB positron emission tomography; ΔSERT), subclinical depressive symptoms (Hamilton depression rating scale; ΔHAMD-17), and hippocampal volume (magnetic resonance imaging data analyzed in Freesurfer 7.1, ΔHippocampus). Group differences in ΔHippocampus were evaluated in a t-test. Within the GnRHa group, associations between ΔEstradiol, ΔHippocampus, and ΔHAMD-17, in addition to ΔSERT-by-ΔEstradiol interaction effects on ΔHippocampus, were evaluated with linear regression models. Mean ΔHippocampus was not significantly different between the GnRHa and placebo group. Within the GnRHa group, hippocampal volume reductions were associated with the magnitude of estradiol decrease (p = 0.04, Cohen's f2 = 0.18), controlled for baseline SERT binding, but not subclinical depressive symptoms. There was no ΔSERT-by-ΔEstradiol interaction effects on ΔHippocampus. If replicated, our data highlight a possible association between estradiol fluctuations and hippocampal plasticity, adjusted for serotonergic contributions.
Collapse
Affiliation(s)
- Camilla Borgsted
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark; Mental Health Services in the Capital Region of Denmark, Kristineberg 3, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Emma Hoegsted
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark
| | - Susanne Henningsson
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Kettegård Allé 30, 2650 Hvidovre, Denmark
| | - Anja Pinborg
- Department of Fertility, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark; Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen O, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, 6-8 Inge Lehmanns Vej, Building 8057, 2100 Copenhagen O, Denmark; Mental Health Services in the Capital Region of Denmark, Kristineberg 3, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
29
|
Costas-Ferreira C, Durán R, Faro LRF. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int J Mol Sci 2022; 23:4605. [PMID: 35562999 PMCID: PMC9101768 DOI: 10.3390/ijms23094605] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
Glyphosate, a non-selective systemic biocide with broad-spectrum activity, is the most widely used herbicide in the world. It can persist in the environment for days or months, and its intensive and large-scale use can constitute a major environmental and health problem. In this systematic review, we investigate the current state of our knowledge related to the effects of this pesticide on the nervous system of various animal species and humans. The information provided indicates that exposure to glyphosate or its commercial formulations induces several neurotoxic effects. It has been shown that exposure to this pesticide during the early stages of life can seriously affect normal cell development by deregulating some of the signaling pathways involved in this process, leading to alterations in differentiation, neuronal growth, and myelination. Glyphosate also seems to exert a significant toxic effect on neurotransmission and to induce oxidative stress, neuroinflammation and mitochondrial dysfunction, processes that lead to neuronal death due to autophagy, necrosis, or apoptosis, as well as the appearance of behavioral and motor disorders. The doses of glyphosate that produce these neurotoxic effects vary widely but are lower than the limits set by regulatory agencies. Although there are important discrepancies between the analyzed findings, it is unequivocal that exposure to glyphosate produces important alterations in the structure and function of the nervous system of humans, rodents, fish, and invertebrates.
Collapse
Affiliation(s)
| | | | - Lilian R. F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (C.C.-F.); (R.D.)
| |
Collapse
|
30
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
31
|
Pawluski JL, Hoekzema E, Leuner B, Lonstein JS. Less can be more: Fine tuning the maternal brain. Neurosci Biobehav Rev 2022; 133:104475. [PMID: 34864004 PMCID: PMC8807930 DOI: 10.1016/j.neubiorev.2021.11.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
PAWLUSKI, J.L., Hoekzema, E., Leuner, B., and Lonstein, J.S. Less can be more: Fine tuning the maternal brain. NEUROSCI BIOBEHAV REV (129) XXX-XXX, 2022. Plasticity in the female brain across the lifespan has recently become a growing field of scientific inquiry. This has led to the understanding that the transition to motherhood is marked by some of the most significant changes in brain plasticity in the adult female brain. Perhaps unexpectedly, plasticity occurring in the maternal brain often involves a decrease in brain volume, neurogenesis and glial cell density that presumably optimizes caregiving and other postpartum behaviors. This review summarizes what we know of the 'fine-tuning' of the female brain that accompanies motherhood and highlights the implications of these changes for maternal neurobehavioral health. The first part of the review summarizes structural and functional brain changes in humans during pregnancy and postpartum period with the remainder of the review focusing on neural and glial plasticity during the peripartum period in animal models. The aim of this review is to provide a clear understanding of when 'less is more' in maternal brain plasticity and where future research can focus to improve our understanding of the unique brain plasticity occurring during matrescence.
Collapse
Affiliation(s)
- Jodi L. Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.,Corresponding author: Jodi L. Pawluski, University of Rennes 1, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| | - Elseline Hoekzema
- Brain and Development Laboratory, Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Hoekzema Lab, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology & Department of Neuroscience Columbus, OH, USA
| | - Joseph S. Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Calibration and recalibration of stress response systems across development: Implications for mental and physical health. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2022; 63:35-69. [DOI: 10.1016/bs.acdb.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Martínez-García M, Cardenas SI, Pawluski J, Carmona S, Saxbe DE. Recent Neuroscience Advances in Human Parenting. ADVANCES IN NEUROBIOLOGY 2022; 27:239-267. [PMID: 36169818 DOI: 10.1007/978-3-030-97762-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The transition to parenthood entails brain adaptations to the demands of caring for a newborn. This chapter reviews recent neuroscience findings on human parenting, focusing on neuroimaging studies. First, we describe the brain circuits underlying human maternal behavior, which comprise ancient subcortical circuits and more sophisticated cortical regions. Then, we present the short-term and long-term functional and structural brain adaptations that characterize the transition to motherhood, discuss the long-term effects of parenthood on the brain, and propose several underlying neural mechanisms. We also review neuroimaging findings in biological fathers and alloparents (such as other relatives or adoptive parents), who engage in parenting without directly experiencing pregnancy or childbirth. Finally, we describe perinatal mental illnesses and discuss the neural responses associated with such disorders. To date, studies indicate that parenthood is a period of enhanced brain plasticity within brain areas critical for cognitive and social processing and that both parenting experience and gestational-related factors can prime such plasticity.
Collapse
Affiliation(s)
- Magdalena Martínez-García
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Sofia I Cardenas
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jodi Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Rennes, France
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Darby E Saxbe
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Provenzi L, Villa M, Mambretti F, Citterio A, Grumi S, Bertazzoli E, Biasucci G, Decembrino L, Gardella B, Giacchero R, Magnani ML, Nacinovich R, Pisoni C, Prefumo F, Orcesi S, Scelsa B, Giorda R, Borgatti R. Is Brain-Derived Neurotropic Factor Methylation Involved in the Association Between Prenatal Stress and Maternal Postnatal Anxiety During the COVID-19 Pandemic? Front Psychiatry 2022; 13:950455. [PMID: 35911240 PMCID: PMC9329563 DOI: 10.3389/fpsyt.2022.950455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic is a collective trauma that may expose susceptible individuals to high levels of stress. Pregnant women represent a high-risk population, considering that pregnancy is a period of heightened neuroplasticity and susceptibility to stress through epigenetic mechanisms. Previous studies showed that the methylation status of the BDNF gene is linked with prenatal stress exposure. The goals of this study were (a) to assess the association between pandemic-related stress and postnatal anxiety and (b) to investigate the potential role of maternal BDNF methylation as a significant mediator of this association. METHODS In the present study, we report data on the association among pandemic-related stress during pregnancy, maternal BDNF methylation, and postnatal anxiety symptoms. Pandemic-related stress and postnatal anxiety were assessed through self-report instruments. BDNF methylation was estimated in 11 CpG sites in DNA from mothers' buccal cells. Complete data were available from 108 mothers. RESULTS Results showed that pandemic-related stress was associated with an increased risk of postnatal anxiety, r = 0.20, p < 0.05. CpG-specific BDNF methylation was significantly associated with both prenatal pandemic-related stress, r = 0.21, p < 0.05, and postnatal maternal anxious symptoms, r = 0.25, p = 0.01. Moreover, a complete mediation by the BDNF CpG6 methylation emerged between pandemic-related stress during pregnancy and postnatal maternal anxiety, ACME = 0.66, p < 0.05. CONCLUSION These findings suggest that BDNF epigenetic regulation by pandemic-related stress might contribute to increase the risk of anxiety in mothers. Policymakers should prioritize the promotion of health and wellbeing in pregnant women and mothers during the present healthcare emergency.
Collapse
Affiliation(s)
- Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Marco Villa
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | | | | | - Serena Grumi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | | | | | - Barbara Gardella
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Renata Nacinovich
- ASST Monza, Monza, Italy.,Department of Medicine and Surgery, Università Bicocca, Milan, Italy
| | | | - Federico Prefumo
- ASST Spedali Civili, Brescia, Italy.,Division of Obstetrics and Gynecology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Roberto Giorda
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
35
|
Voldsbekk I, Barth C, Maximov II, Kaufmann T, Beck D, Richard G, Moberget T, Westlye LT, de Lange AG. A history of previous childbirths is linked to women's white matter brain age in midlife and older age. Hum Brain Mapp 2021; 42:4372-4386. [PMID: 34118094 PMCID: PMC8356991 DOI: 10.1002/hbm.25553] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Maternal brain adaptations occur in response to pregnancy, but little is known about how parity impacts white matter and white matter ageing trajectories later in life. Utilising global and regional brain age prediction based on multi-shell diffusion-weighted imaging data, we investigated the association between previous childbirths and white matter brain age in 8,895 women in the UK Biobank cohort (age range = 54-81 years). The results showed that number of previous childbirths was negatively associated with white matter brain age, potentially indicating a protective effect of parity on white matter later in life. Both global white matter and grey matter brain age estimates showed unique contributions to the association with previous childbirths, suggesting partly independent processes. Corpus callosum contributed uniquely to the global white matter association with previous childbirths, and showed a stronger relationship relative to several other tracts. While our findings demonstrate a link between reproductive history and brain white matter characteristics later in life, longitudinal studies are required to establish causality and determine how parity may influence women's white matter trajectories across the lifespan.
Collapse
Affiliation(s)
- Irene Voldsbekk
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Claudia Barth
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Ivan I. Maximov
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of Psychiatry and PsychotherapyUniversity of TübingenTübingenGermany
| | - Dani Beck
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- Sunnaas Rehabilitation Hospital HTOsloNorway
| | - Genevieve Richard
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
| | - Torgeir Moberget
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Ann‐Marie G. de Lange
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University HospitalOsloNorway
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of PsychiatryUniversity of OxfordOxfordUK
| |
Collapse
|
36
|
Melatonin: From Neurobiology to Treatment. Brain Sci 2021; 11:brainsci11091121. [PMID: 34573143 PMCID: PMC8468230 DOI: 10.3390/brainsci11091121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
Melatonin, the major regulator of the sleep/wake cycle, also plays important physiological and pharmacological roles in the control of neuronal plasticity and neuroprotection. Accordingly, the secretion of this hormone reaches the maximal extent during brain development (childhood-adolescence) while it is greatly reduced during aging, a condition associated to altered sleep pattern and reduced neuronal plasticity. Altogether, these properties of melatonin have allowed us to demonstrate in both experimental models and clinical studies the great chronobiotic efficacy and sleep promoting effects of exogenous melatonin. Thus, the prolonged release formulation of melatonin, present as a drug in the pharmaceutical market, has been recently recommended for the treatment of insomnia in over 55 years old subjects.
Collapse
|
37
|
Strzelewicz AR, Vecchiarelli HA, Rondón-Ortiz AN, Raneri A, Hill MN, Kentner AC. Interactive effects of compounding multidimensional stressors on maternal and male and female rat offspring outcomes. Horm Behav 2021; 134:105013. [PMID: 34171577 PMCID: PMC8403628 DOI: 10.1016/j.yhbeh.2021.105013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Exposure to adverse childhood experiences (ACEs) is a risk factor for the development of psychiatric disorders in addition to cardiovascular associated diseases. This risk is elevated when the cumulative burden of ACEs is increased. Laboratory animals can be used to model the changes (as well as the underlying mechanisms) that result in response to adverse events. In this study, using male and female Sprague Dawley rats, we examined the impact of increasing stress burden, utilizing both two adverse early life experiences (parental/offspring high fat diet + limited bedding exposure) and three adverse early life experiences (parental/offspring high fat diet + limited bedding exposure + neonatal inflammation), on maternal care quality and offspring behavior. Additionally, we measured hormones and hippocampal gene expression related to stress. We found that the adverse perinatal environment led to a compensatory increase in maternal care. Moreover, these dams had reduced maternal expression of oxytocin receptor, compared to standard housed dams, in response to acute stress on postnatal day (P)22. In offspring, the two-hit and three-hit models resulted in a hyperlocomotor phenotype and increased body weights. Plasma leptin and hippocampal gene expression of corticotropin releasing hormone (Chrh)1 and Crhr2 were elevated (males) while expression of oxytocin was reduced (females) following acute stress. On some measures (e.g., hyperlocomotion, leptin), the magnitude of change was lower in the three-hit compared to the two-hit model. This suggests that multiple early adverse events can have interactive, and often unpredictable, impacts, highlighting the importance of modeling complex interactions amongst stressors during development.
Collapse
Affiliation(s)
- Arielle R Strzelewicz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Haley A Vecchiarelli
- Divisions of Medical Sciences, University of Victoria, BC V8P 5C2, Canada; Neuroscience Graduate Program, Hotchkiss Brain Institute, Mathison Centre for Mental Health, Research and Education, Cumming School of Medicine, University of Calgary, AB T2N 1N4, Canada
| | - Alejandro N Rondón-Ortiz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Anthony Raneri
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Matthew N Hill
- Neuroscience Graduate Program, Hotchkiss Brain Institute, Mathison Centre for Mental Health, Research and Education, Cumming School of Medicine, University of Calgary, AB T2N 1N4, Canada
| | - Amanda C Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States.
| |
Collapse
|
38
|
Dahan O. The birthing brain: A lacuna in neuroscience. Brain Cogn 2021; 150:105722. [PMID: 33774337 DOI: 10.1016/j.bandc.2021.105722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
During pregnancy, maternal brain neuroplasticity indicates vast neurofunctional and neuroanatomical changes. Recent findings documented a similarly massive readjustment after pregnancy. Currently, these brain changes are interpreted as preparation for and adjustment of the maternal brain to motherhood. Yet, this perspective leaves many questions unsolved. Neuroscientific studies have not yet been conducted to determine the brain areas that function during natural childbirth even though physiological birth is the natural process of women who have reproduced successfully throughout two million years of evolution of the genus Homo. It is rational to believe that the female brain is an active and crucial actor during birth and that birth, itself, is a process that requires brain neuroplasticity. Lack of studies of the birthing brain and brain preparation for birth is a significant lacuna in neuroscience research. I demonstrate theoretically that a new hypothesis for complementary interpretation of maternal brain neuroplasticity is reasonable: Certain maternal brain changes during pregnancy can be interpreted asbrain preparation for birth and certain maternal brain changes after birth can be interpreted asbrain recovery after the tremendous event of birth. This essay can be a starting point for new directions in neuroscience studies.
Collapse
Affiliation(s)
- Orli Dahan
- Tel-Hai College, Faculty of Social Sciences & Humanities, Upper Galilee, 12208, Israel.
| |
Collapse
|
39
|
Kim P. How stress can influence brain adaptations to motherhood. Front Neuroendocrinol 2021; 60:100875. [PMID: 33038383 PMCID: PMC7539902 DOI: 10.1016/j.yfrne.2020.100875] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Research shows that a woman's brain and body undergo drastic changes to support her transition to parenthood during the perinatal period. The presence of this plasticity suggests that mothers' brains may be changed by their experiences. Exposure to severe stress may disrupt adaptive changes in the maternal brain and further impact the neural circuits of stress regulation and maternal motivation. Emerging literature of human mothers provides evidence that stressful experience, whether from the past or present environment, is associated with altered responses to infant cues in brain circuits that support maternal motivation, emotion regulation, and empathy. Interventions that reduce stress levels in mothers may reverse the negative impact of stress exposure on the maternal brain. Finally, outstanding questions regarding the timing, chronicity, types, and severity of stress exposure, as well as study design to identify the causal impact of stress, and the role of race/ethnicity are discussed.
Collapse
Affiliation(s)
- Pilyoung Kim
- Department of Psychology, University of Denver, Denver, CO, United States.
| |
Collapse
|
40
|
Zamora-Moratalla A, Martín ED. Prolactin enhances hippocampal synaptic plasticity in female mice of reproductive age. Hippocampus 2020; 31:281-293. [PMID: 33285014 PMCID: PMC7983975 DOI: 10.1002/hipo.23288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/27/2023]
Abstract
Dynamic signaling between the endocrine system (ES) and the nervous system (NS) is essential for brain and body homeostasis. In particular, reciprocal interaction occurs during pregnancy and motherhood that may involve changes in some brain plasticity processes. Prolactin (PRL), a hormone with pleiotropic effects on the NS, promotes maternal behavior and has been linked to modifications in brain circuits during motherhood; however, it is unclear whether PRL may regulate synaptic plasticity. Therefore, the main aim of the present work was to determine the cellular and molecular mechanisms triggered by PRL that regulate synaptic plasticity in the hippocampus. By analyzing extracellular recordings in CA3‐CA1 synapses of hippocampal slices, we report that PRL modifies short and long‐term synaptic plasticity in female mice of reproductive age, but not in sexually immature females or adult males. This effect is carried out through mechanisms that include participation of GABAA receptors and activation of the JAK2‐mediated signaling pathway. These findings show for the first time how PRL enhances the synaptic strength in hippocampal circuits and that this effect is sexually dimorphic, which would influence complex brain processes in physiological conditions like pregnancy and lactation.
Collapse
Affiliation(s)
- Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
41
|
Kim P, Tribble R, Olsavsky AK, Dufford AJ, Erhart A, Hansen M, Grande L, Gonzalez DM. Associations between stress exposure and new mothers' brain responses to infant cry sounds. Neuroimage 2020; 223:117360. [PMID: 32927083 PMCID: PMC8291268 DOI: 10.1016/j.neuroimage.2020.117360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/24/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
Exposure to severe stress has been linked to negative postpartum outcomes among new mothers including mood disorders and harsh parenting. Non-human animal studies show that stress exposure disrupts the normative adaptation of the maternal brain, thus identifying a neurobiological mechanism by which stress can lead to negative maternal outcomes. However, little is known about the impact of stress exposure on the maternal brain response to infant cues in human mothers. We examined the association of stress exposure with brain response to infant cries and maternal behaviors, in a socioeconomically diverse (low- and middle-income) sample of first-time mothers (N=53). Exposure to stress across socioeconomic, environmental, and psychosocial domains was associated with reduced brain response to infant cry sounds in several regions, including the right insula/inferior frontal gyrus and superior temporal gyrus. Reduced activation in these regions was further associated with lower maternal sensitivity observed during a mother-infant interaction. The findings demonstrate that higher levels of stress exposure may be associated with reduced brain response to an infant's cry in regions that are important for emotional and social information processing, and that reduced brain responses may further be associated with increased difficulties in developing positive mother-infant relationships.
Collapse
Affiliation(s)
- Pilyoung Kim
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States.
| | - Rebekah Tribble
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States
| | - Aviva K Olsavsky
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States; University of Colorado Anschutz School of Medicine/Children's Hospital Colorado, 13123 E. 16th Avenue, CO 80045, United States
| | - Alexander J Dufford
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States
| | - Andrew Erhart
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States
| | - Melissa Hansen
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States
| | - Leah Grande
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States
| | - Daniel M Gonzalez
- Department of Psychology, University of Denver, Denver, 2155 South Race Street, Denver, CO 80208-3500, United States; Harvard Medical School, Boston, 25 Shattuck St, Boston, MA 02115, United States
| |
Collapse
|
42
|
Cella EC, Conte J, Stolte RCK, Lorenzon F, Gregorio T, Simas BB, Rafacho A, Lima FB. Gestational exposure to excessive levels of dexamethasone impairs maternal care and impacts on the offspring's survival in rats. Life Sci 2020; 264:118599. [PMID: 33127510 DOI: 10.1016/j.lfs.2020.118599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Administration of dexamethasone (DEX) during late gestation is a model to study growth restriction in rodents, but the pup's mortality index can be high, depending on DEX dosage, and little is known about the effects of DEX on maternal care (MC). Considering that an inadequate MC can also contribute to pup's mortality in this model, we evaluated the effects of DEX on dams' behavior and its consequences on offspring survival. We also investigated whether the cross-fostering of pups from dams treated or not with DEX could improve pup's survival. Wistar rats were treated with DEX (14th to 19th day of gestation -0.2 mg/kg, B.W, in the drinking water). Nest building, MC and responses in the elevated plus-maze, forced swimming and object recognition tests were evaluated. DEX reduced gestational weight gain and impaired neonatal development, reducing pup's survival to 0% by the 3rd postnatal day. DEX-treated dams reduced the expression of typical MC and increased anxiety-like behaviors. After cross-fostering, DEX-treated mothers behaved similarly to controls, indicating that a healthy offspring is crucial to induce adequate MC. Cross-fostering increased the survival index from zero to 25% in the DEX offspring. Postnatal development of the DEX offspring was comparable to controls after cross-fostering. We concluded that exposure to DEX during late gestation causes behavioral changes that compromise the maternal emotional state, disrupting the expression of MC. Although it does not seem to be the main cause of pup's mortality, our data indicate that an adequate MC improves pup's survival in this model.
Collapse
Affiliation(s)
- Elisa C Cella
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Júlia Conte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Rafaela C K Stolte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Flaviano Lorenzon
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Tamires Gregorio
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Bruna B Simas
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Alex Rafacho
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Fernanda B Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil.
| |
Collapse
|
43
|
Oxytocin receptor binding in the titi monkey hippocampal formation is associated with parental status and partner affiliation. Sci Rep 2020; 10:17301. [PMID: 33057124 PMCID: PMC7560868 DOI: 10.1038/s41598-020-74243-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
Social cognition is facilitated by oxytocin receptors (OXTR) in the hippocampus, a brain region that changes dynamically with pregnancy, parturition, and parenting experience. We investigated the impact of parenthood on hippocampal OXTR in male and female titi monkeys, a pair-bonding primate species that exhibits biparental care of offspring. We hypothesized that in postmortem brain tissue, OXTR binding in the hippocampal formation would differ between parents and non-parents, and that OXTR density would correlate with frequencies of observed parenting and affiliative behaviors between partners. Subjects were 10 adult titi monkeys. OXTR binding in the hippocampus (CA1, CA2/3, CA4, dentate gyrus, subiculum) and presubiculum layers (PSB1, PSB3) was determined using receptor autoradiography. The average frequency of partner affiliation (Proximity, Contact, and Tail Twining) and infant carrying were determined from longitudinal observations (5-6 per day). Analyses showed that parents exhibited higher OXTR binding than non-parents in PSB1 (t(8) = - 2.33, p = 0.048), and that OXTR binding in the total presubiculm correlated negatively with Proximity (r = - 0.88) and Contact (r = - 0.91), but not Tail Twining or infant carrying. These results suggest that OXTR binding in the presubiculum supports pair bonding and parenting behavior, potentially by mediating changes in hippocampal plasticity.
Collapse
|
44
|
Barth C, de Lange AMG. Towards an understanding of women's brain aging: the immunology of pregnancy and menopause. Front Neuroendocrinol 2020; 58:100850. [PMID: 32504632 DOI: 10.1016/j.yfrne.2020.100850] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Women are at significantly greater risk of developing Alzheimer's disease and show higher prevalence of autoimmune conditions relative to men. Women's brain health is historically understudied, and little is therefore known about the mechanisms underlying epidemiological sex differences in neurodegenerative diseases, and how female-specific factors may influence women's brain health across the lifespan. In this review, we summarize recent studies on the immunology of pregnancy and menopause, emphasizing that these major immunoendocrine transition phases may play a critical part in women's brain aging trajectories.
Collapse
Affiliation(s)
- Claudia Barth
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
| |
Collapse
|
45
|
Scarola S, Kent M, Neal S, Trejo JP, Bardi M, Lambert K. Postpartum environmental challenges alter maternal responsiveness and offspring development. Horm Behav 2020; 122:104761. [PMID: 32330549 DOI: 10.1016/j.yhbeh.2020.104761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Because many threats exist in an animal's natural habitat, it is important to understand the impact of environmental challenges on maternal-offspring interactions and outcomes. In the current study, a rodent model incorporating the presence of restricted resources and an environmental threat (e.g. predator-related odors and sounds) was investigated. Specifically, pregnant females were assigned to one of four treatments: standard resources, without threat (SR; n = 7); standard resources plus threat (SR-T; n = 8); restricted resources, without threat (RR; n = 7); and restricted resources plus threat (RR-T; n = 6). Maternal rats were moved into the assigned conditions on postnatal day 2 and remained until pups were weaned. Following a standard pup retrieval task on postnatal days 2 and 6, maternal rats were exposed to a retrieval challenge task on postnatal day 8 in which each rat had to traverse a novel barrier to retrieve pups. For neurobiological measures of stress/resilience responsiveness, fecal samples were collected for detection of corticosterone and DHEA metabolites; additionally, immunohistochemistry was conducted on the maternal brains to indicate the presence of Neuropeptide Y (NPY) and Brain Derived Neurotrophic Factor (BDNF) immunoreactivity in the hippocampus, amygdala and hypothalamus. Pup development measures, including body weight and tail length, were also collected. Results suggest that maternal rats with restricted resources exhibited diminished maternal responsiveness that resulted in altered pup development measures; further, restricted resource rats exhibited endocrine markers of compromised emotional resilience (lower DHEA) and decreased neural markers of neuroplasticity (BDNF) and emotional resilience (NPY). Interestingly, predator threat affected various aspects of maternal-pup interactions but had no effect on neurobiological variables, suggesting that restricted resources had a more negative impact on maternal-related outcomes than the presence of predator threat.
Collapse
Affiliation(s)
- Samantha Scarola
- Department of Psychology, Behavioral Neuroscience Program, Randolph Macon College, Ashland, VA 23005, USA
| | - Molly Kent
- Department of Biology, Virginia Military Institute, Lexington, VA 25440, USA
| | - Steven Neal
- Department of Psychology, Behavioral Neuroscience Program, Randolph Macon College, Ashland, VA 23005, USA
| | - Jose Perdomo Trejo
- Department of Psychology, Behavioral Neuroscience Program, Randolph Macon College, Ashland, VA 23005, USA
| | - Massimo Bardi
- Department of Psychology, Behavioral Neuroscience Program, Randolph Macon College, Ashland, VA 23005, USA
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, VA 23173, USA.
| |
Collapse
|
46
|
Pregnant rats exposed to low-level methylmercury exhibit cerebellar synaptic and neuritic remodeling during the perinatal period. Arch Toxicol 2020; 94:1335-1347. [DOI: 10.1007/s00204-020-02696-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
|
47
|
Abstract
Importance Acupuncture is a key component of therapy in traditional Chinese medicine. Only in the last few decades has acupuncture become popular in the United States. The mechanism behind acupuncture's effects on the body and brain has not been completely elucidated, but there is evidence that acupuncture has effects on the endocrine, immune, and sympathetic and parasympathetic nervous systems. It may also act through electrical and mechanical signaling through the connective tissue and fascia. Despite this uncertainty, the positive effects of acupuncture have been well established. Objective In this review, we discuss the basic concepts of traditional Chinese medicine and acupuncture and examine the evidence regarding the use of acupuncture in obstetrics and gynecology. Evidence Acquisition We conducted a literature review of acupuncture in obstetrics and gynecology using PubMed. Results The available data demonstrate that acupuncture is beneficial in the treatment of labor pain, back pain in pregnancy, and dysmenorrhea. It is unclear if acupuncture is effective for hyperemesis, chemotherapy-induced nausea and vomiting, and menopausal hot flushes, or if moxibustion is effective in correcting breech presentation. There are limited but positive data regarding menopause-related sleep disturbances, depression in pregnancy, and overactive bladder. Acupuncture is not beneficial for improving outcomes in in vitro fertilization. Conclusions and Relevance Acupuncture is an increasingly popular therapy with many potential applications in obstetrics and gynecology. A general understanding of the basic principles of acupuncture and the safety and efficacy of its practice is necessary for the general obstetrician and gynecologist to make informed recommendations to patients.
Collapse
|
48
|
Effect of sertraline on central serotonin and hippocampal plasticity in pregnant and non-pregnant rats. Neuropharmacology 2020; 166:107950. [PMID: 31935392 DOI: 10.1016/j.neuropharm.2020.107950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
One of the most frequently prescribed selective serotonin reuptake inhibitor medications (SSRIs) for peripartum mood and anxiety disorders is sertraline (Zoloft®). Sertraline can help alleviate mood and anxiety symptoms in many women but it is not known how sertraline, or SSRIs in general, affect the neurobiology of the brain particularly when pregnant. The aim of this study was to investigate how sertraline affects plasticity in the hippocampus, a brain area integral in depression and SSRI efficacy (particularly in males), during late pregnancy and whether these effects differ from the effects of sertraline in non-pregnant females. To do this pregnant and age-matched non-pregnant female Sprague-Dawley rats were used. For the last half of pregnancy (10 days), and at matched points in non-pregnant females, rats were given sertraline (2.5 mg/kg/day or 10 mg/kg/day) or vehicle (0 mg/kg/day). Brains were used to investigate effects on the serotonergic system in the hippocampus and prefrontal cortex and measures of neuroplasticity in the hippocampus. Results show that pregnant females have significantly higher serum levels of sertraline compared to non-pregnant females but that rates of serotonin turnover in the hippocampus and PFC are similar between pregnant and non-pregnant females. Sertraline increased synaptophysin density in the dentate gyrus and CA3 and was associated with a decrease in cell proliferation in the dentate gyrus of non-pregnant, but not pregnant, females. During late pregnancy the hippocampus showed significant reductions in neurogenesis and increases in synaptophysin density. This research highlights the need to consider the unique effect of reproductive state on the neuropharmacology of SSRIs.
Collapse
|
49
|
Grattan DR, Ladyman SR. Neurophysiological and cognitive changes in pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:25-55. [PMID: 32736755 DOI: 10.1016/b978-0-444-64239-4.00002-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hormonal fluctuations in pregnancy drive a wide range of adaptive changes in the maternal brain. These range from specific neurophysiological changes in the patterns of activity of individual neuronal populations, through to complete modification of circuit characteristics leading to fundamental changes in behavior. From a neurologic perspective, the key hormone changes are those of the sex steroids, estradiol and progesterone, secreted first from the ovary and then from the placenta, the adrenal glucocorticoid cortisol, as well as the anterior pituitary peptide hormone prolactin and its pregnancy-specific homolog placental lactogen. All of these hormones are markedly elevated during pregnancy and cross the blood-brain barrier to exert actions on neuronal populations through receptors expressed in specific regions. Many of the hormone-induced changes are in autonomic or homeostatic systems. For example, patterns of oxytocin and prolactin secretion are dramatically altered to support novel physiological functions. Appetite is increased and feedback responses to metabolic hormones such as leptin and insulin are suppressed to promote a positive energy balance. Fundamental physiological systems such as glucose homeostasis and thermoregulation are modified to optimize conditions for fetal development. In addition to these largely autonomic changes, there are also changes in mood, behavior, and higher processes such as cognition. This chapter summarizes the hormonal changes associated with pregnancy and reviews how these changes impact on brain function, drawing on examples from animal research, as well as available information about human pregnancy.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Maguire J, McCormack C, Mitchell A, Monk C. Neurobiology of maternal mental illness. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:97-116. [PMID: 32736761 DOI: 10.1016/b978-0-444-64239-4.00005-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This chapter provides an overview of current research discoveries beginning to uncover the neurobiology of maternal mental illness. Results are described according to standard diagnostic categories (specifically, perinatal depression, perinatal anxiety and OCD, postpartum psychosis and bipolar disorder, and trauma and posttraumatic stress disorder), yet we aim to put this approach in context with the introduction of a classification model for psychiatric research, the research domain criteria, gaining traction in basic and clinical translational fields. We first review a new area of study, the neuroplasticity of the pregnant and postpartum brain, as work here has relevance for understanding the pathophysiology of mental disorders and may provide clues to changes in brain functioning that are related to compromised parenting in the context of postpartum depression. We next provide background information on neuroendocrine and immune changes during pregnancy and, to a lesser extent, the postpartum period, as alterations in these systems are significantly implicated in underlying neurobiology of mental illness for peripartum women. Our discussion of the major mental illnesses for pregnant and postpartum women includes neuroendocrine changes, neuroinflammation, and neurotransmitter alterations, as well as circuit dysfunction. Overall, remarkable progress has been made in identifying variations in neurobiology (and related systems) involved in maternal mental illness; yet, it is clear that, as classified with standard diagnostic systems, these are heterogeneous disorders and there is individual variability in the alterations in neurobiology for the same illness.
Collapse
Affiliation(s)
- Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Clare McCormack
- Center for Science and Society, Columbia University, New York, NY, United States
| | - Anika Mitchell
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, United States
| | - Catherine Monk
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States.
| |
Collapse
|