1
|
Poonam, Chaudhary S. Interactions between AT1R and GRKs: the determinants for activation of signaling pathways involved in blood pressure regulation. Mol Biol Rep 2023; 51:46. [PMID: 38158508 DOI: 10.1007/s11033-023-08995-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
The success of Angiotensin II receptor blockers, specifically Angiotensin II type 1 receptor (AT1R) antagonists as antihypertensive drug emphasizes the involvement of AT1R in Essential hypertension. The structural insights and mutational studies of Ang II-AT1R have brought about the vision to design Ang II analogs that selectively activate the pathways with beneficial and cardioprotective effects such as cell survival and hinder the deleterious effects such as hypertrophy and cell death. AT1R belongs to G-protein coupled receptors and is regulated by G-protein coupled receptor kinases (GRKs) that either uncouples Gq protein for receptor desensitization or phosphorylate C-terminus to recruit β-arrestin for internalization of the receptor. The interaction of GRKs with ligand activated AT1R induces conformational changes and signal either Gq dependent or Gq independent pathways. These interactions might explain the complex regulatory mechanisms and offer promising ideas for hypertension therapeutics. This article reviews the functional role of AT1R, organization of GRK genes and regulation of AT1R by GRKs that play significant role in desensitization and internalization of the receptors.
Collapse
Affiliation(s)
- Poonam
- Department cum National Centre for Human Genome Studies and Research (NCHGSR), Panjab University, Chandigarh, 160014, India
| | - Shashi Chaudhary
- Department cum National Centre for Human Genome Studies and Research (NCHGSR), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Colin M, Delaitre C, Foulquier S, Dupuis F. The AT 1/AT 2 Receptor Equilibrium Is a Cornerstone of the Regulation of the Renin Angiotensin System beyond the Cardiovascular System. Molecules 2023; 28:5481. [PMID: 37513355 PMCID: PMC10383525 DOI: 10.3390/molecules28145481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The AT1 receptor has mainly been associated with the pathological effects of the renin-angiotensin system (RAS) (e.g., hypertension, heart and kidney diseases), and constitutes a major therapeutic target. In contrast, the AT2 receptor is presented as the protective arm of this RAS, and its targeting via specific agonists is mainly used to counteract the effects of the AT1 receptor. The discovery of a local RAS has highlighted the importance of the balance between AT1/AT2 receptors at the tissue level. Disruption of this balance is suggested to be detrimental. The fine tuning of this balance is not limited to the regulation of the level of expression of these two receptors. Other mechanisms still largely unexplored, such as S-nitrosation of the AT1 receptor, homo- and heterodimerization, and the use of AT1 receptor-biased agonists, may significantly contribute to and/or interfere with the settings of this AT1/AT2 equilibrium. This review will detail, through several examples (the brain, wound healing, and the cellular cycle), the importance of the functional balance between AT1 and AT2 receptors, and how new molecular pharmacological approaches may act on its regulation to open up new therapeutic perspectives.
Collapse
Affiliation(s)
- Mélissa Colin
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
3
|
Noto NM, Restrepo YM, Pang HW, Stoyell-Conti F, West CA, Speth RC. Comparative evaluation of biased agonists Sarcosine 1 , d-Alanine 8 -Angiotensin (Ang) II (SD Ang II) and Sarcosine 1 , Isoleucine 8 -Ang II (SI Ang II) and their radioiodinated congeners binding to rat liver membrane AT 1 receptors. Pharmacol Res Perspect 2023; 11:e01053. [PMID: 36639940 PMCID: PMC9840060 DOI: 10.1002/prp2.1053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
Angiotensin II analogue and β-arrestin biased agonist TRV027 (Sarcosine1 , d-Alanine8 -Angiotensin (Ang) II; SD Ang II), developed by Trevena, Inc. in the early 2010s, brought hopes of a novel treatment for cardiovascular diseases, due to its ability to simultaneously cause signaling through the β-arrestin signaling pathway, while antagonizing the pathophysiological effects of Ang II mediated by the AT1 receptor G protein signaling cascades. However, a phase II clinical trial of this agent revealed no significant benefit compared to placebo treatment. Using 125 I-Sarcosine1 , Isoleucine8 -Ang II (125 I-SI Ang II) radioligand receptor competition binding assays, we assessed the relative affinity of TRV027 compared to SI Ang II for liver AT1 receptors. We also compared radioiodinated TRV027 (125 I-SD Ang II) binding affinity for liver AT1 receptors with 125 I-SI Ang II. We found that despite its anticipated gain in metabolic stability, TRV027 and 125 I-SD Ang II had reduced affinity for the AT1 receptor compared with SI Ang II and 125 I-SI Ang II. Additionally, male-female comparisons showed that females have a higher AT1 receptor density, potentially attributed to tissue-dependent estrogen and progesterone effects. Peptide drugs have become more popular over the years due to their increased bioavailability, fast onset of action, high specificity, and low toxicity. Even though Trevena®'s biased agonist peptide TRV027 offered greater stability and potency compared to earlier AT1 R biased agonists, it failed its phase II clinical trial in 2016. Further refinements to AT1 R biased agonist peptides to improve affinity, as seen with SI Ang II, with better stability and bioavailability, has the potential to achieve the anticipated biased agonism.
Collapse
Affiliation(s)
- Natalia M Noto
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Yazmin M Restrepo
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hong W Pang
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Filipe Stoyell-Conti
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.,University of Miami, Miami, Florida, USA
| | - Crystal A West
- Department of Biology, Appalachian State University, Kannapolis, North Carolina, USA
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Szewczykowski C, Mardin C, Lucio M, Wallukat G, Hoffmanns J, Schröder T, Raith F, Rogge L, Heltmann F, Moritz M, Beitlich L, Schottenhamml J, Herrmann M, Harrer T, Ganslmayer M, Kruse FE, Kräter M, Guck J, Lämmer R, Zenkel M, Gießl A, Hohberger B. Long COVID: Association of Functional Autoantibodies against G-Protein-Coupled Receptors with an Impaired Retinal Microcirculation. Int J Mol Sci 2022; 23:7209. [PMID: 35806214 PMCID: PMC9266742 DOI: 10.3390/ijms23137209] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Long COVID (LC) describes the clinical phenotype of symptoms after infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnostic and therapeutic options are limited, as the pathomechanism of LC is elusive. As the number of acute SARS-CoV-2 infections was and is large, LC will be a challenge for the healthcare system. Previous studies revealed an impaired blood flow, the formation of microclots, and autoimmune mechanisms as potential factors in this complex interplay. Since functionally active autoantibodies against G-protein-coupled receptors (GPCR-AAbs) were observed in patients after SARS-CoV-2 infection, this study aimed to correlate the appearance of GPCR-AAbs with capillary microcirculation. The seropositivity of GPCR-AAbs was measured by an established cardiomyocyte bioassay in 42 patients with LC and 6 controls. Retinal microcirculation was measured by OCT-angiography and quantified as macula and peripapillary vessel density (VD) by the Erlangen-Angio Tool. A statistical analysis yielded impaired VD in patients with LC compared to the controls, which was accentuated in female persons. A significant decrease in macula and peripapillary VD for AAbs targeting adrenergic β2-receptor, MAS-receptor angiotensin-II-type-1 receptor, and adrenergic α1-receptor were observed. The present study might suggest that a seropositivity of GPCR-AAbs can be linked to an impaired retinal capillary microcirculation, potentially mirroring the systemic microcirculation with consecutive clinical symptoms.
Collapse
Affiliation(s)
- Charlotte Szewczykowski
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Christian Mardin
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | | | - Jakob Hoffmanns
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Thora Schröder
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Franziska Raith
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Lennart Rogge
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Felix Heltmann
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Michael Moritz
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Lorenz Beitlich
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Julia Schottenhamml
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Martin Herrmann
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.H.); (T.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Thomas Harrer
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.H.); (T.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Marion Ganslmayer
- Department of Internal Medicine 1, Universität of Erlangen-Nürnberg, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Friedrich E. Kruse
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; (M.K.); (J.G.)
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; (M.K.); (J.G.)
| | - Robert Lämmer
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Matthias Zenkel
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Andreas Gießl
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| | - Bettina Hohberger
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.S.); (C.M.); (J.H.); (T.S.); (F.R.); (L.R.); (F.H.); (M.M.); (L.B.); (J.S.); (F.E.K.); (R.L.); (M.Z.); (A.G.)
| |
Collapse
|
5
|
Shabanian S, Khazaie M, Ferns GA, Arjmand MH. Local renin-angiotensin system molecular mechanisms in intrauterine adhesions formation following gynecological operations, new strategy for novel treatment. J OBSTET GYNAECOL 2022; 42:1613-1618. [PMID: 35260037 DOI: 10.1080/01443615.2022.2036972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has recently been proposed that local tissue renin-angiotensin system activation has a role in post-surgical adhesion. Intrauterine adhesions are scar tissues that form in the endometrial cavity causing the walls of the uterine to adhere together. Women, undergoing major gynecological surgery, are exposed to a high risk of adhesion formation. Post-operative uterine adhesion is associated with chronic pain and infertility that are important problems following post-operation uterine adhesion. A local renin-angiotensin system has been found in the organs of the female reproductive system, for example in the endometrium. Data about the physiological roles of local RAS in the gynecological tract are largely unknown, but dysfunctional local RAS in the endometrium may contribute to this pathological condition. Local AngII/AT1R may be over-activated after surgical injury or hypoxia leading to an up-regulation of the molecular mechanisms that may lead to a chronic immune response, oxidative stress, and increase the expression of fibrotic molecules like TGF-β to induce the risk of connective fibrotic tissues. Based on AngII/AT1R pathological potential to induce pelvic and uterine adhesions, using angiotensin receptor blockers could be a therapeutic strategy for the prevention and treatment of post-surgical adhesions.IMPACT STATEMENTWhat is already known on this subject? Intrauterine adhesions are described as fibrotic scar tissues following gynecological surgeries. It's reported that 55-100% of women are at risk of intrauterine adhesion after gynecological surgeries. Injury to tissues and hypoxia during the surgery, promote molecular mechanisms to contribute post-surgical adhesion. Recently evidence supports the existence of renin-angiotensin system components in the gynecological tract. Abnormal expression of local angiotensin II and AT1R in uterus tissue following gynecological surgeries up-regulate molecular mechanisms to induce post-operative adhesions.What do the results of this study add? Recently there has been an increased focus on the role of the local renin-angiotensin system in organ fibrosis. The results of this Mini-review article refer to the pathological roles of the local renin-angiotensin system in fibrotic bands formation after gynecological operations. Over-activation of local renin-angiotensin systems up-regulate molecular mechanisms such as inflammation and the TGF-β1 signalling pathway. TGF-β as a profibrotic molecule strongly induces the expression of some fibrotic molecules such as PAI and TIMP to increase the risk of intrauterine adhesions.What are the implications of these findings for clinical practice and/or further research? According to the biological roles of local renin-angiotensin system and AT1R following injuries to develop post-operative adhesion, the administration of ARBs may be considered as a new therapeutic strategy for the prevention of IUA.
Collapse
Affiliation(s)
- Sheida Shabanian
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Khazaie
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Mohammad-Hassan Arjmand
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond. Hypertens Res 2022; 45:32-39. [PMID: 34642449 DOI: 10.1038/s41440-021-00776-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022]
Abstract
Pathological activation of kidney angiotensin II (Ang II) type 1 receptor (AT1R) signaling stimulates tubular sodium transporters, including epithelial sodium channels, to increase sodium reabsorption and blood pressure. During a search for a means to functionally and selectively modulate AT1R signaling, a molecule directly interacting with the carboxyl-terminal cytoplasmic domain of AT1R was identified and named AT1R-associated protein (ATRAP/Agtrap). We showed that ATRAP promotes constitutive AT1R internalization to inhibit pathological AT1R activation in response to certain stimuli. In the kidney, ATRAP is abundantly distributed in epithelial cells along the proximal and distal tubules. Results from genetically engineered mice with modified ATRAP expression show that ATRAP plays a key role in the regulation of renal sodium handling and the modulation of blood pressure in response to pathological stimuli and further suggest that the function of kidney tubule ATRAP may be different between distal tubules and proximal tubules, implying that ATRAP is a target of interest in hypertension.
Collapse
|
7
|
Duarte DA, Parreiras-E-Silva LT, Oliveira EB, Bouvier M, Costa-Neto CM. Angiotensin II Type 1 Receptor Tachyphylaxis Is Defined by Agonist Residence Time. Hypertension 2021; 79:115-125. [PMID: 34739768 DOI: 10.1161/hypertensionaha.121.17977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several GPCRs (G-protein-coupled receptors) have been reported to exhibit tachyphylaxis, which is an acute loss of functional receptor response after repeated stimuli with an agonist. GPCRs are important clinical targets for a wide range of disorders. Therefore, elucidation of the ligand features that contribute to receptor tachyphylaxis and signaling events underlying this phenomenon is important for drug discovery and development. In this study, we examined the role of ligand-binding kinetics in the tachyphylaxis of AT1R (angiotensin II type 1 receptor) using bioluminescence resonance energy transfer assays to monitor signaling events under both kinetic and equilibrium conditions. We investigated AT1R signal transduction and translocation promoted by the endogenous tachyphylactic agonist Ang II (angiotensin II) and its analogs, described previously for inducing reduced receptor tachyphylaxis. Estimation of binding kinetic parameters of the ligands revealed that the residence time of Ang II was higher than that of the analogs, resulting in more sustained Gq protein activation and recruitment of β-arrestin than that promoted by the analogs. Furthermore, we observed that Ang II led to more sustained internalization of the receptor, thereby retarding its recycling to the plasma membrane and preventing further receptor responses. These results show that the apparent lack of tachyphylaxis in the studied analogs resulted from their short residence time at the AT1R. In addition, our data highlight the relevance of complete characterization of novel GPCR drug candidates, taking into account their receptor binding kinetics as well.
Collapse
Affiliation(s)
- Diego A Duarte
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Eduardo B Oliveira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, QC, Canada (M.B.)
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| |
Collapse
|
8
|
Wakui H. The pathophysiological role of angiotensin receptor-binding protein in hypertension and kidney diseases: Oshima Award Address 2019. Clin Exp Nephrol 2020; 24:289-294. [PMID: 32112267 PMCID: PMC7131980 DOI: 10.1007/s10157-020-01861-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023]
Abstract
Excessive activation of the tissue renin–angiotensin system through angiotensin II (Ang II) type 1 receptor (AT1R) plays a pivotal role in the pathogenesis of hypertension and related organ injury. AT1R-associated protein (ATRAP/Agtrap) was identified as a molecule specifically interacting with the carboxyl- terminal domain of AT1R. The results of in vitro studies showed that ATRAP suppresses Ang II-mediated pathological responses in cardiovascular cells by promoting AT1R internalization. With respect to the tissue distribution and regulation of ATRAP expression in vivo, ATRAP is broadly expressed in many tissues as is AT1R including kidney. The results of in vivo study employing genetic engineered mice with modified ATRAP expression showed that ATRAP inhibits cardiovascular injuries provoked by Ang II-induced hypertension, along with preserving physiological AT1R signaling. In addition, we have shown that ATRAP functions as an endogenous modulator so as to prevent hypertension in response to pathological stimuli, by regulating renal sodium handling. Furthermore, ATRAP may have an AT1R-independent function of renal proximal tubule to protect aging and fibrosis. These results suggest the clinical potential benefit of an ATRAP activation strategy in the treatment of hypertension and cardiorenal and vascular diseases.
Collapse
Affiliation(s)
- Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
9
|
Pietraszewska-Bogiel A, Joosen L, Chertkova AO, Goedhart J. Not So Dry After All: DRY Mutants of the AT1 A Receptor and H1 Receptor Can Induce G-Protein-Dependent Signaling. ACS OMEGA 2020; 5:2648-2659. [PMID: 32095688 PMCID: PMC7033670 DOI: 10.1021/acsomega.9b03146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
G-protein-coupled receptors (GPCRs) are seven transmembrane spanning receptors that regulate a wide array of intracellular signaling cascades in response to various stimuli. To do so, they couple to different heterotrimeric G proteins and adaptor proteins, including arrestins. Importantly, arrestins were shown to regulate GPCR signaling through G proteins, as well as promote G protein-independent signaling events. Several research groups have reported successful isolation of exclusively G protein-dependent and arrestin-dependent signaling downstream of GPCR activation using biased agonists or receptor mutants incapable of coupling to either arrestins or G proteins. In the latter category, the DRY mutant of the angiotensin II type 1 receptor was extensively used to characterize the functional selectivity downstream of AT1AR. In an attempt to understand histamine 1 receptor signaling, we characterized the signaling capacity of the H1R DRY mutant in a panel of dynamic, live cell biosensor assays, including arrestin recruitment, heterotrimeric G protein activation, Ca2+ signaling, protein kinase C activity, GTP binding of RhoA, and activation of ERK1/2. Here, we show that both H1R DRY mutant and the AT1AR DRY mutant are capable of efficient activation of G protein-mediated signaling. Therefore, contrary to the common belief, they do not constitute suitable tools for the dissection of the arrestin-mediated, G protein-independent signaling downstream of these receptors.
Collapse
|
10
|
Modestia SM, Malta de Sá M, Auger E, Trossini GHG, Krieger JE, Rangel-Yagui CDO. Biased Agonist TRV027 Determinants in AT1R by Molecular Dynamics Simulations. J Chem Inf Model 2019; 59:797-808. [PMID: 30668103 DOI: 10.1021/acs.jcim.8b00628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Functional selectivity is a phenomenon observed in G protein-coupled receptors in which intermediate active-state conformations are stabilized by mutations or ligand binding, resulting in different sets of signaling pathways. Peptides capable of selectively activating β-arrestin, known as biased agonists, have already been characterized in vivo and could correspond to a new therapeutic approach for treatment of cardiovascular diseases. Despite the potential of biased agonism, the mechanism involved in selective signaling remains unclear. In this work, molecular dynamics simulations were employed to compare the conformational profile of the angiotensin II type 1 receptor (AT1R) crystal bound to angiotensin II, bound to the biased ligand TRV027, and in the apo form. Our results show that both ligands induce changes near the NPxxY motif in transmembrane domain 7 that are related to receptor activation. However, the biased ligand does not cause the rotamer toggle alternative positioning and displays an exclusive hydrogen-bonding pattern. Our work sheds light on the biased agonism mechanism and will help in the future design of novel biased agonists for AT1R.
Collapse
Affiliation(s)
- Silvestre Massimo Modestia
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences , University of São Paulo , Av. Prof. Lineu Prestes 580 , 05508-900 São Paulo - SP , Brazil
| | - Matheus Malta de Sá
- Laboratory of Genetics and Molecular Cardiology, Heart Institute , University of São Paulo Medical School , Av. Dr. Enéas de Carvalho Aguiar 44 , 05403-900 São Paulo - SP , Brazil
| | - Eric Auger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute , University of São Paulo Medical School , Av. Dr. Enéas de Carvalho Aguiar 44 , 05403-900 São Paulo - SP , Brazil
| | - Gustavo Henrique Goulart Trossini
- Department of Pharmacy, School of Pharmaceutical Sciences , University of São Paulo , Av. Prof. Lineu Prestes 580 , 05508-900 São Paulo - SP , Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute , University of São Paulo Medical School , Av. Dr. Enéas de Carvalho Aguiar 44 , 05403-900 São Paulo - SP , Brazil
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences , University of São Paulo , Av. Prof. Lineu Prestes 580 , 05508-900 São Paulo - SP , Brazil
| |
Collapse
|
11
|
Bussolino S, Dolla C, Ariaudo C, Civiletti F, Messina M, Mella A, Caorsi C, Amoroso A, Barreca A, Papotti M, Giunti S, Fop F, Biancone L. Detection of Angiotensin II type I-receptor antibodies in transplant glomerulopathy. Clin Transplant 2018; 32:e13407. [DOI: 10.1111/ctr.13407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 01/18/2023]
Affiliation(s)
| | - Caterina Dolla
- Renal Transplantation Center, “A. Vercellone”, Division of Nephrology Dialysis and Transplantation, Città della Salute e della Scienza Hospital and Department of Medical Sciences; University of Turin; Turin Italy
| | - Claudia Ariaudo
- Division of Nephrology and Dialysis; ASO S. Croce e Carle; Cuneo Italy
| | - Federica Civiletti
- Renal Transplantation Center, “A. Vercellone”, Division of Nephrology Dialysis and Transplantation, Città della Salute e della Scienza Hospital and Department of Medical Sciences; University of Turin; Turin Italy
| | - Maria Messina
- Renal Transplantation Center, “A. Vercellone”, Division of Nephrology Dialysis and Transplantation, Città della Salute e della Scienza Hospital and Department of Medical Sciences; University of Turin; Turin Italy
| | - Alberto Mella
- Renal Transplantation Center, “A. Vercellone”, Division of Nephrology Dialysis and Transplantation, Città della Salute e della Scienza Hospital and Department of Medical Sciences; University of Turin; Turin Italy
| | - Cristiana Caorsi
- Immunogenetic and Transplant Biology Center, Città della Salute e della Scienza Hospital and Department of Medical Sciences; University of Turin; Turin Italy
| | - Antonio Amoroso
- Immunogenetic and Transplant Biology Center, Città della Salute e della Scienza Hospital and Department of Medical Sciences; University of Turin; Turin Italy
| | - Antonella Barreca
- Pathology Division, Department of Oncology; University of Turin; Turin Italy
| | - Mauro Papotti
- Pathology Division, Department of Oncology; University of Turin; Turin Italy
| | - Sara Giunti
- Department of Medical Sciences; University of Turin; Turin Italy
| | - Fabrizio Fop
- Renal Transplantation Center, “A. Vercellone”, Division of Nephrology Dialysis and Transplantation, Città della Salute e della Scienza Hospital and Department of Medical Sciences; University of Turin; Turin Italy
| | - Luigi Biancone
- Renal Transplantation Center, “A. Vercellone”, Division of Nephrology Dialysis and Transplantation, Città della Salute e della Scienza Hospital and Department of Medical Sciences; University of Turin; Turin Italy
| |
Collapse
|
12
|
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and blood volume homeostasis. The RAS is primarily comprised of the precursor protein angiotensinogen and the two proteases, renin and angiotensin-converting enzyme (ACE). Angiotensin I (Ang I) is derived from angiotensinogen by renin, but appears to have no biological activity. In contrast, angiotensin II (Ang II) that has a variety of biological functions in the cells is converted from Ang I through removal of two-C-terminal residues by ACE. The physiological effects of Ang II are due to Ang II signaling through specific receptor binding, resulting in muscle contraction leading to increased blood pressure and volume. To modulate RAS, three classes of drugs have been developed: (1) renin inhibitors to prevent angiotensinogen conversion to Ang I, (2) ACE inhibitors, to prevent Ang I processing to Ang II and (3) angiotensin receptor blockers, to inhibit Ang II signaling through its receptor. Studies using the RAS inhibitors and Ang II demonstrated that RAS signaling mediates actions of Ang II in the regulation of proliferation and differentiation of specific hematopoietic cell types, especially in the red blood cell lineage. Accumulating evidence indicates that RAS regulates EPO, an essential mediator of red cell production, for human anemia and erythropoiesis in vivo and in vitro. The regulation of EPO expression by Ang II may be responsible for maintaining red blood cell homeostasis. This review highlights the biological roles of RAS for blood cell and EPO homeostasis through Ang II signaling. The molecular mechanism for Ang II-induced EPO production of the cell or tissue type-specific expression is discussed.
Collapse
Affiliation(s)
- Yong-Chul Kim
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ognoon Mungunsukh
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Regina M Day
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
13
|
Zhou N, Lee JJ, Stoll S, Ma B, Wiener R, Wang C, Costa KD, Qiu H. Inhibition of SRF/myocardin reduces aortic stiffness by targeting vascular smooth muscle cell stiffening in hypertension. Cardiovasc Res 2016; 113:171-182. [PMID: 28003268 PMCID: PMC5340142 DOI: 10.1093/cvr/cvw222] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 11/14/2022] Open
Abstract
AIMS Increased aortic stiffness is a fundamental manifestation of hypertension. However, the molecular mechanisms involved remain largely unknown. We tested the hypothesis that abnormal intrinsic vascular smooth muscle cell (VSMC) mechanical properties in large arteries, but not in distal arteries, contribute to the pathogenesis of aortic stiffening in hypertension, mediated by the serum response factor (SRF)/myocardin signalling pathway. METHODS AND RESULTS Four month old male spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were studied. Using atomic force microscopy, significant VSMC stiffening was observed in the large conducting aorta compared with the distal arteries in SHR (P < 0.001), however, this regional variation was not observed in WKY rats (P > 0.4). The increase of VSMC stiffness was accompanied by a parallel increase in the expression of SRF by 9.8-fold and of myocardin by 10.5-fold in thoracic aortic VSMCs from SHR vs. WKY rats, resulting in a significant increase of downstream stiffness-associated genes (all, P < 0.01 vs. WKY). Inhibition of SRF/myocardin expression selectively attenuated aortic VSMC stiffening, and normalized downstream targets in VSMCs isolated from SHR but not from WKY rats. In vivo, 2 weeks of treatment with SRF/myocardin inhibitor delivered by subcutaneous osmotic minipump significantly reduced aortic stiffness and then blood pressure in SHR but not in WKY rats, although concomitant changes in aortic wall remodelling were not detected during this time frame. CONCLUSIONS SRF/myocardin pathway acts as a pivotal mediator of aortic VSMC mechanical properties and plays a central role in the pathological aortic stiffening in hypertension. Attenuation of aortic VSMC stiffening by pharmacological inhibition of SRF/myocardin signalling presents a novel therapeutic strategy for the treatment of hypertension by targeting the cellular contributors to aortic stiffness.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.,Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA
| | - Jia-Jye Lee
- Department of Medicine (Cardiology), Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029 NY, USA; and
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA
| | - Robert Wiener
- Department of Medicine (Cardiology), Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029 NY, USA; and
| | - Charles Wang
- Department of Basic Sciences/School of Medicine, Center for Genomics, Loma Linda University, 11021 Campus St., Loma Linda, 92350 CA, USA
| | - Kevin D Costa
- Department of Medicine (Cardiology), Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, 10029 NY, USA; and
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, 92350 CA, USA;
| |
Collapse
|
14
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
15
|
Smajić M, Nikolić K, Vujić Z, Ahmetović L, Kuntić V. 3D-QSAR studies and pharmacophore identification of AT1 receptor antagonists. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1470-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Cabana J, Holleran B, Leduc R, Escher E, Guillemette G, Lavigne P. Identification of Distinct Conformations of the Angiotensin-II Type 1 Receptor Associated with the Gq/11 Protein Pathway and the β-Arrestin Pathway Using Molecular Dynamics Simulations. J Biol Chem 2015; 290:15835-15854. [PMID: 25934394 DOI: 10.1074/jbc.m114.627356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 01/14/2023] Open
Abstract
Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar(1),Ile(8)]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor.
Collapse
Affiliation(s)
- Jérôme Cabana
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4; PROTEO (Quebec Network on Protein Structure, Function, and Engineering), Université Laval, Québec, Québec G1V 0A6, Canada
| | - Brian Holleran
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4
| | - Richard Leduc
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4
| | - Emanuel Escher
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4
| | - Gaétan Guillemette
- Departments of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4
| | - Pierre Lavigne
- PROTEO (Quebec Network on Protein Structure, Function, and Engineering), Université Laval, Québec, Québec G1V 0A6, Canada; Biochemistry, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4.
| |
Collapse
|
17
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
18
|
Pei F, Wang X, Yue R, Chen C, Huang J, Huang J, Li X, Zeng C. Differential expression and DNA methylation of angiotensin type 1A receptors in vascular tissues during genetic hypertension development. Mol Cell Biochem 2015; 402:1-8. [PMID: 25596947 DOI: 10.1007/s11010-014-2295-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Angiotensin type 1a receptor (AT1aR) is thought to play an important role in the development of hypertension. However, it is unknown how the AT1aR expression in vascular tissue is changed during the development of hypertension or if the degree of methylation in the AT1aR promoter correlates with the expression of AT1aR. To address these questions, we measured AT1aR mRNA, protein expression, and methylation status of the AT1aR promoter in the aorta and mesenteric artery of male spontaneously hypertensive rats (SHRs) and age-matched Wistar-Kyoto (WKY) rats acting as controls at pre-hypertensive (4 weeks), evolving (10 weeks), and established (20 weeks) stages of hypertension. The expression of the AT1aR mRNA and protein was not different between the SHRs and WKY rats at 4 weeks. However, they were significantly greater in SHRs than in WKY rats at 20 weeks. Bisulfite sequencing revealed that the AT1aR promoter from the aorta and mesenteric artery of the SHRs was progressively hypo-methylated with age as compared with their WKY rat counterparts. These results suggest that the heightened AT1aR expression in SHRs is related to the AT1aR promoter hypo-methylation, which might be a consequence of the increased blood pressure and may be important in the maintenance of high blood pressure.
Collapse
Affiliation(s)
- Fang Pei
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Autocrine A2 in the T-system of ventricular myocytes creates transmural gradients in ion transport: a mechanism to match contraction with load? Biophys J 2015; 106:2364-74. [PMID: 24896115 DOI: 10.1016/j.bpj.2014.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/20/2022] Open
Abstract
Transmural heterogeneities in Na/K pump current (IP), transient outward K(+)-current (Ito), and Ca(2+)-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradient in Ito, but the effects of A2 on IP and ICaL were unknown. In this study, myocytes were isolated from five muscle layers between epicardium and endocardium. We found a monotonic gradient in both Ip and Ito, with the lowest currents in ENDO. When AT1Rs were inhibited, EPI currents were unaffected, but ENDO currents increased, suggesting endogenous extracellular A2 inhibits both currents in ENDO. IP- and Ito-inhibition by A2 yielded essentially the same K0.5 values, so they may both be regulated by the same mechanism. A2/AT1R-mediated inhibition of IP or Ito or stimulation of ICaL persisted for hours in isolated myocytes, suggesting continuous autocrine secretion of A2 into a restricted diffusion compartment, like the T-system. Detubulation brought EPI IP to its low ENDO value and eliminated A2 sensitivity, so the T-system lumen may indeed be the restricted diffusion compartment. These studies showed that 33-50% of IP, 57-65% of Ito, and a significant fraction of ICaL reside in T-tubule membranes where they are transmurally regulated by autocrine secretion of A2 into the T-system lumen and activation of AT1Rs. Increased AT1R activation regulates each of these currents in a direction expected to increase contractility. Endogenous A2 activation of AT1Rs increases monotonically from EPI to ENDO in a manner similar to reported increases in passive tension when the ventricular chamber fills with blood. We therefore hypothesize load is the signal that regulates A2-activation of AT1Rs, which create a contractile gradient that matches the gradient in load.
Collapse
|
20
|
Balakumar P, Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal 2014; 26:2147-60. [PMID: 25007996 DOI: 10.1016/j.cellsig.2014.06.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022]
Abstract
Ang II, the primary effector pleiotropic hormone of the renin-angiotensin system (RAS) cascade, mediates physiological control of blood pressure and electrolyte balance through its action on vascular tone, aldosterone secretion, renal sodium absorption, water intake, sympathetic activity and vasopressin release. It affects the function of most of the organs far beyond blood pressure control including heart, blood vessels, kidney and brain, thus, causing both beneficial and deleterious effects. However, the protective axis of the RAS composed of ACE2, Ang (1-7), alamandine, and Mas and MargD receptors might oppose some harmful effects of Ang II and might promote beneficial cardiovascular effects. Newly identified RAS family peptides, Ang A and angioprotectin, further extend the complexities in understanding the cardiovascular physiopathology of RAS. Most of the diverse actions of Ang II are mediated by AT1 receptors, which couple to classical Gq/11 protein and activate multiple downstream signals, including PKC, ERK1/2, Raf, tyrosine kinases, receptor tyrosine kinases (EGFR, PDGF, insulin receptor), nuclear factor κB and reactive oxygen species (ROS). Receptor activation via G12/13 stimulates Rho-kinase, which causes vascular contraction and hypertrophy. The AT1 receptor activation also stimulates G protein-independent signaling pathways such as β-arrestin-mediated MAPK activation and Src-JAK/STAT. AT1 receptor-mediated activation of NADPH oxidase releases ROS, resulting in the activation of pro-inflammatory transcription factors and stimulation of small G proteins such as Ras, Rac and RhoA. The components of the RAS and the major Ang II-induced signaling cascades of AT1 receptors are reviewed.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia.
| | - Gowraganahalli Jagadeesh
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
21
|
da C Silva D, Maltarollo VG, de Lima EF, Weber KC, Honorio KM. Understanding electrostatic and steric requirements related to hypertensive action of AT(1) antagonists using molecular modeling techniques. J Mol Model 2014; 20:2231. [PMID: 24935104 DOI: 10.1007/s00894-014-2231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/02/2014] [Indexed: 12/01/2022]
Abstract
AT1 receptor is an interesting biological target involved in several important diseases, such as blood hypertension and cardiovascular pathologies. In this study we investigated the main electrostatic and steric features of a series of AT1 antagonists related to hypertensive activity using structure and ligand-based strategies (docking and CoMFA). The generated 3D model had good internal and external consistency and was used to predict the potency of an external test set. The predicted values of pIC50 are in good agreement with the experimental results of biological activity, indicating that the 3D model can be used to predict the biological property of untested compounds. The electrostatic and steric CoMFA maps showed molecular recognition patterns, which were analyzed with structure-based molecular modeling studies (docking). The most and the least potent compounds docked into the AT1 binding site were subjected to molecular dynamics simulations with the aim to verify the stability and the flexibility of the ligand-receptor interactions. These results provided valuable insights on the electronic/structural requirements to design novel AT1 antagonists.
Collapse
Affiliation(s)
- Danielle da C Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | | | | | | |
Collapse
|
22
|
Kim YC, Mungunsukh O, McCart EA, Roehrich PJ, Yee DK, Day RM. Mechanism of erythropoietin regulation by angiotensin II. Mol Pharmacol 2014; 85:898-908. [PMID: 24695083 DOI: 10.1124/mol.113.091157] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Erythropoietin (EPO) is the primary regulator of red blood cell development. Although hypoxic regulation of EPO has been extensively studied, the mechanism(s) for basal regulation of EPO are not well understood. In vivo studies in healthy human volunteers and animal models indicated that angiotensin II (Ang II) and angiotensin converting enzyme inhibitors regulated blood EPO levels. In the current study, we found that Ang II induced EPO expression in situ in murine kidney slices and in 786-O kidney cells in culture as determined by reverse transcription polymerase chain reaction. We further investigated the signaling mechanism of Ang II regulation of EPO in 786-O cells. Pharmacological inhibitors of Ang II type 1 receptor (AT1R) and extracellular signal-regulated kinase 1/2 (ERK1/2) suppressed Ang II transcriptional activation of EPO. Inhibitors of AT2R or Src homology 2 domain-containing tyrosine phosphatase had no effect. Coimmunoprecipiation experiments demonstrated that p21Ras was constitutively bound to the AT1R; this association was increased by Ang II but was reduced by the AT1R inhibitor telmisartan. Transmembrane domain (TM) 2 of AT1R is important for G protein-dependent ERK1/2 activation, and mutant D74E in TM2 blocked Ang II activation of ERK1/2. Ang II signaling induced the nuclear translocation of the Egr-1 transcription factor, and overexpression of dominant-negative Egr-1 blocked EPO promoter activation by Ang II. These data identify a novel pathway for basal regulation of EPO via AT1R-mediated Egr-1 activation by p21Ras-mitogen-activated protein kinase/ERK kinase-ERK1/2. Our current data suggest that Ang II, in addition to regulating blood volume and pressure, may be a master regulator of erythropoiesis.
Collapse
Affiliation(s)
- Yong-Chul Kim
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (Y.-C.K., O.M., E.A.M., P.J.R., R.M.D.); and Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania (D.K.Y.)
| | | | | | | | | | | |
Collapse
|
23
|
Wang Y, Köster K, Lummer M, Ragg H. Origin of serpin-mediated regulation of coagulation and blood pressure. PLoS One 2014; 9:e97879. [PMID: 24840053 PMCID: PMC4026541 DOI: 10.1371/journal.pone.0097879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/25/2014] [Indexed: 11/18/2022] Open
Abstract
Vertebrates evolved an endothelium-lined hemostatic system and a pump-driven pressurized circulation with a finely-balanced coagulation cascade and elaborate blood pressure control over the past 500 million years. Genome analyses have identified principal components of the ancestral coagulation system, however, how this complex trait was originally regulated is largely unknown. Likewise, little is known about the roots of blood pressure control in vertebrates. Here we studied three members of the serpin superfamily that interfere with procoagulant activity and blood pressure of lampreys, a group of basal vertebrates. Angiotensinogen from these jawless fish was found to fulfill a dual role by operating as a highly selective thrombin inhibitor that is activated by heparin-related glycosaminoglycans, and concurrently by serving as source of effector peptides that activate type 1 angiotensin receptors. Lampreys, uniquely among vertebrates, thus use angiotensinogen for interference with both coagulation and osmo- and pressure regulation. Heparin cofactor II from lampreys, in contrast to its paralogue angiotensinogen, is preferentially activated by dermatan sulfate, suggesting that these two serpins affect different facets of thrombin’s multiple roles. Lampreys also express a lineage-specific serpin with anti-factor Xa activity, which demonstrates that another important procoagulant enzyme is under inhibitory control. Comparative genomics suggests that orthologues of these three serpins were key components of the ancestral hemostatic system. It appears that, early in vertebrate evolution, coagulation and osmo- and pressure regulation crosstalked through antiproteolytically active angiotensinogen, a feature that was lost during vertebrate radiation, though in gnathostomes interplay between these traits is effective.
Collapse
Affiliation(s)
- Yunjie Wang
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | | | - Martina Lummer
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Hermann Ragg
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
24
|
Liu J, Yosten GLC, Ji H, Zhang D, Zheng W, Speth RC, Samson WK, Sandberg K. Selective inhibition of angiotensin receptor signaling through Erk1/2 pathway by a novel peptide. Am J Physiol Regul Integr Comp Physiol 2014; 306:R619-26. [PMID: 24523339 DOI: 10.1152/ajpregu.00562.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A seven-amino acid peptide (PEP7) is encoded within a short open reading frame within exon 2 (E2) in the 5'-leader sequence (5'LS) upstream of the rat ANG 1a-receptor (rAT1aR) mRNA. A chemically synthesized PEP7 markedly inhibited ANG II-induced Erk1/2 activation in cell culture by 62% compared with a scrambled PEP7 (sPEP7) [pErk1/2/Erk1/2 (AU): ANG II, 1.000 ± 0.0, ANG II+PEP7, 0.3812 ± 0.086, ANG II+sPEP7, 1.069 ± 0.18; n = 3]. Under these same conditions, PEP7 had no effect on ANG II-stimulated inositol-trisphosphate production. PEP7 also had no effect on epidermal growth factor- and phorbol methyl ester-induced Erk1/2 activation, suggesting PEP7 selectively inhibits AT1aR-mediated Erk1/2 signaling. PEP7 intracerebroventricularly inhibited ANG II-induced saline intake but had no effect on water intake in male and female rats, indicating PEP7 also selectively inhibits the ANG II-Erk1/2 pathway in vivo since saline drinking is Erk1/2-mediated, while water drinking is not. PEP7 inhibition of ANG II-induced saline ingestion was rapidly reversed by a subsequent intracerebroventricular injection of an oxytocin antagonist, suggesting when PEP7 blocks ANG II-stimulated Erk1/2 activation, animals no longer ingest saline to balance the continued water intake, due to the release of oxytocin and its subsequent inhibitory effects on saline drinking. PEP7 also attenuated ANG II-induced increases in arterial pressure by 35% compared with sPEP7 at the same dose. Thus, we have identified a novel peptide encoded within the rAT1aR E2 that selectively inhibits Erk1/2 activation, resulting in physiological consequences for sodium ingestion and arterial pressure that may have implications for treating sodium-sensitive diseases like hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Jun Liu
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, D.C.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Marott SCW, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A, Benn M. AT1 mutations and risk of atrial fibrillation based on genotypes from 71,000 individuals from the general population. Br J Clin Pharmacol 2014; 76:114-24. [PMID: 23210602 DOI: 10.1111/bcp.12050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/25/2012] [Indexed: 11/30/2022] Open
Abstract
AIMS Activation of the angiotensin II type 1 (AT1 ) receptor has been shown to mediate the structural and electrical remodelling of the atrial myocardium associated with atrial fibrillation. We hypothesized that AT1 genotypic variation is associated with atrial fibrillation or diseases predisposing to atrial fibrillation, such as hypertension, heart failure, ischaemic heart disease and myocardial infarction, in the general population. METHODS We resequenced the AT1 gene in 760 individuals with atrial fibrillation and identified two nonsynonymous variants (I103T and A244S), which were subsequently genotyped in the prospective Copenhagen City Heart Study (n = 10 603) and the prospective Copenhagen General Population Study (n = 60 647). RESULTS Risk of atrial fibrillation for heterozygotes for AT1 genetic variants A244S and I103T/A244S vs. noncarriers was increased by 2.7-fold (95% confidence interval 1.5- to 5.1-fold) and 2.6-fold (95% confidence interval 1.6- to 4.2-fold), respectively, for men. CONCLUSIONS Heterozygosity for the nonsynonymous AT1 genetic variants A244S and I103T/A244S was associated with increased risk of atrial fibrillation in men. The AT1 recptor might be a target for the pharmaceutical industry. This finding needs to be validated in independent studies.
Collapse
Affiliation(s)
- Sarah C W Marott
- Department of Clinical Biochemistry, Herlev Hospital, Herlev, Denmark
| | | | | | | | | |
Collapse
|
26
|
Abstract
It is now established that agonists do not uniformly activate pleiotropic signaling mechanisms initiated by receptors but rather can bias signals according to the unique receptor conformations they stabilize. One of the important emerging signaling systems where this can occur is through β-arrestin. This chapter discusses biased signaling where emphasis or de-emphasis of β-arrestin signaling is postulated (or been shown) to be beneficial. The chapter specifically focuses on methods to quantify biased effects; these methods furnish scales that can be used in the process of optimizing biased agonism (and antagonism) for therapeutic benefit. Specifically, methods to derive ΔΔLog(τ/K A) or ΔΔLog(Relative Activity) values are described to do this.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042, Genetic Medicine Building, CB# 7365, Chapel Hill, NC, 27599-7365, USA,
| |
Collapse
|
27
|
Monasky MM, Taglieri DM, Henze M, Warren CM, Utter MS, Soergel DG, Violin JD, Solaro RJ. The β-arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium. Am J Physiol Heart Circ Physiol 2013; 305:H856-66. [PMID: 23873795 DOI: 10.1152/ajpheart.00327.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the present study, we compared the cardioprotective effects of TRV120023, a novel angiotensin II (ANG II) type 1 receptor (AT1R) ligand, which blocks G protein coupling but stimulates β-arrestin signaling, against treatment with losartan, a conventional AT1R blocker in the treatment of cardiac hypertrophy and regulation of myofilament activity and phosphorylation. Rats were subjected to 3 wk of treatment with saline, ANG II, ANG II + losartan, ANG II + TRV120023, or TRV120023 alone. ANG II induced increased left ventricular mass compared with rats that received ANG II + losartan or ANG II + TRV120023. Compared with saline controls, ANG II induced a significant increase in pCa50 and maximum Ca(2+)-activated myofilament tension but reduced the Hill coefficient (nH). TRV120023 increased maximum tension and pCa50, although to lesser extent than ANG II. In contrast to ANG II, TRV120023 increased nH. Losartan blocked the effects of ANG II on pCa50 and nH and reduced maximum tension below that of saline controls. ANG II + TRV120023 showed responses similar to those of TRV120023 alone; compared with ANG II + losartan, ANG II + TRV120023 preserved maximum tension and increased both pCa50 and cooperativity. Tropomyosin phosphorylation was lower in myofilaments from saline-treated hearts compared with the other groups. Phosphorylation of cardiac troponin I was significantly reduced in ANG II + TRV120023 and TRV120023 groups versus saline controls, and myosin-binding protein C phosphorylation at Ser(282) was unaffected by ANG II or losartan but significantly reduced with TRV120023 treatment compared with all other groups. Our data indicate that TRV120023-related promotion of β-arrestin signaling and enhanced contractility involves a mechanism promoting the myofilament response to Ca(2+) via altered protein phosphorylation. Selective activation of β-arrestin-dependent pathways may provide advantages over conventional AT1R blockers.
Collapse
Affiliation(s)
- Michelle M Monasky
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago, Illinois; and
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Renal ischemia and transplantation predispose to vascular constriction mediated by angiotensin II type 1 receptor-activating antibodies. Transplantation 2012; 94:8-13. [PMID: 22691955 DOI: 10.1097/tp.0b013e3182529bb7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously described angiotensin II type 1 receptor-activating antibodies (AT1R-Abs) in renal transplant recipients with vascular rejection and malignant hypertension. In this study, we tested the hypothesis that AT1R-Abs can cause renal artery contraction by AT1R activation with renal ischemia representing a key permissive factor and therefore contribute to renal pathologic condition. METHODS Isolated renal and mesenteric arteries from Lewis rats were incubated with purified AT1R-Abs from patients with human leukocyte antigen antibody-negative vascular rejection. Vascular contraction was measured using small vessel myography. The measurements were repeated with renal arteries derived from native kidneys subjected to ischemia-reperfusion or after transplantation in a low-responder Fischer 344-to-Lewis rat kidney-transplantation model. RESULTS AT1R-Abs acted in a vascular bed-specific manner and caused small contractions only in native rat renal arteries but not in mesenteric arteries. AT1R-Abs did not alter the vascular reactivity to phenylephrine, angiotensin II, or acetylcholine in native renal arteries. In contrast, AT1R-Abs caused a pronounced (>10-fold) contraction of renal arteries after ischemia and after allogeneic transplantation. Pretreatment with pharmacologic AT1R blocker only partially inhibited the AT1R-Abs-induced contraction, which was almost completely abolished by neutralizing peptides targeting epitopes of AT1R-Abs on the second loop of AT1R. CONCLUSIONS These data demonstrate that AT1R-Abs can induce renal vascular contraction under predisposing conditions such as in ischemic or transplanted kidneys. Neutralizing antibodies against specific epitopes in the AT1R can ameliorate this contraction.
Collapse
|
29
|
Kenakin T. The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacol Toxicol 2012; 13:3. [PMID: 22947056 PMCID: PMC3506267 DOI: 10.1186/2050-6511-13-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/13/2012] [Indexed: 11/10/2022] Open
Abstract
The discovery that not all agonists uniformly activate cellular signaling pathways (biased signaling) has greatly changed the drug discovery process for agonists and the strategy for treatment of disease with agonists. Technological advances have enabled complex receptor behaviors to be viewed independently and through these assays, the bias for an agonist can be quantified. It is predicted that therapeutic phenotypes will be linked, through translational studies, to quantified scales of bias to guide medicinal chemists in the drug discovery process.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042 Genetic Medicine Building, CB# 7365, Chapel Hill, NC 27599-7365, USA.
| |
Collapse
|
30
|
Christensen GL, Aplin M, Hansen JL. Therapeutic potential of functional selectivity in the treatment of heart failure. Trends Cardiovasc Med 2012; 20:221-7. [PMID: 22293022 DOI: 10.1016/j.tcm.2011.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adrenergic and angiotensin receptors are prominent targets in pharmacological alleviation of cardiac remodeling and heart failure, but their use is associated with cardiodepressant side effects. Recent advances in our understanding of seven transmembrane receptor signaling show that it is possible to design ligands with "functional selectivity," acting as agonists on certain signaling pathways while antagonizing others. This represents a major pharmaceutical opportunity to separate desired from adverse effects governed by the same receptor. Accordingly, functionally selective ligands are currently pursued as next-generation drugs for superior treatment of heart failure.
Collapse
Affiliation(s)
- Gitte Lund Christensen
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, DK-2600 Glostrup, Denmark
| | | | | |
Collapse
|
31
|
Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 2012; 12:205-16. [PMID: 23411724 DOI: 10.1038/nrd3954] [Citation(s) in RCA: 602] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Agonists of seven-transmembrane receptors, also known as G protein-coupled receptors (GPCRs), do not uniformly activate all cellular signalling pathways linked to a given seven-transmembrane receptor (a phenomenon termed ligand or agonist bias); this discovery has changed how high-throughput screens are designed and how lead compounds are optimized for therapeutic activity. The ability to experimentally detect ligand bias has necessitated the development of methods for quantifying agonist bias in a way that can be used to guide structure-activity studies and the selection of drug candidates. Here, we provide a viewpoint on which methods are appropriate for quantifying bias, based on knowledge of how cellular and intracellular signalling proteins control the conformation of seven-transmembrane receptors. We also discuss possible predictions of how biased molecules may perform in vivo, and what potential therapeutic advantages they may provide.
Collapse
|
32
|
Abstract
Much evidence now suggests that angiotensin II has roles in normal functions of the breast that may be altered or attenuated in cancer. Both angiotensin type 1 (AT1) and type 2 (AT2) receptors are present particularly in the secretory epithelium. Additionally, all the elements of a tissue renin-angiotensin system, angiotensinogen, prorenin and angiotensin-converting enzyme (ACE), are also present and distributed in different cell types in a manner suggesting a close relationship with sites of angiotensin II activity. These findings are consistent with the concept that stromal elements and myoepithelium are instrumental in maintaining normal epithelial structure and function. In disease, this system becomes disrupted, particularly in invasive carcinoma. Both AT1 and AT2 receptors are present in tumours and may be up-regulated in some. Experimentally, angiotensin II, acting via the AT1 receptor, increases tumour cell proliferation and angiogenesis, both these are inhibited by blocking its production or function. Epidemiological evidence on the effect of expression levels of ACE or the distribution of ACE or AT1 receptor variants in many types of cancer gives indirect support to these concepts. It is possible that there is a case for the therapeutic use of high doses of ACE inhibitors and AT1 receptor blockers in breast cancer, as there may be for AT2 receptor agonists, though this awaits full investigation. Attention is drawn to the possibility of blocking specific AT1-mediated intracellular signalling pathways, for example by AT1-directed antibodies, which exploit the possibility that the extracellular N-terminus of the AT1 receptor may have previously unsuspected signalling roles.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | | | | |
Collapse
|
33
|
Abstract
With the emergence of information describing functional selectivity and biased agonists and antagonists has come a lack of confidence in "one size fits all" assays for detection of agonism. Seven-transmembrane receptors are pleiotropic with respect to the signaling protein to which they couple in a cell, and many conformations of the receptor can be formed; this leads to systems where ligands can stabilize unique conformations that go on to selectively activate signaling pathways. Thus, such "biased" ligands can produce cell-specific agonism that may require targeted assays to detect and quantify. It also predicts that ligands can have many different efficacies for the many behaviors that the receptor can exhibit (referred to as "pluridimensional efficacy"), leading to a breakdown in the common classifications of agonist and antagonist. This all poses unique challenges to the pharmacologic nomenclature of drugs, the detection and optimization of new drugs, and the association of phenotypic clinical profiles with pharmacological properties of drugs.
Collapse
Affiliation(s)
- Terry Kenakin
- Platform Technology Sciences, GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
34
|
Kenakin T. G protein coupled receptors as allosteric proteins and the role of allosteric modulators. J Recept Signal Transduct Res 2011; 30:313-21. [PMID: 20858023 DOI: 10.3109/10799893.2010.503964] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Seven transmembrane receptors (7TMRs) are proteins that convey signals through changes in conformation. These conformations are stabilized by external molecules (i.e. agonists, antagonists, modulators) and act upon other bodies (termed 'guests') which can be other molecules in the extracellular space, or proteins along the plane of the membrane (receptor oligomerization) or signaling proteins in the cytosol (i.e. G protein, β-arrestin). These elements comprise allosteric systems and a great deal of 7TMR pharmacology can be considered in terms of allosteric behavior. Allosteric ligands acting on 7TMRs possess four unique behaviors that can be valuable therapeutically; (1) the ability to alter the interaction of very large proteins, (2) probe dependence, (3) saturable effect, and (4) induction of separate changes in affinity and efficacy of other ligands. Two of these behaviors (namely probe dependence for CCR5-based HIV-1 entry inhibitors and functional selectivity for biased agonism) will be highlighted with examples.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
35
|
Bonde MM, Hansen JT, Sanni SJ, Haunsø S, Gammeltoft S, Lyngsø C, Hansen JL. Biased signaling of the angiotensin II type 1 receptor can be mediated through distinct mechanisms. PLoS One 2010; 5:e14135. [PMID: 21152433 PMCID: PMC2994726 DOI: 10.1371/journal.pone.0014135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/29/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Seven transmembrane receptors (7TMRs) can adopt different active conformations facilitating a selective activation of either G protein or β-arrestin-dependent signaling pathways. This represents an opportunity for development of novel therapeutics targeting selective biological effects of a given receptor. Several studies on pathway separation have been performed, many of these on the Angiotensin II type 1 receptor (AT1R). It has been shown that certain ligands or mutations facilitate internalization and/or recruitment of β-arrestins without activation of G proteins. However, the underlying molecular mechanisms remain largely unresolved. For instance, it is unclear whether such selective G protein-uncoupling is caused by a lack of ability to interact with G proteins or rather by an increased ability of the receptor to recruit β-arrestins. Since uncoupling of G proteins by increased ability to recruit β-arrestins could lead to different cellular or in vivo outcomes than lack of ability to interact with G proteins, it is essential to distinguish between these two mechanisms. METHODOLOGY/PRINCIPAL FINDINGS We studied five AT1R mutants previously published to display pathway separation: D74N, DRY/AAY, Y292F, N298A, and Y302F (Ballesteros-Weinstein numbering: 2.50, 3.49-3.51, 7.43, 7.49, and 7.53). We find that D74N, DRY/AAY, and N298A mutants are more prone to β-arrestin recruitment than WT. In contrast, receptor mutants Y292F and Y302F showed impaired ability to recruit β-arrestin in response to Sar1-Ile4-Ile8 (SII) Ang II, a ligand solely activating the β-arrestin pathway. CONCLUSIONS/SIGNIFICANCE Our analysis reveals that the underlying conformations induced by these AT1R mutants most likely represent principally different mechanisms of uncoupling the G protein, which for some mutants may be due to their increased ability to recruit β-arrestin2. Hereby, these findings have important implications for drug discovery and 7TMR biology and illustrate the necessity of uncovering the exact molecular determinants for G protein-coupling and β-arrestin recruitment, respectively.
Collapse
Affiliation(s)
- Marie Mi Bonde
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Tind Hansen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Glostrup Hospital, Glostrup, Denmark
| | - Samra Joke Sanni
- Department of Clinical Biochemistry, Glostrup Hospital, Glostrup, Denmark
| | - Stig Haunsø
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Steen Gammeltoft
- Department of Clinical Biochemistry, Glostrup Hospital, Glostrup, Denmark
| | - Christina Lyngsø
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Glostrup Hospital, Glostrup, Denmark
| | - Jakob Lerche Hansen
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
36
|
Wang T, Yu XF, Qu SC, Xu HL, Sui DY. Ginsenoside Rb3 inhibits angiotensin II-induced vascular smooth muscle cells proliferation. Basic Clin Pharmacol Toxicol 2010; 107:685-9. [PMID: 20662827 DOI: 10.1111/j.1742-7843.2010.00560.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was designed to examine the effect of ginsenoside Rb3 on angiotensin (Ang) II-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs). VSMCs proliferation was evaluated by [3H]Thymidine incorporation. The cell cycle was examined by flow cytometry. The expression of mRNA of proto-oncogene c-myc, c-fos and c-jun was observed by RT-PCR. Ginsenoside Rb3 had no effects on VSMCs proliferation in physiological condition. Ang II significantly increased the proliferation of VSMCs and the expression of mRNA of proto-oncogene c-myc, c-fos and c-jun. Ginsenoside Rb3 markedly inhibited Ang II-induced VSMCs proliferation. Concomitantly, ginsenoside Rb3 decreased cell cycle progression from G(0)/G(1) to S phase. Furthermore, ginsenoside Rb3 significantly attenuated the expression of mRNA of proto-oncogene c-myc, c-fos and c-jun. This study showed that ginsenoside Rb3 inhibited Ang II-induced VSMCs proliferation, at least in part by inhibiting Ang II-induced G(0)/G(1) to S phase transition and attenuating the expression of mRNA of c-fos, c-jun and c-myc. The findings may explain the beneficial effects of ginsenoside Rb3 in cardiovascular diseases, and it will be useful to develop prevention and therapeutics of cardiovascular diseases.
Collapse
Affiliation(s)
- Tian Wang
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
37
|
Abstract
For cancers to develop, sustain and spread, the appropriation of key homeostatic physiological systems that influence cell growth, migration and death, as well as inflammation and the expansion of vascular networks are required. There is accumulating molecular and in vivo evidence to indicate that the expression and actions of the renin-angiotensin system (RAS) influence malignancy and also predict that RAS inhibitors, which are currently used to treat hypertension and cardiovascular disease, might augment cancer therapies. To appreciate this potential hegemony of the RAS in cancer, an expanded comprehension of the cellular actions of this system is needed, as well as a greater focus on translational and in vivo research.
Collapse
Affiliation(s)
- Amee J George
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
38
|
Evans AN, Henning T, Gelsleichter J, Nunez BS. Molecular classification of an elasmobranch angiotensin receptor: quantification of angiotensin receptor and natriuretic peptide receptor mRNAs in saltwater and freshwater populations of the Atlantic stingray. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:423-31. [PMID: 20869458 DOI: 10.1016/j.cbpb.2010.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
Among the most conserved osmoregulatory hormone systems in vertebrates are the renin-angiotensin system (RAS) and the natriuretic peptides (NPs). We examined the RAS and NP system in the euryhaline Atlantic stingray, Dasyatis sabina (Lesueur). To determine the relative sensitivity of target organs to these hormonal systems, we isolated cDNA sequences encoding the D. sabina angiotensin receptor (AT) and natriuretic peptide type-B receptor (NPR-B). We then determined the tissue-specific expression of their mRNAs in saltwater D. sabina from local Texas waters and an isolated freshwater population in Lake Monroe, Florida. AT mRNA was most abundant in interrenal tissue from both populations. NPR-B mRNA was most abundant in rectal gland tissue from both populations, and also highly abundant in the kidney of saltwater D. sabina. This study is the first to report the sequence of an elasmobranch angiotensin receptor, and phylogenetic analysis indicates that the D. sabina receptor is more similar to AT(1) vs. AT(2) proteins. This classification is further supported by molecular analysis of AT(1) and AT(2) proteins demonstrating conservation of AT(1)-specific amino acid residues and motifs in D. sabina AT. Molecular classification of the elasmobranch angiotensin receptor as an AT(1)-like protein provides fundamental insight into the evolution of the vertebrate RAS.
Collapse
Affiliation(s)
- Andrew N Evans
- The University of Texas Marine Science Institute, Port Aransas, Texas 78373, USA.
| | | | | | | |
Collapse
|
39
|
Sanni SJ, Hansen JT, Bonde MM, Speerschneider T, Christensen GL, Munk S, Gammeltoft S, Hansen JL. beta-Arrestin 1 and 2 stabilize the angiotensin II type I receptor in distinct high-affinity conformations. Br J Pharmacol 2010; 161:150-61. [PMID: 20718747 PMCID: PMC2962824 DOI: 10.1111/j.1476-5381.2010.00875.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/23/2010] [Accepted: 04/11/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The angiotensin II type 1 (AT(1)) receptor belongs to family A of 7 transmembrane (7TM) receptors. The receptor has important roles in the cardiovascular system and is commonly used as a drug target in cardiovascular diseases. Interaction of 7TM receptors with G proteins or beta-arrestins often induces higher binding affinity for agonists. Here, we examined interactions between AT(1A) receptors and beta-arrestins to look for differences between the AT(1A) receptor interaction with beta-arrestin1 and beta-arrestin2. EXPERIMENTAL APPROACH Ligand-induced interaction between AT(1A) receptors and beta-arrestins was measured by Bioluminescence Resonance Energy Transfer 2. AT(1A)-beta-arrestin1 and AT(1A)-beta-arrestin2 fusion proteins were cloned and tested for differences using immunocytochemistry, inositol phosphate hydrolysis and competition radioligand binding. KEY RESULTS Bioluminescence Resonance Energy Transfer 2 analysis showed that beta-arrestin1 and 2 were recruited to AT(1A) receptors with similar ligand potencies and efficacies. The AT(1A)-beta-arrestin fusion proteins showed attenuated G protein signalling and increased agonist binding affinity, while antagonist affinity was unchanged. Importantly, larger agonist affinity shifts were observed for AT(1A)-beta-arrestin2 than for AT(1A)-beta-arrestin1. CONCLUSION AND IMPLICATIONS beta-Arrestin1 and 2 are recruited to AT(1A) receptors with similar ligand pharmacology and stabilize AT(1A) receptors in distinct high-affinity conformations. However, beta-arrestin2 induces a receptor conformation with a higher agonist-binding affinity than beta-arrestin1. Thus, this study demonstrates that beta-arrestins interact with AT(1A) receptors in different ways and suggest that AT(1) receptor biased agonists with the ability to recruit either of the beta-arrestins selectively, would be possible to design.
Collapse
Affiliation(s)
- SJ Sanni
- Department of Clinical Biochemistry, Glostrup HospitalGlostrup, Denmark
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University HospitalRigshospitalet, Denmark and the Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - JT Hansen
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University HospitalRigshospitalet, Denmark and the Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - MM Bonde
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University HospitalRigshospitalet, Denmark and the Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - T Speerschneider
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University HospitalRigshospitalet, Denmark and the Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - GL Christensen
- Department of Clinical Biochemistry, Glostrup HospitalGlostrup, Denmark
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University HospitalRigshospitalet, Denmark and the Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - S Munk
- Department of Clinical Biochemistry, Glostrup HospitalGlostrup, Denmark
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University HospitalRigshospitalet, Denmark and the Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - S Gammeltoft
- Department of Clinical Biochemistry, Glostrup HospitalGlostrup, Denmark
| | - JL Hansen
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University HospitalRigshospitalet, Denmark and the Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
40
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 PMCID: PMC2879912 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
41
|
Zhang Z, Dzau VJ. Angiotensin II Type 1 Receptor–Associated Protein Is an Endogenous Inhibitor of Angiotensin II Type 1 Receptor Action in Cardiac Hypertrophy. Hypertension 2010; 55:1086-7. [DOI: 10.1161/hypertensionaha.110.150458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhiping Zhang
- From the Edna and Fred L. Mandel, Jr, Center for Hypertension and Atherosclerosis Research, and Cardiovascular Division, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Victor J. Dzau
- From the Edna and Fred L. Mandel, Jr, Center for Hypertension and Atherosclerosis Research, and Cardiovascular Division, Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
42
|
Christensen GL, Kelstrup CD, Lyngsø C, Sarwar U, Bøgebo R, Sheikh SP, Gammeltoft S, Olsen JV, Hansen JL. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 2010; 9:1540-53. [PMID: 20363803 DOI: 10.1074/mcp.m900550-mcp200] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Seven-transmembrane receptors (7TMRs) signal through the well described heterotrimeric G proteins but can also activate G protein-independent signaling pathways of which the impact and complexity are less understood. The angiotensin II type 1 receptor (AT(1)R) is a prototypical 7TMR and an important drug target in cardiovascular diseases. "Biased agonists" with intrinsic "functional selectivity" that simultaneously blocks Galpha(q) protein activity and activates G protein-independent pathways of the AT(1)R confer important perspectives in treatment of cardiovascular diseases. In this study, we performed a global quantitative phosphoproteomics analysis of the AT(1)R signaling network. We analyzed ligand-stimulated SILAC (stable isotope labeling by amino acids in cell culture) cells by high resolution (LTQ-Orbitrap) MS and compared the phosphoproteomes of the AT(1)R agonist angiotensin II and the biased agonist [Sar(1),Ile(4),Ile(8)]angiotensin II (SII angiotensin II), which only activates the Galpha(q) protein-independent signaling. We quantified more than 10,000 phosphorylation sites of which 1183 were regulated by angiotensin II or its analogue SII angiotensin II. 36% of the AT(1)R-regulated phosphorylations were regulated by SII angiotensin II. Analysis of phosphorylation site patterns showed a striking distinction between protein kinases activated by Galpha(q) protein-dependent and -independent mechanisms, and we now place protein kinase D as a key protein involved in both Galpha(q)-dependent and -independent AT(1)R signaling. This study provides substantial novel insight into angiotensin II signal transduction and is the first study dissecting the differences between a full agonist and a biased agonist from a 7TMR on a systems-wide scale. Importantly, it reveals a previously unappreciated diversity and quantity of Galpha(q) protein-independent signaling and uncovers novel signaling pathways. We foresee that the amount and diversity of G protein-independent signaling may be more pronounced than previously recognized for other 7TMRs as well. Quantitative mass spectrometry is a promising tool for evaluation of the signaling properties of biased agonists to other receptors in the future.
Collapse
Affiliation(s)
- Gitte L Christensen
- Laboratory for Molecular Cardiology, Department of Biomedical Sciences, Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bonde MM, Yao R, Ma JN, Madabushi S, Haunsø S, Burstein ES, Whistler JL, Sheikh SP, Lichtarge O, Hansen JL. An angiotensin II type 1 receptor activation switch patch revealed through evolutionary trace analysis. Biochem Pharmacol 2010; 80:86-94. [PMID: 20227396 DOI: 10.1016/j.bcp.2010.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/08/2010] [Accepted: 03/04/2010] [Indexed: 12/21/2022]
Abstract
Seven transmembrane (7TM) or G protein-coupled receptors constitute a large superfamily of cell surface receptors sharing a structural motif of seven transmembrane spanning alpha helices. Their activation mechanism most likely involves concerted movements of the transmembrane helices, but remains to be completely resolved. Evolutionary Trace (ET) analysis is a computational method, which identifies clusters of functionally important residues by integrating information on evolutionary important residue variations with receptor structure. Combined with known mutational data, ET predicted a patch of residues in the cytoplasmic parts of TM2, TM3, and TM6 to form an activation switch that is common to all family A 7TM receptors. We tested this hypothesis in the rat Angiotensin II (Ang II) type 1a (AT1a) receptor. The receptor has important roles in the cardiovascular system, but has also frequently been applied as a model for 7TM receptor activation and signaling. Six mutations: F66A, L67R, L70R, L119R, D125A, and I245F were targeted to the putative switch and assayed for changes in activation state by their ligand binding, signaling, and trafficking properties. All but one receptor mutant (that was not expressed well) displayed phenotypes associated with changed activation state, such as increased agonist affinity or basal activity, promiscuous activation, or constitutive internalization highlighting the importance of testing different signaling pathways. We conclude that this evolutionary important patch mediates interactions important for maintaining the inactive state. More broadly, these observations in the AT1 receptor are consistent with computational predictions of a generic role for this patch in 7TM receptor activation.
Collapse
Affiliation(s)
- Marie Mi Bonde
- Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Juliane Mariesvej 20, section 9312, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Seven-transmembrane receptors are commonly coupled to multiple signaling pathways in cells. The simple model describing agonists for these receptors as producing a common active state to induce uniform activation of the pathways linked to the receptor has been shown to be untenable in light of a large body of data that suggest that some agonists produce activation of some but not all available pathways. These agonists are referred to as ‘biased’ in that they select which signaling pathways become activated upon binding to the receptor. The data to support this mechanism as well as ideas on the possible therapeutic application of this effect will be discussed.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Biological Reagents and Assay Development, Molecular Discovery, GlaxoSmithKline Research and Development 5 Moore Drive, Research Triangle Park, NC 27709 USA.
| |
Collapse
|
45
|
Aplin M, Christensen GL, Hansen JL. Pharmacologic Perspectives of Functional Selectivity by the Angiotensin II Type 1 Receptor. Trends Cardiovasc Med 2008; 18:305-12. [DOI: 10.1016/j.tcm.2009.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 12/14/2022]
|