1
|
Hufnagel M, Rademaekers A, Weisert A, Häberlein H, Franken S. Pharmacological profile of dicaffeoylquinic acids and their role in the treatment of respiratory diseases. Front Pharmacol 2024; 15:1371613. [PMID: 39239645 PMCID: PMC11374715 DOI: 10.3389/fphar.2024.1371613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Dicaffeoylquinic acids (DCQAs) are polyphenolic compounds found in various medicinal plants such as Echinacea species and Hedera helix, whose multi-constituent extracts are used worldwide to treat respiratory diseases. Besides triterpenes, saponins, alkamides, and other constituents, DCQAs are an important group of substances for the pharmacological activity of plant-derived extracts. Therefore, the pharmacological properties of DCQAs have been studied over the last decades, suggesting antioxidative, anti-inflammatory, antimicrobial, hypoglycaemic, cardiovascular protective, neuroprotective, and hepatoprotective effects. However, the beneficial pharmacological profile of DCQAs has not yet been linked to their use in treating respiratory diseases such as acute or even chronic bronchitis. The aim of this review was to assess the potential of DCQAs for respiratory indications based on published in vitro and in vivo pharmacological and pre-clinical data, with particular focus on antioxidative, anti-inflammatory, and respiratory-related effects such as antitussive or antispasmodic properties. A respective literature search revealed a large number of publications on the six DCQA isoforms. Based on this search, a focus was placed on 1,3-, 3,4-, 3,5-, and 4,5-DCQA, as the publications focused mainly on these isomers. Based on the available pre-clinical data, DCQAs trigger cellular mechanisms that are important in the treatment of respiratory diseases such as decreasing NF-κB activation, reducing oxidative stress, or activating the Nrf2 pathway. Taken together, these data suggest an essential role for DCQAs within herbal medicines used for the treatment of respiratory diseases and highlights the need for the identifications of DCQAs as lead substances within such extracts.
Collapse
Affiliation(s)
| | | | - Anika Weisert
- Engelhard Arzneimittel GmbH & Co. KG, Niederdorfelden, Germany
| | - Hanns Häberlein
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Sebastian Franken
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Xu Z, Hu H, Wang K, Zhou Z, He X, Huang X, Hu Y, Huang J, Luo Z. Sinensetin, a polymethoxyflavone from citrus fruits, ameliorates LPS-induced acute lung injury by suppressing Txnip/NLRP3/Caspase-1/GSDMD signaling-mediated inflammatory responses and pyroptosis. Food Funct 2024; 15:7592-7604. [PMID: 38938065 DOI: 10.1039/d4fo01704h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sinensetin (SIN), a polymethoxylated flavonoid, exists widely in citrus fruits with abundant biological activities, such as antioxidant and anti-inflammatory properties, delaying the progression of lung fibers and ameliorating inflammatory lung injury. Herein, an in vivo model of LPS-induced acute lung injury (ALI) in mice and an in vitro model of LPS + IFN-γ-induced M1 polarization in RAW264.7 cells were established to assess the effects and molecular mechanisms of SIN in ameliorating ALI. In the present study, the results showed that SIN significantly reduced BALF IL1β, IL6, and TNF-α levels and neutrophil infiltration, inhibited lung tissue COX2 and iNOS expression, reduced serum and lung tissue inflammatory factor levels, and attenuated lung tissue inflammatory infiltration and ROS levels in animal experiments. RNA sequencing analysis showed that SIN markedly inhibited the expression of inflammation-related pathway genes such as NOD-like receptor signaling. Further mechanistic studies confirmed that SIN significantly inhibited the dissociation of Txnip and Trx-1 and decreased the expression of NLRP3, ASC, pro-Caspase-1, cleavage Caspase-1 p10, NEK7, Caspase-8, IL1β, IL18, and GSDMD. Meanwhile, SIN docked to NLRP3 with strong affinity and bound stably in the hydrophobic docking pocket. Similarly, the same results were observed in in vitro macrophage M1 polarization experiments. In conclusion, the results revealed that SIN ameliorated the onset and progression of ALI by inhibiting Txnip/NLRP3/Caspase-1/GSDMD signaling-mediated inflammatory responses and pyroptosis. These findings emphasize the significant role of SIN in ameliorating ALI and provide insights into the strategy for exploring the functional effects of foods.
Collapse
Affiliation(s)
- Zaibin Xu
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Huiyu Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Kongyan Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Ziyi Zhou
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510422, China
| | - Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510422, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510422, China
| | - Yingjie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhuohui Luo
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China.
- Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
3
|
Jiao ZW, Liu HF, Lin KQ, Xie GT, Lou HY, Pan WD, Zhang MS. Synthesis and in vitro Anti-Inflammatory Activity of Novel Dendrobine Amide/Sulfonamide Derivatives. Chem Biodivers 2024; 21:e202400030. [PMID: 38511964 DOI: 10.1002/cbdv.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
A traditional Chinese medicine ingredient, dendrobine, has been demonstrated to have anti-inflammatory properties. However, due to its poor anti-inflammatory properties, its clinical use is limited. Consequently, we have designed and synthesized 32 new amide/sulfonamide dendrobine derivatives and screened their anti-inflammatory activities in vitro. Experiments showed that nitric oxide (NO) generation in lipopolysaccharide (LPS)-induced RAW264.7 cells was strongly reduced by derivative 14, with an IC50 of 2.96 μM. Western blot research revealed that 14 decreased the concentration-dependent expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (INOS). Molecular docking was used to predict the binding of the inflammation-associated proteins COX-2 and INOS to compound 14.
Collapse
Affiliation(s)
- Zi-Wei Jiao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, PR China
| | - Han-Fei Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Kai-Qin Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Guang-Tong Xie
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Hua-Yong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Wei-Dong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, PR China
| | - Mao-Sheng Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, PR China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China
| |
Collapse
|
4
|
Kaur J, Rana P, Matta T, Sodhi RK, Pathania K, Pawar SV, Kuhad A, Kondepudi KK, Kaur T, Dhingra N, Sah SP. Protective effect of olopatadine hydrochloride against LPS-induced acute lung injury: via targeting NF-κB signaling pathway. Inflammopharmacology 2024; 32:603-627. [PMID: 37847473 DOI: 10.1007/s10787-023-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Morbidity and mortality rates associated with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are high (30-40%). Nuclear factor-kappa B (NF-κB) is a transcription factor, associated with transcription of numerous cytokines leading to cytokine storm, and thereby, plays a major role in ALI/ARDS and in advanced COVID-19 syndrome. METHODS Considering the role of NF-κB in ALI, cost-effective in silico approaches were utilized in the study to identify potential NF-κB inhibitor based on the docking and pharmacokinetic results. The identified compound was then pharmacologically validated in lipopolysaccharide (LPS) rodent model of acute lung injury. LPS induces ALI by altering alveolar membrane permeability, recruiting activated neutrophils and macrophages to the lungs, and compromising the alveolar membrane integrity and ultimately impairs the gaseous exchange. Furthermore, LPS exposure is associated with exaggerated production of various proinflammatory cytokines in lungs. RESULTS Based on in silico studies Olopatadine Hydrochloride (Olo), an FDA-approved drug was found as a potential NF-κB inhibitor which has been reported for the first time, and considered further for the pharmacological validation. Intraperitoneal LPS administration resulted in ALI/ARDS by fulfilling 3 out of the 4 criteria described by ATS committee (2011) published workshop report. However, treatment with Olo attenuated LPS-induced elevation of proinflammatory markers (IL-6 and NF-κB), oxidative stress, neutrophil infiltration, edema, and damage in lungs. Histopathological studies also revealed that Olo treatment significantly ameliorated LPS-induced lung injury, thus conferring improvement in survival. Especially, the effects produced by Olo medium dose (1 mg/kg) were comparable to dexamethasone standard. CONCLUSION In nutshell, inhibition of NF-κB pathway by Olo resulted in protection and reduced mortality in LPS- induced ALI and thus has potential to be used clinically to arrest disease progression in ALI/ARDS, since the drug is already in the market. However, the findings warrant further extensive studies, and also future studies can be planned to elucidate its role in COVID-19-associated ARDS or cytokine storm.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Priyanka Rana
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Tushar Matta
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupinder Kaur Sodhi
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Khushboo Pathania
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Sandip V Pawar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanthi Kiran Kondepudi
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Neelima Dhingra
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Colás-Algora N, Muñoz-Pinillos P, Cacho-Navas C, Avendaño-Ortiz J, de Rivas G, Barroso S, López-Collazo E, Millán J. Simultaneous Targeting of IL-1-Signaling and IL-6-Trans-Signaling Preserves Human Pulmonary Endothelial Barrier Function During a Cytokine Storm-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:2213-2222. [PMID: 37732482 DOI: 10.1161/atvbaha.123.319695] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Systemic inflammatory diseases, such as sepsis and severe COVID-19, provoke acute respiratory distress syndrome in which the pathological hyperpermeability of the microvasculature, induced by uncontrolled inflammatory stimulation, causes pulmonary edema. Identifying the inflammatory mediators that induce human lung microvascular endothelial cell barrier dysfunction is essential to find the best anti-inflammatory treatments for critically ill acute respiratory distress syndrome patients. METHODS We have compared the responses of primary human lung microvascular endothelial cells to the main inflammatory mediators involved in cytokine storms induced by sepsis and SARS-CoV2 pulmonary infection and to sera from healthy donors and severely ill patients with sepsis. Endothelial barrier function was measured by electric cell-substrate impedance sensing, quantitative confocal microscopy, and Western blot. RESULTS The human lung microvascular endothelial cell barrier was completely disrupted by IL (interleukin)-6 conjugated with soluble IL-6R (IL-6 receptor) and by IL-1β (interleukin-1beta), moderately affected by TNF (tumor necrosis factor)-α and IFN (interferon)-γ and unaffected by other cytokines and chemokines, such as IL-6, IL-8, MCP (monocyte chemoattractant protein)-1 and MCP-3. The inhibition of IL-1 and IL-6R simultaneously, but not separately, significantly reduced endothelial hyperpermeability on exposing human lung microvascular endothelial cells to a cytokine storm consisting of 8 inflammatory mediators or to sera from patients with sepsis. Simultaneous inhibition of IL-1 and JAK (Janus kinase)-STAT (signal transducer and activator of transcription protein), a signaling node downstream IL-6 and IFN-γ, also prevented septic serum-induced endothelial barrier disruption. CONCLUSIONS These findings strongly suggest a major role for both IL-6 trans-signaling and IL-1β signaling in the pathological increase in permeability of the human lung microvasculature and reveal combinatorial strategies that enable the gradual control of pulmonary endothelial barrier function in response to a cytokine storm.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Pablo Muñoz-Pinillos
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Cristina Cacho-Navas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - José Avendaño-Ortiz
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain (J.A.O., E.L.-C.)
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain (J.A.O., E.L.-C.)
| | - Gema de Rivas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Susana Barroso
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain (J.A.O., E.L.-C.)
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain (J.A.O., E.L.-C.)
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain (N.C.-A., P.M.-P., C.C.-N., G.d.R., S.B., J.M.)
| |
Collapse
|
6
|
Malik R, Paudel KR, Manandhar B, De Rubis G, Shen J, Mujwar S, Singh TG, Singh SK, Gupta G, Adams J, MacLoughlin R, Oliver BGG, Hansbro PM, Chellappan DK, Dua K. Agarwood oil nanoemulsion counteracts LPS-induced inflammation and oxidative stress in RAW264.7 mouse macrophages. Pathol Res Pract 2023; 251:154895. [PMID: 37879146 DOI: 10.1016/j.prp.2023.154895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro. METHODS The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR. RESULTS LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components. CONCLUSIONS We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.
Collapse
Affiliation(s)
- Raniya Malik
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jessie Shen
- De'Aurora Pty Ltd., Dean, VIC 3363, Australia
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 602105, Tamil Nadu, India; School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- IDA Business Park, H91 HE94 Galway, Connacht, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Leinster, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Leinster, Ireland
| | | | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
7
|
Sikora JP, Karawani J, Sobczak J. Neutrophils and the Systemic Inflammatory Response Syndrome (SIRS). Int J Mol Sci 2023; 24:13469. [PMID: 37686271 PMCID: PMC10488036 DOI: 10.3390/ijms241713469] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
We are not entirely able to understand, assess, and modulate the functioning of the immune system in clinical situations that lead to a systemic inflammatory response. In the search for diagnostic and treatment strategies (which are still far from perfect), it became very important to study the pathogenesis and participation of endogenous inflammation mediators. This study attempts to more precisely establish the role of neutrophils in individual phenomena occurring during an inflammatory and anti-inflammatory reaction, taking into account their cidal, immunoregulatory, and reparative abilities. Pro- and anticoagulatory properties of endothelium in systemic inflammatory response syndrome (SIRS) are emphasised, along with the resulting clinical implications (the application of immunotherapy using mesenchymal stem/stromal cells (MSCs) or IL-6 antagonists in sepsis and COVID-19 treatment, among others). Special attention is paid to reactive oxygen species (ROS), produced by neutrophils activated during "respiratory burst" in the course of SIRS; the protective and pathogenic role of these endogenous mediators is highlighted. Moreover, clinically useful biomarkers of SIRS (neutrophil extracellular traps, cell-free DNA, DAMP, TREMs, NGAL, miRNA, selected cytokines, ROS, and recognised markers of endothelial damage from the group of adhesins by means of immunohistochemical techniques) related to the neutrophils are presented, and their role in the diagnosing and forecasting of sepsis, burn disease, and COVID-19 is emphasised. Finally, examples of immunomodulation of sepsis and antioxidative thermal injury therapy are presented.
Collapse
Affiliation(s)
- Janusz P. Sikora
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
| | - Jakub Karawani
- Faculty of Medicine, Lazarski University, ul. Świeradowska 43, 02-662 Warsaw, Poland;
| | - Jarosław Sobczak
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
- Department of Management and Logistics in Healthcare, Medical University of Łódź, ul. Lindleya 6, 90-131 Łódź, Poland
| |
Collapse
|
8
|
Wang J, Huo X, Wang H, Dong A, Zheng Q, Si J. Undescribed sesquiterpene coumarins from the aerial parts of Ferula sinkiangensis and their anti-inflammatory activities in lipopolysaccharide-stimulated RAW 264.7 macrophages. PHYTOCHEMISTRY 2023; 210:113664. [PMID: 36990193 DOI: 10.1016/j.phytochem.2023.113664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Eight undescribed sesquiterpene coumarins (1-8) and twenty known ones (9-28), were isolated from the aerial parts of Ferula sinkiangensis K. M. Shen. Their structures were elucidated based on the comprehensive analysis of UV, IR, HRESIMS, 1D, and 2D NMR data. The absolute configuration of 1 was determined by single crystal X-Ray diffraction, while the absolute configurations of 2-8 were determined by comparisons of experimental and calculated electrostatic circular dichroism spectra. Compound 2 is the first hydroperoxy sesquiterpene coumarin from the genus Ferula, while compound 8 has an unusual 5',8'-peroxo bridge. Griess reaction results indicated compound 18 significantly decreased nitric oxide production of the lipopolysaccharide-stimulated RAW 264.7 macrophages with an IC50 value of 2.3 μM, and ELISA results revealed that compound 18 effectively inhibited tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 expressions.
Collapse
Affiliation(s)
- Junchi Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Xiaoshuang Huo
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Huaxiang Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Aijun Dong
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Qi Zheng
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Jianyong Si
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
9
|
Lee HL, Kim JM, Go MJ, Kim TY, Joo SG, Kim JH, Lee HS, Kim HJ, Heo HJ. Protective Effect of Lonicera japonica on PM 2.5-Induced Pulmonary Damage in BALB/c Mice via the TGF-β and NF-κB Pathway. Antioxidants (Basel) 2023; 12:antiox12040968. [PMID: 37107342 PMCID: PMC10135714 DOI: 10.3390/antiox12040968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to assess the protective effect of an extract of Lonicera japonica against particulate-matter (PM)2.5-induced pulmonary inflammation and fibrosis. The compounds with physiological activity were identified as shanzhiside, secologanoside, loganic acid, chlorogenic acid, secologanic acid, secoxyloganin, quercetin pentoside, and dicaffeoyl quinic acids (DCQA), including 3,4-DCQA, 3,5-DCQA, 4,5-DCQA, and 1,4-DCQA using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The extract of Lonicera japonica reduced cell death, reactive oxygen species (ROS) production, and inflammation in A549 cells. The extract of Lonicera japonica decreased serum T cells, including CD4+ T cells, CD8+ T cells, and total T helper 2 (Th2) cells, and immunoglobulins, including immunoglobulin G (IgG) and immunoglobulin E (IgE), in PM2.5-induced BALB/c mice. The extract of Lonicera japonica protected the pulmonary antioxidant system by regulating superoxide dismutase (SOD) activity, reduced glutathione (GSH) contents, and malondialdehyde (MDA) levels. In addition, it ameliorated mitochondrial function by regulating the production of ROS, mitochondrial membrane potential (MMP), and ATP contents. Moreover, the extract of Lonicera japonica exhibited a protective activity of apoptosis, fibrosis, and matrix metalloproteinases (MMPs) via TGF-β and NF-κB signaling pathways in lung tissues. This study suggests that the extract of Lonicera japonica might be a potential material to improve PM2.5-induced pulmonary inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
10
|
Moreira-Júnior RE, Guimarães MADF, Etcheverria da Silva M, Maioli TU, Faria AMC, Brunialti-Godard AL. Animal model for high consumption and preference of ethanol and its interplay with high sugar and butter diet, behavior, and neuroimmune system. Front Nutr 2023; 10:1141655. [PMID: 37063320 PMCID: PMC10097969 DOI: 10.3389/fnut.2023.1141655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Mechanisms that dictate the preference for ethanol and its addiction are not only restricted to the central nervous system (CNS). An increasing body of evidence has suggested that abusive ethanol consumption directly affects the immune system, which in turn interacts with the CNS, triggering neuronal responses and changes, resulting in dependence on the drug. It is known that neuroinflammation and greater immune system reactivity are observed in behavioral disorders and that these can regulate gene transcription. However, there is little information about these findings of the transcriptional profile of reward system genes in high consumption and alcohol preference. In this regard, there is a belief that, in the striatum, an integrating region of the brain reward system, the interaction of the immune response and the transcriptional profile of the Lrrk2 gene that is associated with loss of control and addiction to ethanol may influence the alcohol consumption and preference. Given this information, this study aimed to assess whether problematic alcohol consumption affects the transcriptional profile of the Lrrk2 gene, neuroinflammation, and behavior and whether these changes are interconnected. Methods An animal model developed by our research group has been used in which male C57BL/6 mice and knockouts for the Il6 and Nfat genes were subjected to a protocol of high fat and sugar diet intake and free choice of ethanol in the following stages: Stage 1 (T1)-Dietary treatment, for 8 weeks, in which the animals receive high-calorie diet, High Sugar and Butter (HSB group), or standard diet, American Institute of Nutrition 93-Growth (AIN93G group); and Stage 2 (T2)-Ethanol consumption, in which the animals are submitted, for 4 weeks, to alcohol within the free choice paradigm, being each of them divided into 10 groups, four groups continued with the same diet and in the other six the HSB diet is substituted by the AIN93G diet. Five groups had access to only water, while the five others had a free choice between water and a 10% ethanol solution. The weight of the animals was evaluated weekly and the consumption of water and ethanol daily. At the end of the 12-week experiment, anxiety-like behavior was evaluated by the light/dark box test; compulsive-like behavior by Marble burying, transcriptional regulation of genes Lrrk2, Tlr4, Nfat, Drd1, Drd2, Il6, Il1β, Il10, and iNOS by RT-qPCR; and inflammatory markers by flow cytometry. Animals that the diet was replaced had an ethanol high preference and consumption. Results and discussion We observed that high consumption and preference for ethanol resulted in (1) elevation of inflammatory cells in the brain, (2) upregulation of genes associated with cytokines (Il6 and Il1β) and pro-inflammatory signals (iNOS and Nfat), downregulation of anti-inflammatory cytokine (Il10), dopamine receptor (Drd2), and the Lrrk2 gene in the striatum, and (3) behavioral changes such as decreased anxiety-like behavior, and increased compulsive-like behavior. Our findings suggest that interactions between the immune system, behavior, and transcriptional profile of the Lrrk2 gene influence the ethanol preferential and abusive consumption.
Collapse
Affiliation(s)
- Renato Elias Moreira-Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Andrade de Freitas Guimarães
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Etcheverria da Silva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Attallah NGM, Kabbash A, Negm WA, Elekhnawy E, Binsuwaidan R, Al-Fakhrany OM, Shaldam MA, Moglad E, Tarek M, Samir N, Fawzy HM. Protective Potential of Saussurea costus (Falc.) Lipsch. Roots against Cyclophosphamide-Induced Pulmonary Injury in Rats and Its In Vitro Antiviral Effect. Pharmaceuticals (Basel) 2023; 16:318. [PMID: 37259460 PMCID: PMC9959296 DOI: 10.3390/ph16020318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 10/29/2023] Open
Abstract
Diseases and infections of the respiratory tract are common global causes of morbidity and mortality. Our study attempts to elucidate a novel remedy for respiratory ailments, in addition to identifying and quantifying the metabolites of Saussurea costus root extract (SCRE) using HPLC. Then, in vitro antiviral and in vivo lung protective effects were elucidated. The in vitro antiviral potential of SCRE was analyzed via plaque assay against the low pathogenic human coronavirus (HCoV-229E) and human influenza virus (H1N1). The value of the half maximal inhibitory concentrations (IC50) of SCRE against HCoV-229E and H1N1 influenza virus were 23.21 ± 1.1 and 47.6 ± 2.3 µg/mL, respectively. SCRE showed a histological improvement, namely a decrease in inducible nitric oxide synthase (iNOS) and caspase-3 immunoexpression in in vivo cyclophosphamide (CP)-induced acute lung injury (ALI). Moreover, there was a considerable decline in microRNA-let-7a gene expression and a significant rise in heme oxygenase-1 (HO-1) gene expression, with a marked decrease in the malondialdehyde (MDA) level. Molecular docking studies revealed that the major constituents of SCRE have a good affinity for caspase-3, HO-1, and iNOS proteins. In conclusion, a traditional plant SCRE could be a promising source of novel therapeutic agents for treating and protecting respiratory tract diseases. More future investigations should be carried out to reveal its efficacy clinically.
Collapse
Affiliation(s)
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Reem Binsuwaidan
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Omnia Momtaz Al-Fakhrany
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Moataz A. Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Marwa Tarek
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11865, Egypt
| | - Nehal Samir
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11865, Egypt
| | - Heba M. Fawzy
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11865, Egypt
| |
Collapse
|
12
|
Alqahtani S, Xia L, Shannahan JH. Enhanced silver nanoparticle-induced pulmonary inflammation in a metabolic syndrome mouse model and resolvin D1 treatment. Part Fibre Toxicol 2022; 19:54. [PMID: 35933425 PMCID: PMC9356467 DOI: 10.1186/s12989-022-00495-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) exacerbates susceptibility to inhalation exposures such as particulate air pollution, however, the mechanisms responsible remain unelucidated. Previously, we determined a MetS mouse model exhibited exacerbated pulmonary inflammation 24 h following AgNP exposure compared to a healthy mouse model. This enhanced response corresponded with reduction of distinct resolution mediators. We hypothesized silver nanoparticle (AgNP) exposure in MetS results in sustained pulmonary inflammation. Further, we hypothesized treatment with resolvin D1 (RvD1) will reduce exacerbations in AgNP-induced inflammation due to MetS. RESULTS To evaluate these hypotheses, healthy and MetS mouse models were exposed to vehicle (control) or AgNPs and a day later, treated with resolvin D1 (RvD1) or vehicle (control) via oropharyngeal aspiration. Pulmonary lung toxicity was evaluated at 3-, 7-, 14-, and 21-days following AgNP exposure. MetS mice exposed to AgNPs and receiving vehicle treatment, demonstrated exacerbated pulmonary inflammatory responses compared to healthy mice. In the AgNP exposed mice receiving RvD1, pulmonary inflammatory response in MetS was reduced to levels comparable to healthy mice exposed to AgNPs. This included decreases in neutrophil influx and inflammatory cytokines, as well as elevated anti-inflammatory cytokines. CONCLUSIONS Inefficient resolution may contribute to enhancements in MetS susceptibility to AgNP exposure causing an increased pulmonary inflammatory response. Treatments utilizing specific resolution mediators may be beneficial to individuals suffering MetS following inhalation exposures.
Collapse
Affiliation(s)
- Saeed Alqahtani
- grid.169077.e0000 0004 1937 2197School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN USA ,grid.452562.20000 0000 8808 6435Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Li Xia
- grid.169077.e0000 0004 1937 2197School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN USA
| | - Jonathan H. Shannahan
- grid.169077.e0000 0004 1937 2197School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
13
|
Lyu YR, Yang WK, Lee SW, Kim SH, Kim DS, Son E, Jung IC, Park YC. Inhibitory effects of modified gamgil-tang in a particulate matter-induced lung injury mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114789. [PMID: 34728315 DOI: 10.1016/j.jep.2021.114789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The modified gamgil-tang (GGX) is a mixture of four herbal medicine including Platycodi Radix, Glycyrrhizae Radix, Lonicerae Flos and Mori Radicis Cortex which has been traditionally used to treat lung and airway diseases to relieve symptoms like sore throat, cough, and sputum in Korea. Its major component chlorogenic acid had been reported to have antioxidant, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antiviral, and anti-microbial activity. AIM OF THE STUDY To identify the inhibitory effect of GGX in a particulate matter (PM) induced lung injury mouse model. MATERIALS AND METHODS We evaluated NO production, the release of TNF-α and IFN-γ in PM-induced MH-S cells, and the number of neutrophils, immune cell subtypes, and the secretion of TNF-α, IL-17, CXCL-1, MIP-2 in the PM-stimulated mouse model to assess the inhibitory effect of GGX against PM. In addition, as exposure to PM increases respiratory symptoms, typically cough and sputum, we attempted to evaluate the antitussive and expectorant activities of GGX. RESULTS Our study provided evidence that GGX has inhibitory effects in PM-induced lung injury by inhibiting the increase in neutrophil and inflammatory mediators, deactivating T cells, and ameliorating lung tissue damage. Notably, GGX reduced PM-induced neutrophilic inflammation by attenuating the number of neutrophils and regulating the secretion of neutrophil-related cytokines and chemokines, such as TNF-α, IL-17, MIP2, and CXCL-1. In addition, GGX demonstrated an antitussive activity by significantly reducing citric acid-induced cough frequency and delaying the latent period and expectorant activities by the increased phenol red secretion compared to the control group. CONCLUSIONS GGX is expected to be an effective herbal remedy to prevent PM-induced respiratory disease.
Collapse
Affiliation(s)
- Yee Ran Lyu
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Su-Won Lee
- Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Dong-Seon Kim
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Eunjung Son
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - In Chul Jung
- Department of Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Baranova IN, Bocharov AV, Vishnyakova TG, Chen Z, Birukova AA, Ke Y, Hu X, Yuen PST, Star RA, Birukov KG, Patterson AP, Eggerman TL. Class B Scavenger Receptors BI and BII Protect against LPS-Induced Acute Lung Injury in Mice by Mediating LPS. Infect Immun 2021; 89:e0030121. [PMID: 34097506 PMCID: PMC8445172 DOI: 10.1128/iai.00301-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI-deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates the understanding of SR-BI's role in endotoxemia/sepsis, calling for the use of alternative models. In this study, using human SR-BI (hSR-BI) and hSR-BII transgenic mice, we found that SR-BI and, to a lesser extent, its splicing variant SR-BII protect against LPS-induced lung damage. At 20 h after intratracheal LPS instillation, the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice than in wild-type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content and lung tissue neutrophil infiltration found in wild-type mice were associated with markedly (2 to 3 times) increased proinflammatory cytokine production compared to these parameters in transgenic mice following LPS administration. The markedly lower endotoxin levels detected in BALF of transgenic versus wild-type mice and the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 h after the i.t. LPS injection suggest that hSR-BI- and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.
Collapse
Affiliation(s)
- Irina N. Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander V. Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatyana G. Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna A. Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amy P. Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Nam HH, Yang S, Kim HS, Kim MJ, Kim JS, Lee JH. Role of Semisulcospira gottschei extract as medicinal food on reflux esophagitis in rats. Food Sci Nutr 2021; 9:3114-3122. [PMID: 34136176 PMCID: PMC8194936 DOI: 10.1002/fsn3.2270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gastroesophageal reflux disease (GERD) is a globally prevalent disease and results from a reflux of gastric contents into the esophagus. Existing synthetic drug-based treatments for GERD have various drawbacks including refractory symptoms, relapse, or resistance due to long-term use or may result in mucosal degeneration, polyps, and osteoporosis. Semisulcospira gottschei (SE), a freshwater snail, has been generally consumed as a food source due to its excellent flavor and nutritional value in Korea and considered to have therapeutic properties for various diseases including dyspepsia, stomachache, and hepatic diseases. The present study aims to investigate whether Semisulcospira gottschei extract (SGE) has a protective effect on reflux esophagitis-induced rat models. The anti-inflammatory effects of SGE were evaluated via NO production in LPS-induced Raw 264.7 macrophage. And the protection effects of SGE were analyzed by assessing the amelioration of mucosal damage and expression of inflammation-associated proteins in reflux esophagitis (RE) rats. Our results indicate that SGE significantly suppressed NO production in LPS-induced raw 264.7 cells without any cytotoxicity. We observed mucosal lesions and histological changes in the esophagus of RE control rats. However, SGE treatment markedly ameliorated mucosal lesion ratio indicated through histological changes. SGE administration suppressed the expression of proteins related to inflammation, such as p-NF-κB, p-IκBα, COX-2, and TNF-α, in esophageal tissue. Moreover, SGE elevated the expression of claudin-5, which is a tight junction protein, involved in barrier function of epithelium and endothelium. The results suggest that SGE is useful as a medicinal food in esophagitis and may be helpful in developing effective treatment protocols for GERD.
Collapse
Affiliation(s)
- Hyeon Hwa Nam
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Sungyu Yang
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Hyo Seon Kim
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Min Jee Kim
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Joong Sun Kim
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
| | - Ji Hye Lee
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNajuKorea
- Present address:
College of Korean MedicineSemyung University College of Korean MedicineJecheon-siChungcheongbuk-do
| |
Collapse
|
16
|
Zekavat SM, Honigberg M, Pirruccello JP, Kohli P, Karlson EW, Newton-Cheh C, Zhao H, Natarajan P. Elevated Blood Pressure Increases Pneumonia Risk: Epidemiological Association and Mendelian Randomization in the UK Biobank. MED 2021; 2:137-148.e4. [PMID: 33283203 PMCID: PMC7703520 DOI: 10.1016/j.medj.2020.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Small studies have correlated hypertension with pneumonia risk; whether this is recapitulated in larger prospective studies, and represents a causal association, is unclear. METHODS We estimated the risk for prevalent hypertension with incident respiratory diseases over mean follow-up of 8 years among 377,143 British participants in the UK Biobank. Mendelian randomization of blood pressure on pneumonia was implemented using 75 independent, genome-wide significant variants associated with systolic and diastolic blood pressures among 299,024 individuals not in the UK Biobank. Secondary analyses with pulmonary function tests were performed. FINDINGS In total, 107,310 participants (30%) had hypertension at UK Biobank enrollment, and 9,969 (3%) developed pneumonia during follow-up. Prevalent hypertension was independently associated with increased risk for incident pneumonia (HR: 1.36; 95% CI: 1.29-1.43; p < 0.001), as well as other incident respiratory diseases. Genetic predisposition to a 5 mm Hg increase in blood pressure was associated with increased risk for incident pneumonia for systolic blood pressure (HR: 1.08; 95% CI: 1.04-1.13; p < 0.001) and diastolic blood pressure (HR: 1.11; 95% CI: 1.03-1.20; p = 0.005). Additionally, consistent with epidemiologic associations, increased blood pressure genetic risk was significantly associated with reduced performance on pulmonary function tests (p < 0.001). CONCLUSIONS These results suggest that elevated blood pressure increases risk for pneumonia. Maintaining adequate blood pressure control, in addition to other measures, may reduce risk for pneumonia. FUNDING S.M.Z. (1F30HL149180-01), M.H. (T32HL094301-07), and P.N. (R01HL1427, R01HL148565, and R01HL148050) are supported by the National Institutes of Health. J.P. is supported by the John S. LaDue Memorial Fellowship.
Collapse
Affiliation(s)
- Seyedeh M Zekavat
- Yale School of Medicine, New Haven, CT, USA
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Honigberg
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James P Pirruccello
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Puja Kohli
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Vertex Pharmaceuticals, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth W Karlson
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Allergy, Immunology, and Rheumatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hongyu Zhao
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Xiao Q, Cui Y, Zhao Y, Liu L, Wang H, Yang L. Orientin relieves lipopolysaccharide-induced acute lung injury in mice: The involvement of its anti-inflammatory and anti-oxidant properties. Int Immunopharmacol 2021; 90:107189. [PMID: 33214095 DOI: 10.1016/j.intimp.2020.107189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Oxidative stress and inflammatory responses are nearly involved in the pathogenesis of various diseases, including acute lung injury (ALI). Orientin (Ori), a flavonoid component extracted from natural plants, displayed anti-inflammatory and antioxidant properties in our previous studies. In the current study, we aimed to investigate the amelioration effect of Ori on lipopolysaccharide (LPS)-induced ALI, and we further explored the potential molecular mechanisms. The present results indicated that Ori effectively alleviated LPS-induced ALI by improving the histological changes of lung; decreasing the lung W/D ratio and protein levels, the release of inflammatory cells and cytokines into the bronchoalveolar lavage fluid (BALF); inhibiting nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and high mobility group box 1 (HMGB1) protein expression; reducing malondialdehyde (MDA) formation and reactive oxygen species (ROS) generation; and increasing the content of glutathione (GSH) and superoxide dismutase (SOD) contents. Moreover, Ori treatment not only significantly suppressed the LPS-induced nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, and nuclear factor-kappa B (NF-κB) signaling pathway activation, but also obviously restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD (P) H: quinone oxidoreductase (NQO1), glutamate-cysteine ligase catalytic (GCLC), and heme oxygenase 1 (HO-1) expression in the lung; all of which are reduced by LPS. Taken together, these data suggested that Ori plays an important role in the protection against ALI by suppressing inflammation and oxidative stress which may be strongly related to the suppression of NLRP3 inflammasome and NF-κB activation, as well as the upregulation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qingfei Xiao
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yan Cui
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yongli Zhao
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Li Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hongyue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Liming Yang
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
18
|
Wu X, Yao D, Bao L, Liu D, Xu X, An Y, Zhang X, Cao B. Ficolin A derived from local macrophages and neutrophils protects against lipopolysaccharide-induced acute lung injury by activating complement. Immunol Cell Biol 2020; 98:595-606. [PMID: 32339310 DOI: 10.1111/imcb.12344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Ficolins are important and widely distributed pattern recognition molecules that can induce lectin complement pathway activation and initiate the innate immune response. Although ficolins can bind lipopolysaccharide (LPS) in vitro, the sources, dynamic changes and roles of local ficolins in LPS-induced pulmonary inflammation and injury remain poorly understood. In this study, we established a ficolin knockout mouse model by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology, and used flow cytometry and hematoxylin and eosin staining to study the expressions and roles of local ficolins in LPS-induced pulmonary inflammation and injury. Our results show that besides ficolin B (FcnB), ficolin A (FcnA) is also expressed in leukocytes from the bone marrow, peripheral blood, lung and spleen. Further analyses showed that macrophages and neutrophils are the main sources of FcnA and FcnB, and T and B cells also express a small amount of FcnB. The intranasal administration of LPS induced local pulmonary inflammation with the increased recruitment of macrophages and neutrophils. LPS stimulation induced increased expression of FcnA and FcnB in neutrophils at the acute stage and in macrophages at the late stage. The severity of the lung injury and local inflammation of Fcna-/- mice was increased by the induction of extracellular complement activation. The recovery of LPS-induced local lung inflammation and injury was delayed in Fcnb-/- mice. Hence, these findings suggested that the local macrophage- and neutrophil-derived FcnA protects against LPS-induced acute lung injury by mediating extracellular complement activation.
Collapse
Affiliation(s)
- Xu Wu
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine , Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Di Liu
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Yunqing An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100006, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
19
|
Impact of Key Nicotinic AChR Subunits on Post-Stroke Pneumococcal Pneumonia. Vaccines (Basel) 2020; 8:vaccines8020253. [PMID: 32481512 PMCID: PMC7349987 DOI: 10.3390/vaccines8020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumonia is the most frequent severe medical complication after stroke. An overactivation of the cholinergic signaling after stroke contributes to immunosuppression and the development of spontaneous pneumonia caused by Gram-negative pathogens. The α7 nicotinic acetylcholine receptor (α7nAChR) has already been identified as an important mediator of the anti-inflammatory pathway after stroke. However, whether the α2, α5 and α9/10 nAChR expressed in the lung also play a role in suppression of pulmonary innate immunity after stroke is unknown. In the present study, we investigate the impact of various nAChRs on aspiration-induced pneumonia after stroke. Therefore, α2, α5, α7 and α9/10 nAChR knockout (KO) mice and wild type (WT) littermates were infected with Streptococcus pneumoniae (S. pneumoniae) three days after middle cerebral artery occlusion (MCAo). One day after infection pathogen clearance, cellularity in lung and spleen, cytokine secretion in bronchoalveolar lavage (BAL) and alveolar-capillary barrier were investigated. Here, we found that deficiency of various nAChRs does not contribute to an enhanced clearance of a Gram-positive pathogen causing post-stroke pneumonia in mice. In conclusion, these findings suggest that a single nAChR is not sufficient to mediate the impaired pulmonary defense against S. pneumoniae after experimental stroke.
Collapse
|
20
|
Alqahtani S, Kobos LM, Xia L, Ferreira C, Franco J, Du X, Shannahan JH. Exacerbation of Nanoparticle-Induced Acute Pulmonary Inflammation in a Mouse Model of Metabolic Syndrome. Front Immunol 2020; 11:818. [PMID: 32457752 PMCID: PMC7221136 DOI: 10.3389/fimmu.2020.00818] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has the capacity to revolutionize numerous fields and processes, however, exposure-induced health effects are of concern. The majority of nanoparticle (NP) safety evaluations have been performed utilizing healthy models and have demonstrated the potential for pulmonary toxicity. A growing proportion of individuals suffer diseases that may enhance their susceptibility to exposures. Specifically, metabolic syndrome (MetS) is increasingly prevalent and is a risk factor for the development of chronic diseases including type-2 diabetes, cardiovascular disease, and cancer. MetS is a combination of conditions which includes dyslipidemia, obesity, hypertension, and insulin resistance. Due to the role of lipids in inflammatory signaling, we hypothesize that MetS-associated dyslipidemia may modulate NP-induced immune responses. To examine this hypothesis, mice were fed either a control diet or a high-fat western diet (HFWD) for 14-weeks. A subset of mice were treated with atorvastatin for the final 7-weeks to modulate lipids. Mice were exposed to silver NPs (AgNPs) via oropharyngeal aspiration and acute toxicity endpoints were evaluated 24-h post-exposure. Mice on the HFWD demonstrated MetS-associated alterations such as increased body weight and cholesterol compared to control-diet mice. Cytometry analysis of bronchoalveolar lavage fluid (BALF) demonstrated exacerbation of AgNP-induced neutrophilic influx in MetS mice compared to healthy. Additionally, enhanced proinflammatory mRNA expression and protein levels of monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and interleukin-6 were observed in MetS mice compared to healthy following exposure. AgNP exposure reduced mRNA expression of enzymes involved in lipid metabolism, such as arachidonate 5-lipoxygenase and arachidonate 15-lipoxygenase in both mouse models. Exposure to AgNPs decreased inducible nitric oxide synthase gene expression in MetS mice. An exploratory lipidomic profiling approach was utilized to screen lipid mediators involved in pulmonary inflammation. This assessment indicates the potential for reduced levels of lipids mediators of inflammatory resolution (LMIR) in the MetS model compared to healthy mice following AgNP exposure. Statin treatment inhibited enhanced inflammatory responses as well as alterations in LMIR observed in the MetS model due to AgNP exposure. Taken together our data suggests that MetS exacerbates the acute toxicity induced by AgNPs exposure possibly via a disruption of LMIR leading to enhanced pulmonary inflammation.
Collapse
Affiliation(s)
- Saeed Alqahtani
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States.,National Center for Pharmaceuticals, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Lisa M Kobos
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Li Xia
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Christina Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN, United States
| | - Jackeline Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Xuqin Du
- Department of Occupational Medicine and Toxicology, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
21
|
Onyema OO, Guo Y, Hata A, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Deciphering the role of eosinophils in solid organ transplantation. Am J Transplant 2020; 20:924-930. [PMID: 31647606 PMCID: PMC7842192 DOI: 10.1111/ajt.15660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Eosinophils are rare granulocytes that belong to the innate arm of the immune system. This cell population is traditionally defined as a destructive and cytotoxic mediator in asthma and helminth infection. Limited data in transplantation have suggested that eosinophils play a similar role in potentiating deleterious organ inflammation and immunologic rejection. Contrary to this long-held notion, recent data have uncovered the possibility that eosinophils play an alternative role in immune homeostasis, defense against a wide range of pathogens, as well as downregulation of deleterious inflammation. Specifically, translational data from small animal models of lung transplantation have demonstrated a critical role for eosinophils in the downregulation of alloimmunity. These findings shed new light on the unique immunologic features of the lung allograft and demonstrate that environmental polarization may alter the phenotype and function of leukocyte populations previously thought to be static in nature. In this review, we provide an update on eosinophils in the homeostasis of the lung as well as other solid organs.
Collapse
Affiliation(s)
- Oscar Okwudiri Onyema
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Yizhan Guo
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Atsushi Hata
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St Louis, Missouri, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University in St Louis, Missouri, USA
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Alexander Sasha Krupnick
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Root Bark of Paeonia suffruticosa Extract and Its Component Methyl Gallate Possess Peroxynitrite Scavenging Activity and Anti-inflammatory Properties through NF-κB Inhibition in LPS-treated Mice. Molecules 2019; 24:molecules24193483. [PMID: 31557976 PMCID: PMC6804175 DOI: 10.3390/molecules24193483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
A peroxynitrite (ONOO−)-generating system induced by 3-morpholinosydnonimine, was used to evaluate the ONOO− scavenging properties of plants that have been widely used as traditional medicine in Korea for the treatment of several diseases. The most effective medicinal plants were Paeonia suffruticosa Andrew, followed in order by Lonicera japonica Thunb., Curcuma zedoaria (Christm.) Roscoe, and Pueraria thunbergiana Benth. In addition, root bark of P. suffruticosa was partitioned with organic solvents of different polarities, and the ethyl acetate (EtOAc) fraction showed the strongest ONOO− scavenging activity. Methyl gallate, a plant-derived phenolic compound identified from the EtOAc fraction, exerted strong ONOO− scavenging activity. The in vivo therapeutic potential of methyl gallate was investigated using lipopolysaccharide-treated mice. Oral administration of methyl gallate protected against acute renal injury and exhibited potential anti-inflammatory properties through an increase in antioxidant activity and decrease in nuclear factor-kappa B activity.
Collapse
|
23
|
Jia W, Guo Z, Yu X, Lv J, Yang B, Tian S. Protective Effect of Probiotic Potentiate with Thiopental in Intestinal Ischemia-Reperfusion Induced Lung Injury. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.872.879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Avian Stress-Related Transcriptome and Selenotranscriptome: Role during Exposure to Heavy Metals and Heat Stress. Antioxidants (Basel) 2019; 8:antiox8070216. [PMID: 31295914 PMCID: PMC6680911 DOI: 10.3390/antiox8070216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium, through incorporation into selenoproteins, is one of the key elements of the antioxidant system. Over the past few years there has been increased interest in exploring those molecular mechanisms in chicken, responsible for the development of this protection system. In more detail, Cd/Pb poisoning and heat stress increase oxidation, mRNA levels of inflammatory proteins, and apoptotic proteins. Selenium seems to enhance the antioxidant status and alleviates these effects via upregulation of antioxidant proteins and other molecular effects. In this review, we analyze avian transcriptome key elements with particular emphasis on interactions with heavy metals and on relation to heat stress.
Collapse
|
25
|
Liu J, Chang G, Huang J, Wang Y, Ma N, Roy AC, Shen X. Sodium Butyrate Inhibits the Inflammation of Lipopolysaccharide-Induced Acute Lung Injury in Mice by Regulating the Toll-Like Receptor 4/Nuclear Factor κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1674-1682. [PMID: 30661349 DOI: 10.1021/acs.jafc.8b06359] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial pneumonia is a common disease in dairy herds worldwide, which brings great economic losses to farmers. Sodium butyrate (SB), an inhibitor of histone deacetylase, plays an important role in limiting inflammation. The purpose of this study was to investigate the protective effects of SB on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the potential mechanism of SB protection. A total of 30 ICR mice were randomly divided into three groups ( n = 10): a phosphate-buffered saline (PBS) intratracheal instillation group, a LPS intratracheal instillation group, and a SB gavage group (SB was given 1 h before the LPS stimulation). After 12 h, samples of the blood and lung tissue were collected from the mice for experimental analysis. The results showed that the concentration of inflammatory cytokines [interleukin 1β (IL1β) and tumor necrosis factor α (TNF-α)], myeloperoxidase (MPO) activity in the lung tissue and blood, protein abundance of toll-like receptor 4 (TLR4), nuclear factor κB (NF-κB, p65), phosphorylated p65 (p-p65), inhibitor κBα (IκBα), and phosphorylated IκBα (p-IκBα), and relative mRNA expression of genes associated with inflammation, such as TLR4, NF-κB, IL1β, interleukin 6 (IL6), and TNF-α, were significantly upregulated in the LPS group compared to the PBS group. However, the SB addition markedly downregulated the levels of these parameters in the LSB group compared to those in the LPS group. Furthermore, the structure of the lung tissue from the LPS group was severely disrupted in comparison to that of the PBS group. However, with SB administration, the severe structural disruption was relieved. In addition, an immunohistochemical analysis showed that positive immunoreactions to TLR4, p65, and TNF-α were significant in the LPS group; however, SB addition markedly attenuated this phenomenon. In conclusion, the ALI mouse model was successfully established with an intratracheal instillation of LPS. Furthermore, gavage with SB inhibited inflammation in LPS-induced ALI.
Collapse
Affiliation(s)
- Jing Liu
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Guangjun Chang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Jie Huang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yan Wang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Nana Ma
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Animesh-Chandra Roy
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xiangzhen Shen
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
26
|
Pooladanda V, Thatikonda S, Bale S, Pattnaik B, Sigalapalli DK, Bathini NB, Singh SB, Godugu C. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death Dis 2019; 10:81. [PMID: 30692512 PMCID: PMC6349848 DOI: 10.1038/s41419-018-1247-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an excessive acute inflammatory response in lung parenchyma, which ultimately leads to refractory hypoxemia. One of the earliest abnormalities seen in lung injury is the elevated levels of inflammatory cytokines, among them, the soluble tumor necrosis factor (TNF-α) has a key role, which exerts cytotoxicity in epithelial and endothelial cells thus exacerbates edema. The bacterial lipopolysaccharide (LPS) was used both in vitro (RAW 264.7, THP-1, MLE-12, A549, and BEAS-2B) and in vivo (C57BL/6 mice), as it activates a plethora of overlapping inflammatory signaling pathways involved in ARDS. Nimbolide is a chemical constituent of Azadirachta indica, which contains multiple biological properties, while its role in ARDS is elusive. Herein, we have investigated the protective effects of nimbolide in abrogating the complications associated with ARDS. We showed that nimbolide markedly suppressed the nitrosative-oxidative stress, inflammatory cytokines, and chemokines expression by suppressing iNOS, myeloperoxidase, and nitrotyrosine expression. Moreover, nimbolide mitigated the migration of neutrophils and mast cells whilst normalizing the LPS-induced hypothermia. Also, nimbolide modulated the expression of epigenetic regulators with multiple HDAC inhibitory activity by suppressing the nuclear translocation of NF-κB and HDAC-3. We extended our studies using molecular docking studies, which demonstrated a strong interaction between nimbolide and TNF-α. Additionally, we showed that treatment with nimbolide increased GSH, Nrf-2, SOD-1, and HO-1 protein expression; concomitantly abrogated the LPS-triggered TNF-α, p38 MAPK, mTOR, and GSK-3β protein expression. Collectively, these results indicate that TNF-α-regulated NF-κB and HDAC-3 crosstalk was ameliorated by nimbolide with promising anti-nitrosative, antioxidant, and anti-inflammatory properties in LPS-induced ARDS.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Bijay Pattnaik
- Centre of Excellence in Asthma & Lung Disease and Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, 110007, New Delhi, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Nagendra Babu Bathini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
27
|
Startek JB, Boonen B, Talavera K, Meseguer V. TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. Int J Mol Sci 2019; 20:E371. [PMID: 30654572 PMCID: PMC6359677 DOI: 10.3390/ijms20020371] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Transient Receptor Potential ion channels (TRPs) have been described as polymodal sensors, being responsible for transducing a wide variety of stimuli, and being involved in sensory functions such as chemosensation, thermosensation, mechanosensation, and photosensation. Mechanical and chemical stresses exerted on the membrane can be transduced by specialized proteins into meaningful intracellular biochemical signaling, resulting in physiological changes. Of particular interest are compounds that can change the local physical properties of the membrane, thereby affecting nearby proteins, such as TRP channels, which are highly sensitive to the membrane environment. In this review, we provide an overview of the current knowledge of TRP channel activation as a result of changes in the membrane properties induced by amphipathic structural lipidic components such as cholesterol and diacylglycerol, and by exogenous amphipathic bacterial endotoxins.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Victor Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández y CSIC, E-03550 Alicante , Spain.
| |
Collapse
|
28
|
Liu JX, Li X, Yan FG, Pan QJ, Yang C, Wu MY, Li G, Liu HF. Protective effect of forsythoside B against lipopolysaccharide-induced acute lung injury by attenuating the TLR4/NF-κB pathway. Int Immunopharmacol 2019; 66:336-346. [DOI: 10.1016/j.intimp.2018.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/27/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
|
29
|
A Metabolism-Based Quorum Sensing Mechanism Contributes to Termination of Inflammatory Responses. Immunity 2018; 49:654-665.e5. [DOI: 10.1016/j.immuni.2018.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
|
30
|
Startek JB, Talavera K, Voets T, Alpizar YA. Differential interactions of bacterial lipopolysaccharides with lipid membranes: implications for TRPA1-mediated chemosensation. Sci Rep 2018; 8:12010. [PMID: 30104600 PMCID: PMC6089920 DOI: 10.1038/s41598-018-30534-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS) activate the TRPA1 cation channels in sensory neurons, leading to acute pain and inflammation in mice and to aversive behaviors in fruit flies. However, the precise mechanisms underlying this effect remain elusive. Here we assessed the hypothesis that TRPA1 is activated by mechanical perturbations induced upon LPS insertion in the plasma membrane. We asked whether the effects of different LPS on TRPA1 relate to their ability to induce mechanical alterations in artificial and cellular membranes. We found that LPS from E. coli, but not from S. minnesota, activates TRPA1. We then assessed the effects of these LPS on lipid membranes using dyes whose fluorescence properties change upon alteration of the local lipid environment. E. coli LPS was more effective than S. minnesota LPS in shifting Laurdan’s emission spectrum towards lower wavelengths, increasing the fluorescence anisotropy of diphenylhexatriene and reducing the fluorescence intensity of merocyanine 540. These data indicate that E. coli LPS induces stronger changes in the local lipid environment than S. minnesota LPS, paralleling its distinct ability to activate TRPA1. Our findings indicate that LPS activate TRPA1 by producing mechanical perturbations in the plasma membrane and suggest that TRPA1-mediated chemosensation may result from primary mechanosensory mechanisms.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine. KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine. KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium.
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine. KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine. KU Leuven; VIB Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
31
|
Li N, Liu XX, Hong M, Huang XZ, Chen H, Xu JH, Wang C, Zhang YX, Zhong JX, Nie H, Gong Q. Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release. Int Immunopharmacol 2018; 56:242-248. [PMID: 29414658 DOI: 10.1016/j.intimp.2018.01.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/18/2022]
Abstract
Sodium butyrate (SB) is a short chain 4-carbon fatty acid salt naturally exists in animal fats. Previous studies have proven that sodium butyrate has many beneficial functions such as anti-tumor and anti-inflammatory actions. In the current study we investigated the effect and possible mechanism of sodium butyrate in LPS-induced acute lung injury (ALI). ALI was induced by intratracheal administration of LPS (10 mg/kg) in male BALB/c mice. Sodium butyrate (500 mg/kg) was administered intraperitoneally 30 min prior to LPS exposure. We found that sodium butyrate significantly protected animals from LPS-induced ALI as evidenced by decreased the lung wet to dry weight ratio, total cells, neutrophils, macrophages, myeloperoxidase (MPO) activity, and lung histological damage compared to vehicle control. Sodium butyrate pretreatment markedly inhibited the production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, sodium butyrate pretreatment dramatically suppressed HMGB1 release and NF-κ B activation. Together, these results suggest that sodium butyrate pretreatment protects mice from LPS-induced acute lung injury, possibly through the modulation of HMGB1 and inflammatory responses.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xin-Xin Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Mei Hong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xin-Zhou Huang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Jia-Huan Xu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Chao Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Yan-Xiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Ji-Xin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China.
| |
Collapse
|
32
|
Lee JW, Seo KH, Ryu HW, Yuk HJ, Park HA, Lim Y, Ahn KS, Oh SR. Anti-inflammatory effect of stem bark of Paulownia tomentosa Steud. in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and LPS-induced murine model of acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:23-30. [PMID: 28843892 DOI: 10.1016/j.jep.2017.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves, bark, and flowers of Paulownia tomentosa Steud. have been widely used as a traditional medicine in East Asia to treat inflammatory and infectious diseases. AIM OF THE STUDY We investigated the protective effect of the methanol stem bark extract of P. tomentosa using an animal model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). MATERIALS AND METHODS The UPLC Q-TOF-MS profiles for the methanol extract of P. tomentosa stem bark showed that verbascoside and isoverbascoside were the predominant compounds. Raw 264.7 cells were used for inhibitory effects of cytokine production in vitro. C57BL/6N mice were administered intranasally with LPS (10μg/per mouse) to induce ALI. H&E staining was used to evaluate histological changes in the lung. RESULTS Treatment with P. tomentosa stem bark extract (PTBE) suppressed the production of IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophages, and the recruitment of neutrophils and macrophages in the BALF of mice with LPS-induced ALI. PTBE also decreased the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines in the BALF. PTBE reduced the levels of nitric oxide (NO) in the serum and of inducible nitric oxide synthase (iNOS) in the lung of ALI mice. PTBE also attenuated the infiltration of inflammatory cells and the expression of monocyte chemoattractant protein-1 (MCP-1) in the lung. In addition, PTBE suppressed the activation of NF-κB and the reduced expression of superoxide dismutase 3 (SOD3) in the lung. CONCLUSION The results suggest that PTBE has a protective effect on LPS-induced ALI.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - Kyeong-Hwa Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - Heung Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - YouRim Lim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|
33
|
Sun LC, Zhang HB, Gu CD, Guo SD, Li G, Lian R, Yao Y, Zhang GQ. Protective effect of acacetin on sepsis-induced acute lung injury via its anti-inflammatory and antioxidative activity. Arch Pharm Res 2017; 41:1199-1210. [PMID: 29243040 PMCID: PMC7101724 DOI: 10.1007/s12272-017-0991-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 11/19/2017] [Indexed: 01/14/2023]
Abstract
Sepsis is a clinical syndrome with no effective protective or therapeutic treatments. Acacetin, a natural flavonoid compound, has anti-oxidative and anti-inflammatory effects which can potentially work to reduce sepsis. We investigated the potential protective effect of acacetin on sepsis-induced acute lung injury (ALI) ALI and dissect out the underlying mechanisms. Mice were divided into five groups: a sham group, a sepsis-induced ALI group, and three sepsis groups pre-treated with 20, 40, and 80 mg/kg body weight of acacetin. We found that acacetin significantly attenuated sepsis-induced ALI, in histological examinations and lung edema. Additionally, acacetin treatment decreased protein and inflammatory cytokine concentration and the number of infiltrated inflammatory cells in BALF compared with that in the non-treated sepsis mice. Pulmonary myeloperoxidase (MPO) activity was lower in the acacetin-pre-treated sepsis groups than in the sepsis group. The mechanism underlying the protective effect of acacetin on sepsis is related to the regulation of certain antioxidation genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), superoxide dismutases (SODs), and heme oxygenase 1 (HO-1).Taken together, our results indicate that acacetin pre-treatment inhibits sepsis-induced ALI through its anti-inflammatory and antioxidative activity, suggesting that acacetin may be a potential protective agent for sepsis-induced ALI.
Collapse
Affiliation(s)
- Li-Chao Sun
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Hong-Bo Zhang
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Cheng-Dong Gu
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Shi-Dong Guo
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Gang Li
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Rui Lian
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Yao Yao
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Guo-Qiang Zhang
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China.
| |
Collapse
|
34
|
Liu W, Zhu H, Fang H. Propofol Potentiates Sevoflurane-Induced Inhibition of Nuclear Factor--κB-Mediated Inflammatory Responses and Regulation of Mitogen-Activated Protein Kinases Pathways via Toll-like Receptor 4 Signaling in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Am J Med Sci 2017; 354:493-505. [DOI: 10.1016/j.amjms.2017.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022]
|
35
|
Alpizar YA, Boonen B, Sanchez A, Jung C, López-Requena A, Naert R, Steelant B, Luyts K, Plata C, De Vooght V, Vanoirbeek JAJ, Meseguer VM, Voets T, Alvarez JL, Hellings PW, Hoet PHM, Nemery B, Valverde MA, Talavera K. TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat Commun 2017; 8:1059. [PMID: 29057902 PMCID: PMC5651912 DOI: 10.1038/s41467-017-01201-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
Lipopolysaccharides (LPS), the major components of the wall of gram-negative bacteria, trigger powerful defensive responses in the airways via mechanisms thought to rely solely on the Toll-like receptor 4 (TLR4) immune pathway. Here we show that airway epithelial cells display an increase in intracellular Ca2+ concentration within seconds of LPS application. This response occurs in a TLR4-independent manner, via activation of the transient receptor potential vanilloid 4 cation channel (TRPV4). We found that TRPV4 mediates immediate LPS-induced increases in ciliary beat frequency and the production of bactericidal nitric oxide. Upon LPS challenge TRPV4-deficient mice display exacerbated ventilatory changes and recruitment of polymorphonuclear leukocytes into the airways. We conclude that LPS-induced activation of TRPV4 triggers signaling mechanisms that operate faster and independently from the canonical TLR4 immune pathway, leading to immediate protective responses such as direct antimicrobial action, increase in airway clearance, and the regulation of the inflammatory innate immune reaction. LPS is a major component of gram-negative bacterial cell walls, and triggers immune responses in airway epithelium by activating TLR4. Here the authors show that LPS also activates TRPV4, thereby inducing fast defense responses such as nitric oxide production and increased ciliary beating in mice.
Collapse
Affiliation(s)
- Yeranddy A Alpizar
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Brett Boonen
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Alicia Sanchez
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Carole Jung
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Alejandro López-Requena
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Robbe Naert
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Brecht Steelant
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, KU Leuven, Leuven, 3000, Belgium
| | - Katrien Luyts
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Cristina Plata
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Vanessa De Vooght
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Jeroen A J Vanoirbeek
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Victor M Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, E-03550, San Juan de Alicante, Spain
| | - Thomas Voets
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium.,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium
| | - Julio L Alvarez
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium
| | - Peter W Hellings
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, KU Leuven, Leuven, 3000, Belgium.,Department of Oto-Rhino-Laryngology, Upper Airways Research Laboratory, Ghent University, Ghent, 9000, Belgium
| | - Peter H M Hoet
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Benoit Nemery
- Department of Public Health and Care, Laboratory of Environment and Health, KU Leuven, Leuven, 3000, Belgium
| | - Miguel A Valverde
- Department of Experimental and Health Sciences, Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory for Ion Channel Research, KU Leuven, Leuven, 3000, Belgium. .,VIB Center for Brain & Disease Research, 3000, Leuven, Belgium.
| |
Collapse
|
36
|
NPS 2143, a selective calcium-sensing receptor antagonist inhibits lipopolysaccharide-induced pulmonary inflammation. Mol Immunol 2017; 90:150-157. [PMID: 28800474 DOI: 10.1016/j.molimm.2017.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/22/2017] [Accepted: 07/22/2017] [Indexed: 12/27/2022]
Abstract
NPS 2143, a novel and selective antagonist of calcium-sensing receptor (CaSR) has been reported to possess anti-inflammatory activity. In the present study, we examined the protective effect of NPS 2143 on lipopolysaccharide (LPS)-induced acute lung injury (ALI). NPS 2143 pretreatment significantly inhibited the influx of inflammatory cells and the expression of monocyte chemoattractant protein-1 (MCP-1) in the lung of mice with LPS-induced ALI. NPS 2143 decreased the levels of neutrophil elastase (NE) and protein concentration in the bronchoalveolar lavage fluid (BALF). NPS 2143 also reduced the production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF and serum. In addition, NPS 2143 attenuated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and increased the activation of AMP-activated protein kinase (AMPK) in the lung. NPS 2143 also downregulated the activation of nuclear factor-kappa B (NF-κB) in the lung. In LPS-stimulated H292 airway epithelial cells, NPS 2143 attenuated the releases of IL-6 and MCP-1. Furthermore, NPS 2143 upregulated the activation of AMPK and downregulated the activation of NF-κB. These results suggest that NPS 2143 could be potential agent for the treatment of inflammatory diseases including ALI.
Collapse
|
37
|
Li X, Xing M, Chen M, Zhao J, Fan R, Zhao X, Cao C, Yang J, Zhang Z, Xu S. Effects of selenium-lead interaction on the gene expression of inflammatory factors and selenoproteins in chicken neutrophils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:447-453. [PMID: 28213321 DOI: 10.1016/j.ecoenv.2017.02.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/02/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
Lead (Pb) is one of the most highly toxic metal pollutant that can cause damage to the immune system. It is known that selenium (Se) can antagonize heavy metals. To explore the toxic effects of Pb poisoning on bird immune cells, as well as the alleviating effects of Se on Pb, Se supplement and/or Pb poisoning chicken models were established. One hundred and eighty Hyline 7-day-old male chickens received either Se (1mg Se per kg of diet), Pb (350mg Pb per liter water) or Se+Pb in their diet and water for 90 days. Then, whole blood was collected from the four groups of chickens, and serum and neutrophils were isolated. The levels of Se and Pb in chicken serum, mRNA levels of 24 selenoproteins (GPX1, GPX2, GPX3, GPX4, Dio1, Dio2, Dio3, Txnrd1, Txnrd2, Txnrd3, SELS, SPS2, SELK, SELW1, SEP15, SEPX1, SELT, SELI, SELO, SELM, SEPN1, SEPP1, SELU, SELH) and inflammatory factors (TNF-α, COX-2, iNOS, NF-κB), and iNOS protein level in chicken neutrophils were determined, and protein-protein interaction prediction and principal component analysis were performed. The data showed that Pb exposure increased Pb content in serum, activated the NF-κB pathway, and increased the expression of selenoproteins in chicken neutrophils. Se supplements could reduce Pb concentration in serum, had a mitigative effect on the activation of the NF-κB pathway and further enhanced the upward trend of selenoprotein expression induced by Pb exposure. These results suggest that Se supplement could eliminate Pb in serum and alleviate the activation of the NF-κB pathway under Pb exposure by increasing the expression of selenoproteins.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinxin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ruifeng Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Changyu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
38
|
Lu X, Pu Y, Kong W, Tang X, Zhou J, Gou H, Song X, Zhou H, Gao N, Shen J. Antidesmone, a unique tetrahydroquinoline alkaloid, prevents acute lung injury via regulating MAPK and NF-κB activities. Int Immunopharmacol 2017; 45:34-42. [DOI: 10.1016/j.intimp.2017.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
|
39
|
Wang T, Hou W, Fu Z. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice. Biochem Biophys Res Commun 2017; 485:284-289. [PMID: 28223218 DOI: 10.1016/j.bbrc.2017.02.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 11/17/2022]
Abstract
Acute lung injury (ALI) is an early pathophysiologic change in acute respiratory distress syndrome and its management can be challenging. Omalizumab (Xolair™) is a recombinant DNA-derived, humanized antibody. OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. Here, we found that intramuscular administration of OMZ-SPT significantly improved survival and attenuated lung inflammation in female C57BL/6 mice suffering from lipopolysaccharide (LPS)-induced ALI. We also demonstrated that OMZ-SPT can inhibit expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 by ELISA in mice suffering from LPS-induced ALI and a mouse macrophage line (RAW264.7 cells). In addition, we showed that OMZ-SPT inhibited LPS-induced activation of nuclear factor-kappa B (NF-κB) signaling and total expression of NF-κB by western blotting. These data suggest that OMZ-SPT could be a novel therapeutic choice for ALI.
Collapse
Affiliation(s)
- Ting Wang
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Wanru Hou
- Secular Peptide Biomedicine, Chengdu, China.
| | - Zhou Fu
- Pediatrics Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
40
|
Ding R, Zhao D, Li X, Liu B, Ma X. Rho-kinase inhibitor treatment prevents pulmonary inflammation and coagulation in lipopolysaccharide-induced lung injury. Thromb Res 2016; 150:59-64. [PMID: 28043040 DOI: 10.1016/j.thromres.2016.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In the pathogenesis of sepsis-induced acute lung injury (ALI), the crosstalk between inflammation and coagulation plays a pivotal role. The aim of this study was to investigate the role of Rho kinase (ROCK) inhibitor in alleviating pulmonary inflammation and coagulation in lipopolysaccharide (LPS)-induced acute lung injury (ALI) models. METHODS In the in vivo study, mice were randomized to four different groups: Control, Y-27632 (Y), LPS, and LPS+Y-27632 (LPS+Y). ALI was induced by intranasally administering LPS (10μg in 50μL PBS). Y-27632 (10mg/kg body weight,) was injected intraperitoneally at 18h and 1h before LPS challenge. Mice were euthanized at 3h or 8h post LPS challenge (N=8 per group). In the in vitro study, human pulmonary microvascular endothelial cells (HPMECs) were incubated with LPS alone (1μg/mL) or in combination with 10μM Y-27632 or 50μM BAY11-7082. Cells were pretreated with the inhibitors 30min before exposure to LPS. Three hours later, cells were isolated for subsequent analysis. RESULTS The myeloperoxidase (MPO) activity and fibrinogen deposits in the lung tissue significantly decreased and the lung damage in ALI mouse was attenuated. Pretreatment with Y-27632 markedly reduced the LPS-induced expression of interleukins 1β and 6, and the activation of nuclear factor (NF)-κB. Furthermore, ROCK inhibitor treatment antagonized the expression of tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 in lung tissue and HPMECs. CONCLUSIONS ROCK inhibition protects against the endotoxin-induced pulmonary inflammation and coagulation via NF-kappaB pathway modulation.
Collapse
Affiliation(s)
- Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| | - Dongmei Zhao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Xiaoxia Li
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Baoyan Liu
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Xiaochun Ma
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| |
Collapse
|
41
|
Abstract
Protection of mucosal tissues of the oral cavity, intestines, respiratory tract, and urogenital tract from the constant challenge of pathogens is achieved by the combined barrier function of the lining epithelia and specialized immune cells. Recent studies have indicated that osteopontin (OPN) has a pivotal role in the development of immune responses and in the tissue destruction and the subsequent repair processes associated with inflammatory diseases. While expression of OPN is increased in immune cells—including neutrophils, macrophages, T- and B-lymphocytes—and in epithelial, endothelial, and fibroblastic cells of inflamed tissues, deciphering the specific functions of OPN has been difficult. In part, this is due to the broad range of biological activities of OPN that are mediated by multiple receptors which recognize several signaling motifs whose activities are influenced by post-translational modifications and proteolytic processing of OPN. Understanding the role of OPN in mucosal inflammation is further complicated by its contributions to the barrier function of the lining epithelia and the complexity of the specialized mucosal immune system. In an attempt to provide some insights into the involvement of OPN in mucosal diseases, this review summarizes current knowledge of the biological activities of OPN involved in the development of inflammatory responses and in wound healing, and indicates how these activities may affect the protection of mucosal tissues.
Collapse
Affiliation(s)
- J Sodek
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, ON, Canada
| | | | | |
Collapse
|
42
|
Sangxingtang inhibits the inflammation of LPS-induced acute lung injury in mice by down-regulating the MAPK/NF-κB pathway. Chin J Nat Med 2016; 13:889-95. [PMID: 26721707 DOI: 10.1016/s1875-5364(15)30094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Indexed: 01/08/2023]
Abstract
In the present study, we investigated anti-inflammatory effects of Sangxingtang (SXT) on acute lung injury using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was performed. The degree of lung edema was evaluated by measuring the wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were assayed by the enzyme-linked immunosorbent assay methods. Pathological changes of lung tissues were observed by Hematoxylin and eosin (HE) staining. The inflammatory signaling pathway-related proteins nuclear factor mitogen activated protein kinases (P38MAPK), extracellular regulated protein kinases (Erk), c-Jun N-terminal kinase (Jnk) and nuclear transcription factor (NF-κB) p65 expressions were measured by Western blotting. Our results showed that the treatment with the SXT markedly attenuated the inflammatory cell numbers in the BALF, decreased the levels of P-P38MAPK, P-Erk, P-Jnk and P-NF-κB p65 and the total protein levels in lungs, improved the SOD activity and inhibited the MPO activity. Histological studies demonstrated that SXT substantially reduced the LPS-induced neutrophils in lung tissues, compared with the untreated LPS group. In conclusion, our results indicated that SXT had protective effects on LPS-induced ALI in mice.
Collapse
|
43
|
Lee JW, Park JW, Shin NR, Park SY, Kwon OK, Park HA, Lim Y, Ryu HW, Yuk HJ, Kim JH, Oh SR, Ahn KS. Picrasma quassiodes (D. Don) Benn. attenuates lipopolysaccharide (LPS)-induced acute lung injury. Int J Mol Med 2016; 38:834-44. [PMID: 27431288 DOI: 10.3892/ijmm.2016.2669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/15/2016] [Indexed: 12/28/2022] Open
Abstract
Picrasma quassiodes (D.Don) Benn. (PQ) is a medicinal herb belonging to the family Simaroubaceae and is used as a traditional herbal remedy for various diseases. In this study, we evaluated the effects of PQ on airway inflammation using a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) and LPS-stimulated raw 264.7 cells. ALI was induced in C57BL/6 mice by the intranasal administration of LPS, and PQ was administered orally 3 days prior to exposure to LPS. Treatment with PQ significantly attenuated the infiltration of inflammatory cells in the bronchoalveolar lavage fluid (BALF). PQ also decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in BALF. In addition, PQ inhibited airway inflammation by reducing the expression of inducible nitric oxide synthase (iNOS) and by increasing the expression of heme oxygenase-1 (HO-1) in the lungs. Furthermore, we demonstrated that PQ blocked the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in the lungs of mice with LPS-induced ALI. In the LPS-stimulated RAW 264.7 cells, PQ inhibited the release of pro-inflammatory cytokines and increased the mRNA expression of monocyte chemoattractant protein-1 (MCP-1). Treatment with PQ decreased the translocation of nuclear factor (NF)-κB to the nucleus, and increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of HO-1. PQ also inhibited the activation of p38 in the LPS-stimulated RAW 264.7 cells. Taken together, our findings demonstrate that PQ exerts anti-inflammatory effects against LPS-induced ALI, and that these effects are associated with the modulation of iNOS, HO-1, NF-κB and MAPK signaling. Therefore, we suggest that PQ has therapeutic potential for use in the treatment of ALI.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Na-Rae Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - So-Yeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Yourim Lim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Heung Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| |
Collapse
|
44
|
Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death Dis 2016; 7:e2348. [PMID: 27584786 PMCID: PMC5059853 DOI: 10.1038/cddis.2016.248] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 11/08/2022]
Abstract
Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway.
Collapse
|
45
|
Wang H, Li S, Teng X. The Antagonistic Effect of Selenium on Lead-Induced Inflammatory Factors and Heat Shock Proteins mRNA Expression in Chicken Livers. Biol Trace Elem Res 2016; 171:437-444. [PMID: 26470710 DOI: 10.1007/s12011-015-0532-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the effect of lead (Pb) poisoning on nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, the messenger RNA (mRNA) levels of inflammatory factors (nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E synthases (PTGEs), and iNOS), heat shock proteins (HSPs) (HSP27, HSP40, HSP60, HSP70, and HSP90), and the antagonistic effect of selenium (Se) on Pb in chicken livers. One hundred eighty 7-day-old male chickens were randomly divided into four groups and were fed commercial diet and drinking water, Na2SeO3-added commercial diet and drinking water, commercial diet and (CH3OO)2Pb-added drinking water, and Na2SeO3-added commercial diet and (CH3OO)2Pb-added drinking water, respectively, for 30, 60, and 90 days. Then, NO content, iNOS activity, and the mRNA levels of NF-κB, TNF-α, COX-2, PTGEs, iNOS, HSP27, HSP40, HSP60, HSP70, and HSP90 were examined in chicken livers. The results showed that Pb poisoning induced NO content, iNOS activity, and mRNA expression of inflammation factors and HSPs in chicken livers. In addition, Se alleviated Pb-induced increase of inflammation factor and HSP expression in chicken livers.
Collapse
Affiliation(s)
- Hao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
46
|
Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling. Inflammation 2016; 38:1406-14. [PMID: 25616905 PMCID: PMC7102291 DOI: 10.1007/s10753-015-0115-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.
Collapse
|
47
|
Ma CH, Liu JP, Qu R, Ma SP. Tectorigenin inhibits the inflammation of LPS-induced acute lung injury in mice. Chin J Nat Med 2015; 12:841-6. [PMID: 25480515 DOI: 10.1016/s1875-5364(14)60126-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 01/09/2023]
Abstract
AIM In a previous study, the anti-inflammatory effects of tectorigenin were disclosed. In this study, the anti-inflammatory effects of tectorigenin on acute lung injury using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model were investigated METHOD The cell-count in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by the wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity was assayed using SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 were assayed using an enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed through HE staining. The inflammatory signal pathway related protein nuclear factor NF-κB p65 mRNA expression was measured by real-time PCR, and the protein level of NF-κB p65 was measured using Western blotting analysis. RESULTS The data showed that treatment with the tectorigenin markedly attenuated the inflammatory cell numbers in the BALF, decreased nuclear factor NF-κB p65 mRNA level and protein level in the lungs, and improved SOD activity and inhibited MPO activity. Histological studies showed that tectorigenin substantially inhibited LPS-induced neutrophils in lung tissue compared with the model group. CONCLUSION The results indicated that tectorigenin had a protective effect on LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Chun-Hua Ma
- Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China; Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ji-Ping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Rong Qu
- Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Shi-Ping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
48
|
Heat-Processed Scutellariae Radix Enhances Anti-Inflammatory Effect against Lipopolysaccharide-Induced Acute Lung Injury in Mice via NF- κ B Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:456846. [PMID: 26167192 PMCID: PMC4488546 DOI: 10.1155/2015/456846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/07/2015] [Accepted: 05/28/2015] [Indexed: 01/24/2023]
Abstract
The present study was conducted to examine whether heat-processed Scutellariae Radix has an ameliorative effect on lipopolysaccharide- (LPS-) induced acute lung injury in mice. The effects of Scutellariae Radix heat-processed at 160°C (HSR) were compared with those of nonheat-processed Scutellariae Radix (NSR). The LPS-treated group displayed a markedly decreased body weight and significantly increased lung weight; however, the administration of NSR or HSR improved both the body and lung weights. The increased oxidative stress and inflammatory biomarker levels in the serum and lung were reduced significantly with HSR. The reduced superoxide dismutase and catalase increased significantly by both NSR and HSR. Also, the dysregulated oxidative stress and inflammation were significantly ameliorated by NSR and HSR. The expression of inflammatory mediators and cytokines by nuclear factor-kappa B activation was modulated through inhibition of a nuclear factor kappa Bα degradation. Also, lung histological change was markedly suppressed by HSR rather than NSR. Overall, the ameliorative effects of HSR were superior to those when being nonheat-processed. The representative flavonoid contents of Scutellariae Radix that include baicalin, baicalein, and wogonin were greater by heat process. These data reveal heat-processed Scutellariae Radix may be a critical factor involved in the improvement of lung disorders caused by LPS.
Collapse
|
49
|
Shin NR, Shin IS, Song HH, Hong JM, Kwon OK, Jeon CM, Kim JH, Lee SW, Lee JK, Jin H, Li WY, Oh SR, Hahn KW, Ahn KS. Callicarpa japonica Thunb. reduces inflammatory responses: A mouse model of lipopolysaccharide-induced acute lung injury. Int Immunopharmacol 2015; 26:174-80. [DOI: 10.1016/j.intimp.2015.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/21/2015] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
|
50
|
Gross CM, Rafikov R, Kumar S, Aggarwal S, Ham PB, Meadows ML, Cherian-Shaw M, Kangath A, Sridhar S, Lucas R, Black SM. Endothelial nitric oxide synthase deficient mice are protected from lipopolysaccharide induced acute lung injury. PLoS One 2015; 10:e0119918. [PMID: 25786132 PMCID: PMC4364989 DOI: 10.1371/journal.pone.0119918] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/18/2015] [Indexed: 01/11/2023] Open
Abstract
Lipopolysaccharide (LPS) derived from the outer membrane of gram-negative bacteria induces acute lung injury (ALI) in mice. This injury is associated with lung edema, inflammation, diffuse alveolar damage, and severe respiratory insufficiency. We have previously reported that LPS-mediated nitric oxide synthase (NOS) uncoupling, through increases in asymmetric dimethylarginine (ADMA), plays an important role in the development of ALI through the generation of reactive oxygen and nitrogen species. Therefore, the focus of this study was to determine whether mice deficient in endothelial NOS (eNOS-/-) are protected against ALI. In both wild-type and eNOS-/- mice, ALI was induced by the intratracheal instillation of LPS (2 mg/kg). After 24 hours, we found that eNOS-/-mice were protected against the LPS mediated increase in inflammatory cell infiltration, inflammatory cytokine production, and lung injury. In addition, LPS exposed eNOS-/- mice had increased oxygen saturation and improved lung mechanics. The protection in eNOS-/- mice was associated with an attenuated production of NO, NOS derived superoxide, and peroxynitrite. Furthermore, we found that eNOS-/- mice had less RhoA activation that correlated with a reduction in RhoA nitration at Tyr34. Finally, we found that the reduction in NOS uncoupling in eNOS-/- mice was due to a preservation of dimethylarginine dimethylaminohydrolase (DDAH) activity that prevented the LPS-mediated increase in ADMA. Together our data suggest that eNOS derived reactive species play an important role in the development of LPS-mediated lung injury.
Collapse
Affiliation(s)
- Christine M Gross
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Ruslan Rafikov
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Sanjiv Kumar
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - P Benson Ham
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Mary Louise Meadows
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Mary Cherian-Shaw
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Archana Kangath
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Supriya Sridhar
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Rudolf Lucas
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Stephen M Black
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|