1
|
Sakai T, Furutani M, Nakashima M, Ishibashi N, Maeda J, Oguri N, Miyamoto S, Miyauchi S, Okamura S, Okubo Y, Tokuyama T, Oda N, Mitsumori R, Niida S, Ozaki K, Shigemizu D, Nakano Y. Genome-Wide Association Study of Atrial Fibrillation Recurrence After Radiofrequency Catheter Ablation in a Japanese Population. J Cardiovasc Electrophysiol 2025. [PMID: 40296270 DOI: 10.1111/jce.16674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION Catheter ablation of atrial fibrillation (AF) is an established treatment; however, recurrence remains a major issue. METHODS This study included 606 patients with AF who underwent catheter ablation in Hiroshima University Hospital, including 143 and 463 patients with and without AF recurrence within 3 years after ablation, respectively. A logistic regression analysis and genome-wide association study (GWAS) were conducted to identify the clinical and genetic factors, respectively, associated with the AF recurrence risk. RESULTS A logistic regression analysis revealed persistent AF, nonpulmonary vein AF triggers, the N-terminal pro-brain natriuretic peptide level, and the left atrial volume before catheter ablation were significant factors for recurrence (false discovery rate < 0.05). Additionally, six variants (rs2106865, rs12577119, rs12574466, rs4902609, rs8027532, and rs2032303) were associated with the AF recurrence risk, based on the GWAS results' suggestive significance (p < 5 × 10-6). An expression quantitative trait locus analysis revealed a significant association between rs2106865 and ATP-binding cassette subfamily C member 8 (ABCC8) expression in heart tissues (atrial appendage and left ventricle). A linear regression analysis demonstrated a significant association between the ABCC8 variant rs2106865 and left atrium volume before ablation. Finally, the Cox proportional hazard model showed a significant association between the ABCC8 variant and AF recurrence (p = 1.30 × 10-5 by log-rank test; hazard ratio 1.74, 95% confidence interval 1.38-2.20). CONCLUSIONS Our findings, which highlight both the clinical and genetic factors associated with AF recurrence in Japanese patients, may contribute to future efforts to improve treatment strategies for AF.
Collapse
Affiliation(s)
- Takumi Sakai
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Motoki Furutani
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mika Nakashima
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoki Ishibashi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junji Maeda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoto Oguri
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shogo Miyamoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shunsuke Miyauchi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Sho Okamura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yousaku Okubo
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takehito Tokuyama
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Noboru Oda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Risa Mitsumori
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shumpei Niida
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kouichi Ozaki
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Daichi Shigemizu
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
2
|
Specterman MJ, Aziz Q, Li Y, Anderson NA, Ojake L, Ng KE, Thomas AM, Finlay MC, Schilling RJ, Lambiase PD, Tinker A. Hypoxia Promotes Atrial Tachyarrhythmias via Opening of ATP-Sensitive Potassium Channels. Circ Arrhythm Electrophysiol 2023; 16:e011870. [PMID: 37646176 PMCID: PMC10510820 DOI: 10.1161/circep.123.011870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Hypoxia-ischemia predisposes to atrial arrhythmia. Atrial ATP-sensitive potassium channel (KATP) modulation during hypoxia has not been explored. We investigated the effects of hypoxia on atrial electrophysiology in mice with global deletion of KATP pore-forming subunits. METHODS Whole heart KATP RNA expression was probed. Whole-cell KATP current and action potentials were recorded in isolated wild-type (WT), Kir6.1 global knockout (6.1-gKO), and Kir6.2 global knockout (6.2-gKO) murine atrial myocytes. Langendorff-perfused hearts were assessed for atrial effective refractory period (ERP), conduction velocity, wavefront path length (WFPL), and arrhymogenicity under normoxia/hypoxia using a microelectrode array and programmed electrical stimulation. Heart histology was assessed. RESULTS Expression patterns were essentially identical for all KATP subunit RNA across human heart, whereas in mouse, Kir6.1 and SUR2 (sulphonylurea receptor subunit) were higher in ventricle than atrium, and Kir6.2 and SUR1 were higher in atrium. Compared with WT, 6.2-gKO atrial myocytes had reduced tolbutamide-sensitive current and action potentials were more depolarized with slower upstroke and reduced peak amplitude. Action potential duration was prolonged in 6.1-gKO atrial myocytes, absent of changes in other ion channel gene expression or atrial myocyte hypertrophy. In Langendorff-perfused hearts, baseline atrial ERP was prolonged and conduction velocity reduced in both KATP knockout mice compared with WT, without histological fibrosis. Compared with baseline, hypoxia led to conduction velocity slowing, stable ERP, and WFPL shortening in WT and 6.1-gKO hearts, whereas WFPL was stable in 6.2-gKO hearts due to ERP prolongation with conduction velocity slowing. Tolbutamide reversed hypoxia-induced WFPL shortening in WT and 6.1-gKO hearts through ERP prolongation. Atrial tachyarrhythmias inducible with programmed electrical stimulation during hypoxia in WT and 6.1-gKO mice correlated with WFPL shortening. Spontaneous arrhythmia was not seen. CONCLUSIONS KATP block/absence leads to cellular and tissue level atrial electrophysiological modification. Kir6.2 global knockout prevents hypoxia-induced atrial WFPL shortening and atrial arrhythmogenicity to programmed electrical stimulation. This mechanism could be explored translationally to treat ischemically driven atrial arrhythmia.
Collapse
Affiliation(s)
- Mark J. Specterman
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Qadeer Aziz
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Yiwen Li
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Naomi A. Anderson
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Leona Ojake
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Keat-Eng Ng
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Alison M. Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Malcolm C. Finlay
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Richard J. Schilling
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, United Kingdom (P.D.L.)
| | - Andrew Tinker
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| |
Collapse
|
3
|
Abstract
Pericytes, attached to the surface of capillaries, play an important role in regulating local blood flow. Using optogenetic tools and genetically encoded reporters in conjunction with confocal and multiphoton imaging techniques, the 3D structure, anatomical organization, and physiology of pericytes have recently been the subject of detailed examination. This work has revealed novel functions of pericytes and morphological features such as tunneling nanotubes in brain and tunneling microtubes in heart. Here, we discuss the state of our current understanding of the roles of pericytes in blood flow control in brain and heart, where functions may differ due to the distinct spatiotemporal metabolic requirements of these tissues. We also outline the novel concept of electro-metabolic signaling, a universal mechanistic framework that links tissue metabolic state with blood flow regulation by pericytes and vascular smooth muscle cells, with capillary KATP and Kir2.1 channels as primary sensors. Finally, we present major unresolved questions and outline how they can be addressed.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Guiling Zhao
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ashwini Hariharan
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - W Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Panou MM, Antoni M, Morgan EL, Loundras EA, Wasson CW, Welberry-Smith M, Mankouri J, Macdonald A. Glibenclamide inhibits BK polyomavirus infection in kidney cells through CFTR blockade. Antiviral Res 2020; 178:104778. [PMID: 32229236 PMCID: PMC7322401 DOI: 10.1016/j.antiviral.2020.104778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/07/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
BK polyomavirus (BKPyV) is a ubiquitous pathogen in the human population that is asymptomatic in healthy individuals, but can be life-threatening in those undergoing kidney transplant. To-date, no vaccines or anti-viral therapies are available to treat human BKPyV infections. New therapeutic strategies are urgently required. In this study, using a rational pharmacological screening regimen of known ion channel modulating compounds, we show that BKPyV requires cystic fibrosis transmembrane conductance regulator (CFTR) activity to infect primary renal proximal tubular epithelial cells. Disrupting CFTR function through treatment with the clinically available drug glibenclamide, the CFTR inhibitor CFTR172, or CFTR-silencing, all reduced BKPyV infection. Specifically, time of addition assays and the assessment of the exposure of VP2/VP3 minor capsid proteins indicated a role for CFTR during BKPyV transport to the endoplasmic reticulum, an essential step during the early stages of BKPyV infection. We thus establish CFTR as an important host-factor in the BKPyV life cycle and reveal CFTR modulators as potential anti-BKPyV therapies. BK polyomavirus (BKPyV) is life-threatening in those undergoing kidney transplant. BKPyV requires CFTR to infect primary kidney cells. Disrupting CFTR function pharmacologically reduces BKPyV infection. CFTR is required during BKPyV transport to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Margarita-Maria Panou
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Michelle Antoni
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Eleni-Anna Loundras
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Christopher W Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | | | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom.
| |
Collapse
|
5
|
Cathey B, Obaid S, Zolotarev AM, Pryamonosov RA, Syunyaev RA, George SA, Efimov IR. Open-Source Multiparametric Optocardiography. Sci Rep 2019; 9:721. [PMID: 30679527 PMCID: PMC6346041 DOI: 10.1038/s41598-018-36809-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023] Open
Abstract
Since the 1970s fluorescence imaging has become a leading tool in the discovery of mechanisms of cardiac function and arrhythmias. Gradual improvements in fluorescent probes and multi-camera technology have increased the power of optical mapping and made a major impact on the field of cardiac electrophysiology. Tandem-lens optical mapping systems facilitated simultaneous recording of multiple parameters characterizing cardiac function. However, high cost and technological complexity restricted its proliferation to the wider biological community. We present here, an open-source solution for multiple-camera tandem-lens optical systems for multiparametric mapping of transmembrane potential, intracellular calcium dynamics and other parameters in intact mouse hearts and in rat heart slices. This 3D-printable hardware and Matlab-based RHYTHM 1.2 analysis software are distributed under an MIT open-source license. Rapid prototyping permits the development of inexpensive, customized systems with broad functionality, allowing wider application of this technology outside biomedical engineering laboratories.
Collapse
Affiliation(s)
- Brianna Cathey
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Sofian Obaid
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA
| | - Alexander M Zolotarev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Roman A Pryamonosov
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Roman A Syunyaev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Institute of Personalized Medicine, Sechenov University, Moscow, Russia
| | - Sharon A George
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC, 20052, USA.
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
6
|
Zhang H, Dvornikov AV, Huttner IG, Ma X, Santiago CF, Fatkin D, Xu X. A Langendorff-like system to quantify cardiac pump function in adult zebrafish. Dis Model Mech 2018; 11:dmm.034819. [PMID: 30012855 PMCID: PMC6177000 DOI: 10.1242/dmm.034819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Zebrafish are increasingly used as a vertebrate model to study human cardiovascular disorders. Although heart structure and function are readily visualized in zebrafish embryos because of their optical transparency, the lack of effective tools for evaluating the hearts of older, nontransparent fish has been a major limiting factor. The recent development of high-frequency echocardiography has been an important advance for in vivo cardiac assessment, but it necessitates anesthesia and has limited ability to study acute interventions. We report the development of an alternative experimental ex vivo technique for quantifying heart size and function that resembles the Langendorff heart preparations that have been widely used in mammalian models. Dissected adult zebrafish hearts were perfused with a calcium-containing buffer, and a beat frequency was maintained with electrical stimulation. The impact of pacing frequency, flow rate and perfusate calcium concentration on ventricular performance (including end-diastolic and end-systolic volumes, ejection fraction, radial strain, and maximal velocities of shortening and relaxation) were evaluated and optimal conditions defined. We determined the effects of age on heart function in wild-type male and female zebrafish, and successfully detected hypercontractile and hypocontractile responses after adrenergic stimulation or doxorubicin treatment, respectively. Good correlations were found between indices of cardiac contractility obtained with high-frequency echocardiography and with the ex vivo technique in a subset of fish studied with both methods. The ex vivo beating heart preparation is a valuable addition to the cardiac function tool kit that will expand the use of adult zebrafish for cardiovascular research.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Cardiovascular Surgery Department, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Clinical and Translational Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55092, USA
| | - Celine F Santiago
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.,Cardiology Department, St. Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
7
|
Gomes Castro AJ, Cazarolli LH, Bretanha LC, Sulis PM, Rey Padilla DP, Aragón Novoa DM, Dambrós BF, Pizzolatti MG, Mena Barreto Silva FR. The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels. Arch Biochem Biophys 2018; 648:20-26. [PMID: 29704483 DOI: 10.1016/j.abb.2018.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022]
Abstract
Betulinic acid (BA) has been described as an insulin secretagogue which may explain its potent antihyperglycemic effect; however, the exact role of BA as an insulinogenic agent is not clear. The aim of this study was to investigate the mechanism of BA on calcium influx and static insulin secretion in pancreatic islets isolated from euglycemic rats. We found that BA triggers calcium influx by a mechanism dependent on ATP-dependent potassium channels and L-type voltage-dependent calcium channels. Additionally, the voltage-dependent and calcium-dependent chloride channels are also involved in the mechanism of BA, probably due to an indirect stimulation of calcium entry and increased intracellular calcium. Additionally, the downstream activation of PKC, which is necessary for the effect of BA on calcium influx, is involved in the full stimulatory response of the triterpene. BA stimulated the static secretion of insulin in pancreatic islets, indicating that the abrupt calcium influx may be a key step in its secretagogue effect. As such, BA stimulates insulin secretion through the activation of electrophysiological mechanisms, such as the closure of potassium channels and opening of calcium and chloride channels, inducing cellular depolarization associated with metabolic-biochemical effects, in turn activating PKC and ensuring the secretion of insulin.
Collapse
Affiliation(s)
- Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Luisa Helena Cazarolli
- Universidade Federal da Fronteira Sul, Campus Universitário Laranjeiras do Sul, Laranjeiras do Sul, PR, Brazil
| | - Lizandra C Bretanha
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Paola Miranda Sulis
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Diana Patricia Rey Padilla
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Bogotá, Colombia
| | | | - Betina Fernanda Dambrós
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Moacir G Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
8
|
Ihara K, Sugiyama K, Takahashi K, Yamazoe M, Sasano T, Furukawa T. Electrophysiological Assessment of Murine Atria with High-Resolution Optical Mapping. J Vis Exp 2018. [PMID: 29553490 PMCID: PMC5931326 DOI: 10.3791/56478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Recent genome-wide association studies targeting atrial fibrillation (AF) have indicated a strong association between the genotype and electrophysiological phenotype in the atria. That encourages us to utilize a genetically-engineered mouse model to elucidate the mechanism of AF. However, it is difficult to evaluate the electrophysiological properties in murine atria due to their small size. This protocol describes the electrophysiological evaluation of atria using an optical mapping system with a high temporal and spatial resolution in Langendorff perfused murine hearts. The optical mapping system is assembled with dual high-speed complementary metal oxide semiconductor cameras and high magnification objective lenses, to detect the fluorescence of a voltage-sensitive dye and Ca2+ indicator. To focus on the assessment of murine atria, optical mapping is performed with an area of 2 mm × 2 mm or 10 mm x 10 mm, with a 100 × 100 resolution (20 µm/pixel or 100 µm/pixel) and sampling rate of up to 10 kHz (0.1 ms) at maximum. A 1-French size quadripolar electrode pacing catheter is placed into the right atrium through the superior vena cava avoiding any mechanical damage to the atrium, and pacing stimulation is delivered through the catheter. An electrophysiological study is performed with programmed stimulation including constant pacing, burst pacing, and up to triple extrastimuli pacing. Under a spontaneous or pacing rhythm, the optical mapping recorded the action potential duration, activation map, conduction velocity, and Ca2+ transient individually in the right and left atria. In addition, the programmed stimulation also determines the inducibility of atrial tachyarrhythmias. Precise activation mapping is performed to identify the propagation of the excitation in the atrium during an induced atrial tachyarrhythmia. Optical mapping with a specialized setting enables a thorough electrophysiological evaluation of the atrium in murine pathological models.
Collapse
Affiliation(s)
- Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University
| | - Koji Sugiyama
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University
| | - Kentaro Takahashi
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University
| | - Masahiro Yamazoe
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University
| | - Tetsuo Sasano
- Department of Biofunctional Informatics, Tokyo Medical and Dental University;
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
9
|
Vairamani K, Wang HS, Medvedovic M, Lorenz JN, Shull GE. RNA SEQ Analysis Indicates that the AE3 Cl -/HCO 3- Exchanger Contributes to Active Transport-Mediated CO 2 Disposal in Heart. Sci Rep 2017; 7:7264. [PMID: 28779178 PMCID: PMC5544674 DOI: 10.1038/s41598-017-07585-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Loss of the AE3 Cl−/HCO3− exchanger (Slc4a3) in mice causes an impaired cardiac force-frequency response and heart failure under some conditions but the mechanisms are not known. To better understand the functions of AE3, we performed RNA Seq analysis of AE3-null and wild-type mouse hearts and evaluated the data with respect to three hypotheses (CO2 disposal, facilitation of Na+-loading, and recovery from an alkaline load) that have been proposed for its physiological functions. Gene Ontology and PubMatrix analyses of differentially expressed genes revealed a hypoxia response and changes in vasodilation and angiogenesis genes that strongly support the CO2 disposal hypothesis. Differential expression of energy metabolism genes, which indicated increased glucose utilization and decreased fatty acid utilization, were consistent with adaptive responses to perturbations of O2/CO2 balance in AE3-null myocytes. Given that the myocardium is an obligate aerobic tissue and consumes large amounts of O2, the data suggest that loss of AE3, which has the potential to extrude CO2 in the form of HCO3−, impairs O2/CO2 balance in cardiac myocytes. These results support a model in which the AE3 Cl−/HCO3− exchanger, coupled with parallel Cl− and H+-extrusion mechanisms and extracellular carbonic anhydrase, is responsible for active transport-mediated disposal of CO2.
Collapse
Affiliation(s)
- Kanimozhi Vairamani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - John N Lorenz
- Department of Cellular and Molecular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA.
| |
Collapse
|
10
|
Ashcroft FM, Puljung MC, Vedovato N. Neonatal Diabetes and the K ATP Channel: From Mutation to Therapy. Trends Endocrinol Metab 2017; 28:377-387. [PMID: 28262438 PMCID: PMC5582192 DOI: 10.1016/j.tem.2017.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
Abstract
Activating mutations in one of the two subunits of the ATP-sensitive potassium (KATP) channel cause neonatal diabetes (ND). This may be either transient or permanent and, in approximately 20% of patients, is associated with neurodevelopmental delay. In most patients, switching from insulin to oral sulfonylurea therapy improves glycemic control and ameliorates some of the neurological disabilities. Here, we review how KATP channel mutations lead to the varied clinical phenotype, how sulfonylureas exert their therapeutic effects, and why their efficacy varies with individual mutations.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK.
| | - Michael C Puljung
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK
| | - Natascia Vedovato
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK
| |
Collapse
|
11
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
12
|
Liu Z, Cai H, Dang Y, Qiu C, Wang J. Adenosine triphosphate-sensitive potassium channels and cardiomyopathies (Review). Mol Med Rep 2015; 13:1447-54. [PMID: 26707080 DOI: 10.3892/mmr.2015.4714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Cardiomyopathies have been indicated to be one of the leading causes of heart failure. Though it was indicated that genetic defects, viral infection and trace element deficiency were among the causes of cardiomyopathy, the etiology has remained to be fully elucidated. Cardiomyocytes require large amounts of energy to maintain their normal biological functions. Adenosine triphosphate-sensitive potassium channels (KATP), composed of inward-rectifier potassium ion channel and sulfonylurea receptor subunits, are present on the cell surface and mitochondrial membrane of cardiac muscle cells. As metabolic sensors sensitive to changes in intracellular energy levels, KATP adapt electrical activities to metabolic challenges, maintaining normal biological functions of myocytes. It is implied that malfunctions, mutations and altered expression of KATP are associated with the pathogenesis of conditions including c hypertrophy, diabetes as well as dilated, ischemic and endemic cardiomyopathy. However, the current knowledge is only the tip of the iceberg and the roles of KATP in cardiomyopathies largely remain to be elucidated in future studies.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Hui Cai
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Chuan Qiu
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112‑2705, LA, USA
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
13
|
Zayas-Santiago A, Agte S, Rivera Y, Benedikt J, Ulbricht E, Karl A, Dávila J, Savvinov A, Kucheryavykh Y, Inyushin M, Cubano LA, Pannicke T, Veh RW, Francke M, Verkhratsky A, Eaton MJ, Reichenbach A, Skatchkov SN. Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in Caiman retina. PLoS One 2014; 9:e97155. [PMID: 24831221 PMCID: PMC4022631 DOI: 10.1371/journal.pone.0097155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/15/2014] [Indexed: 02/07/2023] Open
Abstract
Background Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. Methods We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus), endowed with both diurnal and nocturnal vision, by (i) immunohistochemistry, (ii) whole-cell voltage-clamp, and (iii) fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. Results Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. Conclusion Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.
Collapse
Affiliation(s)
- Astrid Zayas-Santiago
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Silke Agte
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Division of Soft Matter Physics, Department of Physics, University of Leipzig, Leipzig, Germany
| | - Yomarie Rivera
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Jan Benedikt
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Elke Ulbricht
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Anett Karl
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - José Dávila
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Alexey Savvinov
- Department of Physical Sciences, Universidad de Puerto Rico, Recinto de Río Piedras, Río Piedras, Puerto Rico, United States of America
| | - Yuriy Kucheryavykh
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Mikhail Inyushin
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Luis A. Cubano
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Mike Francke
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) University of Leipzig, Leipzig, Germany
| | - Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Misty J. Eaton
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Serguei N. Skatchkov
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|