1
|
Dastgheib SA, Bahrami R, Golshan-Tafti M, Danaei M, Azizi S, Shahbazi A, Yeganegi M, Shiri A, Masoudi A, Neamatzadeh H. Decoding bronchopulmonary dysplasia in premature infants through an epigenetic lens. Front Med (Lausanne) 2025; 12:1531169. [PMID: 40248086 PMCID: PMC12003331 DOI: 10.3389/fmed.2025.1531169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
This review provides a comprehensive overview of the evolving insights into the epigenetic mechanisms associated with bronchopulmonary dysplasia (BPD). It specifically highlights the roles of DNA methylation, histone modifications, and RNA regulation in the development of BPD in premature infants. BPD results from complex interactions among genetic factors, environmental exposures, and neonatal stressors. Key findings suggest that intrauterine hypoxia, hyperoxia, and nutrition can lead to epigenetic alterations, affecting gene expression and methylation, which may serve as biomarkers for early BPD detection. RUNX3 is identified as a critical transcription factor influencing lung development and inflammation, while changes in DNA methylation and histone dynamics in cord blood are linked to immune dysregulation associated with BPD. The role of m6A RNA methylation regulators from the IGF2BP family affects mRNA stability and gene expression relevant to BPD. Additionally, specific histones and microRNAs, particularly from the miR-17∼92 cluster, are implicated in pulmonary development and vascular regulation. Long non-coding RNAs (lncRNAs), such as MALAT1, also play a role in gene regulation via competitive endogenous RNA networks, indicating their potential as biomarkers and therapeutic targets. The interplay of these epigenetic mechanisms underscores the need for further research to develop targeted interventions aimed at reducing BPD severity and enhancing health outcomes for at-risk neonates.
Collapse
Affiliation(s)
- Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahsa Danaei
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Azizi
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Amirmasoud Shiri
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Masoudi
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Cao J, Hu W, Chen Y, Ailikaiti A, Zhang Z, Rong L, Yu H, Wang H. Adrenal High-Expressional CYP27A1 Mediates Bile Acid Increase and Functional Impairment in Adult Male Offspring by Prenatal Dexamethasone Exposure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413299. [PMID: 39950753 PMCID: PMC11984885 DOI: 10.1002/advs.202413299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/16/2025] [Indexed: 04/12/2025]
Abstract
Prenatal dexamethasone exposure (PDE) can impact adrenal corticosteroid synthesis in adult offspring. Furthermore, the adrenal gland can autonomously synthesize bile acids, but local bile acids accumulation has cytotoxic effects. This study found that PDE increased histone 3 lysine 27 acetylation (H3K27ac) levels in the promoter region of cholesterol 27 hydroxylase (CYP27A1) and its expression, as well as total bile acids (TBA) concentrations and enhanced endoplasmic reticulum stress (ERS) and inhibit steroid synthesis in adult male offspring rat adrenal glands. However, it is reversed in females. Tracing back to the prenatal stage and in combination with cellular experiments, it is further revealed that dexamethasone can regulate glucocorticoid receptor (GR)/SET binding protein 1 (SETBP1)/CYP27A1 signal pathway, consequently cause intracellular increase of bile acids. Finally, administration of nilvadipine (CYP27A1 inhibitor) to male offspring for 4 weeks after birth resulted in the reversal of PDE-induced adrenal morphological and functional damage. In conclusion, PDE induces fetal adrenal corticosteroid dysfunction in adult male offspring by upregulating CYP27A1 promoter region H3K27ac levels and expression in the adrenal gland through the GR/SETBP1 signaling pathway. This effect persists beyond birth, leading to bile acids local increase and subsequent enhancement of ERS, ultimately inducing cellular dysfunction in adult adrenal glands.
Collapse
Affiliation(s)
- Jiangang Cao
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Institute of Clinical Pharmacy ResearchThe Affiliated Nanhua HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Wen Hu
- Department of PharmacyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Yawen Chen
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | | | - Ziyi Zhang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Lingbo Rong
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Hong Yu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
3
|
Lee S, Sbihi H, MacIsaac JL, Balshaw R, Ambalavanan A, Subbarao P, Mandhane PJ, Moraes TJ, Turvey SE, Duan Q, Brauer M, Brook JR, Kobor MS, Jones MJ. Persistent DNA Methylation Changes across the First Year of Life and Prenatal NO2 Exposure in a Canadian Prospective Birth Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47004. [PMID: 38573328 DOI: 10.1289/ehp13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO 2 ) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO 2 exposure. METHODS Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO 2 (n = 128 ) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n = 124 ). Postnatal-specific DNAm differences (n = 125 ) were isolated, and their association with NO 2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO 2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS At birth (n = 128 ), 18 regions of DNAm were associated with NO 2 , with several annotated to HOX genes. Some of these regions were specifically identified in males (n = 73 ), but not females (n = 55 ). The effect of prenatal NO 2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION Regional cord blood DNAm differences associated with prenatal NO 2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.
Collapse
Affiliation(s)
- Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Hind Sbihi
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Robert Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Padmaja Subbarao
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Piushkumar J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Medicine, USCI University, Kuala Lumpur, Malaysia
| | - Theo J Moraes
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Stuart E Turvey
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Rosenberg L, Liu C, Sharma R, Wood C, Vyhlidal CA, Gaedigk R, Kho AT, Ziniti JP, Celedón JC, Tantisira KG, Weiss ST, McGeachie MJ, Kechris K, Sharma S. Intrauterine Smoke Exposure, microRNA Expression during Human Lung Development, and Childhood Asthma. Int J Mol Sci 2023; 24:7727. [PMID: 37175432 PMCID: PMC10178351 DOI: 10.3390/ijms24097727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Intrauterine smoke (IUS) exposure during early childhood has been associated with a number of negative health consequences, including reduced lung function and asthma susceptibility. The biological mechanisms underlying these associations have not been established. MicroRNAs regulate the expression of numerous genes involved in lung development. Thus, investigation of the impact of IUS on miRNA expression during human lung development may elucidate the impact of IUS on post-natal respiratory outcomes. We sought to investigate the effect of IUS exposure on miRNA expression during early lung development. We hypothesized that miRNA-mRNA networks are dysregulated by IUS during human lung development and that these miRNAs may be associated with future risk of asthma and allergy. Human fetal lung samples from a prenatal tissue retrieval program were tested for differential miRNA expression with IUS exposure (measured using placental cotinine concentration). RNA was extracted and miRNA-sequencing was performed. We performed differential expression using IUS exposure, with covariate adjustment. We also considered the above model with an additional sex-by-IUS interaction term, allowing IUS effects to differ by male and female samples. Using paired gene expression profiles, we created sex-stratified miRNA-mRNA correlation networks predictive of IUS using DIABLO. We additionally evaluated whether miRNAs were associated with asthma and allergy outcomes in a cohort of childhood asthma. We profiled pseudoglandular lung miRNA in n = 298 samples, 139 (47%) of which had evidence of IUS exposure. Of 515 miRNAs, 25 were significantly associated with intrauterine smoke exposure (q-value < 0.10). The IUS associated miRNAs were correlated with well-known asthma genes (e.g., ORM1-Like Protein 3, ORDML3) and enriched in disease-relevant pathways (oxidative stress). Eleven IUS-miRNAs were also correlated with clinical measures (e.g., Immunoglobulin E andlungfunction) in children with asthma, further supporting their likely disease relevance. Lastly, we found substantial differences in IUS effects by sex, finding 95 significant IUS-miRNAs in male samples, but only four miRNAs in female samples. The miRNA-mRNA correlation networks were predictive of IUS (AUC = 0.78 in males and 0.86 in females) and suggested that IUS-miRNAs are involved in regulation of disease-relevant genes (e.g., A disintegrin and metalloproteinase domain 19 (ADAM19), LBH regulator of WNT signaling (LBH)) and sex hormone signaling (Coactivator associated methyltransferase 1(CARM1)). Our study demonstrated differential expression of miRNAs by IUS during early prenatal human lung development, which may be modified by sex. Based on their gene targets and correlation to clinical asthma and atopy outcomes, these IUS-miRNAs may be relevant for subsequent allergy and asthma risk. Our study provides insight into the impact of IUS in human fetal lung transcriptional networks and on the developmental origins of asthma and allergic disorders.
Collapse
Affiliation(s)
- Lynne Rosenberg
- Department of Pediatrics and Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Roger Gaedigk
- Children’s Mercy Hospital and Clinics, Kansas City, MO 64108, USA
| | - Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John P. Ziniti
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kelan G. Tantisira
- Division of Pediatric Respiratory Medicine, Rady Children’s Hospital, University of California, San Diego, CA 92123, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
The Potential Role of PPARs in the Fetal Origins of Adult Disease. Cells 2022; 11:cells11213474. [PMID: 36359869 PMCID: PMC9653757 DOI: 10.3390/cells11213474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis holds that events during early development have a profound impact on one’s risk for the development of future adult disease. Studies from humans and animals have demonstrated that many diseases can begin in childhood and are caused by a variety of early life traumas, including maternal malnutrition, maternal disease conditions, lifestyle changes, exposure to toxins/chemicals, improper medication during pregnancy, and so on. Recently, the roles of Peroxisome proliferator-activated receptors (PPARs) in FOAD have been increasingly appreciated due to their wide variety of biological actions. PPARs are members of the nuclear hormone receptor subfamily, consisting of three distinct subtypes: PPARα, β/δ, and γ, highly expressed in the reproductive tissues. By controlling the maturation of the oocyte, ovulation, implantation of the embryo, development of the placenta, and male fertility, the PPARs play a crucial role in the transition from embryo to fetus in developing mammals. Exposure to adverse events in early life exerts a profound influence on the methylation pattern of PPARs in offspring organs, which can affect development and health throughout the life course, and even across generations. In this review, we summarize the latest research on PPARs in the area of FOAD, highlight the important role of PPARs in FOAD, and provide a potential strategy for early prevention of FOAD.
Collapse
|
6
|
Wathes DC. Developmental Programming of Fertility in Cattle-Is It a Cause for Concern? Animals (Basel) 2022; 12:2654. [PMID: 36230395 PMCID: PMC9558991 DOI: 10.3390/ani12192654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle fertility remains sub-optimal despite recent improvements in genetic selection. The extent to which an individual heifer fulfils her genetic potential can be influenced by fetal programming during pregnancy. This paper reviews the evidence that a dam's age, milk yield, health, nutrition and environment during pregnancy may programme permanent structural and physiological modifications in the fetus. These can alter the morphology and body composition of the calf, postnatal growth rates, organ structure, metabolic function, endocrine function and immunity. Potentially important organs which can be affected include the ovaries, liver, pancreas, lungs, spleen and thymus. Insulin/glucose homeostasis, the somatotropic axis and the hypothalamo-pituitary-adrenal axis can all be permanently reprogrammed by the pre-natal environment. These changes may act directly at the level of the ovary to influence fertility, but most actions are indirect. For example, calf health, the timing of puberty, the age and body structure at first calving, and the ability to balance milk production with metabolic health and fertility after calving can all have an impact on reproductive potential. Definitive experiments to quantify the extent to which any of these effects do alter fertility are particularly challenging in cattle, as individual animals and their management are both very variable and lifetime fertility takes many years to assess. Nevertheless, the evidence is compelling that the fertility of some animals is compromised by events happening before they are born. Calf phenotype at birth and their conception data as a nulliparous heifer should therefore both be assessed to avoid such animals being used as herd replacements.
Collapse
Affiliation(s)
- D Claire Wathes
- Department for Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
7
|
Kaali S, Jack DW, Dwommoh Prah RK, Chillrud SN, Mujtaba MN, Kinney PL, Tawiah T, Yang Q, Oppong FB, Gould CF, Osei M, Wylie BJ, Agyei O, Perzanowski MS, Asante KP, Lee AG. Poor early childhood growth is associated with impaired lung function: Evidence from a Ghanaian pregnancy cohort. Pediatr Pulmonol 2022; 57:2136-2146. [PMID: 35614550 PMCID: PMC9398957 DOI: 10.1002/ppul.26015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Nearly 40% of African children under 5 are stunted. We leveraged the Ghana randomized air pollution and health study (GRAPHS) cohort to examine whether poorer growth was associated with worse childhood lung function. STUDY DESIGN GRAPHS measured infant weight and length at birth and 3, 6, 9,12 months, and 4 years of age. At age 4 years, n = 567 children performed impulse oscillometry. We employed multivariable linear regression to estimate associations between birth and age 4 years anthropometry and lung function. Next, we employed latent class growth analysis (LCGA) to generate growth trajectories through age 4 years. We employed linear regression to examine associations between growth trajectory assignment and lung function. RESULTS Birth weight and age 4 weight-for-age and height-for-age z-scores were inversely associated with airway resistance (e.g., R5 , or total airway resistance: birth weight β = -0.90 cmH2O/L/s, 95% confidence interval [CI]: -1.64, -0.16 per 1 kg increase; and R20 , or large airway resistance: age 4 height-for-age β = -0.40 cmH2O/L/s, 95% CI: -0.57, -0.22 per 1 unit z-score increase). Impaired growth trajectories identified through LCGA were associated with higher airway resistance, even after adjusting for age 4 body mass index. For example, children assigned to a persistently stunted trajectory had higher R5 (β = 2.71 cmH2O/L/s, 95% CI: 1.07, 4.34) and R20 (β = 1.43 cmH2O/L/s, 95% CI: 0.51, 2.36) as compared to normal. CONCLUSION Children with poorer anthropometrics through to age 4 years had higher airway resistance in early childhood. These findings have implications for lifelong lung health, including pneumonia risk in childhood and reduced maximally attainable lung function in adulthood.
Collapse
Affiliation(s)
- Seyram Kaali
- Kintampo Health Research Centre, Ghana Health Service, Brong Ahafo Region, Kintampo, Ghana
| | - Darby W. Jack
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, 722 W 168 Street, New York, NY USA 10032
| | | | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, NY, USA
| | - Mohammed N. Mujtaba
- Kintampo Health Research Centre, Ghana Health Service, Brong Ahafo Region, Kintampo, Ghana
| | - Patrick L. Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Theresa Tawiah
- Kintampo Health Research Centre, Ghana Health Service, Brong Ahafo Region, Kintampo, Ghana
| | - Qiang Yang
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, NY, USA
| | - Felix B. Oppong
- Kintampo Health Research Centre, Ghana Health Service, Brong Ahafo Region, Kintampo, Ghana
| | - Carlos F. Gould
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, 722 W 168 Street, New York, NY USA 10032
| | - Musah Osei
- Kintampo Health Research Centre, Ghana Health Service, Brong Ahafo Region, Kintampo, Ghana
| | - Blair J. Wylie
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Ghana Health Service, Brong Ahafo Region, Kintampo, Ghana
| | - Matthew S. Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, 722 W 168 Street, New York, NY USA 10032
| | - Kwaku-Poku Asante
- Kintampo Health Research Centre, Ghana Health Service, Brong Ahafo Region, Kintampo, Ghana
| | - Alison G. Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029
| |
Collapse
|
8
|
Xie Z, Xia T, Wu D, Che L, Zhang W, Cai X, Liu S. Identification of the key genes in chronic obstructive pulmonary disease by weighted gene co-expression network analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:665. [PMID: 35845513 PMCID: PMC9279780 DOI: 10.21037/atm-22-2523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is prevalent mainly in older adults, especially those who are smokers. It appears to be regulated by multiple genes, but there is some degree of familial clustering. The evidence to date suggests that COPD-associated biomarkers are largely inadequate for disease diagnosis, so we conducted a comprehensive search for more specific genetic markers. Methods We used 3 datasets from the Gene Expression Omnibus (GEO) database. By investigating the biological information [i.e., Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and weighted gene co-expression network analysis (WGCNA)], we filtered out 8 differentially expressed genes (DEGs) and validated the transcript levels of those hub genes in 16HBE cell lines, THP-1 cell lines and lung tissue of COPD patients. Results The 8 hub genes comprised amyloid precursor protein (APP), fibronectin 1, insulin-like growth factor 1 (IGF1), β-actin, capping actin protein of muscle Z-line subunit alpha 2, secreted phosphoprotein 1 (SPP1), catalase (CAT), and colony stimulating factor 2 (CSF2) were selected from among the DEGs. Cigarette smoke extract-stimulated 16HBE cells were found to highly express SPP1, CSF2, and IGF1. In addition, IGF1 levels were increased and IGF1 and APP levels were decreased in CSE-stimulated THP-1 cells. SPP1 and FN1 showed increased expression levels in lung tissue of COPD patients, but the opposite held for APP and CAT. Conclusions We identified 8 hub genes of COPD based on GO, KEGG and WGCNA, which have provided insights into the pathophysiological mechanisms of COPD.
Collapse
Affiliation(s)
- Zhefan Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tingting Xia
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongxue Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Che
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xingdong Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Abstract
All nutrients are essential for brain development, but pre-clinical and clinical studies have revealed sensitive periods of brain development during which key nutrients are critical. An understanding of these nutrient-specific sensitive periods and the accompanying brain regions or processes that are developing can guide effective nutrition interventions as well as the choice of meaningful circuit-specific neurobehavioral tests to best determine outcome. For several nutrients including protein, iron, iodine, and choline, pre-clinical and clinical studies align to identify the same sensitive periods, while for other nutrients, such as long-chain polyunsaturated fatty acids, zinc, and vitamin D, pre-clinical models demonstrate benefit which is not consistently shown in clinical studies. This discordance of pre-clinical and clinical results is potentially due to key differences in the timing, dose, and/or duration of the nutritional intervention as well as the pre-existing nutritional status of the target population. In general, however, the optimal window of success for nutritional intervention to best support brain development is in late fetal and early postnatal life. Lack of essential nutrients during these times can lead to long-lasting dysfunction and significant loss of developmental potential.
Collapse
Affiliation(s)
- Sarah E Cusick
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| | - Amanda Barks
- University of Minnesota Medical School, Minneapolis, MN, USA
| | | |
Collapse
|
10
|
Bahia MLR, Velarde GC, Silva FCD, Araujo Júnior E, Sá RAMD. Adverse perinatal outcomes in fetuses with severe late-onset fetal growth restriction. J Matern Fetal Neonatal Med 2021; 35:8666-8672. [PMID: 34702116 DOI: 10.1080/14767058.2021.1995858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate perinatal outcomes in fetuses with severe late-onset fetal growth restriction. METHODS This was a retrospective and observational cohort study in which pregnant women diagnosed with late-onset fetal growth restriction assisted at perinatal maternity birth from 2010 to 2017 were included. The outcomes were intensive care unit (ICU) admission and perinatal complications, such as neonatal death, intraventricular hemorrhage, periventricular leukomalacia, hypoxic-ischemic encephalopathy, necrotizing enterocolitis, bronchopulmonary dysplasia, and sepsis. RESULTS We selected 277 pregnant women, of whom 124 newborns (44.76%) went to the ICU. The chance of a newborn needing ICU decreases by 62, 7, and 9% according to an increase of one gestational week, 1 cm of the abdominal circumference, or 1 cm of the amniotic fluid index, respectively. Oligohydramnios increases the risk of going to the ICU by 2.13 times. The increase in the umbilical artery pulsatility index (PI) Doppler increases the chance of ICU admission by 7.9 times. The normal middle cerebral artery PI Doppler and the normal cerebroplacental ratio reduce the risk of ICU admission. CONCLUSION The estimated fetal weight, abdominal circumference, and amniotic fluid index diagnosed severe late-onset fetal growth restriction. With the decrease in middle cerebral artery PI Doppler, there is a greater probability of admission to the ICU, with the most common complications being intraventricular hemorrhage and necrotizing enterocolitis.
Collapse
Affiliation(s)
- Maria Luiza Rozo Bahia
- Post-Graduate Program in Medical Science, Fluminense Federal University (UFF), Niterói, Brazil.,Fetal Medicine Unit, Perinatal Rede D'Or São Luiz, Rio de Janeiro, Brazil
| | - Guillermo Coca Velarde
- Post-Graduate Program in Medical Science, Fluminense Federal University (UFF), Niterói, Brazil
| | - Fernanda Campos da Silva
- Post-Graduate Program in Medical Science, Fluminense Federal University (UFF), Niterói, Brazil.,Fetal Medicine Unit, Perinatal Rede D'Or São Luiz, Rio de Janeiro, Brazil
| | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Renato Augusto Moreira de Sá
- Post-Graduate Program in Medical Science, Fluminense Federal University (UFF), Niterói, Brazil.,Fetal Medicine Unit, Perinatal Rede D'Or São Luiz, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
He H, Chen J, Zhao J, Zhang P, Qiao Y, Wan H, Wang J, Mei M, Bao S, Li Q. PRMT7 targets of Foxm1 controls alveolar myofibroblast proliferation and differentiation during alveologenesis. Cell Death Dis 2021; 12:841. [PMID: 34497269 PMCID: PMC8426482 DOI: 10.1038/s41419-021-04129-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Although aberrant alveolar myofibroblasts (AMYFs) proliferation and differentiation are often associated with abnormal lung development and diseases, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF), epigenetic mechanisms regulating proliferation and differentiation of AMYFs remain poorly understood. Protein arginine methyltransferase 7 (PRMT7) is the only reported type III enzyme responsible for monomethylation of arginine residue on both histone and nonhistone substrates. Here we provide evidence for PRMT7's function in regulating AMYFs proliferation and differentiation during lung alveologenesis. In PRMT7-deficient mice, we found reduced AMYFs proliferation and differentiation, abnormal elastin deposition, and failure of alveolar septum formation. We further shown that oncogene forkhead box M1 (Foxm1) is a direct target of PRMT7 and that PRMT7-catalyzed monomethylation at histone H4 arginine 3 (H4R3me1) directly associate with chromatin of Foxm1 to activate its transcription, and thereby regulate of cell cycle-related genes to inhibit AMYFs proliferation and differentiation. Overexpression of Foxm1 in isolated myofibroblasts (MYFs) significantly rescued PRMT7-deficiency-induced cell proliferation and differentiation defects. Thus, our results reveal a novel epigenetic mechanism through which PRMT7-mediated histone arginine monomethylation activates Foxm1 transcriptional expression to regulate AMYFs proliferation and differentiation during lung alveologenesis and may represent a potential target for intervention in pulmonary diseases.
Collapse
Affiliation(s)
- Huacheng He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jilin Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jian Zhao
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Peizhun Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Yulong Qiao
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Huajing Wan
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, P.R. China.
| | - Qiuling Li
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China.
| |
Collapse
|
12
|
Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine Hypoxia and Epigenetic Programming in Lung Development and Disease. Biomedicines 2021; 9:944. [PMID: 34440150 PMCID: PMC8394854 DOI: 10.3390/biomedicines9080944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Clinically, intrauterine hypoxia is the foremost cause of perinatal morbidity and developmental plasticity in the fetus and newborn infant. Under hypoxia, deviations occur in the lung cell epigenome. Epigenetic mechanisms (e.g., DNA methylation, histone modification, and miRNA expression) control phenotypic programming and are associated with physiological responses and the risk of developmental disorders, such as bronchopulmonary dysplasia. This developmental disorder is the most frequent chronic pulmonary complication in preterm labor. The pathogenesis of this disease involves many factors, including aberrant oxygen conditions and mechanical ventilation-mediated lung injury, infection/inflammation, and epigenetic/genetic risk factors. This review is focused on various aspects related to intrauterine hypoxia and epigenetic programming in lung development and disease, summarizes our current knowledge of hypoxia-induced epigenetic programming and discusses potential therapeutic interventions for lung disease.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| |
Collapse
|
13
|
Marttila S, Rovio S, Mishra PP, Seppälä I, Lyytikäinen LP, Juonala M, Waldenberger M, Oksala N, Ala-Korpela M, Harville E, Hutri-Kähönen N, Kähönen M, Raitakari O, Lehtimäki T, Raitoharju E. Adulthood blood levels of hsa-miR-29b-3p associate with preterm birth and adult metabolic and cognitive health. Sci Rep 2021; 11:9203. [PMID: 33911114 PMCID: PMC8080838 DOI: 10.1038/s41598-021-88465-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
Preterm birth (PTB) is associated with increased risk of type 2 diabetes and neurocognitive impairment later in life. We analyzed for the first time the associations of PTB with blood miRNA levels in adulthood. We also investigated the relationship of PTB associated miRNAs and adulthood phenotypes previously linked with premature birth. Blood MicroRNA profiling, genome-wide gene expression analysis, computer-based cognitive testing battery (CANTAB) and serum NMR metabolomics were performed for Young Finns Study subjects (aged 34-49 years, full-term n = 682, preterm n = 84). Preterm birth (vs. full-term) was associated with adulthood levels of hsa-miR-29b-3p in a fully adjusted regression model (p = 1.90 × 10-4, FDR = 0.046). The levels of hsa-miR-29b-3p were down-regulated in subjects with PTB with appropriate birthweight for gestational age (p = 0.002, fold change [FC] = - 1.20) and specifically in PTB subjects with small birthweight for gestational age (p = 0.095, FC = - 1.39) in comparison to individuals born full term. Hsa-miR-29b-3p levels correlated with the expressions of its target-mRNAs BCL11A and CS and the gene set analysis results indicated a target-mRNA driven association between hsa-miR-29b-3p levels and Alzheimer's disease, Parkinson's disease, Insulin signaling and Regulation of Actin Cytoskeleton pathway expression. The level of hsa-miR-29b-3p was directly associated with visual processing and sustained attention in CANTAB test and inversely associated with serum levels of VLDL subclass component and triglyceride levels. In conlcusion, adult blood levels of hsa-miR-29b-3p were lower in subjects born preterm. Hsa-miR-29b-3p associated with cognitive function and may be linked with adulthood morbidities in subjects born preterm, possibly through regulation of gene sets related to neurodegenerative diseases and insulin signaling as well as VLDL and triglyceride metabolism.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| | - Suvi Rovio
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Turku University Hospital and Department of Medicine, University of Turku, Turku, Finland
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Vascular Centre, Tampere University Hospital, Tampere, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Emily Harville
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
14
|
Mukherjee N, Arathimos R, Chen S, Kheirkhah Rahimabad P, Han L, Zhang H, Holloway JW, Relton C, Henderson AJ, Arshad SH, Ewart S, Karmaus W. DNA methylation at birth is associated with lung function development until age 26 years. Eur Respir J 2021; 57:2003505. [PMID: 33214203 DOI: 10.1183/13993003.03505-2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
Little is known about whether DNA methylation (DNAm) of cytosine-phosphate-guanine (CpG) sites at birth predicts patterns of lung function development. We used heel prick DNAm from the F1-generation of Isle of Wight birth cohort (IOWBC-F1) for discovery of CpGs associated with lung function trajectories (forced expiratory volume in 1 s, forced vital capacity, their ratio, and forced expiratory flow at 25-75% of forced vital capacity) over the first 26 years, stratified by sex. We replicated the findings in the Avon Longitudinal Study of Parents and Children (ALSPAC) using cord blood DNAm.Epigenome-wide screening was applied to identify CpGs associated with lung function trajectories in 396 boys and 390 girls of IOWBC-F1. Replication in ALSPAC focussed on lung function at ages 8, 15 and 24 years. Statistically significantly replicated CpGs were investigated for consistency in direction of association between cohorts, stability of DNAm over time in IOWBC-F1, relevant biological processes and for association with gene expression (n=161) in IOWBC F2-generation (IOWBC-F2).Differential DNAm of eight CpGs on genes GLUL, MYCN, HLX, LHX1, COBL, COL18A1, STRA6, and WNT11 involved in developmental processes, were significantly associated with lung function in the same direction in IOWBC-F1 and ALSPAC, and showed stable patterns at birth, aged 10 and 18 years between high and low lung function trajectories in IOWBC-F1. CpGs on LHX1 and COL18A1 were linked to gene expression in IOWBC-F2.In two large cohorts, novel DNAm at birth were associated with patterns of lung function in adolescence and early adulthood providing possible targets for preventative interventions against adverse pulmonary function development.
Collapse
Affiliation(s)
- Nandini Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Ryan Arathimos
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Social Genetic & Developmental Psychiatry Centre, Kings College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Su Chen
- Dept of Mathematical Sciences, The University of Memphis, Memphis, TN, USA
| | - Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Luhang Han
- Dept of Mathematical Sciences, The University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - A John Henderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| |
Collapse
|
15
|
Abstract
Governments could help prevent chronic obstructive pulmonary disease (COPD) by reducing smoking rates; for example, through tobacco sale restriction, increasing tobacco prices, reducing nicotine content, and banning smoking in public areas and workplaces. Smoking cessation in general, and in particular among patients with COPD, could be achieved through specific programs, including behavior modification and the use of nicotine replacement therapy, bupropion, or varenicline. Prevention and/or slowed COPD progression could be achieved by occupational exposure prevention; improved indoor/outdoor air quality; reduced cooking and heating pollutants; use of better stoves and chimneys, and alternative energy sources; and influenza and pneumococcal vaccination.
Collapse
Affiliation(s)
- Alberto Papi
- Section of Respiratory Diseases, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Cona General Hospital, Via Aldo Moro 8, Ferrara 44124, Italy.
| | - Luca Morandi
- Section of Respiratory Diseases, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Cona General Hospital, Via Aldo Moro 8, Ferrara 44124, Italy
| | - Leonardo M Fabbri
- Section of Respiratory Diseases, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Cona General Hospital, Via Aldo Moro 8, Ferrara 44124, Italy
| |
Collapse
|
16
|
Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020; 150:84-95. [PMID: 32088029 DOI: 10.1016/j.theriogenology.2020.01.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
At birth, weight of the neonate is used as a marker of the 9-month journey as a fetus. Those neonates born less than the 10th centile for their gestational age are at risk of being intrauterine growth restricted. However, this depends on their genetic potential for growth and the intrauterine environment in which they grew. Alterations in the supply of oxygen and nutrients to the fetus will decrease fetal growth, but these alterations occur due to a range of causes that are maternal, placental or fetal in nature. Consequently, IUGR neonates are a heterogeneous population. For this reason, it is likely that these neonates will respond differently to interventions compared not only to normally grown fetuses, but also to other neonates that are IUGR but have travelled a different path to get there. Thus, a range of models of IUGR should be studied to determine the effects of IUGR on the development and function of the heart and lung and subsequently the impact of interventions to improve development of these organs. Here we focus on a range of models of IUGR caused by manipulation of the maternal, placental or fetal environment on cardiorespiratory outcomes.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
17
|
Distinct epigenetic profiles in children with perinatally-acquired HIV on antiretroviral therapy. Sci Rep 2019; 9:10495. [PMID: 31324826 PMCID: PMC6642153 DOI: 10.1038/s41598-019-46930-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Perinatally-acquired HIV has persistent effects on long-term health outcomes, even after early treatment. We hypothesize that epigenetic indicators, such as DNA methylation, may elucidate cellular processes that explain these effects. Here, we compared DNA methylation profiles in whole blood from 120 HIV-infected children on antiretroviral therapy (ART) and 60 frequency age-matched HIV-uninfected children aged 4–9 years in Johannesburg, South Africa. Using an individual CpG site approach, we found 1,309 differentially-methylated (DM) CpG sites between groups, including 1,271 CpG sites that were hyper-methylated in the HIV-infected group and 38 CpG sites that were hypo-methylated in the HIV-infected group. Six hyper-methylated CpG sites were in EBF4, which codes for a transcription factor involved in B-cell maturation. The top hypomethylated site was in the promoter region of NLRC5, encoding a transcription factor that regulates major histocompatibility complex (MHC) class I molecule expression. Using a differentially-methylated region (DMR) approach, we found 315 DMRs between groups, including 28 regions encompassing 686 CpG sites on chromosome 6. A large number of the genes identified in both the CpG site and DMR approaches were located in the MHC region on chromosome 6, which plays an important role in the adaptive immune system. This study provides the first evidence that changes in the epigenome are detectable in children with perinatally-acquired HIV infection on suppressive ART started at an early age.
Collapse
|
18
|
Wang R, Zhou S, Wu P, Li M, Ding X, Sun L, Xu X, Zhou X, Zhou L, Cao C, Fei G. Identifying Involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in Treating Pulmonary Hypertension with Melatonin. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:44-54. [PMID: 30240970 PMCID: PMC6146608 DOI: 10.1016/j.omtn.2018.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs play an important role in the pathogenesis of pulmonary arterial hypertension (PAH). The aim of this study was to characterize the therapeutic role of melatonin as well as the underlying molecular mechanism (its effects on the expression of H19 and its downstream signaling pathways) in the treatment of PAH. Real-time PCR and western blot analysis were performed to evaluate the expression of H19, miR-200a, miR-675, insulin-like growth factor-1 receptor (IGF1R), and programmed cell death 4 (PDCD4). The value of systolic pulmonary artery pressure (SPAP) and the ratio of medial thickening in the monocrotaline (MCT) group were increased, whereas the melatonin treatment could decrease these values to some extent. The weights of RV (right ventricle), LV (left ventricle) + IVS (interventricular septal), and RV/(LV + IVS) in the MCT group were much higher than those in the MCT + melatonin and control groups. In addition, the expression of H19, miR-675, IGF1R mRNA, and IGF1R protein in the MCT group was the highest, whereas their expression in the control group was the lowest. The expression of miR-200, PDCD4 mRNA, and PDCD4 protein in the MCT group was the lowest, whereas their expression in the control group was the highest. Furthermore, H19 directly suppressed the expression of miR-200a, whereas miR-675-3p and miR-200a directly inhibited the expression of IGF1R and PDCD4, respectively. Finally, melatonin treatment inhibited cell proliferation; upregulated the expression of H19, miR-675-3p, and PDCD4; and downregulated the expression of miR-200a and IGF1R. This study demonstrated the role of H19-miR-675-3p-IGF1R- and H19-miR-200a-PDCD4-signaling pathways in the melatonin treatment of PAH.
Collapse
Affiliation(s)
- Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sijing Zhou
- Hefei Prevention and Treatment Center for Occupational Diseases, Hefei 230022, China
| | - Peipei Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xing Ding
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xuan Xu
- Division of Pulmonary/Critical Care Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90015, USA
| | - Xuexin Zhou
- The First Clinical College of Anhui Medical University, Hefei 230032, China
| | - Luqian Zhou
- The First Clinical College of Anhui Medical University, Hefei 230032, China
| | - Chao Cao
- Department of Respiratory Medicine, Ningbo First Hospital, Ningbo 315000, China.
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
19
|
Georgieff MK, Tran PV, Carlson ES. Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol 2018; 30:1063-1086. [PMID: 30068419 PMCID: PMC6074054 DOI: 10.1017/s0954579418000500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that the fetal environment plays an important role in brain development and sets the brain on a trajectory across the life span. An abnormal fetal environment results when factors that should be present during a critical period of development are absent or when factors that should not be in the developing brain are present. While these factors may acutely disrupt brain function, the real cost to society resides in the long-term effects, which include important mental health issues. We review the effects of three factors, fetal alcohol exposure, teratogen exposure, and nutrient deficiencies, on the developing brain and the consequent risk for developmental psychopathology. Each is reviewed with respect to the evidence found in epidemiological and clinical studies in humans as well as preclinical molecular and cellular studies that explicate mechanisms of action.
Collapse
Affiliation(s)
| | - Phu V Tran
- University of Minnesota School of Medicine
| | | |
Collapse
|
20
|
Arigliani M, Spinelli AM, Liguoro I, Cogo P. Nutrition and Lung Growth. Nutrients 2018; 10:E919. [PMID: 30021997 PMCID: PMC6073340 DOI: 10.3390/nu10070919] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Experimental evidence from animal models and epidemiology studies has demonstrated that nutrition affects lung development and may have a lifelong impact on respiratory health. Chronic restriction of nutrients and/or oxygen during pregnancy causes structural changes in the airways and parenchyma that may result in abnormal lung function, which is tracked throughout life. Inadequate nutritional management in very premature infants hampers lung growth and may be a contributing factor in the pathogenesis of bronchopulmonary dysplasia. Recent evidence seems to indicate that infant and childhood malnutrition does not determine lung function impairment even in the presence of reduced lung size due to delayed body growth. This review will focus on the effects of malnutrition occurring at critical time periods such as pregnancy, early life, and childhood, on lung growth and long-term lung function.
Collapse
Affiliation(s)
- Michele Arigliani
- Department of Medicine, University Hospital of Udine, Piazzale S. Maria Misericordia 1, 33100 Udine, Italy.
| | - Alessandro Mauro Spinelli
- Department of Medicine, University Hospital of Udine, Piazzale S. Maria Misericordia 1, 33100 Udine, Italy.
| | - Ilaria Liguoro
- Department of Medicine, University Hospital of Udine, Piazzale S. Maria Misericordia 1, 33100 Udine, Italy.
| | - Paola Cogo
- Department of Medicine, University Hospital of Udine, Piazzale S. Maria Misericordia 1, 33100 Udine, Italy.
| |
Collapse
|
21
|
Adolescent age is an independent risk factor for abnormal spirometry among people living with HIV in Kenya. AIDS 2018; 32:1353-1359. [PMID: 29794491 DOI: 10.1097/qad.0000000000001815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES As life expectancy of people living with HIV (PLWH) improves in low-income and middle-income countries (LMICs), the spectrum of HIV-related pulmonary complications may reflect a greater burden of chronic lung diseases as in high-income countries. We determined whether the risk of abnormal spirometry was greater among adolescent compared with adult PLWH at the Coptic Hope Center for Infectious Diseases in Nairobi, Kenya, and evaluated the role of other cofactors for abnormal spirometry. DESIGN We prospectively enrolled adolescent and adult PLWH for this cross-sectional study. METHODS Data collection included standardized questionnaires, clinical assessment, and prebronchodilator and postbronchodilator spirometry. Adolescents additionally underwent noncontrast chest computed tomography. Multivariable logistic regression determined associations of adolescent age with abnormal spirometry, adjusting for cofactors. RESULTS Of 427 PLWH, 21 (40%) adolescents and 64 (17%) adults had abnormal spirometry. Among adolescents, 80% had abnormal chest CTs, and 79% had at least one respiratory symptom. Adolescent age (adjusted odds ratio 3.22; 95% confidence interval 1.48-6.98) was independently associated with abnormal spirometry, adjusting for recent CD4, HIV clinical stage, low BMI, indoor kerosene use, smoking pack-years, and prior pulmonary tuberculosis. Additional important cofactors for abnormal spirometry included prior pulmonary tuberculosis (3.15; 1.70-5.58), kerosene use (1.77; 1.04-3.04) and smoking pack-years (1.05; 1.00-1.10). Adolescent age, prior pulmonary tuberculosis, and smoking pack-years were significantly associated with airflow limitation. CONCLUSION Adolescent age was independently associated with increased risk of abnormal spirometry, particularly airflow limitation. Studies to improve prevention, detection, and management of chronic lung disease across the lifespan among PLWH are needed in LMICs.
Collapse
|
22
|
Colella M, Frérot A, Novais ARB, Baud O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr Pediatr Rev 2018; 14:212-218. [PMID: 29998808 PMCID: PMC6416241 DOI: 10.2174/1573396314666180712114531] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Fetal Growth Restriction (FGR) is one of the most common noxious antenatal conditions in humans, inducing a substantial proportion of preterm delivery and leading to a significant increase in perinatal mortality, neurological handicaps and chronic diseases in adulthood. This review summarizes the current knowledge about the postnatal consequences of FGR, with a particular emphasis on the long-term consequences on respiratory, cardiovascular and neurological structures and functions. RESULT AND CONCLUSION FGR represents a global health challenge, and efforts are urgently needed to improve our understanding of the critical factors leading to FGR and subsequent insults to the developing organs.
Collapse
Affiliation(s)
- Marina Colella
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| | - Alice Frérot
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| | - Aline Rideau Batista Novais
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| | - Olivier Baud
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| |
Collapse
|
23
|
Pulmonary hypertension associated with bronchopulmonary dysplasia in preterm infants. J Reprod Immunol 2017; 124:21-29. [PMID: 29035757 DOI: 10.1016/j.jri.2017.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/11/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension (BPD-PH) are chronic inflammatory cardiopulmonary diseases with devastating short- and long-term consequences for infants born prematurely. The immature lungs of preterm infants are ill-prepared to achieve sufficient gas exchange, thus usually necessitating immediate commencement of respiratory support and oxygen supplementation. These therapies are life-saving, but they exacerbate the tissue damage that is inevitably inflicted on a preterm lung forced to perform gas exchange. Together, air-breathing and necessary therapeutic interventions disrupt normal lung development by aggravating pulmonary inflammation and vascular remodelling, thus frequently precipitating BPD and PH via an incompletely understood pathogenic cascade. BPD and BPD-PH share common risk factors, such as low gestational age at birth, fetal growth restriction and perinatal maternal inflammation; however, these risk factors are not unique to BPD or BPD-PH. Occurring in 17-24% of BPD patients, BPD-PH substantially worsens the morbidity and mortality attributable to BPD alone, thus darkening their outlook; for example, BPD-PH entails a mortality of up to 50%. The absence of a safe and effective therapy for BPD and BPD-PH renders neonatal cardiopulmonary disease an area of urgent unmet medical need. Besides the need to develop new therapeutic strategies, a major challenge for clinicians is the lack of a reliable method for identifying babies at risk of developing BPD and BPD-PH. In addition to discussing current knowledge on pathophysiology, diagnosis and treatment of BPD-PH, we highlight emerging biomarkers that could enable clinicians to predict disease-risk and also optimise treatment of BPD-PH in our tiniest patients.
Collapse
|
24
|
Durrani-Kolarik S, Pool CA, Gray A, Heyob KM, Cismowski MJ, Pryhuber G, Lee LJ, Yang Z, Tipple TE, Rogers LK. miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L339-L349. [PMID: 28473324 PMCID: PMC5582933 DOI: 10.1152/ajplung.00273.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
Abstract
Even with advances in the care of preterm infants, chronic lung disease or bronchopulmonary dysplasia (BPD) continues to be a significant pulmonary complication. Among those diagnosed with BPD, a subset of infants develop severe BPD with disproportionate pulmonary morbidities. In addition to decreased alveolarization, these infants develop obstructive and/or restrictive lung function due to increases in or dysregulation of extracellular matrix proteins. Analyses of plasma obtained from preterm infants during the first week of life indicate that circulating miR-29b is suppressed in infants that subsequently develop BPD and that decreased circulating miR-29b is inversely correlated with BPD severity. Our mouse model mimics the pathophysiology observed in infants with severe BPD, and we have previously reported decreased pulmonary miR-29b expression in this model. The current studies tested the hypothesis that adeno-associated 9 (AAV9)-mediated restoration of miR-29b in the developing lung will improve lung alveolarization and minimize the deleterious changes in matrix deposition. Pregnant C3H/HeN mice received an intraperitoneal LPS injection on embryonic day 16 and newborn pups were exposed to 85% oxygen from birth to 14 days of life. On postnatal day 3, AAV9-miR-29b or AAV9-control was administered intranasally. Mouse lung tissues were then analyzed for changes in miR-29 expression, alveolarization, and matrix protein levels and localization. Although only modest improvements in alveolarization were detected in the AAV9-miR29b-treated mice at postnatal day 28, treatment completely attenuated defects in matrix protein expression and localization. Our data suggest that miR-29b restoration may be one component of a novel therapeutic strategy to treat or prevent severe BPD in prematurely born infants.
Collapse
Affiliation(s)
- Shaheen Durrani-Kolarik
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Caylie A Pool
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ashley Gray
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kathryn M Heyob
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mary J Cismowski
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - L James Lee
- The Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio
| | - Zhaogang Yang
- The Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio;
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
25
|
Sun M, Ramchandran R, Chen J, Yang Q, Raj JU. Smooth Muscle Insulin-Like Growth Factor-1 Mediates Hypoxia-Induced Pulmonary Hypertension in Neonatal Mice. Am J Respir Cell Mol Biol 2017; 55:779-791. [PMID: 27438786 DOI: 10.1165/rcmb.2015-0388oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Insulin-like growth factor (IGF)-1 is a potent mitogen of vascular smooth muscle cells (SMCs), but its role in pulmonary vascular remodeling associated with pulmonary hypertension (PH) is not clear. In an earlier study, we implicated IGF-1 in the pathogenesis of hypoxia-induced PH in neonatal mice. In this study, we hypothesized that hypoxia-induced up-regulation of IGF-1 in vascular smooth muscle is directly responsible for pulmonary vascular remodeling and PH. We studied neonatal and adult mice with smooth muscle-specific deletion of IGF-1 and also used an inhibitor of IGF-1 receptor (IGF-1R), OSI-906, in neonatal mice. We found that, in neonatal mice, SMC-specific deletion of IGF-1 or IGF-1R inhibition with OSI-906 attenuated hypoxia-induced pulmonary vascular remodeling in small arteries, right ventricular hypertrophy, and right ventricular systolic pressure. Pulmonary arterial SMCs from IGF-1-deleted mice or after OSI-906 treatment exhibited reduced proliferative potential. However, in adult mice, smooth muscle-specific deletion of IGF-1 had no effect on hypoxia-induced PH. Our data suggest that vascular smooth muscle-derived IGF-1 plays a critical role in hypoxia-induced PH in neonatal mice but not in adult mice. We speculate that the IGF-1/IGF-1R axis is important in pathogenesis of PH in the developing lung and may be amenable to therapeutic manipulation in this age group.
Collapse
Affiliation(s)
| | | | - Jiwang Chen
- 2 Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, and
| | | | - J Usha Raj
- 1 Department of Pediatrics.,3 Children's Hospital, University of Illinois, Chicago, Illinois
| |
Collapse
|
26
|
de Wijs-Meijler DP, Duncker DJ, Tibboel D, Schermuly RT, Weissmann N, Merkus D, Reiss IK. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system. Pulm Circ 2017; 7:55-66. [PMID: 28680565 PMCID: PMC5448552 DOI: 10.1086/689748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called "fetal or perinatal programming." Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future.
Collapse
Affiliation(s)
- Daphne P. de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Intensive Care Unit, Department of Pediatric Surgery, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph T. Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K.M. Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Elangovan VR, Camp SM, Kelly GT, Desai AA, Adyshev D, Sun X, Black SM, Wang T, Garcia JGN. Endotoxin- and mechanical stress-induced epigenetic changes in the regulation of the nicotinamide phosphoribosyltransferase promoter. Pulm Circ 2017; 6:539-544. [PMID: 28090296 DOI: 10.1086/688761] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mechanical ventilation, a lifesaving intervention for patients with acute respiratory distress syndrome (ARDS), also unfortunately contributes to excessive mechanical stress and impaired lung physiological and structural integrity. We have elsewhere established the pivotal role of increased nicotinamide phosphoribosyltransferase (NAMPT) transcription and secretion as well as its direct binding to the toll-like receptor 4 (TLR4) in the progression of this devastating syndrome; however, regulation of this critical gene in ventilator-induced lung injury (VILI) is not well characterized. On the basis of an emerging role for epigenetics in enrichment of VILI and CpG sites within the NAMPT promoter and 5'UTR, we hypothesized that NAMPT expression and downstream transcriptional events are influenced by epigenetic mechanisms. Concomitantly, excessive mechanical stress of human pulmonary artery endothelial cells or lipopolysaccharide (LPS) treatment led to both reduced DNA methylation levels in the NAMPT promoter and increased gene transcription. Histone deacetylase inhibition by trichostatin A or Sirt-1-silencing RNA attenuates LPS-induced NAMPT expression. Furthermore, recombinant NAMPT administration induced TLR4-dependent global H3K9 hypoacetylation. These studies suggest a complex epigenetic regulatory network of NAMPT in VILI and ARDS and open novel strategies for combating VILI and ARDS.
Collapse
Affiliation(s)
- Venkateswaran Ramamoorthi Elangovan
- Department of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Gabriel T Kelly
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ankit A Desai
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Djanybek Adyshev
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ting Wang
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
28
|
Lanari M, Vandini S, Adorni F, Prinelli F, Di Santo S, Silvestri M, Musicco M. Prenatal tobacco smoke exposure increases hospitalizations for bronchiolitis in infants. Respir Res 2015; 16:152. [PMID: 26695759 PMCID: PMC4699376 DOI: 10.1186/s12931-015-0312-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022] Open
Abstract
Background Tobacco smoke exposure (TSE) is a worldwide health problem and it is considered a risk factor for pregnant women’s and children’s health, particularly for respiratory morbidity during the first year of life. Few significant birth cohort studies on the effect of prenatal TSE via passive and active maternal smoking on the development of severe bronchiolitis in early childhood have been carried out worldwide. Methods From November 2009 to December 2012, newborns born at ≥33 weeks of gestational age (wGA) were recruited in a longitudinal multi-center cohort study in Italy to investigate the effects of prenatal and postnatal TSE, among other risk factors, on bronchiolitis hospitalization and/or death during the first year of life. Results Two thousand two hundred ten newborns enrolled at birth were followed-up during their first year of life. Of these, 120 (5.4 %) were hospitalized for bronchiolitis. No enrolled infants died during the study period. Prenatal passive TSE and maternal active smoking of more than 15 cigarettes/daily are associated to a significant increase of the risk of offspring children hospitalization for bronchiolitis, with an adjHR of 3.5 (CI 1.5–8.1) and of 1.7 (CI 1.1–2.6) respectively. Conclusions These results confirm the detrimental effects of passive TSE and active heavy smoke during pregnancy for infants’ respiratory health, since the exposure significantly increases the risk of hospitalization for bronchiolitis in the first year of life. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0312-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcello Lanari
- Pediatrics and Neonatology Unit, Imola Hospital, Via Montericco, 4, Imola, Italy.
| | - Silvia Vandini
- Neonatology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 11 40138, Bologna, Italy.
| | - Fulvio Adorni
- Epidemiology and Biostatistics Unit, Institute of Biomedical Technologies, National Research Council Milan, Via Fratelli Cervi 93, Segrate, MI, Italy.
| | - Federica Prinelli
- Epidemiology and Biostatistics Unit, Institute of Biomedical Technologies, National Research Council Milan, Via Fratelli Cervi 93, Segrate, MI, Italy.
| | - Simona Di Santo
- Epidemiology and Biostatistics Unit, Institute of Biomedical Technologies, National Research Council Milan, Via Fratelli Cervi 93, Segrate, MI, Italy. .,Department of Neuroscience, Foundation IRCCS Santa Lucia, Via Ardeatina 306, Rome, Italy.
| | - Michela Silvestri
- Pediatric Pulmonology and Allergy Unit, Istituto Giannina Gaslini, Genoa, Italy.
| | - Massimo Musicco
- Epidemiology and Biostatistics Unit, Institute of Biomedical Technologies, National Research Council Milan, Via Fratelli Cervi 93, Segrate, MI, Italy. .,Department of Neuroscience, Foundation IRCCS Santa Lucia, Via Ardeatina 306, Rome, Italy.
| | | |
Collapse
|
29
|
Lanari M, Prinelli F, Adorni F, Di Santo S, Vandini S, Silvestri M, Musicco M. Risk factors for bronchiolitis hospitalization during the first year of life in a multicenter Italian birth cohort. Ital J Pediatr 2015; 41:40. [PMID: 26006025 PMCID: PMC4453833 DOI: 10.1186/s13052-015-0149-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) is one of the main causes of respiratory infections during the first year of life. Very premature infants may contract more severe diseases and 'late preterm infants' may also be more susceptible to the infection. The aim of this study is to evaluate the risk factors for hospitalization during the first year of life in children born at different gestational ages in Italy. METHODS A cohort of 33-34 weeks gestational age (wGA) newborns matched by sex and age with two cohort of newborns born at 35-37 wGA and > 37 wGA were enrolled in this study for a three-year period (2009-2012). Hospitalization for bronchiolitis (ICD-9 code 466.1) during the first year of life was assessed through phone interview at the end of the RSV season (November-March) and at the completion of the first year of life. RESULTS The study enrolled 2314 newborns, of which 2210 (95.5 %) had a one year follow-up and were included in the analysis; 120 (5.4 %) were hospitalized during the first year of life for bronchiolitis. Children born at 33-34 wGA had a higher hospitalization rate compared to the two other groups. The multivariate analysis carried out on the entire population associated the following factors with higher rates for bronchiolitis hospitalization: male gender; prenatal treatment with corticosteroids; prenatal exposure to maternal smoking; singleton delivery; respiratory diseases in neonatal period; surfactant therapy; lack of breastfeeding; siblings <10 years old; living in crowded conditions and/or in unhealthy households and early exposure to the epidemic RSV season. When analysis was restricted to preterms born at 33-34 wGA the following variables were associated to higher rates of bronchiolitis hospitalization: male gender, prenatal exposure to maternal smoking, neonatal surfactant therapy, having siblings <10 years old, living in crowded conditions and being exposed to epidemic season during the first three months of life. CONCLUSION Our study identified some prenatal, perinatal and postnatal conditions proving to be relevant and independent risk factors for hospitalization for bronchiolitis during the first year of life. The combination of these factors may lead to consider palivizumab prophylaxis in Italy.
Collapse
Affiliation(s)
- Marcello Lanari
- Pediatrics and Neonatology Unit, Imola Hospital, Imola, Italy.
| | - Federica Prinelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy. .,Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy.
| | - Fulvio Adorni
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.
| | | | - Silvia Vandini
- Neonatology Unit S.Orsola-Malpighi Hospital, Via Massarenti 11, Bologna, Italy.
| | - Michela Silvestri
- Pediatric Pulmonology and Allergy Unit, Istituto Giannina Gaslini, Genoa, Italy.
| | - Massimo Musicco
- Institute of Biomedical Technologies, National Research Council, Milan, Italy. .,Foundation IRCCS Santa Lucia, Rome, Italy.
| | | |
Collapse
|
30
|
Abstract
The lung develops from a very simple outpouching of the foregut into a highly complex, finely structured organ with multiple specialized cell types that are required for its normal physiological function. During both the development of the lung and its remodeling in the context of disease or response to injury, gene expression must be activated and silenced in a coordinated manner to achieve the tremendous phenotypic heterogeneity of cell types required for homeostasis and pathogenesis. Epigenetic mechanisms, consisting of DNA base modifications such as methylation, alteration of histones resulting in chromatin modification, and the action of noncoding RNA, control the regulation of information "beyond the genome" required for both lung modeling and remodeling. Epigenetic regulation is subject to modification by environmental stimuli, such as oxidative stress, infection, and aging, and is thus critically important in chronic remodeling disorders such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia (BPD), and pulmonary hypertension (PH). Technological advances have made it possible to evaluate genome-wide epigenetic changes (epigenomics) in diseases of lung remodeling, clarifying existing pathophysiological paradigms and uncovering novel mechanisms of disease. Many of these represent new therapeutic targets. Advances in epigenomic technology will accelerate our understanding of lung development and remodeling, and lead to novel treatments for chronic lung diseases.
Collapse
Affiliation(s)
- James S Hagood
- Department of Pediatrics, Division of Respiratory Medicine, University of California-San Diego and Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
31
|
Joss-Moore LA, Lane RH, Albertine KH. Epigenetic contributions to the developmental origins of adult lung disease. Biochem Cell Biol 2015; 93:119-27. [PMID: 25493710 PMCID: PMC5683896 DOI: 10.1139/bcb-2014-0093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Perinatal insults, including intrauterine growth restriction, preterm birth, maternal exposure to toxins, or dietary deficiencies produce deviations in the epigenome of lung cells. Occurrence of perinatal insults often coincides with the final stages of lung development. The result of epigenome disruptions in response to perinatal insults during lung development may be long-term structural and functional impairment of the lung and development of lung disease. Understanding the contribution of epigenetic mechanisms to life-long lung disease following perinatal insults is the focus of the developmental origins of adult lung disease field. DNA methylation, histone modifications, and microRNA changes are all observed in various forms of lung disease. However, the perinatal contribution to such epigenetic mechanisms is poorly understood. Here we discuss the developmental origins of adult lung disease, the interplay between perinatal events, lung development and disease, and the role that epigenetic mechanisms play in connecting these events.
Collapse
Affiliation(s)
- Lisa A Joss-Moore
- Division of Neonatology, Department of Pediatrics, University of Utah, P.O. Box 581289, Salt Lake City, UT 84158, USA
| | | | | |
Collapse
|
32
|
Xu XF, Hu QY, Liang LF, Wu L, Gu WZ, Tang LL, Fu LC, Du LZ. Epigenetics of hyper-responsiveness to allergen challenge following intrauterine growth retardation rat. Respir Res 2014; 15:137. [PMID: 25391516 PMCID: PMC4233040 DOI: 10.1186/s12931-014-0137-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/23/2014] [Indexed: 01/07/2023] Open
Abstract
Background Epidemiological studies have revealed that intrauterine growth retardation (IUGR) or low birth weight is linked to the later development of asthma. Epigenetic regulatory mechanisms play an important role in the fetal origins of adult disease. However, little is known regarding the correlation between epigenetic regulation and the development of asthma following IUGR. Methods An IUGR and ovalbumin (OVA)-sensitization/challenge rat model was used to study whether epigenetic mechanisms play a role in the development of asthma following IUGR. Results Maternal nutrient restriction increased histone acetylation levels of the endothelin-1 (ET-1) gene promoter in lung tissue of offspring, but did not cause significant alterations of DNA methylation. The effect was maintained until 10 weeks after birth. Furthermore, these epigenetic changes may have induced IUGR individuals to be highly sensitive to OVA challenge later in life, resulting in more significant changes related to asthma. Conclusions These findings suggest that epigenetic mechanisms might be closely associated with the development of asthma following IUGR, providing further insight for improved prevention of asthma induced by environmental factors.
Collapse
Affiliation(s)
- Xue-Feng Xu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Qiong-Yao Hu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Ling-Fang Liang
- Department of Pediatric ICU, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Lei Wu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Wei-Zhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Li-Li Tang
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Lin-Chen Fu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Li-Zhong Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
33
|
Carraro S, Scheltema N, Bont L, Baraldi E. Early-life origins of chronic respiratory diseases: understanding and promoting healthy ageing. Eur Respir J 2014; 44:1682-96. [PMID: 25323240 DOI: 10.1183/09031936.00084114] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic obstructive respiratory disorders such as asthma and chronic obstructive pulmonary disease often originate early in life. In addition to a genetic predisposition, prenatal and early-life environmental exposures have a persistent impact on respiratory health. Acting during a critical phase of lung development, these factors may change lung structure and metabolism, and may induce maladaptive responses to harmful agents, which will affect the whole lifespan. Some environmental factors, such as exposure to cigarette smoke, type of childbirth and diet, may be modifiable, but it is more difficult to influence other factors, such as preterm birth and early exposure to viruses or allergens. Here, we bring together recent literature to analyse the critical aspects involved in the early stages of lung development, going back to prenatal and perinatal events, and we discuss the mechanisms by which noxious factors encountered early on may have a lifelong impact on respiratory health. We briefly comment on the need for early disease biomarkers and on the possible role of "-omic" technologies in identifying risk profiles predictive of chronic respiratory conditions. Such profiles could guide the ideation of effective preventive strategies and/or targeted early lifestyle or therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Carraro
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| | - Nienke Scheltema
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louis Bont
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eugenio Baraldi
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| |
Collapse
|
34
|
Affiliation(s)
- Sophie A Lelièvre
- Department of Basic Medical Sciences, Center for Cancer Research, Purdue University West Lafayette, IN, USA
| |
Collapse
|
35
|
Lock M, McGillick EV, Orgeig S, McMillen IC, Morrison JL. Regulation of fetal lung development in response to maternal overnutrition. Clin Exp Pharmacol Physiol 2014; 40:803-16. [PMID: 24033542 DOI: 10.1111/1440-1681.12166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/18/2013] [Accepted: 09/03/2013] [Indexed: 12/30/2022]
Abstract
With the worldwide obesity epidemic, the proportion of women entering pregnancy overweight or obese has increased significantly in recent years. Babies born to obese women are at an increased risk of respiratory complications at birth and in childhood. In addition to maternal diabetes, there are a number of metabolic changes that the fetus of an overnourished mother experiences in utero that may modulate lung development and represent the mechanisms underlying the increased risk of respiratory complications. Herein we highlight a series of factors associated with the intrauterine environment of an overnourished mother that may impact on fetal lung development and lead to an increased risk of complications at birth or in postnatal life.
Collapse
Affiliation(s)
- Mitchell Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
36
|
Yang Q, Dahl MJ, Albertine KH, Ramchandran R, Sun M, Raj JU. Role of histone deacetylases in regulation of phenotype of ovine newborn pulmonary arterial smooth muscle cells. Cell Prolif 2014; 46:654-64. [PMID: 24460719 DOI: 10.1111/cpr.12076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/16/2013] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Pulmonary arterial hypertension, characterized by pulmonary vascular remodelling and vasoconstriction, is associated with excessive proliferative changes in pulmonary vascular walls. However, the role of HDACs in the phenotypic alteration of pulmonary arterial smooth muscle cells (PASMC) is largely unknown. MATERIAL AND METHODS Pulmonary arterial smooth muscle cells were isolated from newborn sheep. Cell cycle analysis was performed by flow cytometry. mRNA and protein expression were measured by real-time PCR and Western blot analysis. Wound-healing scratch assay was used to measure cell migration. Contractility of newborn PASMCs was determined by gel contraction assay. Chromatin immunoprecipitation was used to examine histone modifications along the p21 promoter region. Global DNA methylation was measured by liquid chromatography-mass spectroscopy. RESULTS Inhibition of class I and class II HDACs by apicidin and HDACi VIII suppressed proliferation of newborn PASMC and induced cell cycle arrest in G1 phase. Acetyl H3 levels were higher in newborn PASMC treated with apicidin and HDACi VIII. This was accompanied by increased expression of p21 and reduced expression of CCND1 but not p53. HDAC inhibition altered histone codes around the p21 promoter region in NPASMC. Apicidin inhibited serum-induced cell migration, and modulated profiling of expression of genes encoding pro-oxidant and antioxidant enzymes. Contractility and global DNA methylation levels of newborn PASMCs were also markedly modulated by apicidin. CONCLUSION Our results demonstrate that class I HDACs are clearly involved in phenotypic alteration of newborn PASMC.
Collapse
Affiliation(s)
- Q Yang
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | | | | | | |
Collapse
|
37
|
Nichols JL, Gladwell W, Verhein KC, Cho HY, Wess J, Suzuki O, Wiltshire T, Kleeberger SR. Genome-wide association mapping of acute lung injury in neonatal inbred mice. FASEB J 2014; 28:2538-50. [PMID: 24571919 DOI: 10.1096/fj.13-247221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) contribute to the pathogenesis of many acute and chronic pulmonary disorders, including bronchopulmonary dysplasia (BPD), a respiratory condition that affects preterm infants. However, the mechanisms of susceptibility to oxidant stress in neonatal lungs are not completely understood. We evaluated the role of genetic background in response to oxidant stress in the neonatal lung by exposing mice from 36 inbred strains to hyperoxia (95% O2) for 72 h after birth. Hyperoxia-induced lung injury was evaluated by using bronchoalveolar lavage fluid (BALF) analysis and pathology. Statistically significant interstrain variation was found for BALF inflammatory cells and protein (heritability estimates range: 33.6-55.7%). Genome-wide association mapping using injury phenotypes identified quantitative trait loci (QTLs) on chromosomes 1, 2, 4, 6, and 7. Comparative mapping of the chromosome 6 QTLs identified Chrm2 (cholinergic receptor, muscarinic 2, cardiac) as a candidate susceptibility gene, and mouse strains with a nonsynonymous coding single-nucleotide polymorphism (SNP) in Chrm2 that causes an amino acid substitution (P265L) had significantly reduced hyperoxia-induced inflammation compared to strains without the SNP. Further, hyperoxia-induced lung injury was significantly reduced in neonatal mice with targeted deletion of Chrm2, relative to wild-type controls. This study has important implications for understanding the mechanisms of oxidative lung injury in neonates.
Collapse
Affiliation(s)
- Jennifer L Nichols
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA; Curriculum in Toxicology, Center for Environmental Medicine, Asthma, and Lung Biology, and
| | - Wesley Gladwell
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Kirsten C Verhein
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Hye-Youn Cho
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Oscar Suzuki
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA; and
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA; and
| | - Steven R Kleeberger
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, U.S. National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
38
|
Abstract
Development of the pulmonary system is essential for terrestrial life. The molecular pathways that regulate this complex process are beginning to be defined, and such knowledge is critical to our understanding of congenital and acquired lung diseases. A recent workshop was convened by the National Heart, Lung, and Blood Institute to discuss the developmental principles that regulate the formation of the pulmonary system. Emerging evidence suggests that key developmental pathways not only regulate proper formation of the pulmonary system but are also reactivated upon postnatal injury and repair and in the pathogenesis of human lung diseases. Molecular understanding of early lung development has also led to new advances in areas such as generation of lung epithelium from pluripotent stem cells. The workshop was organized into four different topics, including early lung cell fate and morphogenesis, mechanisms of lung cell differentiation, tissue interactions in lung development, and environmental impact on early lung development. Critical points were raised, including the importance of epigenetic regulation of lung gene expression, the dearth of knowledge on important mesenchymal lineages within the lung, and the interaction between the developing pulmonary and cardiovascular system. This manuscript describes the summary of the discussion along with general recommendations to overcome the gaps in knowledge in lung developmental biology.
Collapse
|
39
|
Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. THE LANCET RESPIRATORY MEDICINE 2013; 1:728-42. [PMID: 24429276 DOI: 10.1016/s2213-2600(13)70118-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Interest in the contribution of changes in lung development during early life to subsequent respiratory morbidity is increasing. Most evidence of an association between adverse intrauterine factors and structural effects on the developing lung is from animal studies. Such evidence has been augmented by epidemiological studies showing associations between insults to the developing lung during prenatal and early postnatal life and adult respiratory morbidity or reduced lung function, and by physiological studies that have elucidated mechanisms underlying these associations. The true effect of early insults on subsequent respiratory morbidity can be understood only if the many prenatal and postnatal factors that can affect lung development are taken into account. Adverse factors affecting lung development during fetal life and early childhood reduce the attainment of maximum lung function and accelerate lung function decline in adulthood, initiating or worsening morbidity in susceptible individuals. In this Review, we focus on factors that adversely affect lung development in utero and during the first 5 years after birth, thereby predisposing individuals to reduced lung function and increased respiratory morbidity throughout life. We focus particularly on asthma and COPD.
Collapse
Affiliation(s)
- Janet Stocks
- University College London, Institute of Child Health, London, UK.
| | - Alison Hislop
- University College London, Institute of Child Health, London, UK
| | - Samatha Sonnappa
- University College London, Institute of Child Health, London, UK
| |
Collapse
|
40
|
Stocks J, Sonnappa S. Early life influences on the development of chronic obstructive pulmonary disease. Ther Adv Respir Dis 2013; 7:161-73. [PMID: 23439689 PMCID: PMC4107852 DOI: 10.1177/1753465813479428] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is increasing evidence that chronic obstructive pulmonary disease (COPD) is not simply a disease of old age that is largely restricted to heavy smokers, but may be associated with insults to the developing lung during foetal life and the first few years of postnatal life, when lung growth and development are rapid. A better understanding of the long-term effects of early life factors, such as intrauterine growth restriction, prenatal and postnatal exposure to tobacco smoke and other pollutants, preterm delivery and childhood respiratory illnesses, on the subsequent development of chronic respiratory disease is imperative if appropriate preventive and management strategies to reduce the burden of COPD are to be developed. The extent to which insults to the developing lung are associated with increased risk of COPD in later life depends on the underlying cause, timing and severity of such derangements. Suboptimal conditions in utero result in aberrations of lung development such that affected individuals are born with reduced lung function, which tends to remain diminished throughout life, thereby increasing the risk both of wheezing disorders during childhood and subsequent COPD in genetically susceptible individuals. If the current trend towards the ever-increasing incidence of COPD is to be reversed, it is essential to minimize risks to the developing lung by improvements in antenatal and neonatal care, and to reduce prenatal and postnatal exposures to environmental pollutants, including passive tobacco smoke. Furthermore, adult physicians need to recognize that lung disease is potentially associated with early life insults and provide better education regarding diet, exercise and avoidance of smoking to preserve precious reserves of lung function in susceptible adults. This review focuses on factors that adversely influence lung development in utero and during the first 5 years of life, thereby predisposing to subsequent COPD.
Collapse
Affiliation(s)
- Janet Stocks
- Portex Unit, University College London Institute of Child Health, 30, Guilford Street, London WC1N 1EH, UK.
| | | |
Collapse
|
41
|
Abstract
Epigenetics has recently been considered as a potential mechanism involved in the development of many disorders, including allergic diseases. Animal models have shown that environmental factors such as maternal tobacco smoke or mechanical ventilation can alter gene transcription and consequently the structure and function of lungs. Moreover, asthma and other allergic diseases (atopic dermatitis and food allergy) are influenced by epigenetics. In fact, the exposure to environmental factors during early childhood may induce a long-lasting altered genetic state adapting to a persistent "Th2 state" thus influencing the development of asthma or atopic dermatitis and food allergy if alterations involve the filaggrin gene. In conclusion, progresses have been made linking environmental pollution, environmental tobacco smoke (ETS) and diet exposure with atopy through epigenetic mechanisms. Furthermore, considerable advances have been made implicating epigenetic mechanisms in T cell differentiation. However, much more research is still needed, in particular to define the clinical consequences of such epigenetic alterations.
Collapse
Affiliation(s)
- Giovanna Tezza
- Department of Life Sciences and Reproduction, Section of Pediatrics, University of Verona, Policlinico G.B. Rossi, Piazzale L A Scuro 10, Verona, Italy
| | | | | |
Collapse
|
42
|
Abstract
Bronchopulmonary dysplasia (BPD) is among the most common chronic lung diseases in infants in the US. Improved survival of preterm infants who developed BPD is becoming increasingly important because of the high risk for persistent pulmonary morbidities such as poor respiratory gas exchange, pulmonary hypertension, and excess airway expiratory resistance later in life. This review focuses on unique insights provided by the two large-animal, physiological models of neonatal chronic lung disease: preterm baboons and preterm lambs. The models' are valuable because they contribute to better understanding of the underlying molecular pathogenic mechanisms. An epigenetic hypothesis is proposed as a pathogenic mechanism for BPD and its persistent pulmonary morbidities.
Collapse
Affiliation(s)
- Kurt H. Albertine
- Departments of Pediatrics, Medicine, Neurobiology & Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah 84158-1289
| |
Collapse
|
43
|
Shiue YL, Chen LR, Tsai CJ, Yeh CY, Huang CT. Emerging roles of peroxisome proliferator-activated receptors in the pituitary gland in female reproduction. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.gmbhs.2013.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Using Cell-Based Strategies to Break the Link between Bronchopulmonary Dysplasia and the Development of Chronic Lung Disease in Later Life. Pulm Med 2013; 2013:874161. [PMID: 23401768 PMCID: PMC3557634 DOI: 10.1155/2013/874161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/16/2012] [Indexed: 11/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity that affects very preterm infants. Although advances in perinatal care have changed the course of lung injury and enabled the survival of infants born as early as 23-24 weeks of gestation, BPD still remains a common complication of extreme prematurity, and there is no specific treatment for it. Furthermore, children, adolescents, and adults who were born very preterm and developed BPD have an increased risk of persistent lung dysfunction, including early-onset emphysema. Therefore, it is possible that early-life pulmonary insults, such as extreme prematurity and BPD, may increase the risk of COPD later in life, especially if exposed to secondary challenges such as respiratory infections and/or smoking. Recent advances in our understanding of stem/progenitor cells and their potential to repair damaged organs offer the possibility of cell-based treatments for neonatal and adult lung injuries. This paper summarizes the long-term pulmonary outcomes of preterm birth and BPD and discusses the recent advances of cell-based therapies for lung diseases, with a particular focus on BPD and COPD.
Collapse
|
45
|
Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S, Plösch T. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 2012; 94:2242-63. [DOI: 10.1016/j.biochi.2012.06.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/11/2012] [Indexed: 02/06/2023]
|
46
|
Albertine KH. Brain injury in chronically ventilated preterm neonates: collateral damage related to ventilation strategy. Clin Perinatol 2012; 39:727-40. [PMID: 22954278 PMCID: PMC3437037 DOI: 10.1016/j.clp.2012.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brain injury is a frequent comorbidity in chronically ventilated preterm infants. However, the molecular basis of the brain injury remains incompletely understood. This article discusses the subtle (diffuse) form of brain injury that has white matter and gray matter lesions without germinal matrix hemorrhage-intraventricular hemorrhage, posthemorrhagic hydrocephalus, or cystic periventricular leukomalacia. This article synthesizes data that suggest that diffuse lesions to white matter and gray matter are collateral damage related to ventilator strategy. Evidence is introduced from the 2 large-animal, physiologic models of evolving neonatal chronic lung disease that suggest that an epigenetic mechanism may underlie the collateral damage.
Collapse
Affiliation(s)
- Kurt H. Albertine
- Departments of Pediatrics, Medicine, Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84158
| |
Collapse
|
47
|
Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions. Prog Neurobiol 2012; 98:145-65. [PMID: 22627492 DOI: 10.1016/j.pneurobio.2012.05.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxic-ischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other brain disorders.
Collapse
|
48
|
Pike K, Jane Pillow J, Lucas JS. Long term respiratory consequences of intrauterine growth restriction. Semin Fetal Neonatal Med 2012; 17:92-8. [PMID: 22277109 DOI: 10.1016/j.siny.2012.01.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epidemiological studies demonstrate that in-utero growth restriction and low birth weight are associated with impaired lung function and increased respiratory morbidity from infancy, throughout childhood and into adulthood. Chronic restriction of nutrients and/or oxygen during late pregnancy causes abnormalities in the airways and lungs of offspring, including smaller numbers of enlarged alveoli with thicker septal walls and basement membranes. The structural abnormalities and impaired lung function seen soon after birth persist or even progress with age. These changes are likely to cause lung symptomology through life and hasten lung aging.
Collapse
Affiliation(s)
- Katharine Pike
- Clinical and Experimental Medicine Academic Unit, University of Southampton, UK
| | | | | |
Collapse
|
49
|
Mestan KK, Steinhorn RH. Fetal origins of neonatal lung disease: understanding the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2011; 301:L858-9. [PMID: 21964401 DOI: 10.1152/ajplung.00314.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|