1
|
Suh J, Lee YS. The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion. J Bone Miner Res 2024; 39:1205-1214. [PMID: 38907370 PMCID: PMC11371665 DOI: 10.1093/jbmr/zjae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Indexed: 06/24/2024]
Abstract
Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Suh J, Kim NK, Shim W, Lee SH, Kim HJ, Moon E, Sesaki H, Jang JH, Kim JE, Lee YS. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis. Cell Metab 2023; 35:345-360.e7. [PMID: 36754021 DOI: 10.1016/j.cmet.2023.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023]
Abstract
Mitochondrial components have been abundantly detected in bone matrix, implying that they are somehow transported extracellularly to regulate osteogenesis. Here, we demonstrate that mitochondria and mitochondrial-derived vesicles (MDVs) are secreted from mature osteoblasts to promote differentiation of osteoprogenitors. We show that osteogenic induction stimulates mitochondrial fragmentation, donut formation, and secretion of mitochondria through CD38/cADPR signaling. Enhancing mitochondrial fission and donut formation through Opa1 knockdown or Fis1 overexpression increases mitochondrial secretion and accelerates osteogenesis. We also show that mitochondrial fusion promoter M1, which induces Opa1 expression, impedes osteogenesis, whereas osteoblast-specific Opa1 deletion increases bone mass. We further demonstrate that secreted mitochondria and MDVs enhance bone regeneration in vivo. Our findings suggest that mitochondrial morphology in mature osteoblasts is adapted for extracellular secretion, and secreted mitochondria and MDVs are critical promoters of osteogenesis.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Na-Kyung Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Wonn Shim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hoon Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo-Jeong Kim
- Electron Microscopy Research Center, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Eunyoung Moon
- Electron Microscopy and Spectroscopy Team, Korea Basic Science Institute, Ochang, Cheongju, Chungbuk, Republic of Korea
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jae Hyuck Jang
- Electron Microscopy Research Center, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea; Electron Microscopy and Spectroscopy Team, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Xiong Z, Choi JY, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K. Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging Cell 2016; 15:279-90. [PMID: 26663466 PMCID: PMC4783354 DOI: 10.1111/acel.12434] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS), a fatal premature aging disease, is caused by a single‐nucleotide mutation in the LMNA gene. Previous reports have focused on nuclear phenotypes in HGPS cells, yet the potential contribution of the mitochondria, a key player in normal aging, remains unclear. Using high‐resolution microscopy analysis, we demonstrated a significantly increased fraction of swollen and fragmented mitochondria and a marked reduction in mitochondrial mobility in HGPS fibroblast cells. Notably, the expression of PGC‐1α, a central regulator of mitochondrial biogenesis, was inhibited by progerin. To rescue mitochondrial defects, we treated HGPS cells with a mitochondrial‐targeting antioxidant methylene blue (MB). Our analysis indicated that MB treatment not only alleviated the mitochondrial defects but also rescued the hallmark nuclear abnormalities in HGPS cells. Additional analysis suggested that MB treatment released progerin from the nuclear membrane, rescued perinuclear heterochromatin loss and corrected misregulated gene expression in HGPS cells. Together, these results demonstrate a role of mitochondrial dysfunction in developing the premature aging phenotypes in HGPS cells and suggest MB as a promising therapeutic approach for HGPS.
Collapse
Affiliation(s)
- Zheng‐Mei Xiong
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Ji Young Choi
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Kun Wang
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
- Center for Bioinformatics and Computational Biology University of Maryland College Park MD 20742 USA
| | - Haoyue Zhang
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Zeshan Tariq
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Di Wu
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Eunae Ko
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Christina LaDana
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| | - Hiromi Sesaki
- Department of Cell Biology Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
| |
Collapse
|
4
|
Tam ZY, Gruber J, Halliwell B, Gunawan R. Mathematical modeling of the role of mitochondrial fusion and fission in mitochondrial DNA maintenance. PLoS One 2013; 8:e76230. [PMID: 24146842 PMCID: PMC3795767 DOI: 10.1371/journal.pone.0076230] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022] Open
Abstract
Accumulation of mitochondrial DNA (mtDNA) mutations has been implicated in a wide range of human pathologies, including neurodegenerative diseases, sarcopenia, and the aging process itself. In cells, mtDNA molecules are constantly turned over (i.e. replicated and degraded) and are also exchanged among mitochondria during the fusion and fission of these organelles. While the expansion of a mutant mtDNA population is believed to occur by random segregation of these molecules during turnover, the role of mitochondrial fusion-fission in this context is currently not well understood. In this study, an in silico modeling approach is taken to investigate the effects of mitochondrial fusion and fission dynamics on mutant mtDNA accumulation. Here we report model simulations suggesting that when mitochondrial fusion-fission rate is low, the slow mtDNA mixing can lead to an uneven distribution of mutant mtDNA among mitochondria in between two mitochondrial autophagic events leading to more stochasticity in the outcomes from a single random autophagic event. Consequently, slower mitochondrial fusion-fission results in higher variability in the mtDNA mutation burden among cells in a tissue over time, and mtDNA mutations have a higher propensity to clonally expand due to the increased stochasticity. When these mutations affect cellular energetics, nuclear retrograde signalling can upregulate mtDNA replication, which is expected to slow clonal expansion of these mutant mtDNA. However, our simulations suggest that the protective ability of retrograde signalling depends on the efficiency of fusion-fission process. Our results thus shed light on the interplay between mitochondrial fusion-fission and mtDNA turnover and may explain the mechanism underlying the experimentally observed increase in the accumulation of mtDNA mutations when either mitochondrial fusion or fission is inhibited.
Collapse
Affiliation(s)
- Zhi Yang Tam
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Jan Gruber
- Department of Biochemistry, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Rudiyanto Gunawan
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
5
|
Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration. Oncogene 2012; 32:352-62. [PMID: 22410778 DOI: 10.1038/onc.2012.50] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Warburg effect in cancer cells has been proposed to involve several mechanisms, including adaptation to hypoxia, oncogenes activation or loss of oncosuppressors and impaired mitochondrial function. In previous papers, it has been shown that K-ras transformed mouse cells are much more sensitive as compared with normal cells to glucose withdrawal (undergoing apoptosis) and present a high glycolytic rate and a strong reduction of mitochondrial complex I. Recent observations suggest that transformed cells have a derangement in the cyclic adenosine monophosphate/cAMP-dependent protein kinase (cAMP/PKA) pathway, which is known to regulate several mitochondrial functions. Herein, the derangement of the cAMP/PKA pathway and its impact on transformation-linked changes of mitochondrial functions is investigated. Exogenous stimulation of PKA activity, achieved by forskolin treatment, protected K-ras-transformed cells from apoptosis induced by glucose deprivation, enhanced complex I activity, intracellular adenosine triphosphate (ATP) levels, mitochondrial fusion and decreased intracellular reactive oxygen species (ROS) levels. Several of these effects were almost completely prevented by inhibiting the PKA activity. Short-time treatment with compounds favoring mitochondrial fusion strongly decreased the cellular ROS levels especially in transformed cells. These findings support the notion that glucose shortage-induced apoptosis, specific of K-ras-transformed cells, is associated to a derangement of PKA signaling that leads to mitochondrial complex I decrease, reduction of ATP formation, prevalence of mitochondrial fission over fusion, and thereby opening new approaches for development of anticancer drugs.
Collapse
|
6
|
Kordium VA, Irodov DM, Maslova OO, Ruban TA, Sukhorada EM, Andrienko VI, Shuvalova NS, Likhachova LI, Shpilova SP. Fundamental biology reached a plateau – development of ideas. ACTA ACUST UNITED AC 2011. [DOI: 10.7124/bc.00011b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- V. A. Kordium
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - D. M. Irodov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - O. O. Maslova
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - T. A. Ruban
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - E. M. Sukhorada
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - V. I. Andrienko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - N. S. Shuvalova
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - L. I. Likhachova
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - S. P. Shpilova
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
7
|
Gilkerson RW, Schon EA. Nucleoid autonomy: An underlying mechanism of mitochondrial genetics with therapeutic potential. Commun Integr Biol 2011; 1:34-6. [PMID: 19704786 DOI: 10.4161/cib.1.1.6622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 11/19/2022] Open
Abstract
Emerging research shows that the packaging of mitochondrial DNA (mtDNA) into protein-DNA assemblies called nucleoids confers higher-order organization to the mitochondrial genome. Studies of nucleoid composition, structure and dynamics reveal the mitochondrial nucleoid to be tightly regulated in its genetic autonomy, macromolecular organization and distribution throughout the cell. Our recent research shows that mitochondrial nucleoids are self-contained genetic entities that do not exchange mtDNAs with each other frequently. This suggests that the genetic composition of a cell's nucleoids will be the key determinant of the cell's mtDNA dynamics, and provides a mechanistic basis for therapeutic methods to rescue dysfunction due to mutations in mtDNA.
Collapse
Affiliation(s)
- Robert W Gilkerson
- Department of Neurology; College of Physicians and Surgeons; Columbia University; New York, New York USA
| | | |
Collapse
|
8
|
Eynon N, Morán M, Birk R, Lucia A. The champions' mitochondria: is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiol Genomics 2011; 43:789-98. [DOI: 10.1152/physiolgenomics.00029.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aerobic ATP generation by the mitochondrial respiratory oxidative phosphorylation system (OXPHOS) is a vital metabolic process for endurance exercise. Notably, mitochondrial DNA (mtDNA) codifies 13 of the 83 polypeptides implied in the respiratory chain. As such, there is a strong rationale for identifying an association between mtDNA variants and “aerobic” (endurance) exercise phenotypes. The aim of this review is to summarize current knowledge on the association between mtDNA, nuclear genes involved in mitochondriogenesis, and elite endurance athletic status. Several studies in nonathletic people have demonstrated an association between certain mtDNA lineages and aerobic performance, characterized by maximal oxygen uptake (V̇o2max). Whether mtDNA haplogroups are also associated with the status of being an elite endurance athlete is more controversial, with differences between studies arising from the different ethnic backgrounds of the athletic cohorts (Caucasian of mixed geographic origin, Asiatic, or East African).
Collapse
Affiliation(s)
- Nir Eynon
- Faculty of Health Sciences, Department of Nutrition, Ariel University Center, Israel; and
| | - María Morán
- Centro de Investigación Hospital 12 de Octubre and CIBERER and
| | - Ruth Birk
- Faculty of Health Sciences, Department of Nutrition, Ariel University Center, Israel; and
| | | |
Collapse
|
9
|
Clark J, Dai Y, Simon DK. Do somatic mitochondrial DNA mutations contribute to Parkinson's disease? PARKINSONS DISEASE 2011; 2011:659694. [PMID: 21603185 PMCID: PMC3096076 DOI: 10.4061/2011/659694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/01/2011] [Indexed: 12/21/2022]
Abstract
A great deal of evidence supports a role for mitochondrial dysfunction in the pathogenesis of Parkinson's disease (PD), although the origin of the mitochondrial dysfunction in PD remains unclear. Expression of mitochondrial DNA (mtDNA) from PD patients in “cybrid” cell lines recapitulates the mitochondrial defect, implicating a role for mtDNA mutations, but the specific mutations responsible for the mitochondrial dysfunction in PD have been difficult to identify. Somatic mtDNA point mutations and deletions accumulate with age and reach high levels in substantia nigra (SN) neurons. Mutations in mitochondrial DNA polymerase γ (POLG) that lead to the accumulation of mtDNA mutations are associated with a premature aging phenotype in “mutator” mice, although overt parkinsonism has not been reported in these mice, and with parkinsonism in humans. Together these data support, but do not yet prove, the hypothesis that the accumulation of somatic mtDNA mutations in SN neurons contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Joanne Clark
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, E/CLS-628, Boston, MA 02215, USA
| | | | | |
Collapse
|
10
|
Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, Yu-Wai-Man P, Gasparre G, Sarzi E, Delettre C, Olichon A, Loiseau D, Reynier P, Chinnery PF, Rotig A, Carelli V, Hamel CP, Rugolo M, Lenaers G. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res 2010; 21:12-20. [PMID: 20974897 DOI: 10.1101/gr.108696.110] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic cells harbor a small multiploid mitochondrial genome, organized in nucleoids spread within the mitochondrial network. Maintenance and distribution of mitochondrial DNA (mtDNA) are essential for energy metabolism, mitochondrial lineage in primordial germ cells, and to prevent mtDNA instability, which leads to many debilitating human diseases. Mounting evidence suggests that the actors of the mitochondrial network dynamics, among which is the intramitochondrial dynamin OPA1, might be involved in these processes. Here, using siRNAs specific to OPA1 alternate spliced exons, we evidenced that silencing of the OPA1 variants including exon 4b leads to mtDNA depletion, secondary to inhibition of mtDNA replication, and to marked alteration of mtDNA distribution in nucleoid and nucleoid distribution throughout the mitochondrial network. We demonstrate that a small hydrophobic 10-kDa peptide generated by cleavage of the OPA1-exon4b isoform is responsible for this process and show that this peptide is embedded in the inner membrane and colocalizes and coimmunoprecipitates with nucleoid components. We propose a novel synthetic model in which a peptide, including two trans-membrane domains derived from the N terminus of the OPA1-exon4b isoform in vertebrates or from its ortholog in lower eukaryotes, might contribute to nucleoid attachment to the inner mitochondrial membrane and promotes mtDNA replication and distribution. Thus, this study places OPA1 as a direct actor in the maintenance of mitochondrial genome integrity.
Collapse
Affiliation(s)
- Ghizlane Elachouri
- INSERM U-583, Institut des Neurosciences de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bogenhagen DF. Does mtDNA nucleoid organization impact aging? Exp Gerontol 2009; 45:473-7. [PMID: 20004238 DOI: 10.1016/j.exger.2009.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/02/2009] [Indexed: 11/24/2022]
Abstract
Somatic cells in tissue culture package several copies of mitochondrial DNA (mtDNA) in aggregates known as nucleoids that appear to be remarkably stable. The clustering of multiple mtDNA genomes in a single nucleoid complex may promote the progressive age-related accumulation of deletion and point mutations in mtDNA in many somatic tissues, particularly in post-mitotic cells. In contrast, oocytes appear to have the ability to select against deleterious mutations in mtDNA, at least in mice. This fundamental difference suggests that oocytes may be better able to detect and remove defective mtDNA genomes than somatic cells, possibly due in part to the simpler organization of the mtDNA in smaller nucleoids. These observations suggest the hypothesis that a complex nucleoid structure containing several mtDNA molecules may impair the ability of the cell to select against deleterious mtDNA mutations, thereby contributing to age-related mitochondrial dysfunction.
Collapse
Affiliation(s)
- Daniel F Bogenhagen
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| |
Collapse
|
12
|
Gilkerson RW, Schon EA, Hernandez E, Davidson MM. Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. ACTA ACUST UNITED AC 2008; 181:1117-28. [PMID: 18573913 PMCID: PMC2442202 DOI: 10.1083/jcb.200712101] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mitochondrial DNA (mtDNA) is packaged into DNA-protein assemblies called nucleoids, but the mode of mtDNA propagation via the nucleoid remains controversial. Two mechanisms have been proposed: nucleoids may consistently maintain their mtDNA content faithfully, or nucleoids may exchange mtDNAs dynamically. To test these models directly, two cell lines were fused, each homoplasmic for a partially deleted mtDNA in which the deletions were nonoverlapping and each deficient in mitochondrial protein synthesis, thus allowing the first unequivocal visualization of two mtDNAs at the nucleoid level. The two mtDNAs transcomplemented to restore mitochondrial protein synthesis but were consistently maintained in discrete nucleoids that did not intermix stably. These results indicate that mitochondrial nucleoids tightly regulate their genetic content rather than freely exchanging mtDNAs. This genetic autonomy provides a molecular mechanism to explain patterns of mitochondrial genetic inheritance, in addition to facilitating therapeutic methods to eliminate deleterious mtDNA mutations.
Collapse
Affiliation(s)
- Robert W Gilkerson
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
13
|
Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 2007; 283:3665-3675. [PMID: 18063578 DOI: 10.1074/jbc.m708444200] [Citation(s) in RCA: 316] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) occurs in cells in nucleoids containing several copies of the genome. Previous studies have identified proteins associated with these large DNA structures when they are biochemically purified by sedimentation and immunoaffinity chromatography. In this study, formaldehyde cross-linking was performed to determine which nucleoid proteins are in close contact with the mtDNA. A set of core nucleoid proteins is found in both native and cross-linked nucleoids, including 13 proteins with known roles in mtDNA transactions. Several other metabolic proteins and chaperones identified in native nucleoids, including ATAD3, were not observed to cross-link to mtDNA. Additional immunofluorescence and protease susceptibility studies showed that an N-terminal domain of ATAD3 previously proposed to bind to the mtDNA D-loop is directed away from the mitochondrial matrix, so it is unlikely to interact with mtDNA in vivo. These results are discussed in relation to a model for a layered structure of mtDNA nucleoids in which replication and transcription occur in the central core, whereas translation and complex assembly may occur in the peripheral region.
Collapse
Affiliation(s)
- Daniel F Bogenhagen
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651.
| | - Denis Rousseau
- Laboratoire Biochimie et Biophysique des Systèmes Intégrés p438B, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5092 CNRS-UJF-CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Stephanie Burke
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651
| |
Collapse
|
14
|
Bannikova S, Zorov DB, Shoeman RL, Tolstonog GV, Traub P. Stability and Association with the Cytomatrix of Mitochondrial DNA in Spontaneously Immortalized Mouse Embryo Fibroblasts Containing or Lacking the Intermediate Filament Protein Vimentin. DNA Cell Biol 2005; 24:710-35. [PMID: 16274293 DOI: 10.1089/dna.2005.24.710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To extend previous observations demonstrating differences in number, morphology, and activity of mitochondria in spontaneously immortalized vim(+) and vim(-) fibroblasts derived from wild-type and vimentin knockout mice, some structural and functional aspects of mitochondrial genome performance and integrity in both types of cells were investigated. Primary Vim(+/+) and Vim(-/-) fibroblasts, which escaped terminal differentiation by immortalization were characterized by an almost twofold lower mtDNA content in comparison to that of their primary precursor cells, whereby the average mtDNA copy number in two clones of vim(+) cells was lower by a factor of 0.6 than that in four clones of vim(-) cells. However, during serial subcultivation up to high passage numbers, the vim(+) and vim() fibroblasts increased their mtDNA copy number 1.5- and 2.5-fold, respectively. While early-passage cells of the vim(+) and vim(-) fibroblast clones differed only slightly in the ratio between mtDNA content and mitochondrial mass represented by mtHSP70 protein, after ca. 300 population doublings the average mtDNA/mtmass ratio in the vim(+) and vim() cells was increased by a factor of 2 and 4.5, respectively. During subcultivation, both types of cells acquired the fully transformed phenotype. These findings suggest that cytoskeletal vimentin filaments exert a strong influence on the mechanisms controlling mtDNA copy number during serial subcultivation of immortalized mouse embryo fibroblasts, and that vimentin deficiency causes a disproportionately enhanced mtDNA content in high-passage vim(-) fibroblasts. Such a role of vimentin filaments was supported by the stronger retention potential for mtDNA and mtDNA polymerase (gamma) detected in vim(+) fibroblasts by Triton X-100 extraction of mitochondria and agaroseembedded cells. Moreover, although the vim(+) and vim(-) fibroblasts were equally active in generating free radicals, the vim(-) cells exhibited higher levels of immunologically detectable 8-oxoG and mismatch repair proteins MSH2 and MLH1 in their mitochondria. Because in vim(-) fibroblasts only one point mutation was detected in the mtDNA D-loop control region, these cells are apparently able to efficiently remove oxidatively damaged nucleobases. On the other hand, a number of large-scale mtDNA deletions were found in high-passage vim(-) fibroblasts, but not in low-passage vim(-) cells and vim(+) cells of both low and high passage. Large mtDNA deletions were also induced in young vim(-) fibroblasts by treatment with the DNA intercalator ethidium bromide, whereas no such deletions were found after treatment of vim(+) cells. These results indicate that in immortalized vim(-) fibroblasts the mitochondrial genome is prone to large-scale rearrangements, probably due to insufficient control of mtDNA repair and recombination processes in the absence of vimentin.
Collapse
|
15
|
Stuart JA, Mayard S, Hashiguchi K, Souza-Pinto NC, Bohr VA. Localization of mitochondrial DNA base excision repair to an inner membrane-associated particulate fraction. Nucleic Acids Res 2005; 33:3722-32. [PMID: 16006620 PMCID: PMC1174906 DOI: 10.1093/nar/gki683] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mitochondrial DNA (mtDNA) contains high levels of oxidative damage relative to nuclear DNA. A full, functional DNA base excision repair (BER) pathway is present in mitochondria, to repair oxidative DNA lesions. However, little is known about the organization of this pathway within mitochondria. Here, we provide evidence that the mitochondrial BER proteins are not freely soluble, but strongly associated with an inner membrane-containing particulate fraction. Uracil DNA glycosylase, oxoguanine DNA glycosylase and DNA polymerase γ activities all co-sedimented with this particulate fraction and were not dissociated from it by detergent (0.1% or 1.0% NP40) treatment. The particulate associations of these activities were not due to their binding mtDNA, which is itself associated with the inner membrane, as they also localized to the particulate fraction of mitochondria from 143B (TK−) ρ0 cells, which lack mtDNA. However, all of the BER activities were at least partially solubilized from the particulate fraction by treatment with 150–300 mM NaCl, suggesting that electrostatic interactions are involved in the association. The biological implications of the apparent immobilization of BER proteins are discussed.
Collapse
Affiliation(s)
| | | | | | | | - V. A. Bohr
- To whom correspondence should be addressed. Tel: +1 410 558 8332; Fax: +1 410 558 8157;
| |
Collapse
|
16
|
Piccoli C, Ria R, Scrima R, Cela O, D'Aprile A, Boffoli D, Falzetti F, Tabilio A, Capitanio N. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 2005; 280:26467-76. [PMID: 15883163 DOI: 10.1074/jbc.m500047200] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was aimed to characterize the mitochondrial and extra-mitochondrial oxygen consuming reactions in human CD34+ hematopoietic stem cells. Cell samples were collected by apheresis following pre-conditioning by granulocyte colony-stimulating factor and isolated by anti-CD34 positive immunoselection. Polarographic analysis of the CN-sensitive endogenous cell respiration revealed a low mitochondrial oxygen consumption rate. Differential absorbance spectrometry on whole cell lysate and two-dimensional blue native-PAGE analysis of mitoplast proteins confirmed a low amount of mitochondrial respiratory chain complexes thus qualifying the hematopoietic stem cell as a poor oxidative phosphorylating cell type. Confocal microscopy imaging showed, however, that the intracellular content of mitochondria was not homogeneously distributed in the CD34+ hematopoietic stem cell sample displaying a clear inverse correlation of their density with the expression of the CD34 commitment marker. About half of the endogenous oxygen consumption was extra-mitochondrial and completely inhibitable by enzymatic scavengers of reactive oxygen species and by diphenylene iodinium. By spectral analysis, flow cytometry, reverse transcriptase-PCR, immunocytochemistry, and immunoprecipitation it was shown that the extra-mitochondrial oxygen consumption was contributed by the NOX2 and NOX4 isoforms of the O2-*. producer plasma membrane NAD(P)H oxidase with low constitutive activity. A model is proposed suggesting for the NAD(P)H oxidase a role of O2 sensor and/or ROS source serving as redox messengers in the activation of intracellular signaling pathways leading (or contributing) to mitochondriogenesis, cell survival, and differentiation in hematopoietic stem cells.
Collapse
MESH Headings
- Antigens, CD34/biosynthesis
- Cell Line
- Cells, Cultured
- Electron Transport
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Flow Cytometry
- Granulocyte-Macrophage Colony-Stimulating Factor
- Hematopoietic Stem Cells/cytology
- Humans
- Image Processing, Computer-Assisted
- Immunoblotting
- Immunohistochemistry
- Immunoprecipitation
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Models, Biological
- NADPH Oxidases/metabolism
- Oxidation-Reduction
- Oxygen/chemistry
- Oxygen/metabolism
- Oxygen Consumption
- Phosphorylation
- Protein Binding
- Protein Structure, Quaternary
- Reactive Oxygen Species
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Spectrophotometry
Collapse
Affiliation(s)
- Claudia Piccoli
- Department of Biomedical Science, University of Foggia, Foggia, Italy 71100
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Valgardsdottir R, Ottersen OP, Prydz H. Regulated compartmentalization of the putative DEAD-box helicase MDDX28 within the mitochondria in COS-1 cells. Exp Cell Res 2004; 299:294-302. [PMID: 15350529 DOI: 10.1016/j.yexcr.2004.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 05/14/2004] [Indexed: 10/26/2022]
Abstract
We recently cloned a putative DEAD-box helicase MDDX28 and found that it was localized to the nuclei and mitochondria of COS-1 cells. The mitochondrial localization of MDDX28 is largely diffuse. We have, however, used immunofluorescence and immunogold cytochemistry to show that the MDDX28 protein is localized in a distinct mitochondrial subcompartment in 5-10% of COS-1 cells. This proportion increases to approximately 35% after treatment with ethidium bromide, suggesting upregulation following transcription inhibition. To our knowledge, this is the first example of protein relocation in the mitochondria caused by transcription inhibition. The mitochondrial subcompartmentation of MDDX28 was negatively affected by mutations in a RNA-binding domain and three basic domains previously shown to be important in transcription-dependent intranuclear localization. Furthermore, immunogold cytochemistry and fractionation of rat liver indicated that the protein is a part of an RNA-protein (RNP) complex interacting peripherally with the mitochondrial inner membrane. Our results reveal new principles for regulation of protein localization in the mitochondria and suggest parallels between the function of the MDDX28 protein in the nucleus and mitochondria.
Collapse
|
18
|
Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 2004; 279:13044-53. [PMID: 14722062 DOI: 10.1074/jbc.m312846200] [Citation(s) in RCA: 751] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current methods for determining ambient redox potential in cells are labor-intensive and generally require destruction of tissue. This precludes single cell or real time studies of changes in redox poise that result from metabolic processes or environmental influences. By substitution of surface-exposed residues on the Aequorea victoria green fluorescent protein (GFP) with cysteines in appropriate positions to form disulfide bonds, reduction-oxidation-sensitive GFPs (roGFPs) have been created. roGFPs have two fluorescence excitation maxima at about 400 and 490 nm and display rapid and reversible ratiometric changes in fluorescence in response to changes in ambient redox potential in vitro and in vivo. Crystal structure analyses of reduced and oxidized crystals of roGFP2 at 2.0- and 1.9-A resolution, respectively, reveal in the oxidized state a highly strained disulfide and localized main chain structural changes that presumably account for the state-dependent spectral changes. roGFP1 has been targeted to the mitochondria in HeLa cells. Fluorometric measurements on these cells using a fluorescence microscope or in cell suspension using a fluorometer reveal that the roGFP1 probe is in dynamic equilibrium with the mitochondrial redox status and responds to membrane-permeable reductants and oxidants. The roGFP1 probe reports that the matrix space in HeLa cell mitochondria is highly reducing, with a midpoint potential near -360 mV (assuming mitochondrial pH approximately 8.0 at 37 degrees C). In other work (C. T. Dooley, T. M. Dore, G. Hanson, W. C. Jackson, S. J. Remington, and R. Y. Tsien, submitted for publication), it is shown that the cytosol of HeLa cells is also unusually reducing but somewhat less so than the mitochondrial matrix.
Collapse
Affiliation(s)
- George T Hanson
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Berry S. Endosymbiosis and the design of eukaryotic electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:57-72. [PMID: 14507427 DOI: 10.1016/s0005-2728(03)00084-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.
Collapse
Affiliation(s)
- Stephan Berry
- Plant Biochemistry, Faculty of Biology, Ruhr-University-Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
20
|
Murray J, Gilkerson R, Capaldi RA. Quantitative proteomics: the copy number of pyruvate dehydrogenase is more than 10(2)-fold lower than that of complex III in human mitochondria. FEBS Lett 2002; 529:173-8. [PMID: 12372595 DOI: 10.1016/s0014-5793(02)03278-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyruvate dehydrogenase (PDH) and complex III are two key protein complexes in mitochondrial metabolic activity. Using a novel quantitative Western blotting method, we find that PDH and complex III exist at a steady-state ratio of 1:100, 1:128 and 1:202 in HeLa cell extracts, fibroblast mitochondria and heart tissue mitochondria, respectively. This difference in stoichiometry is reflected in the immunogold labeling intensities of the two complexes and by the much more sparse distribution of PDH in fluorescence microscopy. In Rho0 fibroblasts there is a 64% reduction of complex III but the concentration of PDH remains the same as wild-type.
Collapse
Affiliation(s)
- James Murray
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | |
Collapse
|