1
|
Caparali EB, De Gregorio V, Barua M. Genotype-Based Molecular Mechanisms in Alport Syndrome. J Am Soc Nephrol 2025:00001751-990000000-00551. [PMID: 39899372 DOI: 10.1681/asn.0000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Alport syndrome is an inherited disorder characterized by kidney disease, sensorineural hearing loss, and ocular abnormalities. Alport syndrome is caused by pathogenic variants in COL4A3 , COL4A4 , or COL4A5 , which encode the α 3, α 4, and α 5 chains of type 4 collagen that forms a heterotrimer expressed in the glomerular basement membrane. Knowledge of its genetic basis has informed the development of different models in dogs, mice, and rats that reflect its autosomal and X-linked inheritance patterns as well as different mutation types, including protein-truncating and missense variants. A key difference between these two types is the synthesis of α 3 α 4 α 5(IV), which is not made in autosomal Alport syndrome (two pathogenic variants in trans or biallelic) or male patients with X-linked Alport syndrome due to protein-truncating variants. By contrast, α 3 α 4 α 5(IV) is synthesized in Alport syndrome because of missense variants. For missense variants, in vitro studies suggest that these cause impaired type 4 collagen trafficking and endoplasmic reticulum stress. For protein-truncating variants, knockout models suggest that persistence of an immature α 1 α 1 α 2(IV) network is associated with biomechanical strain, which activates endothelin-A receptors leading to mesangial filopodia formation. Moreover, studies suggest that activation of collagen receptors, integrins and discoidin domain receptor 1, play a role in disease propagation. In this review, we provide an overview of how these genotype-phenotype mechanisms are key for a precision medicine-based approach in the future.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | | | - Moumita Barua
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
LeBleu VS, Kanasaki K, Lovisa S, Alge JL, Kim J, Chen Y, Teng Y, Gerami-Naini B, Sugimoto H, Kato N, Revuelta I, Grau N, Sleeman JP, Taduri G, Kizu A, Rafii S, Hochedlinger K, Quaggin SE, Kalluri R. Genetic reprogramming with stem cells regenerates glomerular epithelial podocytes in Alport syndrome. Life Sci Alliance 2024; 7:e202402664. [PMID: 38561223 PMCID: PMC10985218 DOI: 10.26508/lsa.202402664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3, Col4a4, and Col4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion of Col4a3 in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFβ1 and using allogenic bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells, rescues Col4a3 expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Northwestern University Feinberg School of Medicine and Kellogg School of Management, Chicago, IL, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Keizo Kanasaki
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sara Lovisa
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph L Alge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jiha Kim
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingqi Teng
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Behzad Gerami-Naini
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Noritoshi Kato
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ignacio Revuelta
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicole Grau
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonathan P Sleeman
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Karlsruhe Institute of Technology (IBCS-BIP), Karlsruhe, Germany
| | - Gangadhar Taduri
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Akane Kizu
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shahin Rafii
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Boston, MA, USA
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine & Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Boudko SP, Pokidysheva E, Hudson BG. Prospective collagen IVα345 therapies for Alport syndrome. Curr Opin Nephrol Hypertens 2022; 31:213-220. [PMID: 35283436 PMCID: PMC9159491 DOI: 10.1097/mnh.0000000000000789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In Alport syndrome, over 1,700 genetic variants in the COL4A3, COL4A4, and COL4A5 genes cause the absence or malfunctioning of the collagen IVα345 scaffold - an essential component of the glomerular basement membrane (GBM). Therapies are limited to treatment with Angiotensin-Converting enzyme (ACE) inhibitors to slow progression of the disease. Here, we review recent progress in therapy development to replace the scaffold or restore its function. RECENT FINDINGS Multiple approaches emerged recently for development of therapies that target different stages of production and assembly of the collagen IVα345 scaffold in the GBM. These approaches are based on (1) recent advances in technologies allowing to decipher pathogenic mechanisms that underlie scaffold assembly and dysfunction, (2) development of DNA editing tools for gene therapy, (3) RNA splicing interference, and (4) control of mRNA translation. SUMMARY There is a growing confidence that these approaches will ultimately provide cure for Alport patients. The development of therapy will be accelerated by studies that provide a deeper understanding of mechanisms that underlie folding, assembly, and function of the collagen IVα345 scaffold.
Collapse
Affiliation(s)
- Sergei P. Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G. Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Cosgrove D, Madison J. Molecular and Cellular Mechanisms Underlying the Initiation and Progression of Alport Glomerular Pathology. Front Med (Lausanne) 2022; 9:846152. [PMID: 35223933 PMCID: PMC8863674 DOI: 10.3389/fmed.2022.846152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Alport syndrome results from a myriad of variants in the COL4A3, COL4A4, or COL4A5 genes that encode type IV (basement membrane) collagens. Unlike type IV collagen α1(IV)2α2(IV)1 heterotrimers, which are ubiquitous in basement membranes, α3/α4/α5 have a limited tissue distribution. The absence of these basement membrane networks causes pathologies in some, but not all these tissues. Primarily the kidney glomerulus, the stria vascularis of the inner ear, the lens, and the retina as well as a rare link with aortic aneurisms. Defects in the glomerular basement membranes results in delayed onset and progressive focal segmental glomerulosclerosis ultimately requiring the patient to undergo dialysis and if accessible, kidney transplant. The lifespan of patients with Alport syndrome is ultimately significantly shortened. This review addresses the consequences of the altered glomerular basement membrane composition in Alport syndrome with specific emphasis on the mechanisms underlying initiation and progression of glomerular pathology.
Collapse
Affiliation(s)
| | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, United States
| |
Collapse
|
5
|
Abstract
The glomerular filtration barrier is a highly specialized capillary wall comprising fenestrated endothelial cells, podocytes, and an intervening basement membrane. In glomerular disease, this barrier loses functional integrity, allowing the passage of macromolecules and cells, and there are associated changes in both cell morphology and the extracellular matrix. Over the past 3 decades, there has been a transformation in our understanding about glomerular disease, fueled by genetic discovery, and this is leading to exciting advances in our knowledge about glomerular biology and pathophysiology. In current clinical practice, a genetic diagnosis already has important implications for management, ranging from estimating the risk of disease recurrence post-transplant to the life-changing advances in the treatment of atypical hemolytic uremic syndrome. Improving our understanding about the mechanistic basis of glomerular disease is required for more effective and personalized therapy options. In this review, we describe genotype and phenotype correlations for genetic disorders of the glomerular filtration barrier, with a particular emphasis on how these gene defects cluster by both their ontology and patterns of glomerular pathology.
Collapse
Affiliation(s)
- Anna S. Li
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Nephrology, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jack F. Ingham
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
6
|
Abstract
The glomerular basement membrane (GBM) is a key component of the glomerular capillary wall and is essential for kidney filtration. The major components of the GBM include laminins, type IV collagen, nidogens and heparan sulfate proteoglycans. In addition, the GBM harbours a number of other structural and regulatory components and provides a reservoir for growth factors. New technologies have improved our ability to study the composition and assembly of basement membranes. We now know that the GBM is a complex macromolecular structure that undergoes key transitions during glomerular development. Defects in GBM components are associated with a range of hereditary human diseases such as Alport syndrome, which is caused by defects in the genes COL4A3, COL4A4 and COL4A5, and Pierson syndrome, which is caused by variants in LAMB2. In addition, the GBM is affected by acquired autoimmune disorders and metabolic diseases such as diabetes mellitus. Current treatments for diseases associated with GBM involvement aim to reduce intraglomerular pressure and to treat the underlying cause where possible. As our understanding about the maintenance and turnover of the GBM improves, therapies to replace GBM components or to stimulate GBM repair could translate into new therapies for patients with GBM-associated disease.
Collapse
|
7
|
Funk SD, Bayer RH, Miner JH. Endothelial cell-specific collagen type IV-α 3 expression does not rescue Alport syndrome in Col4a3 -/- mice. Am J Physiol Renal Physiol 2019; 316:F830-F837. [PMID: 30724107 PMCID: PMC6580247 DOI: 10.1152/ajprenal.00556.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 01/15/2023] Open
Abstract
The glomerular basement membrane (GBM) is a critical component of the kidney's blood filtration barrier. Alport syndrome, a hereditary disease leading to kidney failure, is caused by the loss or dysfunction of the GBM's major collagen type IV (COL4) isoform α3α4α5. The constituent COL4 α-chains assemble into heterotrimers in the endoplasmic reticulum before secretion into the extracellular space. If any one of the α3-, α4-, or α5-chains is lost due to mutation of one of the genes, then the entire heterotrimer is lost. Patients with Alport syndrome typically have mutations in the X-linked COL4A5 gene or uncommonly have the autosomal recessive form of the disease due to COL4A3 or COL4A4 mutations. Treatment for Alport syndrome is currently limited to angiotensin-converting enzyme inhibition or angiotensin receptor blockers. Experimental approaches in Alport mice have demonstrated that induced expression of COL4A3, either widely or specifically in podocytes of Col4a3-/- mice, can abrogate disease progression even after establishment of the abnormal GBM. While targeting podocytes in vivo for gene therapy is a significant challenge, the more accessible glomerular endothelium could be amenable for mutant gene repair. In the present study, we expressed COL4A3 in Col4a3-/- Alport mice using an endothelial cell-specific inducible transgenic system, but collagen-α3α4α5(IV) was not detected in the GBM or elsewhere, and the Alport phenotype was not rescued. Our results suggest that endothelial cells do not express the Col4a3/a4/a5 genes and should not be viewed as a target for gene therapy.
Collapse
Affiliation(s)
- Steven D Funk
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| | - Raymond H Bayer
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| | - Jeffrey H Miner
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
8
|
Luo W, Olaru F, Miner JH, Beck LH, van der Vlag J, Thurman JM, Borza DB. Alternative Pathway Is Essential for Glomerular Complement Activation and Proteinuria in a Mouse Model of Membranous Nephropathy. Front Immunol 2018; 9:1433. [PMID: 29988342 PMCID: PMC6023961 DOI: 10.3389/fimmu.2018.01433] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/11/2018] [Indexed: 01/15/2023] Open
Abstract
Membranous nephropathy is an immune kidney disease caused by IgG antibodies that form glomerular subepithelial immune complexes. Proteinuria is mediated by complement activation, as a result of podocyte injury by C5b-9, but the role of specific complement pathways is not known. Autoantibodies-mediating primary membranous nephropathy are predominantly of IgG4 subclass, which cannot activate the classical pathway. Histologic evidence from kidney biopsies suggests that the lectin and the alternative pathways may be activated in membranous nephropathy, but the pathogenic relevance of these pathways remains unclear. In this study, we evaluated the role of the alternative pathway in a mouse model of membranous nephropathy. After inducing the formation of subepithelial immune complexes, we found similar glomerular IgG deposition in wild-type mice and in factor B-null mice, which lack a functional alternative pathway. Unlike wild-type mice, mice lacking factor B did not develop albuminuria nor exhibit glomerular deposition of C3c and C5b-9. Albuminuria was also reduced but not completely abolished in C5-deficient mice. Our results provide the first direct evidence that the alternative pathway is necessary for pathogenic complement activation by glomerular subepithelial immune complexes and is, therefore, a key mediator of proteinuria in experimental membranous nephropathy. This knowledge is important for the rational design of new therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Wentian Luo
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States.,Vanderbilt Center for Kidney Disease, Vanderbilt Division of Nephrology, Nashville, TN, United States
| | - Florina Olaru
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States.,Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Laurence H Beck
- Division of Nephrology, Boston University Medical Center, Boston, MA, United States
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Dorin-Bogdan Borza
- Vanderbilt Center for Kidney Disease, Vanderbilt Division of Nephrology, Nashville, TN, United States.,Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
9
|
Funk SD, Bayer RH, Malone AF, McKee KK, Yurchenco PD, Miner JH. Pathogenicity of a Human Laminin β2 Mutation Revealed in Models of Alport Syndrome. J Am Soc Nephrol 2017; 29:949-960. [PMID: 29263159 DOI: 10.1681/asn.2017090997] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/19/2017] [Indexed: 01/15/2023] Open
Abstract
Pierson syndrome is a congenital nephrotic syndrome with eye and neurologic defects caused by mutations in laminin β2 (LAMB2), a major component of the glomerular basement membrane (GBM). Pathogenic missense mutations in human LAMB2 cluster in or near the laminin amino-terminal (LN) domain, a domain required for extracellular polymerization of laminin trimers and basement membrane scaffolding. Here, we investigated an LN domain missense mutation, LAMB2-S80R, which was discovered in a patient with Pierson syndrome and unusually late onset of proteinuria. Biochemical data indicated that this mutation impairs laminin polymerization, which we hypothesized to be the cause of the patient's nephrotic syndrome. Testing this hypothesis in genetically altered mice showed that the corresponding amino acid change (LAMB2-S83R) alone is not pathogenic. However, expression of LAMB2-S83R significantly increased the rate of progression to kidney failure in a Col4a3-/- mouse model of autosomal recessive Alport syndrome and increased proteinuria in Col4a5+/- females that exhibit a mild form of X-linked Alport syndrome due to mosaic deposition of collagen α3α4α5(IV) in the GBM. Collectively, these data show the pathogenicity of LAMB2-S80R and provide the first evidence of genetic modification of Alport phenotypes by variation in another GBM component. This finding could help explain the wide range of Alport syndrome onset and severity observed in patients with Alport syndrome, even for family members who share the same COL4 mutation. Our results also show the complexities of using model organisms to investigate genetic variants suspected of being pathogenic in humans.
Collapse
Affiliation(s)
- Steven D Funk
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri and
| | - Raymond H Bayer
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri and
| | - Andrew F Malone
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri and
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri and
| |
Collapse
|
10
|
Syndrome d’Alport : néphropathie héréditaire associée à des mutations dans les gènes codant les chaînes de collagène de type IV. Nephrol Ther 2016; 12:544-551. [DOI: 10.1016/j.nephro.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Abstract
Alport syndrome is the result of mutations in any of three type IV collagen genes, COL4A3, COL4A4, or COL4A5. Because the three collagen chains form heterotrimers, there is an absence of all three proteins in the basement membranes where they are expressed. In the glomerulus, the mature glomerular basement membrane type IV collagen network, normally comprised of two separate networks, α3(IV)/α4(IV)/α5(IV) and α1(IV)/α2(IV), is comprised entirely of collagen α1(IV)/α2. This review addresses the current state of our knowledge regarding the consequence of this change in basement membrane composition, including both the direct, via collagen receptor binding, and indirect, regarding influences on glomerular biomechanics. The state of our current understanding regarding mechanisms of glomerular disease initiation and progression will be examined, as will the current state of the art regarding emergent therapeutic approaches to slow or arrest glomerular disease in Alport patients.
Collapse
|
12
|
Cosgrove D, Liu S. Collagen IV diseases: A focus on the glomerular basement membrane in Alport syndrome. Matrix Biol 2016; 57-58:45-54. [PMID: 27576055 DOI: 10.1016/j.matbio.2016.08.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
Alport syndrome is the result of mutations in any of three type IV collagen genes, COL4A3, COL4A4, or COL4A5. Because the three collagen chains form heterotrimers, there is an absence of all three proteins in the basement membranes where they are expressed. In the glomerulus, the mature glomerular basement membrane type IV collagen network, normally comprised of two separate networks, α3(IV)/α4(IV)/α5(IV) and α1(IV)/α2(IV), is comprised entirely of collagen α1(IV)/α2. This review addresses the current state of our knowledge regarding the consequence of this change in basement membrane composition, including both the direct, via collagen receptor binding, and indirect, regarding influences on glomerular biomechanics. The state of our current understanding regarding mechanisms of glomerular disease initiation and progression will be examined, as will the current state of the art regarding emergent therapeutic approaches to slow or arrest glomerular disease in Alport patients.
Collapse
|
13
|
Foster MH. Optimizing the translational value of animal models of glomerulonephritis: insights from recent murine prototypes. Am J Physiol Renal Physiol 2016; 311:F487-95. [PMID: 27335377 DOI: 10.1152/ajprenal.00275.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/21/2016] [Indexed: 02/05/2023] Open
Abstract
Animal models are indispensable for the study of glomerulonephritis, a group of diseases that destroy kidneys but for which specific therapies do not yet exist. Novel interventions are urgently needed, but their rational design requires suitable in vivo platforms to identify and test new candidates. Animal models can recreate the complex immunologic microenvironments that foster human autoimmunity and nephritis and provide access to tissue compartments not readily examined in patients. Study of rat Heymann nephritis identified fundamental disease mechanisms that ultimately revolutionized our understanding of human membranous nephropathy. Significant species differences in expression of a major target antigen, however, and lack of spontaneous autoimmunity in animals remain roadblocks to full exploitation of preclinical models in this disease. For several glomerulonephritides, humanized models have been developed to circumvent cross-species barriers and to study the effects of human genetic risk variants. Herein we review humanized mouse prototypes that provide fresh insight into mediators of IgA nephropathy and origins of antiglomerular basement membrane nephritis and Goodpasture's disease, as well as a means to test novel therapies for ANCA vasculitis. Additional and refined model systems are needed to mirror the full spectrum of human disease in a genetically diverse population, to facilitate development of patient-specific interventions, to determine the origin of nephritogenic autoimmunity, and to define the role of environmental exposures in disease initiation and relapse.
Collapse
Affiliation(s)
- Mary H Foster
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; and Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
14
|
Katayama K, Nomura S, Tryggvason K, Ito M. Searching for a treatment for Alport syndrome using mouse models. World J Nephrol 2014; 3:230-236. [PMID: 25374816 PMCID: PMC4220355 DOI: 10.5527/wjn.v3.i4.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/15/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Alport syndrome (AS) is a hereditary nephritis caused by mutations in COL4A3, COL4A4 or COL4A5 encoding the type IV collagen α3, α4, and α5 chains, which are major components of the glomerular basement membrane. About 20 years have passed since COL4A3, COL4A4, and COL4A5 were identified and the first Alport mouse model was developed using a knockout approach. The phenotype of Alport mice is similar to that of Alport patients, including characteristic thickening and splitting of the glomerular basement membrane. Alport mice have been widely used to study the pathogenesis of AS and to develop effective therapies. In this review, the newer therapies for AS, such as pharmacological interventions, genetic approaches and stem cell therapies, are discussed. Although some stem cell therapies have been demonstrated to slow the renal disease progression in Alport mice, these therapies demand continual refinement as research advances. In terms of the pharmacological drugs, angiotensin-converting enzyme inhibitors have been shown to be effective in Alport mice. Novel therapies that can provide a better outcome or lead to a cure are still awaited.
Collapse
|
15
|
A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal collagen α3α4α5(IV) trimers. Kidney Int 2014; 85:1461-8. [PMID: 24522496 PMCID: PMC4040157 DOI: 10.1038/ki.2013.493] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/11/2013] [Accepted: 10/03/2013] [Indexed: 12/31/2022]
Abstract
A spontaneous mutation termed bilateral wasting kidneys (bwk) was identified in a colony of NONcNZO recombinant inbred mice. These mice exhibit a rapid increase of urinary albumin at an early age associated with glomerulosclerosis, interstitial nephritis, and tubular atrophy. The mutation was mapped to a location on chromosome 1 containing the Col4a3 and Col4a4 genes, for which mutations in the human orthologs cause the hereditary nephritis Alport syndrome. DNA sequencing identified a G-to-A mutation in the conserved GT splice donor of Col4a4 intron 30, resulting in skipping of exon 30 but maintaining the mRNA reading frame. Protein analyses showed that mutant collagen α3α4α5(IV) trimers were secreted and incorporated into the glomerular basement membrane (GBM), but levels were low, and GBM lesions typical of Alport syndrome were observed. Moving the mutation into the more renal damage-prone DBA/2J and 129S1/SvImJ backgrounds revealed differences in albuminuria and its rate of increase, suggesting an interaction between the Col4a4 mutation and modifier genes. This novel mouse model of Alport syndrome is the only one shown to accumulate abnormal collagen α3α4α5(IV) in the GBM, as also found in a subset of Alport patients. These mice will be valuable for testing potential therapies, for understanding abnormal collagen IV structure and assembly, and for gaining better insights into the mechanisms leading to Alport syndrome, and to the variability in the age of onset and associated phenotypes.
Collapse
|
16
|
Lin X, Suh JH, Go G, Miner JH. Feasibility of repairing glomerular basement membrane defects in Alport syndrome. J Am Soc Nephrol 2013; 25:687-92. [PMID: 24262794 DOI: 10.1681/asn.2013070798] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alport syndrome is a hereditary glomerular disease that leads to kidney failure. It is caused by mutations affecting one of three chains of the collagen α3α4α5(IV) heterotrimer, which forms the major collagen IV network of the glomerular basement membrane (GBM). In the absence of the α3α4α5(IV) network, the α1α1α2(IV) network substitutes, but it is insufficient to maintain normal kidney function. Inhibition of angiotensin-converting enzyme slows progression to kidney failure in patients with Alport syndrome but is not a cure. Restoration of the normal collagen α3α4α5(IV) network in the GBM, by either cell- or gene-based therapy, is an attractive and logical approach toward a cure, but whether or not the abnormal GBM can be repaired once it has formed and is functioning is unknown. Using a mouse model of Alport syndrome and an inducible transgene system, we found that secretion of α3α4α5(IV) heterotrimers by podocytes into a preformed, abnormal, filtering Alport GBM is effective at restoring the missing collagen IV network, slowing kidney disease progression, and extending life span. This proof-of-principle study demonstrates the plasticity of the mature GBM and validates the pursuit of therapeutic approaches aimed at normalizing the GBM to prolong kidney function.
Collapse
|
17
|
Suleiman H, Zhang L, Roth R, Heuser JE, Miner JH, Shaw AS, Dani A. Nanoscale protein architecture of the kidney glomerular basement membrane. eLife 2013; 2:e01149. [PMID: 24137544 PMCID: PMC3790497 DOI: 10.7554/elife.01149] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
Abstract
In multicellular organisms, proteins of the extracellular matrix (ECM) play structural and functional roles in essentially all organs, so understanding ECM protein organization in health and disease remains an important goal. Here, we used sub-diffraction resolution stochastic optical reconstruction microscopy (STORM) to resolve the in situ molecular organization of proteins within the kidney glomerular basement membrane (GBM), an essential mediator of glomerular ultrafiltration. Using multichannel STORM and STORM-electron microscopy correlation, we constructed a molecular reference frame that revealed a laminar organization of ECM proteins within the GBM. Separate analyses of domains near the N- and C-termini of agrin, laminin, and collagen IV in mouse and human GBM revealed a highly oriented macromolecular organization. Our analysis also revealed disruptions in this GBM architecture in a mouse model of Alport syndrome. These results provide the first nanoscopic glimpse into the organization of a complex ECM. DOI:http://dx.doi.org/10.7554/eLife.01149.001.
Collapse
Affiliation(s)
- Hani Suleiman
- Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Abrahamson DR, St John PL, Stroganova L, Zelenchuk A, Steenhard BM. Laminin and type IV collagen isoform substitutions occur in temporally and spatially distinct patterns in developing kidney glomerular basement membranes. J Histochem Cytochem 2013; 61:706-18. [PMID: 23896970 PMCID: PMC3788627 DOI: 10.1369/0022155413501677] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney glomerular basement membranes (GBMs) undergo laminin and type IV collagen isoform substitutions during glomerular development, which are believed to be required for maturation of the filtration barrier. Specifically, GBMs of earliest glomeruli contain laminin α1β1γ1 and collagen α1α2α1(IV), whereas mature glomeruli contain laminin α5β2γ1 and collagen α3α4α5(IV). Here, we used confocal microscopy to simultaneously evaluate expression of different laminin and collagen IV isoforms in newborn mouse GBMs. Our results show loss of laminin α1 from GBMs in early capillary loop stages and continuous linear deposition of laminin bearing the α5 chain thereafter. In contrast, collagen α1α2α1(IV) persisted in linear patterns into late capillary loop stages, when collagen α3α4α5(IV) first appeared in discontinuous, non-linear patterns. This patchy pattern for collagen α3α4α5(IV) continued into maturing glomeruli where there were lengths of linear, laminin α5-positive GBM entirely lacking either isoform of collagen IV. Relative abundance of laminin and collagen IV mRNAs in newborn and 5-week-old mouse kidneys also differed, with those encoding laminin α1, α5, β1, β2, and γ1, and collagen α1(IV) and α2(IV) chains all significantly declining at 5 weeks, but α3(IV) and α4(IV) were significantly upregulated. We conclude that different biosynthetic mechanisms control laminin and type IV collagen expression in developing glomeruli.
Collapse
Affiliation(s)
- Dale R Abrahamson
- Department of Anatomy and Cell Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | | | | |
Collapse
|
19
|
Olaru F, Luo W, Wang XP, Ge L, Hertz JM, Kashtan CE, Sado Y, Segal Y, Hudson BG, Borza DB. Quaternary epitopes of α345(IV) collagen initiate Alport post-transplant anti-GBM nephritis. J Am Soc Nephrol 2013; 24:889-95. [PMID: 23620401 DOI: 10.1681/asn.2012100978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Alport post-transplant nephritis (APTN) is an aggressive form of anti-glomerular basement membrane disease that targets the allograft in transplanted patients with X-linked Alport syndrome. Alloantibodies develop against the NC1 domain of α5(IV) collagen, which occurs in normal kidneys, including renal allografts, forming distinct α345(IV) and α1256(IV) networks. Here, we studied the roles of these networks as antigens inciting alloimmunity and as targets of nephritogenic alloantibodies in APTN. We found that patients with APTN, but not those without nephritis, produce two kinds of alloantibodies against allogeneic collagen IV. Some alloantibodies targeted alloepitopes within α5NC1 monomers, shared by α345NC1 and α1256NC1 hexamers. Other alloantibodies specifically targeted alloepitopes that depended on the quaternary structure of α345NC1 hexamers. In Col4a5-null mice, immunization with native forms of allogeneic collagen IV exclusively elicited antibodies to quaternary α345NC1 alloepitopes, whereas alloimmunogens lacking native quaternary structure elicited antibodies to shared α5NC1 alloepitopes. These results imply that quaternary epitopes within α345NC1 hexamers may initiate alloimmune responses after transplant in X-linked Alport patients. Thus, α345NC1 hexamers are the culprit alloantigen and primary target of all alloantibodies mediating APTN, whereas α1256NC1 hexamers become secondary targets of anti-α5NC1 alloantibodies. Reliable detection of alloantibodies by immunoassays using α345NC1 hexamers may improve outcomes by facilitating early, accurate diagnosis.
Collapse
Affiliation(s)
- Florina Olaru
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Olaru F, Wang XP, Luo W, Ge L, Miner JH, Kleinau S, Geiger XJ, Wasiluk A, Heidet L, Kitching AR, Borza DB. Proteolysis breaks tolerance toward intact α345(IV) collagen, eliciting novel anti-glomerular basement membrane autoantibodies specific for α345NC1 hexamers. THE JOURNAL OF IMMUNOLOGY 2013; 190:1424-32. [PMID: 23303673 DOI: 10.4049/jimmunol.1202204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Goodpasture disease is an autoimmune kidney disease mediated by autoantibodies against noncollagenous domain 1 (NC1) monomers of α3(IV) collagen that bind to the glomerular basement membrane (GBM), usually causing rapidly progressive glomerulonephritis (GN). We identified a novel type of human IgG4-restricted anti-GBM autoantibodies associated with mild nonprogressive GN, which specifically targeted α345NC1 hexamers but not α3NC1 monomers. The mechanisms eliciting these anti-GBM autoantibodies were investigated in mouse models recapitulating this phenotype. Wild-type and FcγRIIB(-/-) mice immunized with autologous murine GBM NC1 hexamers produced mouse IgG1-restricted autoantibodies specific for α345NC1 hexamers, which bound to the GBM in vivo but did not cause GN. In these mice, intact collagen IV from murine GBM was not immunogenic. However, in Col4a3(-/-) Alport mice, both intact collagen IV and NC1 hexamers from murine GBM elicited IgG Abs specific for α345NC1 hexamers, which were not subclass restricted. As heterologous Ag in COL4A3-humanized mice, murine GBM NC1 hexamers elicited mouse IgG1, IgG2a, and IgG2b autoantibodies specific for α345NC1 hexamers and induced anti-GBM Ab GN. These findings indicate that tolerance toward autologous intact α345(IV) collagen is established in hosts expressing this Ag, even though autoreactive B cells specific for α345NC1 hexamers are not purged from their repertoire. Proteolysis selectively breaches this tolerance by generating autoimmunogenic α345NC1 hexamers. This provides a mechanism eliciting autoantibodies specific for α345NC1 hexamers, which are restricted to noninflammatory IgG subclasses and are nonnephritogenic. In Alport syndrome, lack of tolerance toward α345(IV) collagen promotes production of alloantibodies to α345NC1 hexamers, including proinflammatory IgG subclasses that mediate posttransplant anti-GBM nephritis.
Collapse
Affiliation(s)
- Florina Olaru
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Steenhard BM, Vanacore R, Friedman D, Zelenchuk A, Stroganova L, Isom K, St. John PL, Hudson BG, Abrahamson DR. Upregulated expression of integrin α1 in mesangial cells and integrin α3 and vimentin in podocytes of Col4a3-null (Alport) mice. PLoS One 2012; 7:e50745. [PMID: 23236390 PMCID: PMC3517557 DOI: 10.1371/journal.pone.0050745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 01/19/2023] Open
Abstract
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM.
Collapse
Affiliation(s)
- Brooke M. Steenhard
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Roberto Vanacore
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David Friedman
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Adrian Zelenchuk
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Larysa Stroganova
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kathryn Isom
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Patricia L. St. John
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Billy G. Hudson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dale R. Abrahamson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zhang JJ, Malekpour M, Luo W, Ge L, Olaru F, Wang XP, Bah M, Sado Y, Heidet L, Kleinau S, Fogo AB, Borza DB. Murine membranous nephropathy: immunization with α3(IV) collagen fragment induces subepithelial immune complexes and FcγR-independent nephrotic syndrome. THE JOURNAL OF IMMUNOLOGY 2012; 188:3268-77. [PMID: 22371398 DOI: 10.4049/jimmunol.1103368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and a significant cause of end-stage renal disease, yet current therapies are nonspecific, toxic, and often ineffective. The development of novel targeted therapies requires a detailed understanding of the pathogenic mechanisms, but progress is hampered by the lack of a robust mouse model of disease. We report that DBA/1 mice as well as congenic FcγRIII(-/-) and FcRγ(-/-) mice immunized with a fragment of α3(IV) collagen developed massive albuminuria and nephrotic syndrome, because of subepithelial deposits of mouse IgG and C3 with corresponding basement membrane reaction and podocyte foot process effacement. The clinical presentation and histopathologic findings were characteristic of MN. Although immunized mice produced genuine anti-α3NC1 autoantibodies that bound to kidney and lung basement membranes, neither crescentic glomerulonephritis nor alveolitis ensued, likely because of the predominance of mouse IgG1 over IgG2a and IgG2b autoantibodies. The ablation of activating IgG Fc receptors did not ameliorate injury, implicating subepithelial deposition of immune complexes and consequent complement activation as a major effector pathway. We have thus established an active model of murine MN. This model, leveraged by the availability of genetically engineered mice and mouse-specific reagents, will be instrumental in studying the pathogenesis of MN and evaluating the efficacy of novel experimental therapies.
Collapse
Affiliation(s)
- Jun-Jun Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Steenhard BM, Zelenchuk A, Stroganova L, Isom K, St. John PL, Andrews GK, Peterson KR, Abrahamson DR. Transgenic expression of human LAMA5 suppresses murine Lama5 mRNA and laminin α5 protein deposition. PLoS One 2011; 6:e23926. [PMID: 21915268 PMCID: PMC3168496 DOI: 10.1371/journal.pone.0023926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/31/2011] [Indexed: 01/12/2023] Open
Abstract
Laminin α5 is required for kidney glomerular basement membrane (GBM) assembly, and mice with targeted deletions of the Lama5 gene fail to form glomeruli. As a tool to begin to understand factors regulating the expression of the LAMA5 gene, we generated transgenic mice carrying the human LAMA5 locus in a bacterial artificial chromosome. These mice deposited human laminin α5 protein into basement membranes in heart, liver, spleen and kidney. Here, we characterized two lines of transgenics; Line 13 expressed ∼6 times more LAMA5 than Line 25. Mice from both lines were healthy, and kidney function and morphology were normal. Examination of developing glomeruli from fetal LAMA5 transgenics showed that the human transgene was expressed at the correct stage of glomerular development, and deposited into the nascent GBM simultaneously with mouse laminin α5. Expression of human LAMA5 did not affect the timing of the mouse laminin α1–α5 isoform switch, or that for mouse laminin β1–β2. Immunoelectron microscopy showed that human laminin α5 originated in both glomerular endothelial cells and podocytes, known to be origins for mouse laminin α5 normally. Notably, in neonatal transgenics expressing the highest levels of human LAMA5, there was a striking reduction of mouse laminin α5 protein in kidney basement membranes compared to wildtype, and significantly lower levels of mouse Lama5 mRNA. This suggests the presence in kidney of a laminin expression monitor, which may be important for regulating the overall production of basement membrane protein.
Collapse
Affiliation(s)
- Brooke M. Steenhard
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Adrian Zelenchuk
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Larysa Stroganova
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kathryn Isom
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Patricia L. St. John
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Glen K. Andrews
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kenneth R. Peterson
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Dale R. Abrahamson
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
24
|
LeBleu V, Sund M, Sugimoto H, Birrane G, Kanasaki K, Finan E, Miller CA, Gattone VH, McLaughlin H, Shield CF, Kalluri R. Identification of the NC1 domain of {alpha}3 chain as critical for {alpha}3{alpha}4{alpha}5 type IV collagen network assembly. J Biol Chem 2010; 285:41874-85. [PMID: 20847057 DOI: 10.1074/jbc.m110.149534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The network organization of type IV collagen consisting of α3, α4, and α5 chains in the glomerular basement membrane (GBM) is speculated to involve interactions of the triple helical and NC1 domain of individual α-chains, but in vivo evidence is lacking. To specifically address the contribution of the NC1 domain in the GBM collagen network organization, we generated a mouse with specific loss of α3NC1 domain while keeping the triple helical α3 chain intact by connecting it to the human α5NC1 domain. The absence of α3NC1 domain leads to the complete loss of the α4 chain. The α3 collagenous domain is incapable of incorporating the α5 chain, resulting in the impaired organization of the α3α4α5 chain-containing network. Although the α5 chain can assemble with the α1, α2, and α6 chains, such assembly is incapable of functionally replacing the α3α4α5 protomer. This novel approach to explore the assembly type IV collagen in vivo offers novel insights in the specific role of the NC1 domain in the assembly and function of GBM during health and disease.
Collapse
Affiliation(s)
- Valerie LeBleu
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School,Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Luo W, Wang XP, Kashtan CE, Borza DB. Alport alloantibodies but not Goodpasture autoantibodies induce murine glomerulonephritis: protection by quinary crosslinks locking cryptic α3(IV) collagen autoepitopes in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3520-8. [PMID: 20709951 PMCID: PMC2951005 DOI: 10.4049/jimmunol.1001152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The noncollagenous (NC1) domains of alpha3alpha4alpha5(IV) collagen in the glomerular basement membrane (GBM) are targets of Goodpasture autoantibodies or Alport posttransplant nephritis alloantibodies mediating rapidly progressive glomerulonephritis. Because the autoepitopes but not the alloepitopes become cryptic upon assembly of alpha3alpha4alpha5NC1 hexamers, we investigated how the accessibility of B cell epitopes in vivo influences the development of glomerulonephritis in mice passively immunized with human anti-GBM Abs. Alport alloantibodies, which bound to native murine alpha3alpha4alpha5NC1 hexamers in vitro, deposited linearly along the mouse GBM in vivo, eliciting crescentic glomerulonephritis in Fcgr2b(-/-) mice susceptible to Ab-mediated inflammation. Goodpasture autoantibodies, which bound to murine alpha3NC1 monomer and dimer subunits but not to native alpha3alpha4alpha5NC1 hexamers in vitro, neither bound to the mouse GBM in vivo nor induced experimental glomerulonephritis. This was due to quinary NC1 crosslinks, recently identified as sulfilimine bonds, which comprehensively locked the cryptic Goodpasture autoepitopes in the mouse GBM. In contrast, non-crosslinked alpha3NC1 subunits were identified as a native target of Goodpasture autoantibodies in the GBM of squirrel monkeys, a species susceptible to Goodpasture autoantibody-mediated nephritis. Thus, crypticity of B cell autoepitopes in tissues uncouples potentially pathogenic autoantibodies from autoimmune disease. Crosslinking of alpha3alpha4alpha5NC1 hexamers represents a novel mechanism averting autoantibody binding and subsequent tissue injury by posttranslational modifications of an autoantigen.
Collapse
Affiliation(s)
- Wentian Luo
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Xu-Ping Wang
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Clifford E. Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Dorin-Bogdan Borza
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
26
|
Abstract
Alport syndrome is a hereditary, progressive, hematuric nephropathy characterized by glomerular basement membrane abnormalities with frequent hearing defects and ocular anomalies. The disease is associated with mutations in genes encoding the alpha3, alpha4, or alpha5 chains of type IV collagen, COL4A3, or COL4A4 in the autosomal forms of the disease, COL4A5 in the more frequent X-linked variety. Ultrastructural changes in the glomerular basement membrane and frequent abnormal expression of type IV collagen chains in renal and skin basement membranes are crucial elements for the diagnosis of Alport syndrome, determination of the mode of inheritance, and genetic counseling. Animal models have provided invaluable tools to study the mechanisms leading to progressive deterioration of the glomerular basement membrane and ultimately to renal failure, and to evaluate benefits of potential targeted therapies.
Collapse
Affiliation(s)
- Laurence Heidet
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte and Inserm U574, Hôpital Necker-Enfants Malades AP-HP, Paris, France
| | | |
Collapse
|
27
|
Abrahamson DR, Hudson BG, Stroganova L, Borza DB, St John PL. Cellular origins of type IV collagen networks in developing glomeruli. J Am Soc Nephrol 2009. [PMID: 19423686 DOI: 10.1681/asn.2008101086.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Laminin and type IV collagen composition of the glomerular basement membrane changes during glomerular development and maturation. Although it is known that both glomerular endothelial cells and podocytes produce different laminin isoforms at the appropriate stages of development, the cellular origins for the different type IV collagen heterotrimers that appear during development are unknown. Here, immunoelectron microscopy demonstrated that endothelial cells, mesangial cells, and podocytes of immature glomeruli synthesize collagen alpha 1 alpha 2 alpha1(IV). However, intracellular labeling revealed that podocytes, but not endothelial or mesangial cells, contain collagen alpha 3 alpha 4 alpha 5(IV). To evaluate the origins of collagen IV further, we transplanted embryonic kidneys from Col4a3-null mutants (Alport mice) into kidneys of newborn, wildtype mice. Hybrid glomeruli within grafts containing numerous host-derived, wildtype endothelial cells never expressed collagen alpha 3 alpha 4 alpha 5(IV). Finally, confocal microscopy of glomeruli from infant Alport mice that had been dually labeled with anti-collagen alpha 5(IV) and the podocyte marker anti-GLEPP1 showed immunolabeling exclusively within podocytes. Together, these results indicate that collagen alpha 3 alpha 4 alpha 5(IV) originates solely from podocytes; therefore, glomerular Alport disease is a genetic defect that manifests specifically within this cell type.
Collapse
Affiliation(s)
- Dale R Abrahamson
- Department of Anatomy and Cell Biology, The Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3038, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
28
|
Abrahamson DR, Hudson BG, Stroganova L, Borza DB, St John PL. Cellular origins of type IV collagen networks in developing glomeruli. J Am Soc Nephrol 2009; 20:1471-9. [PMID: 19423686 DOI: 10.1681/asn.2008101086] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Laminin and type IV collagen composition of the glomerular basement membrane changes during glomerular development and maturation. Although it is known that both glomerular endothelial cells and podocytes produce different laminin isoforms at the appropriate stages of development, the cellular origins for the different type IV collagen heterotrimers that appear during development are unknown. Here, immunoelectron microscopy demonstrated that endothelial cells, mesangial cells, and podocytes of immature glomeruli synthesize collagen alpha 1 alpha 2 alpha1(IV). However, intracellular labeling revealed that podocytes, but not endothelial or mesangial cells, contain collagen alpha 3 alpha 4 alpha 5(IV). To evaluate the origins of collagen IV further, we transplanted embryonic kidneys from Col4a3-null mutants (Alport mice) into kidneys of newborn, wildtype mice. Hybrid glomeruli within grafts containing numerous host-derived, wildtype endothelial cells never expressed collagen alpha 3 alpha 4 alpha 5(IV). Finally, confocal microscopy of glomeruli from infant Alport mice that had been dually labeled with anti-collagen alpha 5(IV) and the podocyte marker anti-GLEPP1 showed immunolabeling exclusively within podocytes. Together, these results indicate that collagen alpha 3 alpha 4 alpha 5(IV) originates solely from podocytes; therefore, glomerular Alport disease is a genetic defect that manifests specifically within this cell type.
Collapse
Affiliation(s)
- Dale R Abrahamson
- Department of Anatomy and Cell Biology, The Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3038, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
29
|
Hinenoya N, Naito I, Momota R, Sado Y, Kumagishi K, Ninomiya Y, Ohtsuka A. Type IV collagen alpha chains of the basement membrane in the rat bronchioalveolar transitional segment. ACTA ACUST UNITED AC 2009; 71:185-94. [PMID: 19194041 DOI: 10.1679/aohc.71.185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study, we have analyzed the alpha(IV) chain distribution in the subepithelial basement membrane (BM) of the rat pulmonary airway from the bronchi to alveoli. We have furthermore analyzed the alpha(IV) chain distribution in the subepithelial BM of the bronchioalveolar duct junction (BADJ) using alpha(IV) chain specific monoclonal antibodies. Our results show that the BM of the bronchial and bronchiolar epithelium contains [alpha1(IV)]2alpha2(IV) and [alpha5(IV)]2alpha6(IV) molecules and confirmed that the alveolar BM consists of [alpha1(IV)]2alpha2(IV) and alpha3(IV) alpha4(IV)alpha5(IV) molecules. There are also small regions in BADJ consisting of only [alpha1(IV)]2alpha2(IV) molecules without alpha3(IV)alpha4(IV)alpha5(IV) and [alpha5(IV)]2alpha6(IV) molecules. Moreover, the bronchioalveolar stem cells (BASCs)-primordial cells for bronchiolar Clara cells and alveolar type II (AT2) cells - lie adjacent to such small regions. These findings suggest that [alpha1(IV)]2 alpha2(IV) may be important for the BASCs to self-renew or to self-maintain themselves and that microenvironments produced by alpha(IV) chains may be important for cell differentiation.
Collapse
Affiliation(s)
- Noriko Hinenoya
- Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Kang JS, Colon S, Hellmark T, Sado Y, Hudson BG, Borza DB. Identification of noncollagenous sites encoding specific interactions and quaternary assembly of alpha 3 alpha 4 alpha 5(IV) collagen: implications for Alport gene therapy. J Biol Chem 2008; 283:35070-7. [PMID: 18930919 DOI: 10.1074/jbc.m806396200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Defective assembly of alpha 3 alpha 4 alpha 5(IV) collagen in the glomerular basement membrane causes Alport syndrome, a hereditary glomerulonephritis progressing to end-stage kidney failure. Assembly of collagen IV chains into heterotrimeric molecules and networks is driven by their noncollagenous (NC1) domains, but the sites encoding the specificity of these interactions are not known. To identify the sites directing quaternary assembly of alpha 3 alpha 4 alpha 5(IV) collagen, correctly folded NC1 chimeras were produced, and their interactions with other NC1 monomers were evaluated. All alpha1/alpha 5 chimeras containing alpha 5 NC1 residues 188-227 replicated the ability of alpha 5 NC1 to bind to alpha3NC1 and co-assemble into NC1 hexamers. Conversely, substitution of alpha 5 NC1 residues 188-227 by alpha1NC1 abolished these quaternary interactions. The amino-terminal 58 residues of alpha3NC1 encoded binding to alpha 5 NC1, but this interaction was not sufficient for hexamer co-assembly. Because alpha 5 NC1 residues 188-227 are necessary and sufficient for assembly into alpha 3 alpha 4 alpha 5 NC1 hexamers, whereas the immunodominant alloantigenic sites of alpha 5 NC1 do not encode specific quaternary interactions, the findings provide a basis for the rational design of less immunogenic alpha 5(IV) collagen constructs for the gene therapy of X-linked Alport patients.
Collapse
Affiliation(s)
- Jeong Suk Kang
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
31
|
Baleato RM, Guthrie PL, Gubler MC, Ashman LK, Roselli S. Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:927-37. [PMID: 18787104 DOI: 10.2353/ajpath.2008.071149] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alterations in CD151 have been associated with primary glomerular disease in both humans and mice, implicating CD151 as a key component of the glomerular filtration barrier. CD151 belongs to the tetraspanin family and associates with cell-matrix adhesion complexes such as alpha3beta1-integrin. Here we show that Cd151-deficient mice develop severe kidney disease on an FVB background but are healthy on a B6 background, providing a new and unique tool for the identification of genes that modulate the onset of proteinuria. To better understand the function of CD151 in the kidney, we studied its expression pattern and characterized early ultrastructural defects in Cd151-null kidneys. CD151 is expressed in podocytes of the mouse kidney and co-localizes with alpha3-integrin at the base of podocyte foot processes, at the site of anchorage to the glomerular basement membrane (GBM). Interestingly, the first ultrastructural lesions seen at the onset of proteinuria in Cd151-null kidneys were severe alterations of the GBM, reminiscent of Alport syndrome and consisting of massive thickening and splitting of the GBM. These lesions are associated with increased expression of GBM components. Podocyte abnormalities, effacement of foot processes, and podocyte loss appear to occur consequently to the GBM damage. In conclusion, CD151 appears to be involved in the establishment, maturation, and/or maintenance of the GBM structure in addition to its role in integrin-mediated adhesion strengthening.
Collapse
Affiliation(s)
- Rosa M Baleato
- School of Biomedical Sciences and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | | | | | | |
Collapse
|
32
|
Borza CM, Borza DB, Pedchenko V, Saleem MA, Mathieson PW, Sado Y, Hudson HM, Pozzi A, Saus J, Abrahamson DR, Zent R, Hudson BG. Human podocytes adhere to the KRGDS motif of the alpha3alpha4alpha5 collagen IV network. J Am Soc Nephrol 2008; 19:677-84. [PMID: 18235087 PMCID: PMC2390958 DOI: 10.1681/asn.2007070793] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/04/2007] [Indexed: 11/03/2022] Open
Abstract
Podocyte adhesion to the glomerular basement membrane is required for proper function of the glomerular filtration barrier. However, the mechanism whereby podocytes adhere to collagen IV networks, a major component of the glomerular basement membrane, is poorly understood. The predominant collagen IV network is composed of triple helical protomers containing the alpha3alpha4alpha5 chains. The protomers connect via the trimeric noncollagenous (NC1) domains to form hexamers at the interface. Because the NC1 domains of this network can potentially support integrin-dependent cell adhesion, it was determined whether individual NC1 monomers or alpha3alpha4alpha5 hexamers support podocyte adhesion. It was found that, although human podocytes did not adhere to NC1 domains proper, they did adhere via integrin alphavbeta3 to a KRGDS motif located adjacent to alpha3NC1 domains. Because the KRGDS motif is a site of phosphorylation, its interactions with integrin alphavbeta3 may play a critical role in cell signaling in physiologic and pathologic states.
Collapse
|
33
|
Gubler MC. Inherited diseases of the glomerular basement membrane. ACTA ACUST UNITED AC 2008; 4:24-37. [DOI: 10.1038/ncpneph0671] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 09/13/2007] [Indexed: 01/15/2023]
|
34
|
Steenhard BM, Freeburg PB, Isom K, Stroganova L, Borza DB, Hudson BG, St John PL, Zelenchuk A, Abrahamson DR. Kidney development and gene expression in the HIF2alpha knockout mouse. Dev Dyn 2007; 236:1115-25. [PMID: 17342756 DOI: 10.1002/dvdy.21106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The hypoxia-inducible transcription factor-2 (HIF2), a heterodimer composed of HIF2alpha and HIF1beta subunits, drives expression of genes essential for vascularization, including vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2, Flk-1). Here, we used a HIF2alpha/LacZ transgenic mouse to define patterns of HIF2alpha transcription during kidney development and maturation. Our results from embryonic heterozygotes showed HIF2alpha/LacZ expression by apparently all renal endothelial cells. At 4 weeks of age, glomerular mesangial and vascular smooth muscle cells were also positive together with endothelial cells. These expression patterns were confirmed by electron microscopy using Bluo-gal as a beta-galactosidase substrate. Small numbers of glomerular and tubular epithelial cells were also positive at all stages examined. Light and electron microscopic examination of kidneys from HIF2alpha null embryos showed no defects in renal vascular development or nephrogenesis. Similarly, the same amounts of Flk-1 protein were seen on Western blots of kidney extracts from homozygous and heterozygous HIF2alpha mutants. To examine responsiveness of HIF2alpha null kidneys to hypoxia, embryonic day 13.5 metanephroi were cultured in room air or in mild (5% O(2)) hypoxia. For both heterozygous and null samples, VEGF mRNA levels doubled when metanephroi were cultured in mild hypoxia. Anterior chamber grafts of embryonic HIF2alpha knockouts were morphologically indistinguishable from heterozygous grafts. Endothelial markers, platelet endothelial cell adhesion molecule and BsLB4, as well as glomerular epithelial markers, GLEPP1 and WT-1, were all expressed appropriately. Finally, we undertook quantitative real-time polymerase chain reaction of kidneys from HIF2alpha null embryos and wild-type siblings and found no compensatory up-regulation of HIF1alpha or -3alpha. Our results show that, although HIF2alpha was widely transcribed by kidney endothelium and vascular smooth muscle, knockouts displayed no detectable deficits in vessel development or VEGF or Flk-1 expression.
Collapse
Affiliation(s)
- Brooke M Steenhard
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Both Alport syndrome and thin basement membrane nephropathy (TBMN) can be considered as genetic diseases of the GBM involving the alpha3/alpha4/alpha5 network of type IV collagen. Mutations in any of the COL4A3, COL4A4 or COL4A5 genes can lead to total or partial loss of this network. Males with mutations in the X-linked COL4A5 gene develop Alport syndrome with progressive renal disease and sometimes extra-renal disease. Females who are heterozygous for a COL4A5 mutation are considered to be carriers for X-linked Alport syndrome. Although their clinical course and GBM ultrastructural changes can sometimes mimic TBMN, more often it tends to be more progressive than usually seen in TBMN. Males or females who are heterozygous for COL4A3 or COL4A4 mutations usually manifest as TBMN, with nonprogressive hematuria, while those who are homozygous or combined heterozygotes develop autosomal-recessive Alport syndrome. Thus, individuals with TBMN can be considered to be carriers for autosomal-recessive Alport syndrome, but there remain some exceptions in which patients heterozygous for COL4A3 or COL4A4 mutations develop autosomal-dominant Alport syndrome. Distinguishing between all these groups of patients requires a combination of family history and a renal biopsy for electron microscopic examination of the GBM and immunohistochemical staining of the GBM for the alpha3, alpha4 and alpha5 chains of type IV collagen. Mutational analysis of the COL4A3, COL4A4, and COL4A5 genes, whenever it becomes available, will be a valuable adjunct to the diagnostic workup in these patients. Novel therapeutic approaches may one day provide a treatment or cure for these patients, avoiding the need for transplantation and dialysis.
Collapse
|
36
|
Gubler MC, Heidet L, Antignac C. [Alport syndrome or progressive hereditary nephritis with hearing loss]. Nephrol Ther 2007; 3:113-20. [PMID: 17540313 DOI: 10.1016/j.nephro.2007.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 11/27/2022]
Abstract
Alport syndrome is an inherited disorder characterized by progressive hematuric nephritis with structural defects of the glomerular basement membrane, and sensorineural deafness. Ocular abnormalities are frequently associated. The incidence is approximatively 1/5000. The renal disease is severe in male patients and should be responsible for 2% of end-stage renal failure. Alport syndrome is heterogeneous at the clinical and genetic levels. It occurs as a consequence of structural abnormalities in type IV collagen, the major constituent of basement membranes. Six genetically distinct chains of type IV collagen have been identified. Mutations in the COL4A5 gene located at Xq22, and encoding the alpha 5(IV) chain are responsible for X-linked Alport syndrome whereas COL4A3 or COL4A4 located "head to head" on chromosome 2 are involved in the rarer autosomal forms of the disease.
Collapse
Affiliation(s)
- Marie-Claire Gubler
- Inserm U-574, hôpital Necker-Enfants-malades, 149, rue de Sèvres, 75743 Paris cedex 15, France.
| | | | | |
Collapse
|
37
|
Gubler MC. Diagnosis of Alport syndrome without biopsy? Pediatr Nephrol 2007; 22:621-5. [PMID: 17143627 DOI: 10.1007/s00467-006-0376-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/23/2006] [Accepted: 10/25/2006] [Indexed: 01/18/2023]
Abstract
Alport syndrome (AS) is genetically heterogeneous. The gene COL4A5 is mutated in the more frequent X-linked dominant form of the disease whereas COL4A3 or COL4A4 are mutated in the autosomal recessive and dominant forms. Diagnosis of AS and determination of the mode of transmission are important because of the differences in prognosis and genetic counselling attached to these different forms. Recently, promising results have been obtained in Col4a3-null mice, an animal model for AS, with different therapeutic trials when administered early in the course of the disease, an additional reason for making early diagnosis of AS in children. Since the identification of the molecular basis of the disease, mutation screening is theoretically the best diagnostic approach, avoiding the use or renal or skin biopsy. However, for many reasons linked to the genetic heterogeneity of the disease, the large size of the three genes and the random distribution of the mutations all along these huge genes, this method is tedious, expensive and time consuming. Moreover, its sensitivity is reduced. For these reasons, evaluation of the expression of type IV collagen chains in the skin, and if necessary in the renal basement membrane, remains a useful tool for AS diagnosis. At this time, the indication for these different approaches, which are not mutually exclusive but complementary, depends on the patient clinical presentation and family history.
Collapse
Affiliation(s)
- Marie Claire Gubler
- INSERM U543, Hôpital Necker-Enfants Malades, Université René Descartes, Paris, France.
| |
Collapse
|
38
|
Zent R, Yan X, Su Y, Hudson BG, Borza DB, Moeckel GW, Qi Z, Sado Y, Breyer MD, Voziyan P, Pozzi A. Glomerular injury is exacerbated in diabetic integrin α1-null mice. Kidney Int 2006; 70:460-70. [PMID: 16775606 DOI: 10.1038/sj.ki.5000359] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excessive glomerular collagen IV and reactive oxygen species (ROS) production are key factors in the development of diabetic nephropathy. Integrin alpha1beta1, the major collagen IV receptor, dowregulates collagen IV and ROS production, suggesting this integrin might determine the severity of diabetic nephropathy. To test this possibility, wild-type and integrin alpha1-null mice were rendered diabetic with streptozotocin (STZ) (100 mg/kg single intraperitoneal injection), after which glomerular filtration rate (GFR), glomerular collagen deposition, and glomerular basement membrane (GBM) thickening were evaluated. In addition, ROS and collagen IV production by mesangial cells as well as their proliferation was measured in vitro. Diabetic alpha1-null mice developed worse renal disease than diabetic wild-type mice. A significant increase in GFR was evident in the alpha1-null mice at 6 weeks after the STZ injection; it started to decrease by week 24 and reached levels of non-diabetic mice by week 36. In contrast, GFR only increased in wild-type mice at week 12 and its elevation persisted throughout the study. Diabetic mutant mice also showed increased glomerular deposition of collagen IV and GBM thickening compared to diabetic wild-type mice. Primary alpha1-null mesangial cells exposed to high glucose produced more ROS than wild-type cells, which led to decreased proliferation and increased collagen IV synthesis, thus mimicking the in vivo finding. In conclusion, this study suggests that lack of integrin alpha1beta1 exacerbates the glomerular injury in a mouse model of diabetes by modulating GFR, ROS production, cell proliferation, and collagen deposition.
Collapse
Affiliation(s)
- R Zent
- Department of Medicine, Division of Nephrology, Medical Center North, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kang JS, Wang XP, Miner JH, Morello R, Sado Y, Abrahamson DR, Borza DB. Loss of alpha3/alpha4(IV) collagen from the glomerular basement membrane induces a strain-dependent isoform switch to alpha5alpha6(IV) collagen associated with longer renal survival in Col4a3-/- Alport mice. J Am Soc Nephrol 2006; 17:1962-9. [PMID: 16769745 DOI: 10.1681/asn.2006020165] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutations in COL4A3/4/5 genes that affect the normal assembly of the alpha3/4/5(IV) collagen network in the glomerular basement membrane (GBM) cause Alport syndrome. Patients progress to renal failure at variable rates that are determined by the underlying mutation and putative modifier genes. Col4a3(-/-) mice, a model for autosomal recessive Alport syndrome, progress to renal failure significantly slower on the C57BL/6 than on the 129X1/Sv background. Reported here is a novel strain-specific alternative collagen IV isoform switch that is associated with the differential renal survival in Col4a3(-/-) Alport mice. The downregulation or the absence of alpha3/4(IV) collagen chains in the GBM of Lmx1b(-/-) and Col4a3(-/-) mice was found to induce ectopic deposition of alpha5/6(IV) collagen. The GBM deposition of alpha5/6(IV) collagen was abundant in C57BL/6 Col4a3(-/-) mice but almost undetectable in 129X1/Sv Col4a3(-/-) mice. This strain difference was due to overall low expression of alpha6(IV) chain and alpha5/6(IV) protomers in the tissues of 129X1/SvJ mice, a natural Col4a6 knockdown. In (129 x B6)F1 Col4a3(-/-) mice, the amount of alpha5/6(IV) collagen in the GBM was inherited in a mother-to-son manner, suggesting that it is controlled by one or more X-linked loci, possibly Col4a6 itself. Importantly, high levels of ectopic alpha5/6(IV) collagen in the GBM were associated with approximately 46% longer renal survival. These findings suggest that alpha5/6(IV) collagen, the biologic role of which has been hitherto unknown, may partially substitute for alpha3/4/5(IV) collagen. Therapeutically induced GBM deposition of alpha5/6(IV) collagen may provide a novel strategy for delaying renal failure in patients with autosomal recessive Alport syndrome.
Collapse
Affiliation(s)
- Jeong Suk Kang
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2372, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Gratton MA, Rao VH, Meehan DT, Askew C, Cosgrove D. Matrix metalloproteinase dysregulation in the stria vascularis of mice with Alport syndrome: implications for capillary basement membrane pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1465-74. [PMID: 15855646 PMCID: PMC1606400 DOI: 10.1016/s0002-9440(10)62363-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alport syndrome results from mutations in genes encoding collagen alpha3(IV), alpha4(IV), or alpha5(IV) and is characterized by progressive glomerular disease associated with a high-frequency sensorineural hearing loss. Earlier studies of a gene knockout mouse model for Alport syndrome noted thickening of strial capillary basement membranes in the cochlea, suggesting that the stria vascularis is the primary site of cochlear pathogenesis. Here we combine a novel cochlear microdissection technique with molecular analyses to illustrate significant quantitative alterations in strial expression of mRNAs encoding matrix metalloproteinases-2, -9, -12, and -14. Gelatin zymography of extracts from the stria vascularis confirmed these findings. Treatment of Alport mice with a small molecule inhibitor of these matrix metalloproteinases exacerbated strial capillary basement membrane thickening, demonstrating that alterations in basement membrane metabolism result in matrix accumulation in the strial capillary basement membranes. This is the first demonstration of true quantitative analysis of specific mRNAs for matrix metalloproteinases in a cochlear microcompartment. Further, these data suggest that the altered basement membrane composition in Alport stria influences the expression of genes involved in basement membrane metabolism.
Collapse
Affiliation(s)
- Michael Anne Gratton
- Department of Otolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
41
|
Borza DB, Bondar O, Colon S, Todd P, Sado Y, Neilson EG, Hudson BG. Goodpasture autoantibodies unmask cryptic epitopes by selectively dissociating autoantigen complexes lacking structural reinforcement: novel mechanisms for immune privilege and autoimmune pathogenesis. J Biol Chem 2005; 280:27147-54. [PMID: 15917228 DOI: 10.1074/jbc.m504050200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapidly progressive glomerulonephritis in Goodpasture disease is mediated by autoantibodies binding to the non-collagenous NC1 domain of alpha3(IV) collagen in the glomerular basement membrane. Goodpasture epitopes in the native autoantigen are cryptic (sequestered) within the NC1 hexamers of the alpha3alpha4alpha5(IV) collagen network. The biochemical mechanism for crypticity and exposure for autoantibody binding is not known. We now report that crypticity is a feature of the quaternary structure of two distinct subsets of alpha3alpha4alpha5(IV) NC1 hexamers: autoantibody-reactive M-hexamers containing only monomer subunits and autoantibody-impenetrable D-hexamers composed of both dimer and monomer subunits. Goodpasture antibodies only breach the quaternary structure of M-hexamers, unmasking the cryptic epitopes, whereas D-hexamers are resistant to autoantibodies under native conditions. The epitopes of D-hexamers are structurally sequestered by dimer reinforcement of the quaternary complex, which represents a new molecular solution for conferring immunologic privilege to a potential autoantigen. Dissociation of non-reinforced M-alpha3alpha4alpha5(IV) hexamers by Goodpasture antibodies is a novel mechanism whereby pathogenic autoantibodies gain access to cryptic B cell epitopes. These findings provide fundamental new insights into immune privilege and the molecular mechanisms underlying the pathogenesis of human autoimmune Goodpasture disease.
Collapse
Affiliation(s)
- Dorin-Bogdan Borza
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA.
| | | | | | | | | | | | | |
Collapse
|