1
|
Dos Reis BG, Becker GS, Marchetti DP, Coelho DDM, Sitta A, Wajner M, Vargas CR. Evidence That Long-Term Treatment Prevents Tissue Oxidative Damage in Patients With Inherited Disorders of the Propionate Pathway. Am J Med Genet A 2025; 197:e63893. [PMID: 39360509 DOI: 10.1002/ajmg.a.63893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Propionic and methylmalonic acidemias (PAcidemia and MMAcidemia, respectively) are genetic disorders clinically characterized by metabolic decompensation associated with life-threatening encephalopathic episodes in the neonatal period. Adequate and rapid therapeutic management is essential for patients' survival and prognosis. In this study, a restricted protein diet associated with L-carnitine (LC) supplementation was shown to decrease mortality and morbidity in patients affected by these disorders probably by decreasing the accumulation of the major metabolites and therefore their toxicity. Since oxidative stress was proposed as a contributing mechanism of tissue damage in PAcidemia and MMAcidemia and LC has potent antioxidant properties, our objective in this work was to investigate the effects of a long-term therapy consisting of reduced protein intake associated with LC supplementation on oxidative damage markers in patients affected by these diseases. We measured urinary isoprostanes, di-tyrosine, and oxidized guanine species, which reflect oxidative damage to lipids, proteins, and DNA/RNA, respectively, as well as the concentrations of NO products (nitrate plus nitrite) in patients untreated or submitted to short-term or a long-term treatment. Results revealed significant increases of isoprostanes, di-tyrosine, and oxidized guanine species, as well as a moderate nonsignificant increase of NO levels in the untreated patients, relatively to controls. Furthermore, these altered markers were attenuated after short-term treatment and normalized after prolonged treatment. In conclusion, data from this work show for the first time that long-standing treatment of patients with disorders of the propionate pathway can protect against oxidative damage. However, it remains to be elucidated whether oxidative stress identified in this study directly correlates with the clinical conditions of the affected patients.
Collapse
Affiliation(s)
- Bianca Gomes Dos Reis
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
2
|
Yap S, Gasperini S, Matsumoto S, Feillet F. Role of carglumic acid in the long-term management of propionic and methylmalonic acidurias. Orphanet J Rare Dis 2024; 19:464. [PMID: 39695809 DOI: 10.1186/s13023-024-03468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Propionic aciduria (PA) and methylmalonic aciduria (MMA) are rare inherited disorders caused by defects in the propionate metabolic pathway. PA due to propionyl coenzyme A carboxylase deficiency results in accumulation of propionic acid, while in MMA, deficiency in methylmalonyl coenzyme A mutase leads to accumulation of methylmalonic acid. Hyperammonemia is related to a secondary deficiency of N-acetylglutamate (NAG), the activator of carbamoyl phosphate synthetase 1, which is an irreversible rate-limiting enzyme in the urea cycle. Carglumic acid (CGA) is a synthetic structural analog of human NAG and is approved for the treatment of patients with hyperammonemia due to PA or MMA. CGA is well tolerated and its use in normalizing ammonia levels during acute hyperammonemic episodes in patients with PA and MMA is well established. This expert opinion analyzed clinical evidence for CGA and discussed its place, along with other management strategies, in the long-term management of PA or MMA. A literature search of PubMed was undertaken to identify publications related to the chronic use of CGA, transplantation, dietary management, ammonia scavengers, and gene therapy for treatment of patients with PA or MMA. The authors selected the most relevant studies for inclusion. Four clinical studies, one single center case series, and three case reports show that CGA is safe and effective in the chronic treatment of PA and MMA. In particular, the addition of CGA is associated with a reduction in hyperammonemic decompensation episodes and admission to hospital, compared with conventional dietary treatment alone. Current treatment guidelines and recommendations include the use of CGA mainly in acute decompensation, however, lag in considering the benefits of long-term CGA treatment on clinical and biochemical outcomes in patients with PA or MMA. CGA is safe and effective in the chronic treatment of PA and MMA and may help to resolve some of the issues associated with other strategies used to treat these disorders. Thus, CGA appears to have potential for the chronic management of patients with PA and MMA and should be recommended for inclusion in the chronic treatment of these disorders.
Collapse
Affiliation(s)
- Sufin Yap
- Department of Inherited Metabolic Diseases, Sheffield Children's Hospital, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield, S10 2TH, UK.
| | - Serena Gasperini
- Metabolic Rare Disease Unit "Fondazione Mariani", Pediatric Department, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Shirou Matsumoto
- Department of Neonatology, Kumamoto University, Honjo 1-1-1, Chu-oh-ku, Kumamoto, Japan
| | - François Feillet
- Pediatric Unit, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| |
Collapse
|
3
|
He W, Marchuk H, Koeberl D, Kasumov T, Chen X, Zhang GF. Fasting alleviates metabolic alterations in mice with propionyl-CoA carboxylase deficiency due to Pcca mutation. Commun Biol 2024; 7:659. [PMID: 38811689 PMCID: PMC11137003 DOI: 10.1038/s42003-024-06362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Propionic acidemia (PA), resulting from Pcca or Pccb gene mutations, impairs propionyl-CoA metabolism and induces metabolic alterations. While speculation exists that fasting might exacerbate metabolic crises in PA patients by accelerating the breakdown of odd-chain fatty acids and amino acids into propionyl-CoA, direct evidence is lacking. Our investigation into the metabolic effects of fasting in Pcca-/-(A138T) mice, a PA model, reveals surprising outcomes. Propionylcarnitine, a PA biomarker, decreases during fasting, along with the C3/C2 (propionylcarnitine/acetylcarnitine) ratio, ammonia, and methylcitrate. Although moderate amino acid catabolism to propionyl-CoA occurs with a 23-h fasting, a significant reduction in microbiome-produced propionate and increased fatty acid oxidation mitigate metabolic alterations by decreasing propionyl-CoA synthesis and enhancing acetyl-CoA synthesis. Fasting-induced gluconeogenesis further facilitates propionyl-CoA catabolism without changing propionyl-CoA carboxylase activity. These findings suggest that fasting may alleviate metabolic alterations in Pcca-/-(A138T) mice, prompting the need for clinical evaluation of its potential impact on PA patients.
Collapse
Affiliation(s)
- Wentao He
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Hannah Marchuk
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Dwight Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takhar Kasumov
- Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Xiaoxin Chen
- Department of Surgery, Surgical Research Lab, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA.
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
4
|
Shchelochkov OA, Farmer CA, Chlebowski C, Adedipe D, Ferry S, Manoli I, Pass A, McCoy S, Van Ryzin C, Sloan J, Thurm A, Venditti CP. Intellectual disability and autism in propionic acidemia: a biomarker-behavioral investigation implicating dysregulated mitochondrial biology. Mol Psychiatry 2024; 29:974-981. [PMID: 38200289 PMCID: PMC11176071 DOI: 10.1038/s41380-023-02385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Propionic acidemia (PA) is an autosomal recessive condition (OMIM #606054), wherein pathogenic variants in PCCA and PCCB impair the activity of propionyl-CoA carboxylase. PA is associated with neurodevelopmental disorders, including intellectual disability (ID) and autism spectrum disorder (ASD); however, the correlates and mechanisms of these outcomes remain unknown. Using data from a subset of participants with PA enrolled in a dedicated natural history study (n = 33), we explored associations between neurodevelopmental phenotypes and laboratory parameters. Twenty (61%) participants received an ID diagnosis, and 12 of the 31 (39%) who were fully evaluated received the diagnosis of ASD. A diagnosis of ID, lower full-scale IQ (sample mean = 65 ± 26), and lower adaptive behavior composite scores (sample mean = 67 ± 23) were associated with several biomarkers. Higher concentrations of plasma propionylcarnitine, plasma total 2-methylcitrate, serum erythropoietin, and mitochondrial biomarkers plasma FGF21 and GDF15 were associated with a more severe ID profile. Reduced 1-13C-propionate oxidative capacity and decreased levels of plasma and urinary glutamine were also associated with a more severe ID profile. Only two parameters, increased serum erythropoietin and decreased plasma glutamine, were associated with ASD. Plasma glycine, one of the defining features of PA, was not meaningfully associated with either ID or ASD. Thus, while both ID and ASD were commonly observed in our PA cohort, only ID was robustly associated with metabolic parameters. Our results suggest that disease severity and associated mitochondrial dysfunction may play a role in CNS complications of PA and identify potential biomarkers and candidate surrogate endpoints.
Collapse
Affiliation(s)
- Oleg A Shchelochkov
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cristan A Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Colby Chlebowski
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dee Adedipe
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan Ferry
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Irini Manoli
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra Pass
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samantha McCoy
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carol Van Ryzin
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer Sloan
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Charles P Venditti
- Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Baker PR. Recognizing and Managing a Metabolic Crisis. Pediatr Clin North Am 2023; 70:979-993. [PMID: 37704355 DOI: 10.1016/j.pcl.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In some relatively common inborn errors of metabolism there can be the accumulation of toxic compounds including ammonia and organic acids such as lactate and ketoacids, as well as energy deficits at the cellular level. The clinical presentation is often referred to as a metabolic emergency or crisis. Fasting and illness can result in encephalopathy within hours, and without appropriate recognition and intervention, the outcome may be permanent disability or death. This review outlines easy and readily available means of recognizing and diagnosing a metabolic emergency as well as general guidelines for management. Disease-specific interventions focus on parenteral nutrition to reverse catabolism, toxin removal strategies, and vitamin/nutrition supplementation.
Collapse
Affiliation(s)
- Peter R Baker
- University of Colorado, Children's Hospital Colorado, 13123 East 16th Avenue, Box 300, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Zhang Y, Peng C, Wang L, Chen S, Wang J, Tian Z, Wang C, Chen X, Zhu S, Zhang GF, Wang Y. Prevalence of propionic acidemia in China. Orphanet J Rare Dis 2023; 18:281. [PMID: 37689673 PMCID: PMC10493020 DOI: 10.1186/s13023-023-02898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Propionic acidemia (PA) is a rare autosomal recessive congenital disease caused by mutations in the PCCA or PCCB genes. Elevated propionylcarnitine, 2-methylcitric acid (2MCA), propionylglycine, glycine and 3-hydroxypropionate can be used to diagnose PA. Early-onset PA can lead to acute deterioration, metabolic acidosis, and hyperammonemia shortly after birth, which can result in high mortality and disability. Late-onset cases of PA have a more heterogeneous clinical spectra, including growth retardation, intellectual disability, seizures, basal ganglia lesions, pancreatitis, cardiomyopathy, arrhythmias, adaptive immune defects, rhabdomyolysis, optic atrophy, hearing loss, premature ovarian failure, and chronic kidney disease. Timely and accurate diagnosis and appropriate treatment are crucial to saving patients' lives and improving their prognosis. Recently, the number of reported PA cases in China has increased due to advanced diagnostic techniques and increased research attention. However, an overview of PA prevalence in China is lacking. Therefore, this review provides an overview of recent advances in the pathogenesis, diagnostic strategies, and treatment of PA, including epidemiological data on PA in China. The most frequent variants among Chinese PA patients are c.2002G > A in PCCA and c.1301C > T in PCCB, which are often associated with severe clinical symptoms. At present, liver transplantation from a living (heterozygous parental) donor is a better option for treating PA in China, especially for those exhibiting a severe metabolic phenotype and/or end-organ dysfunction. However, a comprehensive risk-benefit analysis should be conducted as an integral part of the decision-making process. This review will provide valuable information for the medical care of Chinese patients with PA.
Collapse
Affiliation(s)
- Yixing Zhang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuwen Peng
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Lifang Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Sitong Chen
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Junwei Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuangong Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Hospital, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Suhong Zhu
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| | - You Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| |
Collapse
|
7
|
Manoli I, Gebremariam A, McCoy S, Pass AR, Gagné J, Hall C, Ferry S, Van Ryzin C, Sloan JL, Sacchetti E, Catesini G, Rizzo C, Martinelli D, Spada M, Dionisi-Vici C, Venditti CP. Biomarkers to predict disease progression and therapeutic response in isolated methylmalonic acidemia. J Inherit Metab Dis 2023; 46:554-572. [PMID: 37243446 PMCID: PMC10330948 DOI: 10.1002/jimd.12636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.
Collapse
Affiliation(s)
- Irini Manoli
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Abigael Gebremariam
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Samantha McCoy
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra R. Pass
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jack Gagné
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Camryn Hall
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Susan Ferry
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Carol Van Ryzin
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jennifer L. Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elisa Sacchetti
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giulio Catesini
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Tranplantation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- European Research Network TransplantChild
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Charles P. Venditti
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
8
|
Maines E, Moretti M, Vitturi N, Gugelmo G, Fasan I, Lenzini L, Piccoli G, Gragnaniello V, Maiorana A, Soffiati M, Burlina A, Franceschi R. Understanding the Pathogenesis of Cardiac Complications in Patients with Propionic Acidemia and Exploring Therapeutic Alternatives for Those Who Are Not Eligible or Are Waiting for Liver Transplantation. Metabolites 2023; 13:563. [PMID: 37110221 PMCID: PMC10143878 DOI: 10.3390/metabo13040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The guidelines for the management of patients affected by propionic acidemia (PA) recommend standard cardiac therapy in the presence of cardiac complications. A recent revision questioned the impact of high doses of coenzyme Q10 on cardiac function in patients with cardiomyopathy (CM). Liver transplantation is a therapeutic option for several patients since it may stabilize or reverse CM. Both the patients waiting for liver transplantation and, even more, the ones not eligible for transplant programs urgently need therapies to improve cardiac function. To this aim, the identification of the pathogenetic mechanisms represents a key point. Aims: This review summarizes: (1) the current knowledge of the pathogenetic mechanisms underlying cardiac complications in PA and (2) the available and potential pharmacological options for the prevention or the treatment of cardiac complications in PA. To select articles, we searched the electronic database PubMed using the Mesh terms "propionic acidemia" OR "propionate" AND "cardiomyopathy" OR "Long QT syndrome". We selected 77 studies, enlightening 12 potential disease-specific or non-disease-specific pathogenetic mechanisms, namely: impaired substrate delivery to TCA cycle and TCA dysfunction, secondary mitochondrial electron transport chain dysfunction and oxidative stress, coenzyme Q10 deficiency, metabolic reprogramming, carnitine deficiency, cardiac excitation-contraction coupling alteration, genetics, epigenetics, microRNAs, micronutrients deficiencies, renin-angiotensin-aldosterone system activation, and increased sympathetic activation. We provide a critical discussion of the related therapeutic options. Current literature supports the involvement of multiple cellular pathways in cardiac complications of PA, indicating the growing complexity of their pathophysiology. Elucidating the mechanisms responsible for such abnormalities is essential to identify therapeutic strategies going beyond the correction of the enzymatic defect rather than engaging the dysregulated mechanisms. Although these approaches are not expected to be resolutive, they may improve the quality of life and slow the disease progression. Available pharmacological options are limited and tested in small cohorts. Indeed, a multicenter approach is mandatory to strengthen the efficacy of therapeutic options.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Pediatrics, Santa Chiara General Hospital, APSS, 38122 Trento, Italy
| | - Michele Moretti
- Division of Cardiology, Santa Chiara General Hospital, APSS, 38122 Trento, Italy
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Giorgia Gugelmo
- Division of Clinical Nutrition, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Ilaria Fasan
- Division of Clinical Nutrition, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Livia Lenzini
- Emergency Medicine Unit, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Giovanni Piccoli
- CIBIO, Department of Cellular, Computational and Integrative Biology, Italy & Dulbecco Telethon Institute, Università degli Studi di Trento, 38123 Trento, Italy
| | - Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, 35128 Padova, Italy
| | - Arianna Maiorana
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children’s Hospital-IRCCS, 00165 Rome, Italy
| | - Massimo Soffiati
- Division of Pediatrics, Santa Chiara General Hospital, APSS, 38122 Trento, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, 35128 Padova, Italy
| | - Roberto Franceschi
- Division of Pediatrics, Santa Chiara General Hospital, APSS, 38122 Trento, Italy
| |
Collapse
|
9
|
Shakerdi LA, Gillman B, Corcoran E, McNulty J, Treacy EP. Organic Aciduria Disorders in Pregnancy: An Overview of Metabolic Considerations. Metabolites 2023; 13:metabo13040518. [PMID: 37110176 PMCID: PMC10146379 DOI: 10.3390/metabo13040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Organic acidurias are a heterogeneous group of rare inherited metabolic disorders (IMDs) caused by a deficiency of an enzyme or a transport protein involved in the intermediary metabolic pathways. These enzymatic defects lead to an accumulation of organic acids in different tissues and their subsequent excretion in urine. Organic acidurias include maple syrup urine disease, propionic aciduria, methylmalonic aciduria, isovaleric aciduria, and glutaric aciduria type 1. Clinical features vary between different organic acid disorders and may present with severe complications. An increasing number of women with rare IMDs are reporting successful pregnancy outcomes. Normal pregnancy causes profound anatomical, biochemical and physiological changes. Significant changes in metabolism and nutritional requirements take place during different stages of pregnancy in IMDs. Foetal demands increase with the progression of pregnancy, representing a challenging biological stressor in patients with organic acidurias as well as catabolic states post-delivery. In this work, we present an overview of metabolic considerations for pregnancy in patients with organic acidurias.
Collapse
Affiliation(s)
- Loai A. Shakerdi
- National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Barbara Gillman
- National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Emma Corcoran
- National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Jenny McNulty
- National Centre for Inherited Metabolic Disorders (NCIMD), Childrens Health Ireland at Temple Street, Temple Street, D01 XD99 Dublin, Ireland
| | - Eileen P. Treacy
- The Irish National Rare Disease Office, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Discipline of Medicine, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- University College Dublin (UCD) School of Medicine, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
10
|
Martinelli D, Catesini G, Greco B, Guarnera A, Parrillo C, Maines E, Longo D, Napolitano A, De Nictolis F, Cairoli S, Liccardo D, Caviglia S, Sidorina A, Olivieri G, Siri B, Bianchi R, Spagnoletti G, Dello Strologo L, Spada M, Dionisi-Vici C. Neurologic outcome following liver transplantation for methylmalonic aciduria. J Inherit Metab Dis 2023; 46:450-465. [PMID: 36861405 DOI: 10.1002/jimd.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Liver and liver/kidney transplantation are increasingly used in methylmalonic aciduria, but little is known on their impact on CNS. The effect of transplantation on neurological outcome was prospectively assessed in six patients pre- and post-transplant by clinical evaluation and by measuring disease biomarkers in plasma and CSF, in combination with psychometric tests and brain MRI studies. Primary (methylmalonic- and methylcitric acid) and secondary biomarkers (glycine and glutamine) significantly improved in plasma, while they remained unchanged in CSF. Differently, biomarkers of mitochondrial dysfunction (lactate, alanine, and related ratios) significantly decreased in CSF. Neurocognitive evaluation documented significant higher post-transplant developmental/cognitive scores and maturation of executive functions corresponding to improvement of brain atrophy, cortical thickness, and white matter maturation indexes at MRI. Three patients presented post-transplantation reversible neurological events, which were differentiated, by means of biochemical and neuroradiological evaluations, into calcineurin inhibitor-induced neurotoxicity and metabolic stroke-like episode. Our study shows that transplantation has a beneficial impact on neurological outcome in methylmalonic aciduria. Early transplantation is recommended due to the high risk of long-term complications, high disease burden, and low quality of life.
Collapse
Affiliation(s)
- Diego Martinelli
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giulio Catesini
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Benedetta Greco
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
- Clinical Psychology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Guarnera
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Parrillo
- Medical Physics Unit, Risk Management Enterprise, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Evelina Maines
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
- Pediatric Department, S.Chiara Hospital of Trento, Trento, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Unit, Risk Management Enterprise, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca De Nictolis
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Sara Cairoli
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniela Liccardo
- Division of Hepatology, Gastroenterology and Nutrition, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Caviglia
- Clinical Psychology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Sidorina
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giorgia Olivieri
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Barbara Siri
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Roberto Bianchi
- Department of Anesthesiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gionata Spagnoletti
- Unit of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Dello Strologo
- Renal Transplant Unit, Bambino Gesù, Children's Hospital, IRCCS, Rome, Italy
| | - Marco Spada
- Unit of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
11
|
Henning A, Glasser J. A DEADLY CASE OF DEHYDRATION: ORGANIC ACIDEMIAS IN THE EMERGENCY DEPARTMENT. J Emerg Med 2023; 64:496-501. [PMID: 37002163 DOI: 10.1016/j.jemermed.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Organic acidemias are rare genetic mutations, most commonly identified in the newborn period. Late-onset presentations present a diagnostic conundrum. Early identification and appropriate management can be lifesaving. CASE REPORT We describe the case of a 3-year-old boy who presented to urgent care with 2 days of nausea, vomiting, and diarrhea followed by respiratory distress, shock, and encephalopathy. Brisk recognition of his shock state led to an urgent transfer to a tertiary care pediatric emergency department by air where his shock was treated and hyperammonemia was uncovered, leading to the diagnosis of late-onset propionic acidemia, which was subsequently managed with a good outcome. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Late-onset presentations of inborn errors of metabolism, including organic acidemias, represent one of the most challenging pediatric cases an emergency physician can encounter. This case reviews the management and diagnosis of a late-onset inborn error of metabolism and emphasizes how prompt diagnosis and treatment can lead to a favorable outcome.
Collapse
Affiliation(s)
- Allison Henning
- Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania; Department of Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Joshua Glasser
- Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania; Department of Emergency Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
12
|
Tims S, Marsaux C, Pinto A, Daly A, Karall D, Kuhn M, Santra S, Roeselers G, Knol J, MacDonald A, Scholl-Bürgi S. Altered gut microbiome diversity and function in patients with propionic acidemia. Mol Genet Metab 2022; 137:308-322. [PMID: 36274442 DOI: 10.1016/j.ymgme.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Propionic acidemia (PA) is an inherited metabolic disorder of propionate metabolism, where the gut microbiota may play a role in pathophysiology and therefore, represent a relevant therapeutic target. Little is known about the gut microbiota composition and activity in patients with PA. Although clinical practice varies between metabolic treatment centers, management of PA requires combined dietary and pharmaceutical treatments, both known to affect the gut microbiota. This study aimed to characterize the gut microbiota and its metabolites in fecal samples of patients with PA compared with healthy controls from the same household. Eight patients (aged 3-14y) and 8 controls (4-31y) were recruited from Center 1 (UK) and 7 patients (11-33y) and 6 controls (15-54y) from Center 2 (Austria). Stool samples were collected 4 times over 3 months, alongside data on dietary intakes and medication usage. Several microbial taxa differed between patients with PA and controls, particularly for Center 1, e.g., Proteobacteria levels were increased, whereas butyrate-producing genera, such as Roseburia and Faecalibacterium, were decreased. Most measured microbial metabolites were lower in patients with PA, and butyrate was particularly depleted in patients from Center 1. Furthermore, microbiota profile of these patients showed the lowest compositional and functional diversity, and lowest stability over 3 months. As the first study to map the gut microbiota of patients with PA, this work represents an important step forward for developing new therapeutic strategies to further improve PA clinical status. New dietary strategies should consider microbial propionate production as well as butyrate production and microbiota stability.
Collapse
Affiliation(s)
- Sebastian Tims
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands.
| | - Cyril Marsaux
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands.
| | - Alex Pinto
- Department of Dietetics, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Anne Daly
- Department of Dietetics, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Daniela Karall
- Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria.
| | - Mirjam Kuhn
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands.
| | - Saikat Santra
- Department of Clinical Inherited Metabolic Disorders, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Guus Roeselers
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands.
| | - Jan Knol
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands; Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708WE Wageningen, the Netherlands.
| | - Anita MacDonald
- Department of Dietetics, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Sabine Scholl-Bürgi
- Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria.
| |
Collapse
|
13
|
Ribas GS, Lopes FF, Deon M, Vargas CR. Hyperammonemia in Inherited Metabolic Diseases. Cell Mol Neurobiol 2022; 42:2593-2610. [PMID: 34665389 PMCID: PMC11421644 DOI: 10.1007/s10571-021-01156-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - Franciele Fátima Lopes
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
14
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
15
|
Longo N, Sass JO, Jurecka A, Vockley J. Biomarkers for drug development in propionic and methylmalonic acidemias. J Inherit Metab Dis 2022; 45:132-143. [PMID: 35038174 PMCID: PMC9303879 DOI: 10.1002/jimd.12478] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/13/2022]
Abstract
There is an unmet need for the development and validation of biomarkers and surrogate endpoints for clinical trials in propionic acidemia (PA) and methylmalonic acidemia (MMA). This review examines the pathophysiology and clinical consequences of PA and MMA that could form the basis for potential biomarkers and surrogate endpoints. Changes in primary metabolites such as methylcitric acid (MCA), MCA:citric acid ratio, oxidation of 13 C-propionate (exhaled 13 CO2 ), and propionylcarnitine (C3) have demonstrated clinical relevance in patients with PA or MMA. Methylmalonic acid, another primary metabolite, is a potential biomarker, but only in patients with MMA. Other potential biomarkers in patients with either PA and MMA include secondary metabolites, such as ammonium, or the mitochondrial disease marker, fibroblast growth factor 21. Additional research is needed to validate these biomarkers as surrogate endpoints, and to determine whether other metabolites or markers of organ damage could also be useful biomarkers for clinical trials of investigational drug treatments in patients with PA or MMA. This review examines the evidence supporting a variety of possible biomarkers for drug development in propionic and methylmalonic acidemias.
Collapse
Affiliation(s)
- Nicola Longo
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein‐Sieg University of Applied SciencesRheinbachGermany
| | | | - Jerry Vockley
- Division Medical Genetics, Department of PediatricsUniversity of Pittsburgh, School of Medicine, Center for Rare Disease Therapy, UPMC Children's Hospital of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
16
|
Stanescu S, Belanger-Quintana A, Fernandez-Felix BM, Ruiz-Sala P, del Valle M, Garcia F, Arrieta F, Martinez-Pardo M. Interorgan amino acid interchange in propionic acidemia: the missing key to understanding its physiopathology. Amino Acids 2022; 54:777-786. [PMID: 35098378 PMCID: PMC9167193 DOI: 10.1007/s00726-022-03128-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Abstract
Background
Propionic acidemia is an inborn error of metabolism caused by a deficiency in the mitochondrial enzyme propionyl-CoA carboxylase that converts the propionyl CoA to methyl malonyl CoA. This leads to profound changes in distinct metabolic pathways, including the urea cycle, with consequences in ammonia detoxification. The implication of the tricarboxylic acid cycle is less well known, but its repercussions could explain both some of the acute and long-term symptoms of this disease.
Materials and methods
The present observational study investigates the amino acid profiles of patients with propionic acidemia being monitored at the Hospital Ramón y Cajal (Madrid, Spain), between January 2015 and September 2017, comparing periods of metabolic stability with those of decompensation with ketosis and/or hyperammonemia.
Results
The concentrations of 19 amino acids were determined in 188 samples provided by 10 patients. We identified 40 metabolic decompensation episodes (22 only with ketosis and 18 with hyperammonemia). Plasma glutamine and alanine levels were reduced during these metabolic crises, probably indicating deficiency of anaplerosis (p < 0.001 for both alanine and glutamine). Hypocitrulllinemia and hypoprolinemia were also detected during hyperammonemia (p < 0.001 and 0.03, respectively).
Conclusions
The amino acid profile detected during decompensation episodes suggests deficient anaplerosis from propionyl-CoA and its precursors, with implications in other metabolic pathways like synthesis of urea cycle amino acids and ammonia detoxification.
Collapse
Affiliation(s)
- Sinziana Stanescu
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| | - Amaya Belanger-Quintana
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| | - Borja Manuel Fernandez-Felix
- Unidad de Bioestadistica Clinica, Instituto Ramon y Cajal de Investigacion Sanitaria. Hospital Universitario Ramón y Cajal, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, PC 28049, Madrid, Spain
| | - Mercedes del Valle
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, PC 28049, Madrid, Spain
| | - Fernando Garcia
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, PC 28049, Madrid, Spain
| | - Francisco Arrieta
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, CIBER-OBN, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| | - Mercedes Martinez-Pardo
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, Crta de Colmenar Viejo, km 9,100, PC 28034, Madrid, Spain
| |
Collapse
|
17
|
He W, Wang Y, Xie EJ, Barry MA, Zhang GF. Metabolic perturbations mediated by propionyl-CoA accumulation in organs of mouse model of propionic acidemia. Mol Genet Metab 2021; 134:257-266. [PMID: 34635437 DOI: 10.1016/j.ymgme.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
Propionic acidemia (PA) is an autosomal recessive metabolic disorder after gene encoding propionyl-CoA carboxylase, Pcca or Pccb, is mutated. This genetic disorder could develop various complications which are ascribed to dysregulated propionyl-CoA metabolism in organs. However, the effect of attenuated PCC on propionyl-CoA metabolism in different organs remains to be fully understood. We investigated metabolic perturbations in organs of Pcca-/-(A138T) mice (a mouse model of PA) under chow diet and acute administration of [13C3]propionate to gain insight into pathological mechanisms of PA. With chow diet, the metabolic alteration is organ dependent. l-Carnitine reduction induced by propionylcarnitine accumulation only occurs in lung and liver of Pcca-/- (A138T) mice. [13C3]Propionate tracing data demonstrated that PCC activity was dramatically reduced in Pcca-/-(A138T) brain, lung, liver, kidney, and adipose tissues, but not significantly changed in Pcca-/-(A138T) muscles (heart and skeletal muscles) and pancreas, which was largely supported by PCCA expression data. The largest expansion of propionylcarnitine in Pcca-/-(A138T) heart after acute administration of propionate indicated the vulnerability of heart to high circulating propionate. The overwhelming propionate in blood also stimulated ketone production from the increased fatty acid oxidation in Pcca-/-(A138T) liver by lowering malonyl-CoA, which has been observed in cases where metabolic decompensation occurs in PA patients. This work shed light on organ-specific metabolic alternations under varying severities of PA.
Collapse
Affiliation(s)
- Wentao He
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - You Wang
- School of Basic Medicine, Jining Medical University, Shandong 272067, China
| | - Erik J Xie
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
18
|
Forny P, Hörster F, Ballhausen D, Chakrapani A, Chapman KA, Dionisi‐Vici C, Dixon M, Grünert SC, Grunewald S, Haliloglu G, Hochuli M, Honzik T, Karall D, Martinelli D, Molema F, Sass JO, Scholl‐Bürgi S, Tal G, Williams M, Huemer M, Baumgartner MR. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis 2021; 44:566-592. [PMID: 33595124 PMCID: PMC8252715 DOI: 10.1002/jimd.12370] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ballhausen
- Paediatric Unit for Metabolic Diseases, Department of Woman‐Mother‐ChildUniversity Hospital LausanneLausanneSwitzerland
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Kimberly A. Chapman
- Rare Disease Institute, Children's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlo Dionisi‐Vici
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sarah C. Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre‐University of FreiburgFaculty of MedicineFreiburgGermany
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Goknur Haliloglu
- Department of Pediatrics, Division of Pediatric NeurologyHacettepe University Children's HospitalAnkaraTurkey
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Daniela Karall
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jörn Oliver Sass
- Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein Sieg University of Applied SciencesRheinbachGermany
| | - Sabine Scholl‐Bürgi
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's HospitalRambam Health Care CampusHaifaIsrael
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
- Department of PaediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
19
|
Armstrong AJ, Collado MS, Henke BR, Olson MW, Hoang SA, Hamilton CA, Pourtaheri TD, Chapman KA, Summar MM, Johns BA, Wamhoff BR, Reardon JE, Figler RA. A novel small molecule approach for the treatment of propionic and methylmalonic acidemias. Mol Genet Metab 2021; 133:71-82. [PMID: 33741272 PMCID: PMC9109253 DOI: 10.1016/j.ymgme.2021.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Propionic Acidemia (PA) and Methylmalonic Acidemia (MMA) are inborn errors of metabolism affecting the catabolism of valine, isoleucine, methionine, threonine and odd-chain fatty acids. These are multi-organ disorders caused by the enzymatic deficiency of propionyl-CoA carboxylase (PCC) or methylmalonyl-CoA mutase (MUT), resulting in the accumulation of propionyl-coenzyme A (P-CoA) and methylmalonyl-CoA (M-CoA in MMA only). Primary metabolites of these CoA esters include 2-methylcitric acid (MCA), propionyl-carnitine (C3), and 3-hydroxypropionic acid, which are detectable in both PA and MMA, and methylmalonic acid, which is detectable in MMA patients only (Chapman et al., 2012). We deployed liver cell-based models that utilized PA and MMA patient-derived primary hepatocytes to validate a small molecule therapy for PA and MMA patients. The small molecule, HST5040, resulted in a dose-dependent reduction in the levels of P-CoA, M-CoA (in MMA) and the disease-relevant biomarkers C3, MCA, and methylmalonic acid (in MMA). A putative working model of how HST5040 reduces the P-CoA and its derived metabolites involves the conversion of HST5040 to HST5040-CoA driving the redistribution of free and conjugated CoA pools, resulting in the differential reduction of the aberrantly high P-CoA and M-CoA. The reduction of P-CoA and M-CoA, either by slowing production (due to increased demands on the free CoA (CoASH) pool) or enhancing clearance (to replenish the CoASH pool), results in a net decrease in the CoA-derived metabolites (C3, MCA and MMA (MMA only)). A Phase 2 study in PA and MMA patients will be initiated in the United States.
Collapse
Affiliation(s)
| | | | - Brad R Henke
- HemoShear Therapeutics, Inc., Charlottesville, VA, USA
| | | | | | | | | | | | | | - Brian A Johns
- HemoShear Therapeutics, Inc., Charlottesville, VA, USA
| | | | | | | |
Collapse
|
20
|
Long-term N-carbamylglutamate treatment of hyperammonemia in patients with classic organic acidemias. Mol Genet Metab Rep 2021; 26:100715. [PMID: 33552909 PMCID: PMC7851327 DOI: 10.1016/j.ymgmr.2021.100715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background Classic organic acidurias (OAs) usually characterized by recurrent episodes of acidemia, ketonuria, and hyperammonemia leading to coma and even death if left untreated. Acute hyperammonemia episodes can be treated effectively with N-carbamylglutamate (NCG). The effect of the long-term efficacy of N-carbamylglutamate is little known. Material-Methods This retrospective study was conducted at Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Pediatric Nutrition and Metabolism Clinic between January 2012 to January 2018. Patients with classic OAs were enrolled in the study. Patients' ammonia levels, hospitalization needs, hyperammonemia episodes, and management of hyperammonemia were recorded. NCG usage for more than consecutively 15 days was considered as a long-term treatment. Results Twenty-one patients, consisting of eleven patients with methylmalonic acidemia (MMA) and ten patients with propionic acidemia (PA) were eligible for the study. N-carbamylglutamate was used as ammonia scavenger for a total of 484 months with a median period of 23 months (min-max: 3-51 months) in all patients. A significant decrease in plasma ammonia levels was detected during long term NCG treatment (55.31 ± 13.762 μmol/L) in comparison with pre NCG treatment period (69.64 ± 17.828 μmol/L) (p = 0.021). Hospitalization required hyperammonemia episodes decreased with NCG treatment (p = 0.013). In addition, hyperammonemia episodes were also successfully treated with NCG (p = 0.000). Mean initial and final ammonia levels at the time of hyperammonemia episodes were 142 ± 46.495 μmol/L and 42.739 ± 12.120 μmol/L, respectively. The average NCG dosage was 85 mg/kg/day (range 12.5-250 mg/kg/day). No apparent side effects were observed. Conclusion N-Carbamylglutamate may be deemed an effective and safe treatment modality in the chronic management of hyperammonemia in patients with PA and MMA.
Collapse
|
21
|
Stanescu S, Belanger‐Quintana A, Fernández‐Felix BM, Pérez‐Cerdá C, Merinero B, Ruiz‐Sala P, Arrieta F, Martínez‐Pardo M. Long-term follow-up with filter paper samples in patients with propionic acidemia. JIMD Rep 2021; 57:44-51. [PMID: 33473339 PMCID: PMC7802619 DOI: 10.1002/jmd2.12166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Propionic acidemia (PA) is an inherited disorder caused by deficiency of propionyl CoA carboxylase. Most patients with this disorder are diagnosed during the neonatal period because of severe metabolic acidosis and hyperammonemia. Patients are required to undergo blood and urine analysis at least 3 to 4 times per year, depending on age and metabolic control. METHODS We designed a prospective study in which we investigated the results from blood and urinary samples collected monthly in filter paper from 10 PA patients followed in a single metabolic reference center from January 2015 to September 2017. The aim of this study was to evaluate the usefulness of filter paper samples in the follow-up of the PA patients. RESULTS During the follow-up period, 163 dried blood spot (DBS) and 119 urine dried spot samples were analyzed and compared with 160 plasma and 103 liquid urine specimens; 64 specimens of plasma were analyzed for odd-numbered long-chain fatty acids (OLCFAs). A total of 40 metabolic crises, 18 of them with hyperammonemia were documented. We observed a strong correlation between the filter paper and the urine/plasma samples for the main PA parameters both in stable metabolic conditions as well as in acute decompensations. Also, there was a strong correlation between OLCFAs measured in plasma and quantification of odd number acylcarnitines in DBS. CONCLUSIONS We conclude that filter paper blood and urinary samples can be used for the follow-up of the patients with PA, correctly reflecting their metabolic situation.
Collapse
Affiliation(s)
- Sinziana Stanescu
- Unidad de Enfermedades MetabólicasHospital Universitario Ramón y Cajal, IRYCIS, CIBER‐OBNMadridSpain
| | - Amaya Belanger‐Quintana
- Unidad de Enfermedades MetabólicasHospital Universitario Ramón y Cajal, IRYCIS, CIBER‐OBNMadridSpain
| | - Borja Manuel Fernández‐Felix
- Unidad de Bioestadística ClínicaInstituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y CajalMadridSpain
| | - Celia Pérez‐Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZMadridSpain
| | - Begoña Merinero
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZMadridSpain
| | - Pedro Ruiz‐Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología MolecularUniversidad Autónoma de Madrid, CIBERER, IdiPAZMadridSpain
| | - Francisco Arrieta
- Unidad de Enfermedades MetabólicasHospital Universitario Ramón y Cajal, IRYCIS, CIBER‐OBNMadridSpain
| | - Mercedes Martínez‐Pardo
- Unidad de Enfermedades MetabólicasHospital Universitario Ramón y Cajal, IRYCIS, CIBER‐OBNMadridSpain
| |
Collapse
|
22
|
Propionic and Methylmalonic Acidemias: Initial Clinical and Biochemical Presentation. Int J Pediatr 2020; 2020:7653716. [PMID: 33293965 PMCID: PMC7700050 DOI: 10.1155/2020/7653716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/07/2020] [Accepted: 11/07/2020] [Indexed: 11/18/2022] Open
Abstract
PA and MAA have numerous nonspecific presentations, potentially leading to delayed diagnosis or misdiagnosis. In this paper, we present the clinical and biochemical characteristics of MMA and PA patients at initial presentation. Results. This is a retrospective review of 20 patients with PA (n = 10) and MMA (n = 10). The most observed symptoms were vomiting (85%) and refusing feeding (70%). Ammonia was 108.75 ± 9.3 μmol/l, showing a negative correlation with pH and bicarbonate and positive correlation with lactate and anion gap. Peak ammonia did not correlate with age of onset (r = 0.11 and p = 0.64) or age at diagnosis (r = 0.39 and p = 0.089), nor did pH (r = 0.01, p = 0.96; r = −0.25, p = 0.28) or bicarbonate (r = 0.07, p = 0.76; r = −0.22, p = 0.34). There was no correlation between ammonia and C3 : C2 (r = 0.1 and p = 0.96) or C3 (r = 0.23 and p = 0.32). The glycine was 386 ± 167.1 μmol/l, and it was higher in PA (p = 0.003). There was a positive correlation between glycine and both pH (r = 0.56 and p = 0.01) and HCO3 (r = 0.49 and p = 0.026). There was no correlation between glycine and ammonia (r = −0.435 and p = 0.055) or lactate (r = 0.32 and p = 0.160). Conclusion. Clinical presentation of PA and MMA is nonspecific, though vomiting and refusing feeding are potential markers of decompensation. Blood gas, lactate, and ammonia levels are also good predictors of decompensation, though increasing levels of glycine may not indicate metabolic instability.
Collapse
|
23
|
Maines E, Catesini G, Boenzi S, Mosca A, Candusso M, Dello Strologo L, Martinelli D, Maiorana A, Liguori A, Olivieri G, Taurisano R, Piemonte F, Rizzo C, Spada M, Dionisi-Vici C. Plasma methylcitric acid and its correlations with other disease biomarkers: The impact in the follow up of patients with propionic and methylmalonic acidemia. J Inherit Metab Dis 2020; 43:1173-1185. [PMID: 32681732 DOI: 10.1002/jimd.12287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Methylcitric acid (MCA) analysis has been mainly utilized for the diagnosis of propionate disorders or as a second-tier test in newborn screening, but its utility for patients monitoring still needs to be established. We explored the potential contribution of MCA in the long-term management of organic acidurias. We prospectively evaluated plasma MCA and its relationship with disease biomarkers, clinical status, and disease burden in 22 patients, 13 with propionic acidemia (PA) and nine with methylmalonic acidemia (MMA) on standard treatment and/or after transplantation. Samples were collected at scheduled routine controls or during episodes of metabolic decompensation (MD), 10 patients were evaluated after transplantation (six liver, two combined liver and kidney, 2 kidney). MCA levels were higher in PA compared to MMA and its levels were not influenced by the clinical status (MD vs well state). In MMA, MCA was higher in elder patients and, along with fibroblast growth factor 21 (FGF21) and plasma methylmalonic acid, negatively correlated with GFR. In both diseases, MCA correlated with ammonia, glycine, lysine, C3, and the C3/C2, C3/C16 ratios. The disease burden showed a direct correlation with MCA and FGF21, for both diseases. All transplanted patients showed a significant reduction of MCA in comparison to baseline values, with some differences dependent on the type of transplantation. Our study provided new insights in understanding the disease pathophysiology, showing similarities between MCA and FGF21 in predicting disease burden, long-term complications and in evaluating the impact of organ transplantation.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giulio Catesini
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Boenzi
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Antonella Mosca
- Division of Hepatology, Gastroenterology and Nutrition, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Manila Candusso
- Division of Hepatology, Gastroenterology and Nutrition, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Arianna Maiorana
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandra Liguori
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giorgia Olivieri
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Roberta Taurisano
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
24
|
Collado MS, Armstrong AJ, Olson M, Hoang SA, Day N, Summar M, Chapman KA, Reardon J, Figler RA, Wamhoff BR. Biochemical and anaplerotic applications of in vitro models of propionic acidemia and methylmalonic acidemia using patient-derived primary hepatocytes. Mol Genet Metab 2020; 130:183-196. [PMID: 32451238 PMCID: PMC7337260 DOI: 10.1016/j.ymgme.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Propionic acidemia (PA) and methylmalonic acidemia (MMA) are autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, which are caused by a deficiency in the enzyme propionyl-CoA carboxylase or the enzyme methylmalonyl-CoA (MM-CoA) mutase, respectively. The functional consequence of PA or MMA is the inability to catabolize P-CoA to MM-CoA or MM-CoA to succinyl-CoA, resulting in the accumulation of P-CoA and other metabolic intermediates, such as propionylcarnitine (C3), 3-hydroxypropionic acid, methylcitric acid (MCA), and methylmalonic acid (only in MMA). P-CoA and its metabolic intermediates, at high concentrations found in PA and MMA, inhibit enzymes in the first steps of the urea cycle as well as enzymes in the tricarboxylic acid (TCA) cycle, causing a reduction in mitochondrial energy production. We previously showed that metabolic defects of PA could be recapitulated using PA patient-derived primary hepatocytes in a novel organotypic system. Here, we sought to investigate whether treatment of normal human primary hepatocytes with propionate would recapitulate some of the biochemical features of PA and MMA in the same platform. We found that high levels of propionate resulted in high levels of intracellular P-CoA in normal hepatocytes. Analysis of TCA cycle intermediates by GC-MS/MS indicated that propionate may inhibit enzymes of the TCA cycle as shown in PA, but is also incorporated in the TCA cycle, which does not occur in PA. To better recapitulate the disease phenotype, we obtained hepatocytes derived from livers of PA and MMA patients. We characterized the PA and MMA donors by measuring key proximal biomarkers, including P-CoA, MM-CoA, as well as clinical biomarkers propionylcarnitine-to-acetylcarnitine ratios (C3/C2), MCA, and methylmalonic acid. Additionally, we used isotopically-labeled amino acids to investigate the contribution of relevant amino acids to production of P-CoA in models of metabolic stability or acute metabolic crisis. As observed clinically, we demonstrated that the isoleucine and valine catabolism pathways are the greatest sources of P-CoA in PA and MMA donor cells and that each donor showed differential sensitivity to isoleucine and valine. We also studied the effects of disodium citrate, an anaplerotic therapy, which resulted in a significant increase in the absolute concentration of TCA cycle intermediates, which is in agreement with the benefit observed clinically. Our human cell-based PA and MMA disease models can inform preclinical drug discovery and development where mouse models of these diseases are inaccurate, particularly in well-described species differences in branched-chain amino acid catabolism.
Collapse
Affiliation(s)
- M Sol Collado
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | | | - Matthew Olson
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | | | - Nathan Day
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | - Marshall Summar
- Children's National Rare Disease Institute, Washington, DC, USA
| | | | - John Reardon
- HemoShear Therapeutics, LLC, Charlottesville, VA, USA
| | | | | |
Collapse
|
25
|
Understanding acute metabolic decompensation in propionic and methylmalonic acidemias: a deep metabolic phenotyping approach. Orphanet J Rare Dis 2020; 15:68. [PMID: 32143654 PMCID: PMC7060614 DOI: 10.1186/s13023-020-1347-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pathophysiology of life-threatening acute metabolic decompensations (AMD) in propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) is insufficiently understood. Here, we study the metabolomes of PA and MMA patients over time, to improve insight in which biochemical processes are at play during AMD. METHODS Longitudinal data from clinical chemistry analyses and metabolic assays over the life-course of 11 PA and 13 MMA patients were studied retrospectively. Direct-infusion high-resolution mass spectrometry was performed on 234 and 154 remnant dried blood spot and plasma samples of PA and MMA patients, respectively. In addition, a systematic literature search was performed on reported biomarkers. All results were integrated in an assessment of biochemical processes at play during AMD. RESULTS We confirmed many of the metabolite alterations reported in literature, including increases of plasma valine and isoleucine during AMD in PA patients. We revealed that plasma leucine and phenylalanine, and urinary pyruvic acid were increased during AMD in PA patients. 3-hydroxyisovaleric acid correlated positively with plasma ammonia. We found that known diagnostic biomarkers were not significantly further increased, while intermediates of the branched-chain amino acid (BCAA) degradation pathway were significantly increased during AMD. CONCLUSIONS We revealed that during AMD in PA and MMA, BCAA and BCAA intermediates accumulate, while known diagnostic biomarkers remain essentially unaltered. This implies that these acidic BCAA intermediates are responsible for metabolic acidosis. Based on this, we suggest to measure plasma 3-hydroxyisovaleric acid and urinary ketones or 3-hydroxybutyric acid for the biochemical follow-up of a patient's metabolic stability.
Collapse
|
26
|
Wongkittichote P, Cunningham G, Summar ML, Pumbo E, Forny P, Baumgartner MR, Chapman KA. Tricarboxylic acid cycle enzyme activities in a mouse model of methylmalonic aciduria. Mol Genet Metab 2019; 128:444-451. [PMID: 31648943 PMCID: PMC6903684 DOI: 10.1016/j.ymgme.2019.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023]
Abstract
Methylmalonic acidemia (MMA) is a propionate pathway disorder caused by dysfunction of the mitochondrial enzyme methylmalonyl-CoA mutase (MMUT). MMUT catalyzes the conversion of methylmalonyl-CoA to succinyl-CoA, an anaplerotic reaction which feeds into the tricarboxylic acid (TCA) cycle. As part of the pathological mechanisms of MMA, previous studies have suggested there is decreased TCA activity due to a "toxic inhibition" of TCA cycle enzymes by MMA related metabolites, in addition to reduced anaplerosis. Here, we have utilized mitochondria isolated from livers of a mouse model of MMA (Mut-ko/ki) and their littermate controls (Ki/wt) to examine the amounts and enzyme functions of most of the TCA cycle enzymes. We have performed mRNA quantification, protein semi-quantitation, and enzyme activity quantification for TCA cycle enzymes in these samples. Expression profiling showed increased mRNA levels of fumarate hydratase in the Mut-ko/ki samples, which by contrast had reduced protein levels as detected by immunoblot, while all other mRNA levels were unaltered. Immunoblotting also revealed decreased protein levels of 2-oxoglutarate dehydrogenase and malate dehydrogenase 2. Interesting, the decreased protein amount of 2-oxoglutarate dehydrogenase was reflected in decreased activity for this enzyme while there is a trend towards decreased activity of fumarate hydratase and malate dehydrogenase 2. Citrate synthase, isocitrate dehydrogenase 2/3, succinyl-CoA synthase, and succinate dehydrogenase are not statistically different in terms of quantity of enzyme or activity. Finally, we found decreased activity when examining the function of methylmalonyl-CoA mutase in series with succinate synthase and succinate dehydrogenase in the Mut-ko/ki mice compared to their littermate controls, as expected. This study demonstrates decreased activity of certain TCA cycle enzymes and by corollary decreased TCA cycle function, but it supports decreased protein quantity rather than "toxic inhibition" as the underlying mechanism of action. SUMMARY: Methylmalonic acidemia (MMA) is an inborn metabolic disorder of propionate catabolism. In this disorder, toxic metabolites are considered to be the major pathogenic mechanism for acute and long-term complications. However, despite optimized therapies aimed at reducing metabolite levels, patients continue to suffer from late complications, including metabolic stroke and renal insufficiency. Since the propionate pathway feeds into the tricarboxylic acid (TCA) cycle, we investigated TCA cycle function in a constitutive MMA mouse model. We demonstrated decreased amounts of the TCA enzymes, Mdh2 and Ogdh as semi-quantified by immunoblot. Enzymatic activity of Ogdh is also decreased in the MMA mouse model compared to controls. Thus, when the enzyme amounts are decreased, we see the enzymatic activity also decreased to a similar extent for Ogdh. Further studies to elucidate the structural and/or functional links between the TCA cycle and propionate pathways might lead to new treatment approaches for MMA patients.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Children's National Rare Disease Institute, Children's National Health System, Washington DC 20010, United States; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Gary Cunningham
- Children's National Rare Disease Institute, Children's National Health System, Washington DC 20010, United States
| | - Marshall L Summar
- Children's National Rare Disease Institute, Children's National Health System, Washington DC 20010, United States
| | - Elena Pumbo
- Children's National Rare Disease Institute, Children's National Health System, Washington DC 20010, United States
| | - Patrick Forny
- Division of Metabolism, the Children's Research Center, The Swiss Newborn Screening Laboratory, University Children's Hospital Zurich, 8032 Zurich, Switzerland; The radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, the Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism, the Children's Research Center, The Swiss Newborn Screening Laboratory, University Children's Hospital Zurich, 8032 Zurich, Switzerland; The radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, the Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Kimberly A Chapman
- Children's National Rare Disease Institute, Children's National Health System, Washington DC 20010, United States.
| |
Collapse
|
27
|
Shankar S, Valamparampil J, Rammohan A, Thiruchunapalli D, Reddy MS, Shanmugam N, Rela M. Minimally Invasive Treatment of Metabolic Decompensation Due to Portal Steal in Auxiliary Liver Transplantation. Liver Transpl 2019; 25:960-963. [PMID: 30938922 DOI: 10.1002/lt.25463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sadhana Shankar
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Joseph Valamparampil
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Ashwin Rammohan
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Deepashree Thiruchunapalli
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Mettu S Reddy
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Naresh Shanmugam
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India
| | - Mohamed Rela
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India.,Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
28
|
Chu G, Salzman J. Hyperammonemia after capecitabine associated with occult impairment of the urea cycle. Cancer Med 2019; 8:1996-2004. [PMID: 30977266 PMCID: PMC6536928 DOI: 10.1002/cam4.2036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cancer patients receiving chemotherapy often complain of “chemobrain” or cognitive impairment, but mechanisms remain elusive. Methods A patient with gastric cancer developed delirium and hyperammonemia after chemotherapy with the 5‐fluorouracil pro‐drug capecitabine. Exome sequencing facilitated a search for mutations among 43 genes associated with hyperammonemia and affecting the urea cycle directly or indirectly. Results The patient's urea cycle was impaired by capecitabine‐induced liver steatosis, and portosystemic shunting of gut ammonia into the systemic circulation. The patient was also heterozygous for amino acid substitution mutations previously reported to create dysfunctional proteins in 2 genes, ORNT2 (ornithine transporter‐2 for the urea cycle), and ETFA (electron transport flavoprotein alpha for fatty acid oxidation). The mutations explained the patient's abnormal plasma amino acid profile and exaggerated response to allopurinol challenge. Global population variations among the 43 hyperammonemia genes were assessed for inactivating mutations, and for amino acid substitutions predicted to be deleterious by complementary algorithms, SIFT and PolyPhen‐2. One or 2 deleterious mutations occur among the 43 genes in 13.9% and 1% of individuals, respectively. Conclusions Capecitabine and 5‐fluorouracil inhibit pyrimidine biosynthesis, decreasing ammonia utilization. These drugs can induce hyperammonemia in susceptible individuals. The risk factors of hyperammonemia, gene mutations and liver dysfunction, are not rare. Diagnosis will trigger appropriate treatment and ameliorate brain toxicity.
Collapse
Affiliation(s)
- Gilbert Chu
- Department of Medicine, Stanford University, Stanford, California.,Department of Biochemistry, Stanford University, Stanford, California
| | - Julia Salzman
- Department of Biochemistry, Stanford University, Stanford, California
| |
Collapse
|
29
|
Jurecki E, Ueda K, Frazier D, Rohr F, Thompson A, Hussa C, Obernolte L, Reineking B, Roberts AM, Yannicelli S, Osara Y, Stembridge A, Splett P, Singh RH. Nutrition management guideline for propionic acidemia: An evidence- and consensus-based approach. Mol Genet Metab 2019; 126:341-354. [PMID: 30879957 DOI: 10.1016/j.ymgme.2019.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
Affiliation(s)
- E Jurecki
- BioMarin Pharmaceutical Inc., Novato, CA, USA.
| | - K Ueda
- British Colombia Children's Hospital, Vancouver, BC, Canada
| | - D Frazier
- University of North Carolina, Chapel Hill, NC, USA
| | - F Rohr
- Boston Children's Hospital, Boston, MA, USA
| | - A Thompson
- Greenwood Genetic Center, Greenwood, SC, USA
| | - C Hussa
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - L Obernolte
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - B Reineking
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | | | | | - Y Osara
- Emory University, Atlanta, GA, USA
| | | | - P Splett
- University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
30
|
Häberle J, Chakrapani A, Ah Mew N, Longo N. Hyperammonaemia in classic organic acidaemias: a review of the literature and two case histories. Orphanet J Rare Dis 2018; 13:219. [PMID: 30522498 PMCID: PMC6282273 DOI: 10.1186/s13023-018-0963-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background The ‘classic’ organic acidaemias (OAs) (propionic, methylmalonic and isovaleric) typically present in neonates or infants as acute metabolic decompensation with encephalopathy. This is frequently accompanied by severe hyperammonaemia and constitutes a metabolic emergency, as increased ammonia levels and accumulating toxic metabolites are associated with life-threatening neurological complications. Repeated and frequent episodes of hyperammonaemia (alongside metabolic decompensations) can result in impaired growth and intellectual disability, the severity of which increase with longer duration of hyperammonaemia. Due to the urgency required, diagnostic evaluation and initial management of patients with suspected OAs should proceed simultaneously. Paediatricians, who do not have specialist knowledge of metabolic disorders, have the challenging task of facilitating a timely diagnosis and treatment. This article outlines how the underlying pathophysiology and biochemistry of the organic acidaemias are closely linked to their clinical presentation and management, and provides practical advice for decision-making during early, acute hyperammonaemia and metabolic decompensation in neonates and infants with organic acidaemias. Clinical management The acute management of hyperammonaemia in organic acidaemias requires administration of intravenous calories as glucose and lipids to promote anabolism, carnitine to promote urinary excretion of urinary organic acid esters, and correction of metabolic acidosis with the substitution of bicarbonate for chloride in intravenous fluids. It may also include the administration of ammonia scavengers such as sodium benzoate or sodium phenylbutyrate. Treatment with N-carbamyl-L-glutamate can rapidly normalise ammonia levels by stimulating the first step of the urea cycle. Conclusions Our understanding of optimal treatment strategies for organic acidaemias is still evolving. Timely diagnosis is essential and best achieved by the early identification of hyperammonaemia and metabolic acidosis. Correcting metabolic imbalance and hyperammonaemia are critical to prevent brain damage in affected patients.
Collapse
Affiliation(s)
- Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anupam Chakrapani
- Department of Clinical Inherited Metabolic Disorders, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nicholas Ah Mew
- Children's National Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Nicola Longo
- Department of Pediatrics, Division of Medical Genetics, University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
31
|
Chakrapani A, Valayannopoulos V, Segarra NG, Del Toro M, Donati MA, García-Cazorla A, González MJ, Plisson C, Giordano V. Effect of carglumic acid with or without ammonia scavengers on hyperammonaemia in acute decompensation episodes of organic acidurias. Orphanet J Rare Dis 2018; 13:97. [PMID: 29925411 PMCID: PMC6011521 DOI: 10.1186/s13023-018-0840-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/11/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hyperammonaemia is a key sign of decompensation in organic acidurias (OAs) and can contribute to severe neurological complications, thus requiring rapid treatment. METHODS A post-hoc analysis of two retrospective studies analysed the efficacy of carglumic acid ± ammonia (NH3) scavengers compared with scavengers alone for reducing plasma NH3 levels in patients with OAs and hyperammonaemia (plasma NH3 > 60 μmol/L) during decompensation episodes. NH3 was analysed in 12-h periods at 0-48 h and 24-h periods at 48-120 h. Treatment-emergent adverse events (TEAEs) were recorded. RESULTS Of 98 episodes, 38 were treated with carglumic acid (34 patients), 33 with NH3 scavengers (22 patients) and 27 with carglumic acid combined with NH3 scavengers (27 patients). Overall, 45% (carglumic acid group), 46% (NH3 scavengers group) and 74% (combination group) of episodes occurred in neonates. Median episode duration was 6 days for the carglumic acid and combination groups, and 9 days for the NH3 scavenger group. Median baseline NH3 level was: 199 μmol/L, carglumic acid; 122 μmol/L, NH3 scavengers; and 271 μmol/L, combination; 13, 30 and 11% of episodes required extracorporeal detoxification (ED), respectively. Data were censored at ED initiation. While baseline NH3 levels were higher in the combination and carglumic acid groups, mean reduction in NH3 levels to 72 h in both groups was greater than the NH3 scavengers' group; reductions were greatest in the combination group. Mean change in plasma NH3 vs baseline in the carglumic acid, NH3 scavengers and combination groups, respectively, was - 13, + 12% and - 27% at 0-12 h (p < 0.05 NH3 scavengers vs combination); - 47, - 22% and - 52% at 12-24 h (not significant); - 44, - 5% and - 61% at 24-48 h; and - 66, - 16% and - 76% at 48-72 h (p < 0.05 carglumic acid/combination groups vs NH3 scavengers for both timepoints). The number of TEAEs was similar between groups and mainly related to the disease/condition. CONCLUSIONS Carglumic acid is a well-tolerated and efficacious treatment for OA decompensation episodes. When given alone or combined with NH3 scavengers, the reduction in NH3 was greater than with NH3 scavengers alone in the first 72 h.
Collapse
Affiliation(s)
- Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
| | - Vassili Valayannopoulos
- Hôpital Necker-Enfants Malades, Paris, France.,Present Address: Sanofi Genzyme Corporation, Cambridge, MA, USA
| | - Nuria García Segarra
- Reference Centre for Inherited Metabolic Diseases, Hôpital Robert Debré, Paris, France.,Present Address: Centre Pédiatrique de Meyrin, Meyrin, Switzerland
| | - Mireia Del Toro
- Servicio de Neurologíia Infantil, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Maria Alice Donati
- Reference Centre for Inherited Metabolic and Muscular Disease, Azienda Ospedaliero Universitaria Meyer, Florence, Italy
| | | | | | | | | |
Collapse
|
32
|
Tummolo A, Melpignano L, Carella A, Di Mauro AM, Piccinno E, Vendemiale M, Ortolani F, Fedele S, Masciopinto M, Papadia F. Long-term continuous N-carbamylglutamate treatment in frequently decompensated propionic acidemia: a case report. J Med Case Rep 2018; 12:103. [PMID: 29679984 PMCID: PMC5911373 DOI: 10.1186/s13256-018-1631-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 02/22/2018] [Indexed: 11/10/2022] Open
Abstract
Background Propionic acidemia is a rare autosomal recessive inherited metabolic disorder that can inhibit the synthesis of N-acetylglutamate, the obligatory activator in urea synthesis, leading to hyperammonemia. N-carbamylglutamate ameliorates hyperammonemia in decompensated propionic acidemia. The effects of long-term continuous N-acetylglutamate administration in such patients are unknown. We report our clinical experience with continuous administration of N-acetylglutamate for 6 years in a patient with propionic acidemia frequently presenting with hyperammonemia. Case presentation A male Caucasian patient with frequently decompensated propionic acidemia and hyperammonemia was admitted 78 times for acute attacks during the first 9 years of his life. Continuous daily treatment with oral N-carbamylglutamate 100 mg/kg (50 mg/kg after 6 months) was initiated. During 6 years of treatment, he had a significant decrease in his mean plasma ammonia levels (75.7 μmol/L vs. 140.3 μmol/L before N-carbamylglutamate therapy, p < 0.005 [normal range 50–80 μmol/L]) and fewer acute episodes (two in 6 years). Conclusion Our results suggest a benefit of N-acetylglutamate administration outside the emergency setting. If this observation is confirmed, future studies should aim to optimize the dosage and explore effects of the dosage requirements on other drugs and on protein tolerance.
Collapse
Affiliation(s)
- Albina Tummolo
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy.
| | - Livio Melpignano
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy
| | - Antonella Carella
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy
| | - Anna Maria Di Mauro
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy
| | - Elvira Piccinno
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy
| | - Marcella Vendemiale
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy
| | - Federica Ortolani
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy
| | - Stefania Fedele
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy
| | - Maristella Masciopinto
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy
| | - Francesco Papadia
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Via Amendola 207, 70126, Bari, Italy
| |
Collapse
|
33
|
Maines E, Piccoli G, Pascarella A, Colucci F, Burlina AB. Inherited hyperammonemias: a Contemporary view on pathogenesis and diagnosis. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1409108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Evelina Maines
- Pediatric Unit, Provincial Centre for Rare Diseases, Department of Women’s and Children’s Health, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Giovanni Piccoli
- CIBIO - Centre for integrative biology, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Antonia Pascarella
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| | - Francesca Colucci
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| |
Collapse
|
34
|
Wilson KA, Han Y, Zhang M, Hess JP, Chapman KA, Cline GW, Tochtrop GP, Brunengraber H, Zhang GF. Inter-relations between 3-hydroxypropionate and propionate metabolism in rat liver: relevance to disorders of propionyl-CoA metabolism. Am J Physiol Endocrinol Metab 2017; 313:E413-E428. [PMID: 28634175 PMCID: PMC5668600 DOI: 10.1152/ajpendo.00105.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/25/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022]
Abstract
Propionate, 3-hydroxypropionate (3HP), methylcitrate, related compounds, and ammonium accumulate in body fluids of patients with disorders of propionyl-CoA metabolism, such as propionic acidemia. Although liver transplantation alleviates hyperammonemia, high concentrations of propionate, 3HP, and methylcitrate persist in body fluids. We hypothesized that conserved metabolic perturbations occurring in transplanted patients result from the simultaneous presence of propionate and 3HP in body fluids. We investigated the inter-relations of propionate and 3HP metabolism in perfused livers from normal rats using metabolomic and stable isotopic technologies. In the presence of propionate, 3HP, or both, we observed the following metabolic perturbations. First, the citric acid cycle (CAC) is overloaded but does not provide sufficient reducing equivalents to the respiratory chain to maintain the homeostasis of adenine nucleotides. Second, there is major CoA trapping in the propionyl-CoA pathway and a tripling of liver total CoA within 1 h. Third, liver proteolysis is stimulated. Fourth, propionate inhibits the conversion of 3HP to acetyl-CoA and its oxidation in the CAC. Fifth, some propionate and some 3HP are converted to nephrotoxic maleate by different processes. Our data have implications for the clinical management of propionic acidemia. They also emphasize the perturbations of the liver intermediary metabolism induced by supraphysiological, i.e., millimolar, concentrations of labeled propionate used to trace the intermediary metabolism, in particular, inhibition of CAC flux and major decreases in the [ATP]/[ADP] and [ATP]/[AMP] ratios.
Collapse
Affiliation(s)
- Kirkland A Wilson
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio
| | - Yong Han
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Miaoqi Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio
| | - Jeremy P Hess
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Kimberly A Chapman
- Children's National Medical Center, Washington, District of Columbia
- George Washington University, Washington, District of Columbia
| | - Gary W Cline
- Department of Internal Medicine, Yale University, New Haven, Connecticut; and
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio;
| | - Guo-Fang Zhang
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| |
Collapse
|
35
|
Longo N, Price LB, Gappmaier E, Cantor NL, Ernst SL, Bailey C, Pasquali M. Anaplerotic therapy in propionic acidemia. Mol Genet Metab 2017; 122:51-59. [PMID: 28712602 PMCID: PMC5612888 DOI: 10.1016/j.ymgme.2017.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Propionic acidemia is a rare metabolic disorder caused by a deficiency of propionyl- CoA carboxylase, the enzyme converting propionyl-CoA to methylmalonyl-CoA that subsequently enters the citric acid cycle as succinyl-CoA. Patients with propionic acidemia cannot metabolize propionic acid, which combines with oxaloacetate to form methylcitric acid. This, with the defective supply of succinyl-CoA, may lead to a deficiency in citric acid cycle intermediates. PURPOSE The objective of this study was to determine whether supplements with glutamine (400mg/kg per day), citrate (7.5mEq/kg per day), or ornithine α-ketoglutarate (400mg/kg per day) (anaplerotic agents that could fill up the citric acid cycle) would affect plasma levels of glutamine and ammonia, the urinary excretion of Krebs cycle intermediates, and the clinical outcome in 3 patients with propionic acidemia. METHODS Each supplement was administered daily for four weeks with a two week washout period between supplements. The supplement that produced the most favorable changes was supplemented for 30 weeks following the initial study period and then for a 2 year extension. RESULTS The urinary excretion of the Krebs cycle intermediates, α-ketoglutarate, succinate, and fumarate increased significantly compared to baseline during citrate supplementation, but not with the other two supplements. For this reason, citrate supplements were continued in the second part of the study. The urinary excretion of methylcitric acid and 3-hydroxypropionic acid did not change with any intervention. No significant changes in ammonia or glutamine levels were observed with any supplement. However, supplementation with any anaplerotic agents normalized the physiological buffering of ammonia by glutamate, with plasma glutamate and alanine levels significantly increasing, rather than decreasing with increasing ammonia levels. No significant side effects were observed with any therapy and safety labs (blood counts, chemistry and thyroid profile) remained unchanged. Motor and cognitive development was severely delayed before the trial and did not change significantly with therapy. Hospitalizations per year did not change during the trial period, but decreased significantly (p<0.05) in the 2years following the study (when citrate was continued) compared to the 2years before and during the study. CONCLUSIONS These results indicate that citrate entered the Krebs cycle providing successful anaplerotic therapy by increasing levels of the downstream intermediates of the Krebs cycle: α-ketoglutarate, succinate and fumarate. Citrate supplements were safe and might have contributed to reduce hospitalizations in patients with propionic acidemia.
Collapse
Affiliation(s)
- Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA; Department of Pathology, University of Utah, ARUP Laboratories, Salt Lake City, UT, USA.
| | - Leisa B Price
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Eduard Gappmaier
- Department of Physical Therapy, University of Utah, Salt Lake City, UT, USA
| | | | - Sharon L Ernst
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Carrie Bailey
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, ARUP Laboratories, Salt Lake City, UT, USA
| |
Collapse
|
36
|
Goldstein A, Vockley J. Clinical trials examining treatments for inborn errors of amino acid metabolism. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2017.1275565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amy Goldstein
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jerry Vockley
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Recent clinical studies and management guidelines for the treatment of the organic acidopathies methylmalonic acidemia (MMA) and propionic acidemia address the scope of interventions to maximize health and quality of life. Unfortunately, these disorders continue to cause significant morbidity and mortality due to acute and chronic systemic and end-organ injury. RECENT FINDINGS Dietary management with medical foods has been a mainstay of therapy for decades, yet well controlled patients can manifest growth, development, cardiac, ophthalmological, renal, and neurological complications. Patients with organic acidopathies suffer metabolic brain injury that targets specific regions of the basal ganglia in a distinctive pattern, and these injuries may occur even with optimal management during metabolic stress. Liver transplantation has improved quality of life and metabolic stability, yet transplantation in this population does not entirely prevent brain injury or the development of optic neuropathy and cardiac disease. SUMMARY Management guidelines should identify necessary screening for patients with methylmalonic acidemia and propionic acidemia, and improve anticipatory management of progressive end-organ disease. Liver transplantation improves overall metabolic control, but injury to nonregenerative tissues may not be mitigated. Continued use of medical foods in these patients requires prospective studies to demonstrate evidence of benefit in a controlled manner.
Collapse
|
38
|
Abstract
The three essential branched-chain amino acids (BCAAs), leucine, isoleucine and valine, share the first enzymatic steps in their metabolic pathways, including a reversible transamination followed by an irreversible oxidative decarboxylation to coenzyme-A derivatives. The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or propionyl-CoA that enter the Krebs cycle. Many disorders in these pathways are diagnosed through expanded newborn screening by tandem mass spectrometry. Maple syrup urine disease (MSUD) is the only disorder of the group that is associated with elevated body fluid levels of the BCAAs. Due to the irreversible oxidative decarboxylation step distal enzymatic blocks in the pathways do not result in the accumulation of amino acids, but rather to CoA-activated small carboxylic acids identified by gas chromatography mass spectrometry analysis of urine and are therefore classified as organic acidurias. Disorders in these pathways can present with a neonatal onset severe-, or chronic intermittent- or progressive forms. Metabolic instability and increased morbidity and mortality are shared between inborn errors in the BCAA pathways, while treatment options remain limited, comprised mainly of dietary management and in some cases solid organ transplantation.
Collapse
Affiliation(s)
- I Manoli
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - C P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
39
|
Caterino M, Chandler RJ, Sloan JL, Dorko K, Cusmano-Ozog K, Ingenito L, Strom SC, Imperlini E, Scolamiero E, Venditti CP, Ruoppolo M. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers. MOLECULAR BIOSYSTEMS 2016; 12:566-74. [PMID: 26672496 DOI: 10.1039/c5mb00736d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methylmalonic acidemia (MMA) is a heterogeneous and severe autosomal recessive inborn error of metabolism most commonly caused by the deficient activity of the vitamin B12 dependent enzyme, methylmalonyl-CoA mutase (MUT). The main treatment for MMA patients is the dietary restriction of propiogenic amino acids and carnitine supplementation. Despite treatment, the prognosis for vitamin B12 non-responsive patients remains poor and is associated with neonatal lethality, persistent morbidity and decreased life expectancy. While multi-organ pathology is a feature of MMA, the liver is severely impacted by mitochondrial dysfunction which likely underlies the metabolic instability experienced by the patients. Liver and/or combined liver/kidney transplantation is therefore sometimes performed in severely affected patients. Using liver specimens from donors and MMA patients undergoing elective liver transplantation collected under a dedicated natural history protocol (clinicaltrials.gov: NCT00078078), we employed proteomics to characterize the liver pathology and impaired hepatic metabolism observed in the patients. Pathway analysis revealed perturbations of enzymes involved in energy metabolism, gluconeogenesis and Krebs cycle anaplerosis. Our findings identify new pathophysiologic and therapeutic targets that could be valuable for designing alternative therapies to alleviate clinical manifestations seen in this disorder.
Collapse
Affiliation(s)
- Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli, "Federico II", Naples, Italy and CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Randy J Chandler
- Organic Acid Research Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institute of Health, Bethesda MD 2092, USA.
| | - Jennifer L Sloan
- Organic Acid Research Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institute of Health, Bethesda MD 2092, USA.
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kristina Cusmano-Ozog
- Division Genetics and Metabolism, Children's National Medical Center, Washington DC, USA
| | | | - Stephen C Strom
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Charles P Venditti
- Organic Acid Research Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institute of Health, Bethesda MD 2092, USA.
| | - Margherita Ruoppolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli, "Federico II", Naples, Italy and CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
40
|
Burlina A, Cazzorla C, Zanonato E, Viggiano E, Fasan I, Polo G. Clinical experience with N-carbamylglutamate in a single-centre cohort of patients with propionic and methylmalonic aciduria. Mol Genet Metab Rep 2016; 8:34-40. [PMID: 27489777 PMCID: PMC4949587 DOI: 10.1016/j.ymgmr.2016.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022] Open
Abstract
Background The effect of long-term N-carbamylglutamate (NCG) treatment on the rate and severity of decompensations due to propionic aciduria (PA) and methylmalonic aciduria (MMA) is unknown. This paper presents clinical experience from a single-centre cohort of patients with PA and MMA who received continuous long-term treatment with NCG. Methods The effect of oral NCG treatment (initial dose: 50 mg/kg/day) was investigated in patients with PA or MMA who were experiencing frequent progressive episodes of metabolic decompensation, who had pathological levels of ammonia, and who were referred to the Division of Metabolic Diseases, University Hospital of Padova between August 2014 and December 2015. Clinical and biochemical data, including the number of metabolic decompensations, lactic acid, uric acid and plasma ammonia levels, protein intake and body weight, were collected before and after the initiation of NCG treatment. Results Eight patients with PA (n = 4) and MMA (n = 4) aged 2–20 years were treated with NCG (50 mg/kg/day) for 7–16 months. Metabolic decompensation episodes decreased in number and severity, with three of the patients having no episodes (pre-treatment: 24 episodes; post-treatment: 9 episodes). After NCG treatment, all episodes were treated at home and none required hospitalisation, lactic acid values were 1.3–2.1 mmol/L and uric acid values were 0.21–0.36 mmol/L. Significant reductions in blood ammonia levels after NCG initiation were observed in five patients, whereas levels were reduced or maintained in the normal range in the remainder. Over the treatment period, patients had an increase in natural protein intake of 20–50% and gained 0–6.5 kg in bodyweight. Conclusion These observations suggest that, in addition to short-term benefits for the acute treatment of hyperammonaemia, NCG may be effective and well tolerated as a long-term treatment in patients with severe PA and MMA, and that further prospective studies are warranted.
Collapse
Affiliation(s)
- Alberto Burlina
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Elisa Zanonato
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Emanuela Viggiano
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Ilaria Fasan
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| |
Collapse
|
41
|
Yap S, Leong HY, Abdul Aziz F, Hassim H, Sthaneshwar P, Teh SH, Abdullah IS, Ngu LH, Mohamed Z. N-Carbamylglutamate Is an Effective Treatment for Acute Neonatal Hyperammonaemia in a Patient with Methylmalonic Aciduria. Neonatology 2016; 109:303-7. [PMID: 26907495 DOI: 10.1159/000443630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022]
Abstract
N-carbamylglutamate (NCG) has been used in combination with ammonia scavengers (sodium benzoate, sodium phenylbutyrate) and dialysis to treat hyperammonaemia in methylmalonic aciduria (MMA). The sole use of NCG for acute neonatal hyperammonaemia secondary to MMA is demonstrated in a neonate presenting at day 9 with encephalopathy, severe metabolic acidosis, hyperammonaemia (1,089 μmol/l), ketonuria and urinary methylmalonic acids. Emergency treatment included discontinuing protein feeds, providing high calories, carnitine and hydroxocobalamin. NCG 200 mg given at 0 and 90 min decreased plasma ammonia dramatically from 1,089 to 567 µmol/l at 90 min and further to 236 µmol/l at 6 h. Normalisation of ammonia was achieved at 12 h with two further doses of NCG 100 mg. This allowed for early re-institution of feeds at 14 h, followed by metabolic stabilization and recovery. Due to the effectiveness of NCG in this case, the use of the more invasive conventional ammonia-lowering therapeutic options could be avoided.
Collapse
Affiliation(s)
- Sufin Yap
- Department of Inherited Metabolic Diseases, Sheffield Children's Hospital, NHS Foundation Trust, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Caterino M, Pastore A, Strozziero MG, Di Giovamberardino G, Imperlini E, Scolamiero E, Ingenito L, Boenzi S, Ceravolo F, Martinelli D, Dionisi-Vici C, Ruoppolo M. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. J Inherit Metab Dis 2015; 38:969-79. [PMID: 25585586 DOI: 10.1007/s10545-014-9806-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/26/2022]
Abstract
Methylmalonic acidemia with homocystinuria, cobalamin deficiency type C (cblC) (MMACHC) is the most common inborn error of cobalamin metabolism. Despite a multidrug treatment, the long-term follow-up of early-onset patients is often unsatisfactory, with progression of neurological and ocular impairment. Here, the in-vivo proteome of control and MMACHC lymphocytes (obtained from patients under standard treatment with OHCbl, betaine, folate and L-carnitine) was quantitatively examined by two dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry. Twenty three proteins were found up-regulated and 38 proteins were down-regulated. Consistent with in vivo studies showing disturbance of glutathione metabolism, a deregulation in proteins involved in cellular detoxification, especially in glutathione metabolism was found. In addition, relevant changes were observed in the expression levels of proteins involved in intracellular trafficking and protein folding, energy metabolism, cytoskeleton organization and assembly. This study demonstrates relevant changes in the proteome profile of circulating lymphocytes isolated from treated cblC patients. Some results confirm previous observations in vivo on fibroblast, thus concluding that some dysregulation is ubiquitous. On the other hand, new findings could be tissue-specific. These observations expand our current understanding of the cblC disease and may ignite new research and therapeutic strategies to treat this disorder.
Collapse
|
43
|
Cooper AJL, Kuhara T. α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 2014; 29:991-1006. [PMID: 24234505 PMCID: PMC4020999 DOI: 10.1007/s11011-013-9444-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/21/2013] [Indexed: 01/16/2023]
Abstract
Glutamine metabolism is generally regarded as proceeding via glutaminase-catalyzed hydrolysis to glutamate and ammonia, followed by conversion of glutamate to α-ketoglutarate catalyzed by glutamate dehydrogenase or by a glutamate-linked aminotransferase (transaminase). However, another pathway exists for the conversion of glutamine to α-ketoglutarate that is often overlooked, but is widely distributed in nature. This pathway, referred to as the glutaminase II pathway, consists of a glutamine transaminase coupled to ω-amidase. Transamination of glutamine results in formation of the corresponding α-keto acid, namely, α-ketoglutaramate (KGM). KGM is hydrolyzed by ω-amidase to α-ketoglutarate and ammonia. The net glutaminase II reaction is: L - Glutamine + α - keto acid + H2O → α - ketoglutarate + L - amino acid + ammonia. In this mini-review the biochemical importance of the glutaminase II pathway is summarized, with emphasis on the key component KGM. Forty years ago it was noted that the concentration of KGM is increased in the cerebrospinal fluid (CSF) of patients with hepatic encephalopathy (HE) and that the level of KGM in the CSF correlates well with the degree of encephalopathy. In more recent work, we have shown that KGM is markedly elevated in the urine of patients with inborn errors of the urea cycle. It is suggested that KGM may be a useful biomarker for many hyperammonemic diseases including hepatic encephalopathy, inborn errors of the urea cycle, citrin deficiency and lysinuric protein intolerance.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA,
| | | |
Collapse
|
44
|
Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, Huemer M, Hochuli M, Assoun M, Ballhausen D, Burlina A, Fowler B, Grünert SC, Grünewald S, Honzik T, Merinero B, Pérez-Cerdá C, Scholl-Bürgi S, Skovby F, Wijburg F, MacDonald A, Martinelli D, Sass JO, Valayannopoulos V, Chakrapani A. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis 2014; 9:130. [PMID: 25205257 PMCID: PMC4180313 DOI: 10.1186/s13023-014-0130-8] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~ 1:100’000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA and late complications include chronic kidney disease almost exclusively in MMA and cardiomyopathy mainly in PA. Except for vitamin B12 responsive forms of MMA the outcome remains poor despite the existence of apparently effective therapy with a low protein diet and carnitine. This may be related to under recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim to provide a trans-European consensus to guide practitioners, set standards of care and to help to raise awareness. To achieve these goals, the guidelines were developed using the SIGN methodology by having professionals on MMA/PA across twelve European countries and the U.S. gather all the existing evidence, score it according to the SIGN evidence level system and make a series of conclusive statements supported by an associated level of evidence. Although the degree of evidence rarely exceeds level C (evidence from non-analytical studies like case reports and series), the guideline should provide a firm and critical basis to guide practice on both acute and chronic presentations, and to address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Furthermore, these guidelines highlight gaps in knowledge that must be filled by future research. We consider that these guidelines will help to harmonize practice, set common standards and spread good practices, with a positive impact on the outcomes of MMA/PA patients.
Collapse
|
45
|
Viegas CM, Zanatta Â, Grings M, Hickmann FH, Monteiro WO, Soares LE, Sitta Â, Leipnitz G, de Oliveira FH, Wajner M. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res 2014; 48:659-69. [PMID: 24580146 DOI: 10.3109/10715762.2014.898842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hyperammonemia is a common finding in children with methylmalonic acidemia and propionic acidemia, but its contribution to the development of the neurological symptoms in the affected patients is poorly known. Considering that methylmalonic acid (MMA) and propionic acid (PA) predominantly accumulate in these disorders, we investigated the effects of hyperammonemia induced by urease treatment in 30-day-old rats receiving an intracerebroventricular (ICV) injection of MMA or PA on important parameters of redox homeostasis in cerebral cortex and striatum. We evaluated glutathione (GSH) concentrations, sulfhydryl content, nitrate and nitrite concentrations, 2',7'-dichlorofluorescein (DCFH) oxidation, and the activity of antioxidant enzymes. MMA decreased GSH concentrations and sulfhydryl content and increased nitrate and nitrite concentrations in cerebral cortex and striatum from hyperammonemic rats, whereas MMA or ammonia per se did not alter these parameters. MMA plus hyperammonemia also decreased glutathione reductase activity in rat cerebral cortex, but did not affect catalase, superoxide dismutase and glutathione peroxidase activities, neither DCFH oxidation. Furthermore, ICV PA administration alone or combined with hyperammonemia did not alter any of the evaluated parameters. We also found that pre-treatment with antioxidants prevented GSH reduction and sulfhydryl oxidation, whereas N(ω)-nitro-L-arginine methyl ester (L-NAME) prevented the increased nitrate and nitrite concentrations provoked by MMA plus ammonia treatments. Histological alterations, including vacuolization, ischemic neurons, and pericellular edema, were observed in brain of hyperammonemic rats injected with MMA. The data indicate a synergistic effect of MMA and ammonia disturbing redox homeostasis and causing morphological brain abnormalities in rat brain.
Collapse
Affiliation(s)
- C M Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS , Porto Alegre, RS , Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zwickler T, Riderer A, Haege G, Hoffmann GF, Kölker S, Burgard P. Usefulness of biochemical parameters in decision-making on the start of emergency treatment in patients with propionic acidemia. J Inherit Metab Dis 2014; 37:31-7. [PMID: 23797949 DOI: 10.1007/s10545-013-9621-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/19/2013] [Accepted: 05/13/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recurrent acute and life-threatening metabolic decompensations are thought to be the major cause of mortality and morbidity in patients with propionic acidemia (PA). Since metabolic decompensations in these patients usually develop gradually, there is considerable uncertainty about the beginning and when emergency treatment should be initiated. The major aim of this study was to evaluate the usefulness of biochemical parameters for improving decision-making on the start of emergency treatment. METHODS We analysed data of 16 PA patients continuously followed in our centre. Metabolic decompensation was defined clinically by the occurrence of at least one of three alarming symptoms: vomiting, food refusal or impaired consciousness. Thirty-eight biochemical parameters were analysed. RESULTS A total of 259 metabolic decompensations were documented and compared with 625 routine visits. Among the symptoms used to clinically define metabolic decompensations, vomiting was most frequent (87 %). In total, 19 biochemical parameters differentiated between metabolic decompensations and routine visits. Among them ammonia, acid-base balance and anion gap were most reliable to identify a metabolic decompensation, and to estimate its severity. A comparative analysis of patients with PA and methylmalonic acidemia during metabolic decompensation showed similar results. CONCLUSIONS Ammonia, acid-base balance and anion gap are important biochemical parameters to identify an (impending) metabolic decompensation and to assess its severity in PA patients. The identified biochemical parameters should be integrated in an algorithm for clinical decision-making on emergency treatment and should be tested in a prospective trial.
Collapse
|
47
|
Guenzel AJ, Hofherr SE, Hillestad M, Barry M, Weaver E, Venezia S, Kraus JP, Matern D, Barry MA. Generation of a hypomorphic model of propionic acidemia amenable to gene therapy testing. Mol Ther 2013; 21:1316-23. [PMID: 23648696 DOI: 10.1038/mt.2013.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 03/20/2013] [Indexed: 12/27/2022] Open
Abstract
Propionic acidemia (PA) is a recessive genetic disease that results in an inability to metabolize certain amino acids and odd-chain fatty acids. Current treatment involves restricting consumption of these substrates or liver transplantation. Deletion of the Pcca gene in mice mimics the most severe forms of the human disease. Pcca(-) mice die within 36 hours of birth, making it difficult to test intravenous systemic therapies in them. We generated an adult hypomorphic model of PA in Pcca(-) mice using a transgene bearing an A138T mutant of the human PCCA protein. Pcca(-/-)(A138T) mice have 2% of wild-type PCC activity, survive to adulthood, and have elevations in propionyl-carnitine, methylcitrate, glycine, alanine, lysine, ammonia, and markers associated with cardiomyopathy similar to those in patients with PA. This adult model allowed gene therapy testing by intravenous injection with adenovirus serotype 5 (Ad5) and adeno-associated virus 2/8 (AAV8) vectors. Ad5-mediated more rapid increases in PCCA protein and propionyl-CoA carboxylase (PCC) activity in the liver than AAV8 and both vectors reduced propionylcarnitine and methylcitrate levels. Phenotypic correction was transient with first generation Ad whereas AAV8-mediated long-lasting effects. These data suggest that this PA model may be a useful platform for optimizing systemic intravenous therapies for PA.
Collapse
Affiliation(s)
- Adam J Guenzel
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Häberle J. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders. Arch Biochem Biophys 2013; 536:101-8. [PMID: 23628343 DOI: 10.1016/j.abb.2013.04.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 02/08/2023]
Abstract
An increased concentration of ammonia is a non-specific laboratory sign indicating the presence of potentially toxic free ammonia that is not normally removed. This does occur in many different conditions for which hyperammonemia is a surrogate marker. Hyperammonemia can occur due to increased production or impaired detoxification of ammonia and should, if associated with clinical symptoms, be regarded as an emergency. The conditions can be classified into primary or secondary hyperammonemias depending on the underlying pathophysiology. If the urea cycle is directly affected by a defect of any of the involved enzymes or transporters, this results in primary hyperammonemia. If however the function of the urea cycle is inhibited by toxic metabolites or by substrate deficiencies, the situation is described as secondary hyperammonemia. For removal of ammonia, mammals require the action of glutamine synthetase in addition to the urea cycle, in order to ensure lowering of plasma ammonia concentrations to the normal range. Independent of its etiology, hyperammonemia may result in irreversible brain damage if not treated early and thoroughly. Thus, early recognition of a hyperammonemic state and immediate initiation of the specific management are of utmost importance. The main prognostic factors are, irrespective of the underlying cause, the duration of the hyperammonemic coma and the extent of ammonia accumulation. This paper will discuss the biochemical background of primary and secondary hyperammonemia and will give an overview of the various underlying conditions including a brief clinical outline and information on the genetic backgrounds.
Collapse
Affiliation(s)
- Johannes Häberle
- Division of Metabolism, University Children's Hospital Zurich, Steinwiesstr. 75, 8032 Zurich, Switzerland.
| |
Collapse
|
49
|
Abstract
BACKGROUND Symptoms of hyperammonemia occur in patients irrespective of the kind of metabolic diseases. Age, metabolic and nutritional status, and decompensation factors such as infections influence clinical manifestations. Prolonged, untreated hyperammonemia leads to brain injury and intellectual disability. Treatment is directed at lowering plasma ammonia. Brain ammonium concentrations are 1.5 to 3.0 times higher than that in blood. REVIEW SUMMARY The authors discuss the pathophysiology of the symptoms and consequences of hyperammonemia in children, focusing on the metabolic disorders leading to an increased level of ammonia. CONCLUSIONS Ammonia toxicity has been investigated for a long time. According to the main hypotheses, the neurological alterations are connected to alterations in glutamatergic neurotransmission.
Collapse
|
50
|
Jafari P, Braissant O, Zavadakova P, Henry H, Bonafé L, Ballhausen D. Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures. Orphanet J Rare Dis 2013; 8:4. [PMID: 23298464 PMCID: PMC3567978 DOI: 10.1186/1750-1172-8-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/01/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methylmalonic aciduria is an inborn error of metabolism characterized by accumulation of methylmalonate (MMA), propionate and 2-methylcitrate (2-MCA) in body fluids. Early diagnosis and current treatment strategies aimed at limiting the production of these metabolites are only partially effective in preventing neurological damage. METHODS To explore the metabolic consequences of methylmalonic aciduria on the brain, we used 3D organotypic brain cell cultures from rat embryos. We challenged the cultures at two different developmental stages with 1 mM MMA, propionate or 2-MCA applied 6 times every 12 h. In a dose-response experiment cultures were challenged with 0.01, 0.1, 0.33 and 1 mM 2-MCA. Immunohistochemical staining for different brain cell markers were used to assess cell viability, morphology and differentiation. Significant changes were validated by western blot analysis. Biochemical markers were analyzed in culture media. Apoptosis was studied by immunofluorescence staining and western blots for activated caspase-3. RESULTS Among the three metabolites tested, 2-MCA consistently produced the most pronounced effects. Exposure to 2-MCA caused morphological changes in neuronal and glial cells already at 0.01 mM. At the biochemical level the most striking result was a significant ammonium increase in culture media with a concomitant glutamine decrease. Dose-response studies showed significant and parallel changes of ammonium and glutamine starting from 0.1 mM 2-MCA. An increased apoptosis rate was observed by activation of caspase-3 after exposure to at least 0.1 mM 2-MCA. CONCLUSION Surprisingly, 2-MCA, and not MMA, seems to be the most toxic metabolite in our in vitro model leading to delayed axonal growth, apoptosis of glial cells and to unexpected ammonium increase. Morphological changes were already observed at 2-MCA concentrations as low as 0.01 mM. Increased apoptosis and ammonium accumulation started at 0.1 mM thus suggesting that ammonium accumulation is secondary to cell suffering and/or cell death. Local accumulation of ammonium in CNS, that may remain undetected in plasma and urine, may therefore play a key role in the neuropathogenesis of methylmalonic aciduria both during acute decompensations and in chronic phases. If confirmed in vivo, this finding might shift the current paradigm and result in novel therapeutic strategies.
Collapse
Affiliation(s)
- Paris Jafari
- Inborn Errors of Metabolism, Molecular Pediatrics, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|