1
|
Atherton W, Ambrose L, Wisdom J, Lessard BD, Kurucz N, Webb CE, Beebe NW. Nuclear and mitochondrial population genetics of the Australasian arbovirus vector Culex annulirostris (Skuse) reveals strong geographic structure and cryptic species. Parasit Vectors 2024; 17:501. [PMID: 39633470 PMCID: PMC11619117 DOI: 10.1186/s13071-024-06551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The mosquito Culex annulirostris Skuse (Diptera: Culicidae) is an important arbovirus vector in Australasia. It is part of the Culex sitiens subgroup that also includes Cx. palpalis and Cx. sitiens. Single locus mitochondrial and nuclear DNA sequencing studies suggest that Cx. annulirostris consists of a complex of at least two species. We tested this hypothesis by analysing both nuclear microsatellite data and additional mitochondrial sequence data to describe the population genetics of Cx. annulirostris through Australia, Papua New Guinea (PNG) and the Solomon Archipelago. METHODS Twelve novel microsatellite markers for Cx. annulirostris were developed and used on over 500 individuals identified as Cx. annulirostris by molecular diagnostics. Ten of the 12 microsatellites then used for analysis using Discriminant Analysis of Principal Components, a Bayesian clustering software, STRUCTURE, along with estimates of Jost's D statistic that is similar to FST but better suited to microsatellite data. Mitochondrial cytochrome oxidase I (COI) DNA sequence were also generated complementing previous work and analysed for sequence diversity (Haplotype diversity, Hd and Pi, π), Tadjima's D, and pairwise FST between populations. An allele specific molecular diagnostic with an internal control was developed. RESULTS We confirm the existence of multiple genetically and geographically restricted populations. Within mainland Australia, our findings show that Cx. annulirostris consists of two genetically and geographically distinct populations. One population extends through northern Australia and into the south-east coast of Queensland and New South Wales (NSW). The second Australian population occurs through inland NSW, Victoria, South Australia, extending west to southern Western Australia. These two Australian populations show evidence of possible admixture in central Australia and far north Queensland. Australia's Great Dividing Range that runs down southeast Australia presents a strong gene-flow barrier between these two populations which may be driven by climate, elevation or river basins. In PNG we find evidence of reproductive isolation between sympatric cryptic species occurring through PNG and Australia's northern Cape York Peninsula. A PCR-based molecular diagnostic was developed to distinguish these two cryptic species. CONCLUSION This study adds to the growing body of work suggesting that the taxon presently known as Cx. annulirostris now appears to consist of at least two cryptic species that co-occur in northern Australia and New Guinea and can be distinguished by a ITS1 PCR diagnostic. The Solomon Islands population may also represent a distinct species but in light its geographic isolation and lack of sympatry with other species would require further study. Additionally, the mitochondrial and nuclear DNA evidence of population structure between geographic regions within Australia appears latitudinal and elevational driven and may suggest an additional subspecies in that hybridise where they overlap.
Collapse
Affiliation(s)
- William Atherton
- School of the Environment, University of Queensland, Brisbane, Australia
| | - Luke Ambrose
- School of the Environment, University of Queensland, Brisbane, Australia
| | - James Wisdom
- School of the Environment, University of Queensland, Brisbane, Australia
| | - Bryan D Lessard
- Department of Climate Change, Energy, the Environment and Water, Australian Biological Resources Study, Canberra, Australia
- CSIRO Australian National Insect Collection, Canberra, ACT, Australia
| | - Nina Kurucz
- Medical Entomology, Centre for Disease Control, Public Health, NT Health, Darwin, NT, Australia
| | - Cameron E Webb
- Department of Medical Entomology, NSW Health Pathology, Sydney, Westmead Hospital, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Nigel W Beebe
- School of the Environment, University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Lamichhane B, Brockway C, Evasco K, Nicholson J, Neville P, Mackenzie J, Smith D, Imrie A. DNA Barcoding for the Identification of Adult Mosquitoes (Diptera: Culicidae) in Western Australia. Ecol Evol 2024; 14:e70493. [PMID: 39524315 PMCID: PMC11549376 DOI: 10.1002/ece3.70493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Precise mosquito identification is integral to effective arbovirus surveillance. Nonetheless, the conventional morphological approach to identifying mosquito species is laborious, demands expertise and presents challenges when specimens are damaged. DNA barcoding offers a promising alternative, surmounting challenges inherent in morphological identification. To integrate DNA barcoding into arbovirus surveillance effectively, a robust dataset of mosquito barcode sequences is required. This study established a comprehensive repository of Cytochrome Oxidase I (COI) barcodes, encompassing 177 samples representing 45 mosquito species from southern and northern Western Australia (WA), including 16 species which have not been previously barcoded. The average intraspecific and interspecific genetic distances were 1% and 6.8%, respectively. Anopheles annulipes sensu lato had the highest intraspecific distance at 9.1%, signifying a genetically diverse species. While validating the potential of COI barcodes to accurately differentiate mosquito species, we identified that some species pairs have low COI divergence. This includes Aedes clelandi and Ae. hesperonotius, Tripteroides atripes and Tp. punctolaeralis and Ae. turneri and Ae. stricklandi. In addition, we observed ambiguity in identification of the members of Culex sitiens subgroup (Cx. annulirostris, Cx. palpalis and Cx. sitiens) and three members of Cx. pipiens complex (Cx. australicus, Cx. globocoxitus, Cx. quinquefasciatus). In summary, despite presenting challenges in the identification of some mosquito species, the COI barcode accurately identified most of the species and generated a valuable resource that will support the WA arbovirus surveillance program and enhance public health intervention strategies for mosquito-borne disease control.
Collapse
Affiliation(s)
- Binit Lamichhane
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Craig Brockway
- Environmental Health DirectorateDepartment of HealthPerthWestern AustraliaAustralia
| | - Kimberly Evasco
- Environmental Health DirectorateDepartment of HealthPerthWestern AustraliaAustralia
| | - Jay Nicholson
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Environmental Health DirectorateDepartment of HealthPerthWestern AustraliaAustralia
| | - Peter J. Neville
- Environmental Health DirectorateDepartment of HealthPerthWestern AustraliaAustralia
| | - John S. Mackenzie
- Faculty of Health SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - David Smith
- PathWest Laboratory MedicinePerthWestern AustraliaAustralia
| | - Allison Imrie
- School of Biomedical SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
3
|
Amorim JA, de Oliveira TMP, de Sá ILR, da Silva TP, Sallum MAM. DNA Barcodes of Mansonia ( Mansonia) Blanchard, 1901 (Diptera, Culicidae). Genes (Basel) 2023; 14:1127. [PMID: 37372310 DOI: 10.3390/genes14061127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Females of the genus Mansonia feed on the blood of humans, livestock, and other vertebrates to develop their eggs. The females' biting behavior may cause severe disturbance to blood hosts, with a negative impact on public health and economics. Certain species have been identified as potential or effective disease vectors. The accurate species identification of field-collected specimens is of paramount importance for the success of monitoring and control strategies. Mansonia (Mansonia) morphological species boundaries are blurred by patterns of intraspecific heteromorphism and interspecific isomorphism. DNA barcodes can help to solve taxonomic controversies, especially if combined with other molecular tools. We used cytochrome c oxidase subunit I (COI) gene 5' end (DNA barcode) sequences to identify 327 field-collected specimens of Mansonia (Mansonia) spp. The sampling encompassed males and females collected from three Brazilian regions and previously assigned to species based on their morphological characteristics. Eleven GenBank and BOLD sequences were added to the DNA barcode analyses. Initial morphospecies assignments were mostly corroborated by the results of five clustering methods based on Kimura two-parameter distance and maximum likelihood phylogeny. Five to eight molecular operational taxonomic units may represent taxonomically unknown species. The first DNA barcode records for Mansonia fonsecai, Mansonia iguassuensis, and Mansonia pseudotitillans are presented.
Collapse
Affiliation(s)
- Jandui Almeida Amorim
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, SP, Brazil
- Departamento de Ciências e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo 01109-010, SP, Brazil
| | | | - Ivy Luizi Rodrigues de Sá
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, SP, Brazil
| | - Taires Peniche da Silva
- Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapá 68903-419, AP, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, SP, Brazil
| |
Collapse
|
4
|
Morphological and Molecular Characterization Using Genitalia and CoxI Barcode Sequence Analysis of Afrotropical Mosquitoes with Arbovirus Vector Potential. DIVERSITY 2022. [DOI: 10.3390/d14110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Potential arboviral Afrotropical mosquito vectors are underrepresented in public databases of CoxI barcode sequences. Furthermore, available CoxI sequences for many species are often not associated with voucher specimens to match the corresponding fine morphological characterization of specimens. Hence, this study focused on the characterization of Culicine mosquitoes from South Africa, Mozambique, and Angola and their classification using a complementary approach including a morphological analysis of specimens’ genitalia and phylogenetic study based on the analysis of CoxI barcode sequences using maximum likelihood and Bayesian phylogenetic inference methods, alongside Median-Joining Network and PCOORD analyses. Overall, 800 mosquitoes (652 males and 148 females) from 67 species, were analyzed. Genitalia from 663 specimens allowed the identification of 55 species of 10 genera. A total of 247 CoxI partial gene sequences corresponding to 65 species were obtained, 11 of which (Aedes capensis, Ae. mucidus, Culex andersoni, Cx. telesilla, Cx. inconspicuosus, Eretmapodites subsimplicipes, Er. quinquevittatus, Ficalbia uniformis, Mimomyia hispida, Uranotaenia alboabdominalis, and Ur. mashonaensis) are, to the best of our knowledge, provided here for the first time. The presence of Cx. pipiens ecotypes molestus and pipiens and their hybrids, as well as Cx. infula, is newly reported in the Afrotropical region. The rates of correct sequence identification using BOLD and BLASTn (≥95% identity) were 64% and 53%, respectively. Phylogenetic analysis revealed that, except for subgenus Eumelanomyia of Culex, there was support for tribes Aedini, Culicini, Ficalbiini, and Mansoniini. A divergence >2% was observed in conspecific sequences, e.g., Aedeomyia africana, Ae. cumminsii, Ae. unilineatus, Ae. metallicus, Ae. furcifer, Ae. caballus, and Mansonia uniformis. Conversely, sequences from groups and species complexes, namely, Ae. simpsoni, Ae. mcintoshi, Cx. bitaeniorhynchus, Cx. simpsoni, and Cx. pipiens were insufficiently separated. A contribution has been made to the barcode library of Afrotropical mosquitoes with associated genitalia morphological identifications.
Collapse
|
5
|
Scarpassa VM, Batista ET, Ferreira VDC, Alvesdos Santos Neto V, Roque RA, Ferreira FADS, da Costa FM. DNA barcoding suggests new species for the Mansonia subgenus (Mansonia, Mansoniini, Culicidae, Diptera) in the area surrounding the Jirau hydroelectric dam, Porto Velho municipality, Rondônia state, Brazil. Acta Trop 2022; 233:106574. [DOI: 10.1016/j.actatropica.2022.106574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
|
6
|
Zhang C, Luo C, Yang R, Yang Y, Guo X, Deng Y, Zhou H, Zhang Y. Morphological and molecular identification reveals a high diversity of Anopheles species in the forest region of the Cambodia-Laos border. Parasit Vectors 2022; 15:94. [PMID: 35303948 PMCID: PMC8933986 DOI: 10.1186/s13071-022-05167-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background To develop an effective malaria vector intervention method in forested international border regions within the Greater Mekong Subregion (GMS), more in-depth studies should be conducted on local Anopheles species composition and bionomic features. There is a paucity of comprehensive surveys of biodiversity integrating morphological and molecular species identification conducted within the border of Laos and Cambodia. Methods A total of 2394 adult mosquitoes were trapped in the Cambodia–Laos border region. We first performed morphological identification of Anopheles mosquitoes and subsequently performed molecular identification using 412 recombinant DNA–internal transcribed spacer 2 (rDNA-ITS2) and 391 mitochondrial DNA–cytochrome c oxidase subunit 2 (mtDNA-COII) sequences. The molecular and morphological identification results were compared, and phylogenetic analysis of rDNA-ITS2 and mtDNA-COII was conducted for the sequence divergence among species. Results Thirteen distinct species of Anopheles were molecularly identified in a 26,415 km2 border region in Siem Pang (Cambodia) and Pathoomphone (Laos). According to the comparisons of morphological and molecular identity, the interpretation of local species composition for dominant species in the Cambodia–Laos border (An. dirus, An. maculatus, An. philippinensis, An. kochi and An. sinensis) achieved the highest accuracy of morphological identification, from 98.37 to 100%. In contrast, the other species which were molecularly identified were less frequently identified correctly (0–58.3%) by morphological methods. The average rDNA-ITS2 and mtDNA-COII interspecific divergence was respectively 318 times and 15 times higher than their average intraspecific divergence. The barcoding gap ranged from 0.042 to 0.193 for rDNA-ITS2, and from 0.033 to 0.047 for mtDNA-COII. Conclusions The Cambodia–Laos border hosts a high diversity of Anopheles species. The morphological identification of Anopheles species provides higher accuracy for dominant species than for other species. Molecular methods combined with morphological analysis to determine species composition, population dynamics and bionomic characteristics can facilitate a better understanding of the factors driving malaria transmission and the effects of interventions, and can aid in achieving the goal of eliminating malaria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05167-0.
Collapse
Affiliation(s)
- Canglin Zhang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Chunhai Luo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Rui Yang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Yaming Yang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Yan Deng
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China.
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Zhang C, Yang R, Wu L, Luo C, Guo X, Deng Y, Zhou H, Zhang Y. Molecular phylogeny of the Anopheles hyrcanus group (Diptera: Culicidae) based on rDNA-ITS2 and mtDNA-COII. Parasit Vectors 2021; 14:454. [PMID: 34488860 PMCID: PMC8420049 DOI: 10.1186/s13071-021-04971-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Anopheles hyrcanus group, which includes 25 species, is widely distributed in the Oriental and Palaearctic regions. Given the difficulty in identifying cryptic or sibling species based on their morphological characteristics, molecular identification is regarded as an important complementary approach to traditional morphological taxonomy. The aim of this study was to reconstruct the phylogeny of the Hyrcanus group using DNA barcoding markers in order to determine the phylogenetic correlations of closely related taxa and to compare these markers in terms of identification efficiency and genetic divergence among species. METHODS Based on data extracted from the GenBank database and data from the present study, we used 399 rDNA-ITS2 sequences of 19 species and 392 mtDNA-COII sequences of 14 species to reconstruct the molecular phylogeny of the Hyrcanus group across its worldwide range. We also compared the performance of rDNA-ITS2 against that of mtDNA-COII to assess the genetic divergence of closely related species within the Hyrcanus group. RESULTS Average interspecific divergence for the rDNA-ITS2 sequence (0.376) was 125-fold higher than the average intraspecies divergence (0.003), and average interspecific divergence for the mtDNA-COII sequence (0.055) was eightfold higher than the average intraspecies divergence (0.007). The barcoding gap ranged from 0.015 to 0.073 for rDNA-ITS2, and from 0.017 to 0.025 for mtDNA-COII. Two sets of closely related species, namely, Anophels lesteri and An. paraliae, and An. sinensis, An. belenrae and An. kleini, were resolved by rDNA-ITS2. In contrast, the relationship of An. sinensis/An. belenrae/An. kleini was poorly defined in the COII tree. The neutrality test and mismatch distribution revealed that An. peditaeniatus, An. hyrcanus, An. sinensis and An. lesteri were likely to undergo hitchhiking or population expansion in accordance with both markers. In addition, the population of an important vivax malaria vector, An. sinensis, has experienced an expansion after a bottleneck in northern and southern Laos. CONCLUSIONS The topology of the Hyrcanus group rDNA-ITS2 and mtDNA-COII trees conformed to the morphology-based taxonomy for species classification rather than for that for subgroup division. rDNA-ITS2 is considered to be a more reliable diagnostic tool than mtDNA-COII in terms of investigating the phylogenetic correlation between closely related mosquito species in the Hyrcanus group. Moreover, the population expansion of an important vivax malaria vector, An. sinensis, has underlined a potential risk of malaria transmission in northern and southern Laos. This study contributes to the molecular identification of the Anopheles hyrcanus group in vector surveillance.
Collapse
Affiliation(s)
- Canglin Zhang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Rui Yang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Linbo Wu
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Chunhai Luo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Yan Deng
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433 People’s Republic of China
| |
Collapse
|
8
|
Lessard BD, Kurucz N, Rodriguez J, Carter J, Hardy CM. Detection of the Japanese encephalitis vector mosquito Culex tritaeniorhynchus in Australia using molecular diagnostics and morphology. Parasit Vectors 2021; 14:411. [PMID: 34407880 PMCID: PMC8371801 DOI: 10.1186/s13071-021-04911-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
Background Culex (Culex) tritaeniorhynchus is an important vector of Japanese encephalitis virus (JEV) affecting feral pigs, native mammals and humans. The mosquito species is widely distributed throughout Southeast Asia, Africa and Europe, and thought to be absent in Australia. Methods In February and May, 2020 the Medical Entomology unit of the Northern Territory (NT) Top End Health Service collected Cx. tritaeniorhynchus female specimens (n = 19) from the Darwin and Katherine regions. Specimens were preliminarily identified morphologically as the Vishnui subgroup in subgenus Culex. Molecular identification was performed using cytochrome c oxidase subunit 1 (COI) barcoding, including sequence percentage identity using BLAST and tree-based identification using maximum likelihood analysis in the IQ-TREE software package. Once identified using COI, specimens were reanalysed for diagnostic morphological characters to inform a new taxonomic key to related species from the NT. Results Sequence percentage analysis of COI revealed that specimens from the NT shared 99.7% nucleotide identity to a haplotype of Cx. tritaeniorhynchus from Dili, Timor-Leste. The phylogenetic analysis showed that the NT specimens formed a monophyletic clade with other Cx. tritaeniorhynchus from Southeast Asia and the Middle East. We provide COI barcodes for most NT species from the Vishnui subgroup to aid future identifications, including the first genetic sequences for Culex (Culex) crinicauda and the undescribed species Culex (Culex) sp. No. 32 of Marks. Useful diagnostic morphological characters were identified and are presented in a taxonomic key to adult females to separate Cx. tritaeniorhynchus from other members of the Vishnui subgroup from the NT. Conclusions We report the detection of Cx. tritaeniorhynchus in Australia from the Darwin and Katherine regions of the NT. The vector is likely to be already established in northern Australia, given the wide geographical spread throughout the Top End of the NT. The establishment of Cx. tritaeniorhynchus in Australia is a concern to health officials as the species is an important vector of JEV and is now the sixth species from the subgenus Culex capable of vectoring JEV in Australia. We suggest that the species must now be continuously monitored during routine mosquito surveillance programmes to determine its current geographical spread and prevent the potential transmission of exotic JEV throughout Australia. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04911-2.
Collapse
Affiliation(s)
- Bryan D Lessard
- Australian National Insect Collection, National Research Collections Australia-CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia.
| | - Nina Kurucz
- Medical Entomology, NT Health-Royal Darwin Hospital, Top End Health Service, GPO Box 41326, Casuarina, NT, 0810, Australia
| | - Juanita Rodriguez
- Australian National Insect Collection, National Research Collections Australia-CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Jane Carter
- Medical Entomology, NT Health-Royal Darwin Hospital, Top End Health Service, GPO Box 41326, Casuarina, NT, 0810, Australia
| | | |
Collapse
|
9
|
Mechai S, Bilodeau G, Lung O, Roy M, Steeves R, Gagne N, Baird D, Lapen DR, Ludwig A, Ogden NH. Mosquito Identification From Bulk Samples Using DNA Metabarcoding: a Protocol to Support Mosquito-Borne Disease Surveillance in Canada. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1686-1700. [PMID: 33822118 DOI: 10.1093/jme/tjab046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Approximately 80 species of mosquitoes (Diptera: Culicidae) have been documented in Canada. Exotic species such as Aedes albopictus (Skuse) (Diptera: Culicidae) are becoming established. Recently occurring endemic mosquito-borne diseases (MBD) in Canada including West-Nile virus (WNV) and Eastern Equine Encephalitis (EEE) are having significant public health impacts. Here we explore the use of DNA metabarcoding to identify mosquitoes from CDC light-trap collections from two locations in eastern Canada. Two primer pairs (BF2-BR2 and F230) were used to amplify regions of the cytochrome c oxidase subunit I (CO1) gene. High throughput sequencing was conducted using an Illumina MiSeq platform and GenBank-based species identification was applied using a QIIME 1.9 bioinformatics pipeline. From a site in southeastern Ontario, Canada, 26 CDC light trap collections of 72 to >300 individual mosquitoes were used to explore the capacity of DNA metabarcoding to identify and quantify captured mosquitoes. The DNA metabarcoding method identified 33 species overall while 24 species were identified by key. Using replicates from each trap, the dried biomass needed to identify the majority of species was determined to be 76 mg (equivalent to approximately 72 mosquitoes), and at least two replicates from the dried biomass would be needed to reliably detect the majority of species in collections of 144-215 mosquitoes and three replicates would be advised for collections with >215 mosquitoes. This study supports the use of DNA metabarcoding as a mosquito surveillance tool in Canada which can help identify the emergence of new mosquito-borne disease potential threats.
Collapse
Affiliation(s)
- S Mechai
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - G Bilodeau
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - O Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - M Roy
- Aquatic Animal Health Section, Fisheries & Oceans Canada, Moncton, New Brunswick, Canada
| | - R Steeves
- Aquatic Animal Health Section, Fisheries & Oceans Canada, Moncton, New Brunswick, Canada
| | - N Gagne
- Aquatic Animal Health Section, Fisheries & Oceans Canada, Moncton, New Brunswick, Canada
| | - D Baird
- Environment and Climate Change Canada, Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - D R Lapen
- Ottawa Research Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada
| | - A Ludwig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - N H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
10
|
Morçiçek B, Taskin BG, Doğaç E, Doğaroğlu T, Taskin V. Evidence of natural Wolbachia infections and molecular identification of field populations of Culex pipiens complex (Diptera: Culicidae) mosquitoes in western Turkey. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2018; 43:44-51. [PMID: 29757522 DOI: 10.1111/jvec.12281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 06/08/2023]
Abstract
Establishing reliable risk projection information about the distribution pattern of members of the Culex pipiens complex is of particular interest, as these mosquitoes are competent vectors for certain disease-causing pathogens. Wolbachia, a maternally inherited bacterial symbiont, are distributed in various arthropod species and can induce cytoplasmic incompatibility, i.e., reduced egg hatch, in certain crosses. It is being considered as a tool for population control of mosquito disease vectors. The Aegean region is characterized by highly populated, rural, and agricultural areas and is also on the route of the migratory birds. In this study, a fragment of the 658 bp of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene, which includes the barcode region, was employed to differentiate Cx. pipiens complex species found in this region. Moreover, for the first time, the prevalence of Wolbachia endobacteria in these natural populations was examined using PCR amplification of a specific wsp gene. Our results revealed a widespread (more than 90%, n=121) presence of the highly efficient West Nile virus vector Cx. quinquefasciatus in the region. We also found that Wolbachia infection is widespread; the average prevalence was 62% in populations throughout the region. This study provided valuable information about the composition of Cx. pipiens complex mosquitoes and the prevalence of Wolbachia infection in these populations in the Aegean region. This information will be helpful in tracking mosquito-borne diseases and designing and implementing Wolbachia-based control strategies in the region.
Collapse
Affiliation(s)
- Burçin Morçiçek
- Muğla Sıtkı Kocman University, Faculty of Science, Department of Biology, 48100 Kotekli, Muğla, Turkey
| | - Belgin Gocmen Taskin
- Muğla Sıtkı Kocman University, Faculty of Science, Department of Biology, 48100 Kotekli, Muğla, Turkey
| | - Ersin Doğaç
- Koycegiz Vocational School, Department of Medicinal and Aromatic Plants, Mugla Sitki Kocman University Mugla, Turkey
| | - Taylan Doğaroğlu
- Ula Vocational School, Department of Bee Breeding, Mugla Sitki Kocman University Mugla, Turkey
| | - Vatan Taskin
- Muğla Sıtkı Kocman University, Faculty of Science, Department of Biology, 48100 Kotekli, Muğla, Turkey
| |
Collapse
|
11
|
Abstract
SUMMARYMosquitoes’ importance as vectors of pathogens that drive disease underscores the importance of precise and comparable methods of taxa identification among their species. While several molecular targets have been used to study mosquitoes since the initiation of PCR in the 1980s, its application to mosquito identification took off in the early 1990s. This review follows the research's recent journey into the use of mitochondrial DNA (mtDNA) cytochrome oxidase 1 (COI or COX1) as a DNA barcode target for mosquito species identification – a target whose utility for discriminating mosquitoes is now escalating. The pros and cons of using a mitochondrial genome target are discussed with a broad sweep of the mosquito literature suggesting that nuclear introgressions of mtDNA sequences appear to be uncommon and that the COI works well for distantly related taxa and shows encouraging utility in discriminating more closely related species such as cryptic/sibling species groups. However, the utility of COI in discriminating some closely related groups can be problematic and investigators are advised to proceed with caution as problems with incomplete lineage sorting and introgression events can result in indistinguishable COI sequences appearing in reproductively independent populations. In these – if not all – cases, it is advisable to run a nuclear marker alongside the mtDNA and thus the utility of the ribosomal DNA – and in particular the internal transcribed spacer 2 – is also briefly discussed as a useful counterpoint to the COI.
Collapse
|
12
|
Fang Y, Shi WQ, Zhang Y. Molecular phylogeny of Anopheles hyrcanus group members based on ITS2 rDNA. Parasit Vectors 2017; 10:417. [PMID: 28882174 PMCID: PMC5590201 DOI: 10.1186/s13071-017-2351-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Anopheles hyrcanus group includes 25 species, and is widely distributed in the Oriental and Palaearctic regions. Several species within this group are vectors of malaria, lymphatic filariasis and Japanese encephalitis. It is difficult or impossible to identify cryptic species based on their morphological characteristics, with some closely related species of the Hyrcanus Group have similar adult morphological characteristics. Thus, their molecular identification has been an important complementary method to traditional morphological taxonomy. Methods We used 461 ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) sequences relating to 19 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its range. In addition, we compared the performance of rDNA ITS2 to that of mitochondrial DNA (mtDNA) cytochrome c oxidase subunit 1 gene (cox1) to assess the genetic divergence of Hyrcanus Group sibling species. Results Based on Kimura’s 2-parameter (K2P) distance model, the average conspecific ITS2 divergence was 0.003, whereas sequence divergence between species averaged 0.480. Average ITS2 sequence divergences were almost 160 times higher among the Hyrcanus Group members than within each species. Two sets of sibling species, An. lesteri Baisas & Hu, 1936 and An. paraliae Sandosham, 1959; and An. sinensis Wiedemann, 1828, An. belenrae Rueda, 2005, and An. kleini Rueda, 2005, were resolved by ITS2. Each of these species was represented as an independent lineage in the phylogenetic tree. Results suggest that An. pseudopictus Grassi, 1899 and An. hyrcanus (Pallas, 1771) are most likely a single species. We uncovered two new ITS2 lineages that require further study before resolving their true taxonomic status, and designed a diagnostic polymerase chain reaction (PCR) assay to distinguish five morphologically similar species. Conclusions Nuclear and mitochondrial genes generally provided consistent results for subgroup division. Compared to cox1, ITS2 is a more reliable tool for studying phylogenetic relationships among closely related mosquito taxa. Based on species-specific differences in ITS2 sequences, the multiplex PCR assay developed here can be used to improve the efficiency of vector identification. Thus, this research will promote the progress of malaria vector surveillance in both epidemic and non-epidemic areas of South and East Asia. Electronic supplementary material The online version of this article (10.1186/s13071-017-2351-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, People's Republic of China
| | - Wen-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, People's Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, People's Republic of China.
| |
Collapse
|
13
|
Duchemin JB, Mee PT, Lynch SE, Vedururu R, Trinidad L, Paradkar P. Zika vector transmission risk in temperate Australia: a vector competence study. Virol J 2017; 14:108. [PMID: 28599659 PMCID: PMC5466793 DOI: 10.1186/s12985-017-0772-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/01/2017] [Indexed: 11/23/2022] Open
Abstract
Background Zika virus is an emerging pathogen of global importance. It has been responsible for recent outbreaks in the Americas and in the Pacific region. This study assessed five different mosquito species from the temperate climatic zone in Australia and included Aedes albopictus as a potentially invasive species. Methods Mosquitoes were orally challenged by membrane feeding with Zika virus strain of Cambodia 2010 origin, belonging to the Asian clade. Virus infection and dissemination were assessed by quantitative PCR on midgut and carcass after dissection. Transmission was assessed by determination of cytopathogenic effect of saliva (CPE) on Vero cells, followed by determination of 50% tissue culture infectious dose (TCID50) for CPE positive samples. Additionally, the presence of Wolbachia endosymbiont infection was assessed by qPCR and standard PCR. Results Culex mosquitoes were found unable to present Zika virus in saliva, as demonstrated by molecular as well as virological methods. Aedes aegypti, was used as a positive control for Zika infection and showed a high level of virus infection, dissemination and transmission. Local Aedes species, Ae. notoscriptus and, to a lesser degree, Ae. camptorhynchus were found to expel virus in their saliva and contained viral nucleic acid within the midgut. Molecular assessment identified low or no dissemination for these species, possibly due to low virus loads. Ae. albopictus from Torres Strait islands origin was shown as an efficient vector. Cx quinquefasciatus was shown to harbour Wolbachia endosymbionts at high prevalence, whilst no Wolbachia was found in Cx annulirostris. The Australian Ae. albopictus population was shown to harbour Wolbachia at high frequency. Conclusions The risk of local Aedes species triggering large Zika epidemics in the southern parts of Australia is low. The potentially invasive Ae. albopictus showed high prevalence of virus in the saliva and constitutes a potential threat if this mosquito species becomes established in mainland Australia. Complete risk analysis of Zika transmission in the temperate zone would require an assessment of the impact of temperature on Zika virus replication within local and invasive mosquito species.
Collapse
Affiliation(s)
- Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Peter T Mee
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Stacey E Lynch
- BioScience Research, Agriculture Victoria, AgriBio, The Centre for AgriBioscience, 5 Ring Rd, La Trobe University Campus, Bundoora, VIC, 3083, Australia
| | - Ravikiran Vedururu
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.,School of Applied Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Lee Trinidad
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia
| | - Prasad Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC, 3220, Australia.
| |
Collapse
|
14
|
Fang Y, Shi WQ, Zhang Y. Molecular phylogeny of Anopheles hyrcanus group (Diptera: Culicidae) based on mtDNA COI. Infect Dis Poverty 2017; 6:61. [PMID: 28478763 PMCID: PMC5421329 DOI: 10.1186/s40249-017-0273-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 03/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background The Anopheles hyrcanus group, which includes at least 25 species, is widely distributed in the Oriental and Palearctic regions. Some group members have been incriminated as vectors of malaria and other mosquito-borne diseases. It is difficult to identify Hyrcanus Group members by morphological features. Thus, molecular phylogeny has been proposed as an important complementary method to traditional morphological taxonomy. Methods Based on the GenBank database and our original study data, we used 466 mitochondrial DNA COI sequences belonging to 18 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its worldwide geographic range. Results The results are as follows. 1) The average conspecific K2P divergence was 0.008 (range 0.002–0.017), whereas sequence divergence between congroup species averaged 0.064 (range 0.026–0.108). 2) The topology of COI tree of the Hyrcanus Group was generally consistent with classical morphological taxonomy in terms of species classification, but disagreed in subgroup division. In the COI tree, the group was divided into at least three main clusters. The first cluster contained An. nimpe; the second was composed of the Nigerrimus Subgroup and An. argyropus; and the third cluster was comprised of the Lesteri Subgroup and other unassociated species. 3) Phylogenetic analysis of COI indicated that ancient hybridizations probably occurred among the three closely related species, An. sinensis, An. belenrae, and An. kleini. 4) The results supported An. paraliae as a probable synonym of An. lesteri, and it was possible that An. pseudopictus and An. hyrcanus were the same species, as evident from their extremely low interspecific genetic divergence (0.020 and 0.007, respectively) and their phylogenetic positions. Conclusions In summary, we reconstructed the molecular phylogeny and analysed genetic divergence of the Hyrcanus Group using mitochondrial COI sequences. Our results suggest that in the future of malaria surveillance, we should not only pay much attention to those known vectors of malaria, but also their closely related species. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0273-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Wen-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, China.
| |
Collapse
|
15
|
Toi CS, Webb CE, Haniotis J, Clancy J, Doggett SL. Seasonal activity, vector relationships and genetic analysis of mosquito-borne Stratford virus. PLoS One 2017; 12:e0173105. [PMID: 28253306 PMCID: PMC5333861 DOI: 10.1371/journal.pone.0173105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 02/15/2017] [Indexed: 11/18/2022] Open
Abstract
There are many gaps to be filled in our understanding of mosquito-borne viruses, their relationships with vectors and reservoir hosts, and the environmental drivers of seasonal activity. Stratford virus (STRV) belongs to the genus Flavivirus and has been isolated from mosquitoes and infected humans in Australia but little is known of its vector and reservoir host associations. A total of 43 isolates of STRV from mosquitoes collected in New South Wales between 1995 and 2013 was examined to determine the genetic diversity between virus isolates and their relationship with mosquito species. The virus was isolated from six mosquito species; Aedes aculeatus, Aedes alternans, Aedes notoscriptus, Aedes procax, Aedes vigilax, and Anopheles annulipes. While there were distinct differences in temporal and spatial activity of STRV, with peaks of activity in 2006, 2010 and 2013, a sequence homology of 95.9%-98.4% was found between isolates and the 1961 STRV prototype with 96.2%-100% identified among isolates. Temporal differences but no apparent nucleotide divergence by mosquito species or geographic location was evident. The result suggests the virus is geographically widespread in NSW (albeit only from coastal regions) and increased local STRV activity is likely to be driven by reservoir host factors and local environmental conditions influencing vector abundance. While STRV may not currently be associated with major outbreaks of human disease, with the potential for urbanisation and climate change to increase mosquito-borne disease risks, and the possibility of genomic changes which could produce pathogenic strains, understanding the drivers of STRV activity may assist the development of strategic response to public health risks posed by zoonotic flaviviruses in Australia.
Collapse
Affiliation(s)
- Cheryl S. Toi
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Cameron E. Webb
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia
| | - John Haniotis
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - John Clancy
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen L. Doggett
- Department of Medical Entomology, Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
16
|
In silico molecular docking of niloticin with acetylcholinesterase 1 (AChE1) of Aedes aegypti L. (Diptera: Culicidae): a promising molecular target. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1579-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Batovska J, Blacket MJ, Brown K, Lynch SE. Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecol Evol 2016; 6:3001-11. [PMID: 27217948 PMCID: PMC4863023 DOI: 10.1002/ece3.2095] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 01/11/2023] Open
Abstract
DNA barcoding is a modern species identification technique that can be used to distinguish morphologically similar species, and is particularly useful when using small amounts of starting material from partial specimens or from immature stages. In order to use DNA barcoding in a surveillance program, a database containing mosquito barcode sequences is required. This study obtained Cytochrome Oxidase I (COI) sequences for 113 morphologically identified specimens, representing 29 species, six tribes and 12 genera; 17 of these species have not been previously barcoded. Three of the 29 species ─ Culex palpalis, Macleaya macmillani, and an unknown species originally identified as Tripteroides atripes ─ were initially misidentified as they are difficult to separate morphologically, highlighting the utility of DNA barcoding. While most species grouped separately (reciprocally monophyletic), the Cx. pipiens subgroup could not be genetically separated using COI. The average conspecific and congeneric p‐distance was 0.8% and 7.6%, respectively. In our study, we also demonstrate the utility of DNA barcoding in distinguishing exotics from endemic mosquitoes by identifying a single intercepted Stegomyia aegypti egg at an international airport. The use of DNA barcoding dramatically reduced the identification time required compared with rearing specimens through to adults, thereby demonstrating the value of this technique in biosecurity surveillance. The DNA barcodes produced by this study have been uploaded to the ‘Mosquitoes of Australia–Victoria’ project on the Barcode of Life Database (BOLD), which will serve as a resource for the Victorian Arbovirus Disease Control Program and other national and international mosquito surveillance programs.
Collapse
Affiliation(s)
- Jana Batovska
- Department of Economic Development, Jobs, Transport and Resources (DEDJTR) BioSciences Research AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia
| | - Mark J Blacket
- Department of Economic Development, Jobs, Transport and Resources (DEDJTR) BioSciences Research AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia
| | - Karen Brown
- Department of Economic Development, Jobs, Transport and Resources (DEDJTR) BioSciences Research AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia
| | - Stacey E Lynch
- Department of Economic Development, Jobs, Transport and Resources (DEDJTR) BioSciences Research AgriBio Centre for AgriBioscience Bundoora Victoria 3083 Australia
| |
Collapse
|
18
|
Intercontinental distribution of a new trypanosome species from Australian endemic Regent Honeyeater (Anthochaera phrygia). Parasitology 2016; 143:1012-25. [PMID: 27001623 DOI: 10.1017/s0031182016000329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Establishing a health screening protocol is fundamental for successful captive breeding and release of wildlife. The aim of this study was to undertake a parasitological survey focusing on the presence of trypanosomes in a cohort of Regent Honeyeaters, Anthochaera phrygia, syn. Xanthomyza phrygia (Aves: Passeriformes) that are part of the breeding and reintroduction programme carried out in Australia. We describe a new blood parasite, Trypanosoma thomasbancrofti sp. n. (Kinetoplastida: Trypanosomatidae) with prevalence of 24·4% (20/81) in a captive population in 2015. The sequence of the small subunit rRNA gene (SSU rDNA) and kinetoplast ultrastructure of T. thomasbancrofti sp. n. are the key differentiating characteristics from other Trypanosoma spp. T. thomasbancrofti sp. n. is distinct from Trypanosoma cf. avium found in sympatric Noisy Miners (Manorina melanocephala). The SSU rDNA comparison suggests an intercontinental distribution of T. thomasbancrofti sp. n. and Culex mosquitoes as a suspected vector. Currently, no information exists on the effect of T. thomasbancrofti sp. n. on its hosts; however, all trypanosome-positive birds remain clinically healthy. This information is useful in establishing baseline health data and screening protocols, particularly prior to release to the wild.
Collapse
|
19
|
Simonato M, Martinez-Sañudo I, Cavaletto G, Santoiemma G, Saltarin A, Mazzon L. High genetic diversity in the Culex pipiens complex from a West Nile Virus epidemic area in Southern Europe. Parasit Vectors 2016; 9:150. [PMID: 26979749 PMCID: PMC4791856 DOI: 10.1186/s13071-016-1429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 03/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Culex pipiens complex includes the most widespread mosquito species in the world. Cx. pipiens is the primary vector of the West Nile Virus (WNV) in Europe and North America. Cases of WNV have been recorded in Italy since 1998. In particular, wet areas along the Po River are considered some of the most WNV affected areas in Italy. Here, we analyzed the genetic structure of ten Cx. pipiens populations collected in the last part of the Po River including the Delta area. METHODS We assessed the genetic variability of two mitochondrial markers, cytochrome oxidase 1 (COI) and 2 (COII), for a total of 1200 bp, and one nuclear marker, a fragment of acetylcholinesterase-2 (ace-2), 502 bp long. The effect of the landscape features was evaluated comparing haplotype and nucleotide diversity with the landscape composition. RESULTS The analysis showed a high genetic diversity in both COI and COII gene fragments mainly shared by the populations in the Delta area. The COI-COII network showed that the set of haplotypes found was grouped into three main supported lineages with the higher genetic variability gathered in two of the three lineages. By contrast, ace-2 fragment did not show the same differentiation, displaying alleles grouped in a single clade. Finally, a positive correlation between mitochondrial diversity and natural wetland areas was found. CONCLUSIONS The high mitochondrial genetic diversity found in Cx. pipiens populations from the Po River Delta contrasts with the low variability of inland populations. The different patterns of genetic diversity found comparing mitochondrial and nuclear markers could be explained by factors such as differences in effective population size between markers, sex biased dispersal or lower fitness of dispersing females. Moreover, the correlation between genetic diversity and wetland areas is consistent with ecosystem stability and lack of insecticide pressure characteristic of this habitat. The mtDNA polymorphism found in the Po River Delta is even more interesting due to possible linkages between the mitochondrial lineages and different biting behaviors of the mosquitoes influencing their vector ability of arboviral infections.
Collapse
Affiliation(s)
- Mauro Simonato
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Isabel Martinez-Sañudo
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Giacomo Cavaletto
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Giacomo Santoiemma
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Andrea Saltarin
- Istituto Tecnico Agrario "O. Munerati", Via Capello 10, 45010, Sant'Apollinare, RO, Italy
| | - Luca Mazzon
- Department of Agronomy, Food, Natural Resources, Animals, & Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, PD, Italy.
| |
Collapse
|
20
|
Tahir HM, Mehwish, Kanwal N, Butt A, Khan SY, Yaqub A. Genetic diversity in cytochrome c oxidase I gene of Anopheles mosquitoes. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4298-4301. [PMID: 26365229 DOI: 10.3109/19401736.2015.1082104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genetic diversity in cytochrome c oxidase I (coxI) among 7 species of Anopheles mosquitoes from Pakistan, and 37 species from different geographical regions of the world, was recorded. Automatic Barcode Gap Discovery (ABGD) analysis revealed a clear gap between intraspecific and interspecific distances of 7 species from Pakistan. However, genetic distances of 37 Anopheles species failed to adequately differentiate species in a global context. Intraspecific and interspecific divergences for 7 Anopheles species of Pakistan varied from 0.0% to 2.5% (mean = 0.49%) and 8% to 22.3% (mean = 12.77%), respectively. Similarly, intraspecific distances for 37 species from different parts of world ranged from 0.0% to 11.2% (mean = 0.65%) while values of interspecific divergences ranged from 3.4% to 35% (mean = 11.75%). Although phylogenetic tree revealed separate clades for 7 Anopheles species of Pakistan, it failed to produce separate clades for 37 species of the world. It is concluded that although standard barcode region is helpful for identifying Anopheles mosquitoes, combination of multi-locus approaches and morphology may be required to accurately identify species in this genus.
Collapse
Affiliation(s)
| | - Mehwish
- a Department of Zoology , University of Sargodha , Pakistan
| | - Nailla Kanwal
- a Department of Zoology , University of Sargodha , Pakistan
| | - Abida Butt
- b Department of Zoology , University of Punjab , Lahore , Pakistan , and
| | | | - Atif Yaqub
- c Department of Zoology , GC University , Lahore , Pakistan
| |
Collapse
|
21
|
White VL, Endersby NM, Chan J, Hoffmann AA, Weeks AR. Developing Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in three Aedes disease vectors. INSECT SCIENCE 2015; 22:409-423. [PMID: 24895297 DOI: 10.1111/1744-7917.12145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
Aedes aegypti, Aedes notoscriptus, and Aedes albopictus are important vectors of many arboviruses implicated in human disease such as dengue fever. Genetic markers applied across vector species can provide important information on population structure, gene flow, insecticide resistance, and taxonomy, however, robust microsatellite markers have proven difficult to develop in these species and mosquitoes generally. Here we consider the utility and transferability of 15 Ribosome protein (Rp) Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in these 3 Aedes species. Rp EPIC markers designed for Ae. aegypti also successfully amplified populations of the sister species, Ae. albopictus, as well as the distantly related species, Ae. notoscriptus. High SNP and good indel diversity in sequenced alleles plus support for amplification of the same regions across populations and species were additional benefits of these markers. These findings point to the general value of EPIC markers in mosquito population studies.
Collapse
Affiliation(s)
- Vanessa Linley White
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| | - Nancy Margaret Endersby
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| | - Janice Chan
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| | - Ary Anthony Hoffmann
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| | - Andrew Raymond Weeks
- Department of Genetics, Bio21 Institute, the University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
22
|
Ashfaq M, Hebert PDN, Mirza JH, Khan AM, Zafar Y, Mirza MS. Analyzing mosquito (Diptera: culicidae) diversity in Pakistan by DNA barcoding. PLoS One 2014; 9:e97268. [PMID: 24827460 PMCID: PMC4036727 DOI: 10.1371/journal.pone.0097268] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/16/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. METHODOLOGY/PRINCIPAL FINDINGS Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. CONCLUSIONS As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada
- * E-mail:
| | - Paul D. N. Hebert
- Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada
| | - Jawwad H. Mirza
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Arif M. Khan
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Yusuf Zafar
- Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | - M. Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
23
|
The role of Australian mosquito species in the transmission of endemic and exotic West Nile virus strains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3735-52. [PMID: 23965926 PMCID: PMC3774466 DOI: 10.3390/ijerph10083735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022]
Abstract
Recent epidemic activity and its introduction into the Western Hemisphere have drawn attention to West Nile virus (WNV) as an international public health problem. Of particular concern has been the ability for the virus to cause outbreaks of disease in highly populated urban centers. Incrimination of Australian mosquito species is an essential component in determining the receptivity of Australia to the introduction and/or establishment of an exotic strain of WNV and can guide potential management strategies. Based on vector competence experiments and ecological studies, we suggest candidate Australian mosquito species that would most likely be involved in urban transmission of WNV, along with consideration of the endemic WNV subtype, Kunjin. We then examine the interaction of entomological factors with virological and vertebrate host factors, as well as likely mode of introduction, which may influence the potential for exotic WNV to become established and be maintained in urban transmission cycles in Australia.
Collapse
|
24
|
Jansen CC, Hemmerter S, van den Hurk AF, Whelan PI, Beebe NW. Morphological versus molecular identification ofCulex annulirostris Skuse andCulex palpalis Taylor: key members of theCulex sitiens(Diptera: Culicidae) subgroup in Australasia. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/aen.12045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Cassie C Jansen
- CSIRO Ecosystem Sciences; Brisbane Qld 4102 Australia
- School of Biological Sciences; University of Queensland; Brisbane Qld 4072 Australia
| | | | - Andrew F van den Hurk
- Public Health Virology Laboratory; Forensic and Scientific Services; Department of Health; Brisbane Qld 4108 Australia
| | - Peter I Whelan
- Centre for Disease Control; Department of Health and Families; Darwin NT 0811 Australia
| | - Nigel W Beebe
- CSIRO Ecosystem Sciences; Brisbane Qld 4102 Australia
- School of Biological Sciences; University of Queensland; Brisbane Qld 4072 Australia
| |
Collapse
|
25
|
Morais SA, Almeida FD, Suesdek L, Marrelli MT. Low genetic diversity in Wolbachia-Infected Culex quinquefasciatus (Diptera: Culicidae) from Brazil and Argentina. Rev Inst Med Trop Sao Paulo 2013; 54:325-9. [PMID: 23152317 DOI: 10.1590/s0036-46652012000600007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 06/04/2012] [Indexed: 05/26/2023] Open
Abstract
Culex quinquefasciatus is a vector of human pathogens, including filarial nematodes and several viruses. Although its epidemiological relevance is known to vary across geographical regions, an understanding of its population genetic structure is still incipient. In light of this, we evaluated the genetic diversity of Cx. quinquefasciatus and Cx. pipiens x Cx. quinquefasciatus hybrids collected from nine localities in Brazil and one site in Argentina. We used mitochondrial genes cox1 and nd4, along with the coxA and wsp genes of the maternally-inherited Wolbachia endosymbiont. The nd4 fragment was invariant between samples, whilst cox1 exhibited four haplotypes that separated two types of Cx. quinquefasciatus, one clustered in southern Brazil. Low sequence diversity was generally observed, being discussed. Both Brazilian and Argentinian mosquitoes were infected with a single Wolbachia strain. As reported in previous studies with these populations, cox1 and nd4 diversity is not congruent with the population structure revealed by nuclear markers or alar morphology. Future Cx. quinquefasciatus research should, if possible, evaluate mtDNA diversity in light of other markers.
Collapse
Affiliation(s)
- Sirlei Antunes Morais
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
26
|
Werblow A, Bolius S, Dorresteijn AWC, Melaun C, Klimpel S. Diversity of Culex torrentium Martini, 1925 - a potential vector of arboviruses and filaria in Europe. Parasitol Res 2013; 112:2495-501. [PMID: 23604567 DOI: 10.1007/s00436-013-3418-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
Abstract
Culex torrentium is one of the most common mosquito species in Germany. Due to its sympatric occurrence as well as its similar morphological and ecological characteristics, it has often been confused with another common species, Culex pipiens. Both species are known to be potential vectors for different arboviruses (not only in Germany) with C. torrentium being a possible vector for Sindbis or Ockelbo virus. In our study, we analyzed the genetic variability in a 658 bp fragment of the cytochrome c oxidase subunit I gene (coxI) of C. torrentium, from nine localities in the Frankfurt/Rhine-Main Metropolitan Region. The results of our genetic survey indicate a higher genetic diversity in this gene region for C. torrentium than for the morphologically similar C. pipiens. Our findings may explain the difficulties in the past to find morphological characteristics that apply to all populations of C. torrentium, when attempting to separate them clearly from C. pipiens, by any other criteria than male genitalia. Being ornithophilic, possible hybrids between C. torrentium and the humanophilic C. pipiens biotype molestus, could potentially serve as important vectors for zoonotic diseases. Therefore, we recommend that greater emphasis is placed on the ecological characteristics, population structure, and the taxonomy of this often neglected species, in the future.
Collapse
Affiliation(s)
- Antje Werblow
- Biodiversity and Climate Research Centre (BiK-F), Medical Biodiversity and Parasitology; Goethe-University, Institute for Ecology, Evolution and Diversity; Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt am Main 60325, Germany
| | | | | | | | | |
Collapse
|
27
|
DUPUIS JULIANR, ROE AMANDAD, SPERLING FELIXAH. Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Mol Ecol 2012; 21:4422-36. [DOI: 10.1111/j.1365-294x.2012.05642.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Demari-Silva B, Vesgueiro FT, Sallum MAM, Marrelli MT. Taxonomic and phylogenetic relationships between species of the genus Culex (Diptera: culicidae) from Brazil inferred from the cytochrome c oxidase I mitochondrial gene. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:272-279. [PMID: 21485362 DOI: 10.1603/me09293] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Species of the genus Culex Linnaeus have been incriminated as the main vectors of lymphatic filariases and are important vectors of arboviruses, including West Nile virus. Sequences corresponding to a fragment of 478 bp of the cytochrome c oxidase subunit I gene, which includes part of the barcode region, of 37 individuals of 17 species of genus Culex were generated to establish relationships among five subgenera, Culex, Phenacomyia, Melanoconion, Microculex, and Carrollia, and one species of the genus Lutzia that occurs in Brazil. Bayesian methods were employed for the phylogenetic analyses. Results of sequence comparisons showed that individuals identified as Culex dolosus, Culex mollis, and Culex imitator possess high intraspecific divergence (3.1, 2.3, and 3.5%, respectively) when using the Kimura two parameters model. These differences were associated either with distinct morphological characteristics of the male genitalia or larval and pupal stages, suggesting that these may represent species complexes. The Bayesian topology suggested that the genus and subgenus Culex are paraphyletic relative to Lutzia and Phenacomyia, respectively. The cytochrome c oxidase subunit I sequences may be a useful tool to both estimate phylogenetic relationships and identify morphologically similar species of the genus Culex.
Collapse
Affiliation(s)
- Bruna Demari-Silva
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo 715, 01246-904, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
29
|
Sallum MAM, Foster PG, Dos Santos CLS, Flores DC, Motoki MT, Bergo ES. Resurrection of two species from synonymy of Anopheles (Nyssorhynchus) strodei Root, and characterization of a distinct morphological form from the Strodei Complex (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2010; 47:504-526. [PMID: 20695266 DOI: 10.1093/jmedent/47.4.504] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Anopheles albertoi Unti and Anopheles arthuri Unti are revived from the synonymy with Anopheles strodei Root, and a distinct morphological form (designated in this study as Anopheles CP Form) from the Strodei Complex of Anopheles (Nyssorhynchus) is characterized. The male genitalia of An. arthuri and An. albertoi are described and illustrated for the first time. An. strodei, An. arthuri, and An. albertoi were first distinguished based on scanning electron microphotos of the eggs, and then each egg type was associated with diagnostic characters of the male genitalia. Identification of Anopheles CP Form was based on morphological characters of the male genitalia, characterized and illustrated in this study. Molecular phylogenetic analysis was most clear when an outgroup was not included, in which case using the nuclear white gene, or the white gene in combination with the mitochondrial cytochrome c oxidase subunit I (COI) gene, clearly separated these four taxa. When Anopheles quadrimaculatus Say and Anopheles stephensi Liston were included as an outgroup, combined white and COI data resolved An. strodei and An. albertoi, whereas An. arthuri was not well resolved. The single sequence of Anopheles CP Form was recovered well separated from other groups in all analyses.
Collapse
Affiliation(s)
- Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Avenida Doutor Arnaldo 715, CEP 01246-904, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
30
|
Nabeshima T, Morita K. Phylogeographic analysis of the migration of Japanese encephalitis virus in Asia. Future Virol 2010. [DOI: 10.2217/fvl.10.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Japanese encephalitis virus (JEV) is one of the zoonotic arboviruses, and causes encephalitis in humans. Our phylogenetic analysis revealed that some phylogenetic subclusers were distributed as widely as continental Asia to Japan (subclusters 1-A-1, 1-A-2, 1-A-3, 1-A-5, 3-A-1, 3-A-2, 3-B-1 and 3-D). However, two subclusters were only isolated in Japan (1-A-6 and 1-A-7). These data suggest that multiple populations of JEV have migrated from southeast Asia and continental east Asia to Japan and, in Japan, JEV can overwinter and settle. In this article, we aim to explain the ecological factors related to the overseas expansion, migration and overwintering of JEV.
Collapse
Affiliation(s)
- Takeshi Nabeshima
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1–12–4 Sakamoto, Nagasaki City, 852–8523, Japan
| | | |
Collapse
|