1
|
Doktorova M, Symons JL, Zhang X, Wang HY, Schlegel J, Lorent JH, Heberle FA, Sezgin E, Lyman E, Levental KR, Levental I. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. Cell 2025; 188:2586-2602.e24. [PMID: 40179882 DOI: 10.1016/j.cell.2025.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Membranes are molecular interfaces that compartmentalize cells to control the flow of nutrients and information. These functions are facilitated by diverse collections of lipids, nearly all of which are distributed asymmetrically between the two bilayer leaflets. Most models of biomembrane structure and function include the implicit assumption that these leaflets have similar abundances of phospholipids. Here, we show that this assumption is generally invalid and investigate the consequences of lipid abundance imbalances in mammalian plasma membranes (PMs). Using lipidomics, we report that cytoplasmic leaflets of human erythrocyte membranes have >50% overabundance of phospholipids compared with exoplasmic leaflets. This imbalance is enabled by an asymmetric interleaflet distribution of cholesterol, which regulates cellular cholesterol homeostasis. These features produce unique functional characteristics, including low PM permeability and resting tension in the cytoplasmic leaflet that regulates protein localization.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA; Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, 17165 Solna, Sweden.
| | - Jessica L Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoxuan Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Joseph H Lorent
- Department of Cellular and Molecular Pharmacology, TFAR, LDRI, UCLouvain, Avenue Mounier 73, B1.73.05, 1200 Brussels, Belgium
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Edward Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
2
|
Hazen P, Khadka NK, Mainali L. Cholesterol and Q147E Deamidation Modulates αA-Crystallin Membrane Binding Elucidating Protective Role of Lens Membrane Composition Changes With Aging. Invest Ophthalmol Vis Sci 2025; 66:8. [PMID: 40323268 PMCID: PMC12060060 DOI: 10.1167/iovs.66.5.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/14/2025] [Indexed: 05/10/2025] Open
Abstract
Purpose The αA-Crystallin (αAc) binding with lens membranes increases with age and cataract formation. However, the role of lipids and cholesterol (Chol) in Q147E-αAc membrane binding remains unclear, which we aim to elucidate in this study. Methods We have used the electron paramagnetic resonance spin-labeling method to probe the Chol/ 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and Chol/ sphingomyelin (SM) membranes binding with wild-type (WT) and Q147E-αAc. Results Compared to WT-αAc, the Q147E mutant had increased binding to POPC and decreased binding to SM membranes without Chol. Adding 33 mol% Chol to the POPC and SM membranes decreased the binding of WT and, to a lesser degree, decreased the binding of Q147E-αAc to the membranes. Adding 60 mol% Chol completely inhibited Q147E mutant and WT binding to POPC membranes. However, 33 and 60 mol% Chol completely inhibited WT and Q147E mutant binding to SM membranes, respectively. WT and Q147E-αAc membrane binding decreased membrane mobility while increasing order and hydrophobicity near the headgroup. Conclusions In Chol-free membranes, the deamidated Q147E-αAc binds significantly more to the POPC membranes compared to WT, whereas WT binds significantly more to the SM membranes compared to Q147E-αAc. In contrast, for 33 mol% Chol-containing membranes, the deamidated Q147E-αAc binds significantly more to POPC and SM membranes than WT. Conversely, 60 mol% Chol-containing membranes completely inhibit WT and deamidated Q147E-αAc binding to POPC and SM membranes. These results suggest that increased Chol content of the lens membranes during aging protects against accumulation of modified proteins on the membrane associated with cataracts.
Collapse
Affiliation(s)
- Preston Hazen
- Biomolecular Sciences Graduate Program, Boise State University, Boise, Idaho, United States
| | - Nawal K. Khadka
- Department of Physics, Boise State University, Boise, Idaho, United States
| | - Laxman Mainali
- Biomolecular Sciences Graduate Program, Boise State University, Boise, Idaho, United States
- Department of Physics, Boise State University, Boise, Idaho, United States
| |
Collapse
|
3
|
Mehta D, Crumley EK, Lou J, Dzikovski B, Best MD, Waxham MN, Heberle FA. Halogenated Cholesterol Alters the Phase Behavior of Ternary Lipid Membranes. J Phys Chem B 2025; 129:671-683. [PMID: 39772574 DOI: 10.1021/acs.jpcb.4c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Eukaryotic plasma membranes exhibit nanoscale lateral lipid heterogeneity, a feature that is thought to be central to their function. Studying these heterogeneities is challenging since few biophysical methods are capable of detecting domains at submicron length scales. We recently showed that cryogenic electron microscopy (cryo-EM) can directly image nanoscale liquid-liquid phase separation in extruded liposomes due to its ability to resolve the intrinsic thickness and electron density differences of ordered and disordered phases. However, the intensity contrast between these phases is poor compared with conventional fluorescence microscopy and is thus both a limiting factor and a focal point for optimization. Because the fundamental source of intensity contrast is the spatial variation in electron density within the bilayer, lipid modifications aimed at selectively increasing the electron density of one phase might enhance the ability to resolve coexisting phases. To this end, we investigated model membrane mixtures of DPPC/DOPC/cholesterol in which one hydrogen of cholesterol's C19 methyl group was replaced by an electron-rich halogen atom (either bromine or iodine). We characterized the phase behavior as a function of composition and temperature using fluorescence microscopy, Förster resonance energy transfer, and cryo-EM. Our data suggest that halogenated cholesterol variants distribute approximately evenly between liquid-ordered and liquid-disordered phases and are thus ineffective at enhancing the intensity difference between them. Furthermore, replacing more than half of the native cholesterol with halogenated cholesterol variants dramatically reduces the size of the membrane domains. Our results reinforce how small changes in the sterol structure can have a large impact on the lateral organization of membrane lipids.
Collapse
Affiliation(s)
- Deeksha Mehta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Elizabeth K Crumley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Boris Dzikovski
- ACERT, National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| |
Collapse
|
4
|
Doktorova M, Symons JL, Zhang X, Wang HY, Schlegel J, Lorent JH, Heberle FA, Sezgin E, Lyman E, Levental KR, Levental I. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.30.551157. [PMID: 39713443 PMCID: PMC11661119 DOI: 10.1101/2023.07.30.551157] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Membranes are molecular interfaces that compartmentalize cells to control the flow of nutrients and information. These functions are facilitated by diverse collections of lipids, nearly all of which are distributed asymmetrically between the two bilayer leaflets. Most models of biomembrane structure and function often include the implicit assumption that these leaflets have similar abundances of phospholipids. Here, we show that this assumption is generally invalid and investigate the consequences of lipid abundance imbalances in mammalian plasma membranes (PM). Using quantitative lipidomics, we discovered that cytoplasmic leaflets of human erythrocyte membranes have >50% overabundance of phospholipids compared to exoplasmic leaflets. This imbalance is enabled by an asymmetric interleaflet distribution of cholesterol, which regulates cellular cholesterol homeostasis. These features produce unique functional characteristics, including low PM permeability and resting tension in the cytoplasmic leaflet that regulates protein localization. These largely overlooked aspects of membrane asymmetry represent an evolution of classic paradigms of biomembrane structure and physiology.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Biochemistry and Biophysics, Stockholm University; Science for Life Laboratory, Solna 171 65, Sweden
| | - Jessica L. Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Xiaoxuan Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet; 17165 Solna, Sweden
| | - Joseph H. Lorent
- Department of Cellular and Molecular Pharmacology, TFAR, LDRI, UCLouvain; Avenue Mounier 73, B1.73.05, B-1200 Brussels
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee Knoxville; Knoxville, TN 37916, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet; 17165 Solna, Sweden
| | - Edward Lyman
- Department of Physics and Astronomy; Department of Chemistry and Biochemistry, University of Delaware; Newark, DE 19716, USA
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia; Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Sachet-Fernandez G, Hindley JW, Ces O, Woscholski R. Imidazole Headgroup Phospholipid Shows Asymmetric Distribution in Vesicles and Zinc-Dependent Esterase Activity. Biomolecules 2024; 14:1363. [PMID: 39595540 PMCID: PMC11592132 DOI: 10.3390/biom14111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Artificial lipids have become increasingly important in generating novel nanoenzymes and nanoparticles. Imidazole has been well established as a versatile catalyst in synthetic chemistry and through its related amino acid histidine in enzymes. By exploiting the transphosphatidylation reaction of phospholipase D, the choline headgroup of phosphatidyl choline was exchanged for the imidazole moiety containing histidinol. Here, we introduce a novel phosphatidylhistidinol (PtdHisOH) lipid and characterise it with respect to its catalytic abilities and its ability to modulate vesicle size. Our data reveal a zinc-dependent esterase activity that was strongest in vesicles and micelles, with slower catalytic rates being observed in flat lipid presentation systems and two-phase systems, indicating the importance of surface presentation and curvature effects on the catalytic activity of PtdHisOH. Such lipids offer the opportunity to impart de novo catalytic functionality to self-assembled lipid systems such as synthetic cells, leading to the development of new technologies for biocatalysis applications.
Collapse
Affiliation(s)
- Gabriela Sachet-Fernandez
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (G.S.-F.); (J.W.H.); (O.C.)
- Leverhulme Doctoral Scholarships Centre for Cellular Bionics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - James W. Hindley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (G.S.-F.); (J.W.H.); (O.C.)
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (G.S.-F.); (J.W.H.); (O.C.)
- Leverhulme Doctoral Scholarships Centre for Cellular Bionics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Rüdiger Woscholski
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (G.S.-F.); (J.W.H.); (O.C.)
- Leverhulme Doctoral Scholarships Centre for Cellular Bionics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
6
|
Mardešić I, Boban Z, Raguz M. Electroformation of Giant Unilamellar Vesicles from Damp Films in Conditions Involving High Cholesterol Contents, Charged Lipids, and Saline Solutions. MEMBRANES 2024; 14:215. [PMID: 39452827 PMCID: PMC11510074 DOI: 10.3390/membranes14100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Giant unilamellar vesicles (GUVs) are frequently used as membrane models in studies of membrane properties. They are most often produced using the electroformation method. However, there are a number of parameters that can influence the success of the procedure. Some of the most common conditions that have been shown to have a negative effect on GUV electroformation are the presence of high cholesterol (Chol) concentrations, the use of mixtures containing charged lipids, and the solutions with an elevated ionic strength. High Chol concentrations are problematic for the traditional electroformation protocol as it involves the formation of a dry lipid film by complete evaporation of the organic solvent from the lipid mixture. During drying, anhydrous Chol crystals form. They are not involved in the formation of the lipid bilayer, resulting in a lower Chol concentration in the vesicle bilayer compared to the original lipid mixture. Motivated primarily by the issue of artifactual Chol demixing, we have modified the electroformation protocol by incorporating the techniques of rapid solvent exchange (RSE), ultrasonication, plasma cleaning, and spin-coating for reproducible production of GUVs from damp lipid films. Aside from decreasing Chol demixing, we have shown that the method can also be used to produce GUVs from lipid mixtures with charged lipids and in ionic solutions used as internal solutions. A high yield of GUVs was obtained for Chol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) samples with mixing ratios ranging from 0 to 2.5. We also succeeded in preparing GUVs from mixtures containing up to 60 mol% of the charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and in NaCl solutions with low ionic strength (<25 mM).
Collapse
Affiliation(s)
- Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| |
Collapse
|
7
|
Kim E, Graceffa O, Broweleit R, Ladha A, Boies A, Mudakannavar SP, Rawle RJ. Lipid loss and compositional change during preparation of simple two-component liposomes. BIOPHYSICAL REPORTS 2024; 4:100174. [PMID: 39173912 PMCID: PMC11406089 DOI: 10.1016/j.bpr.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Liposomes are used as model membranes in many scientific fields. Various methods exist to prepare liposomes, but common procedures include thin-film hydration followed by extrusion, freeze-thaw, and/or sonication. These procedures can produce liposomes at specific concentrations and lipid compositions, and researchers often assume that the concentration and composition of their liposomes are similar or identical to what would be expected if no lipid loss occurred. However, lipid loss and concomitant biasing of lipid composition can in principle occur at any preparation step due to nonideal mixing, lipid-surface interactions, etc. Here, we report a straightforward HPLC-ELSD method to quantify the lipid concentration and composition of liposomes and apply that method to study the preparation of simple cholesterol/POPC liposomes. We examine common liposome preparation steps, including vortexing during resuspension, lipid film hydration, extrusion, freeze-thaw, and sonication. We found that the resuspension step can play an outsized role in determining the lipid loss (up to ∼50% under seemingly rigorous procedures). The extrusion step yielded smaller lipid losses (∼10-20%). Freeze-thaw and sonication could both be employed to improve lipid yields. Hydration times up to 60 min and increasing cholesterol concentrations up to 50 mol % had little influence on lipid recovery. Fortunately, even conditions with large lipid loss did not substantially influence the target membrane composition, as long as the lipid mixture was below the cholesterol solubility limit. From our results, we identify best practices for producing maximum levels of lipid recovery and minimal changes to lipid composition during liposome preparation for cholesterol/POPC liposomes.
Collapse
Affiliation(s)
- Eunice Kim
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Olivia Graceffa
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Rachel Broweleit
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Ali Ladha
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Andrew Boies
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | | | - Robert J Rawle
- Department of Chemistry, Williams College, Williamstown, Massachusetts.
| |
Collapse
|
8
|
Kennison-Cook KB, Heberle FA. Disruption of liquid/liquid phase separation in asymmetric GUVs prepared by hemifusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600037. [PMID: 38979299 PMCID: PMC11230200 DOI: 10.1101/2024.06.21.600037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Model asymmetric bilayers are useful for studying the coupling between lateral and transverse lipid organization. Here, we used calcium-induced hemifusion to create asymmetric giant unilamellar vesicles (aGUVs) for exploring the phase behavior of 16:0-PC/16:1-PC/Cholesterol, a simplified model for the mammalian plasma membrane. Symmetric GUVs (sGUVs) were first prepared using a composition that produced coexisting liquid-disordered and liquid-ordered phases visible by confocal fluorescence microscopy. The sGUVs were then hemifused to a supported lipid bilayer (SLB) composed of uniformly mixed 16:1-PC/Cholesterol. The extent of outer leaflet exchange was quantified in aGUVs in two ways: (1) from the reduction in fluorescence intensity of a lipid probe initially in the sGUV ("probe exit"); or (2) from the gain in intensity of a probe initially in the SLB ("probe entry"). These measurements revealed a large variability in the extent of outer leaflet exchange in aGUVs within a given preparation, and two populations with respect to their phase behavior: a subset of vesicles that remained phase separated, and a second subset that appeared uniformly mixed. Moreover, a correlation between phase behavior and extent of asymmetry was observed, with more strongly asymmetric vesicles having a greater probability of being uniformly mixed. We also observed substantial overlap between these populations, an indication that the uncertainty in measured exchange fraction is high. We developed models to determine the position of the phase boundary (i.e., the fraction of outer leaflet exchange above which domain formation is suppressed) and found that the phase boundaries determined separately from probe-entry and probe-exit data are in good agreement. Our models also provide improved estimates of the compositional uncertainty of individual aGUVs. We discuss several potential sources of uncertainty in the determination of lipid exchange from fluorescence measurements.
Collapse
|
9
|
Kim E, Graceffa O, Broweleit R, Ladha A, Boies A, Rawle RJ. Lipid loss and compositional change during preparation of liposomes by common biophysical methods. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596670. [PMID: 38854048 PMCID: PMC11160747 DOI: 10.1101/2024.05.30.596670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Liposomes are widely used as model lipid membrane platforms in many fields, ranging from basic biophysical studies to drug delivery and biotechnology applications. Various methods exist to prepare liposomes, but common procedures include thin-film hydration followed by extrusion, freeze-thaw, and/or sonication. These procedures have the potential to produce liposomes at specific concentrations and membrane compositions, and researchers often assume that the concentration and composition of their liposomes are similar to, if not identical, to what would be expected if no lipid loss occurred during preparation. However, lipid loss and concomitant biasing of lipid composition can in principle occur at any preparation step due to nonideal mixing, lipid-surface interactions, etc. Here, we report a straightforward method using HPLC-ELSD to quantify the lipid concentration and membrane composition of liposomes, and apply that method to study the preparation of simple POPC/cholesterol liposomes. We examine many common steps in liposome formation, including vortexing during re-suspension, hydration of the lipid film, extrusion, freeze-thaw, sonication, and the percentage of cholesterol in the starting mixture. We found that the resuspension step can play an outsized role in determining the overall lipid loss (up to ~50% under seemingly rigorous procedures). The extrusion step yielded smaller lipid losses (~10-20%). Freeze-thaw and sonication could both be employed to improve lipid yields. Hydration times up to 60 minutes and increasing cholesterol concentrations up to 50 mole% had little influence on lipid recovery. Fortunately, even conditions with large lipid loss did not substantially influence the target membrane composition more than ~5% under the conditions we tested. From our results, we identify best practices for producing maximum levels of lipid recovery and minimal changes to lipid composition during liposome preparation protocols. We expect our results can be leveraged for improved preparation of model membranes by researchers in many fields.
Collapse
Affiliation(s)
- Eunice Kim
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Olivia Graceffa
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Rachel Broweleit
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Ali Ladha
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Andrew Boies
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Robert J Rawle
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| |
Collapse
|
10
|
Enoki TA. The use of hemifusion to create asymmetric giant unilamellar vesicles: Insights on induced order domains. Methods Enzymol 2024; 700:127-159. [PMID: 38971598 DOI: 10.1016/bs.mie.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The natural asymmetry of the lipid bilayer in biological membranes is, in part, a testament to the complexity of the structure and function of this barrier limiting and protecting cells (or organelles). These lipid bilayers consist of two lipid leaflets with different lipid compositions, resulting in unique interactions within each leaflet. These interactions, combined with interactions between the two leaflets, determine the overall behavior of the membrane. Model membranes provide the most suitable option for investigating the fundamental interactions of lipids. This report describes a comprehensive method to make asymmetric giant unilamellar vesicles (aGUVs) using the technique of hemifusion. In this method, calcium ions induce the hemifusion of giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB), both having different lipid compositions. During hemifusion, a stalk, or a more commonly seen hemifusion diaphragm, connects the outer leaflets of GUVs and the SLB. The lateral diffusion of lipids naturally promotes the lipid exchange between the connected outer leaflets. After calcium chelation to prevent further fusion, a mechanical shear detaches aGUVs from the SLB. A fluorescence quench assay is employed to test the extent of bilayer asymmetry. A fluorescence quenching assay tests bilayer asymmetry and verifies dye and lipid migration to a GUV's outer leaflet.
Collapse
Affiliation(s)
- Thais A Enoki
- Institute of Physics of University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Mardešić I, Boban Z, Raguz M. Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films with a Focus on Vesicles with High Cholesterol Content. MEMBRANES 2024; 14:79. [PMID: 38668107 PMCID: PMC11051717 DOI: 10.3390/membranes14040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Giant unilamellar vesicles (GUVs) are membrane models used to study membrane properties. Electroformation is one of the methods used to produce GUVs. During electroformation protocol, dry lipid film is formed. The drying of the lipid film induces the cholesterol (Chol) demixing artifact, in which Chol forms anhydrous crystals which do not participate in the formation of vesicles. This leads to a lower Chol concentration in the vesicle bilayers compared to the Chol concentration in the initial lipid solution. To address this problem, we propose a novel electroformation protocol that includes rapid solvent exchange (RSE), plasma cleaning, and spin-coating methods to produce GUVs. We tested the protocol, focusing on vesicles with a high Chol content using different spin-coating durations and vesicle type deposition. Additionally, we compared the novel protocol using completely dry lipid film. The optimal spin-coating duration for vesicles created from the phosphatidylcholine/Chol mixture was 30 s. Multilamellar vesicles (MLVs), large unilamellar vesicles (LUVs) obtained by the extrusion of MLVs through 100 nm membrane pores and LUVs obtained by extrusion of previously obtained LUVs through 50 nm membrane pores, were deposited on an electrode for 1.5/1 Chol/phosphatidylcholine (POPC) lipid mixture, and the results were compared. Electroformation using all three deposited vesicle types resulted in a high GUV yield, but the deposition of LUVs obtained by the extrusion of MLVs through 100 nm membrane pores provided the most reproducible results. Using the deposition of these LUVs, we produced high yield GUVs for six different Chol concentrations (from 0% to 71.4%). Using a protocol that included dry lipid film GUVs resulted in lower yields and induced the Chol demixing artifact, proving that the lipid film should never be subjected to drying when the Chol content is high.
Collapse
Affiliation(s)
- Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| |
Collapse
|
12
|
Hazen P, Trossi-Torres G, Timsina R, Khadka NK, Mainali L. Association of Alpha-Crystallin with Human Cortical and Nuclear Lens Lipid Membrane Increases with the Grade of Cortical and Nuclear Cataract. Int J Mol Sci 2024; 25:1936. [PMID: 38339214 PMCID: PMC10855980 DOI: 10.3390/ijms25031936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.
Collapse
Affiliation(s)
- Preston Hazen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
| | - Geraline Trossi-Torres
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Nawal K. Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Laxman Mainali
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| |
Collapse
|
13
|
Enoki TA, Heberle FA. Experimentally determined leaflet-leaflet phase diagram of an asymmetric lipid bilayer. Proc Natl Acad Sci U S A 2023; 120:e2308723120. [PMID: 37939082 PMCID: PMC10655556 DOI: 10.1073/pnas.2308723120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
We have determined the partial leaflet-leaflet phase diagram of an asymmetric lipid bilayer at ambient temperature using asymmetric giant unilamellar vesicles (aGUVs). Symmetric GUVs with varying amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) were hemifused to a supported lipid bilayer (SLB) composed of DOPC, resulting in lipid exchange between their outer leaflets. The GUVs and SLB contained a red and green lipid fluorophore, respectively, thus enabling the use of confocal fluorescence imaging to determine both the extent of lipid exchange (quantified for individual vesicles by the loss of red intensity and gain of green intensity) and the presence or absence of phase separation in aGUVs. Consistent with previous reports, we found that hemifusion results in large variation in outer leaflet exchange for individual GUVs, which allowed us to interrogate the phase behavior at multiple points within the asymmetric composition space of the binary mixture. When initially symmetric GUVs showed coexisting gel and fluid domains, aGUVs with less than ~50% outer leaflet exchange were also phase-separated. In contrast, aGUVs with greater than 50% outer leaflet exchange were uniform and fluid. In some cases, we also observed three coexisting bilayer-spanning phases: two registered phases and an anti-registered phase. These results suggest that a relatively large unfavorable midplane interaction between ordered and disordered phases in opposing leaflets (i.e., a midplane surface tension) can overwhelm the driving force for lateral phase separation within one of the leaflets, resulting in an asymmetric bilayer with two uniformly mixed leaflets that is poised to phase-separate upon leaflet scrambling.
Collapse
Affiliation(s)
- Thais A. Enoki
- Department of Chemistry, University of Tennessee, Knoxville, TN37996
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | | |
Collapse
|
14
|
Javanainen M, Heftberger P, Madsen JJ, Miettinen MS, Pabst G, Ollila OHS. Quantitative Comparison against Experiments Reveals Imperfections in Force Fields' Descriptions of POPC-Cholesterol Interactions. J Chem Theory Comput 2023; 19:6342-6352. [PMID: 37616238 PMCID: PMC10536986 DOI: 10.1021/acs.jctc.3c00648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/26/2023]
Abstract
Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C-H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, 16000 Prague 6, Czech Republic
- Institute
of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Peter Heftberger
- Biophysics,
Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Jesper J. Madsen
- Global
and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
- Center
for Global Health and Infectious Diseases Research, College of Public
Health, University of South Florida, Tampa, Florida 33612, United States
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Markus S. Miettinen
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Department
of Chemistry, University of Bergen, 5007 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Georg Pabst
- Biophysics,
Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence
BioHealth—University of Graz, 8010 Graz, Austria
| | - O. H. Samuli Ollila
- Institute
of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
- VTT Technical Research Centre of Finland, 02150 Espoo, Finland
| |
Collapse
|
15
|
Opperman CJ, Wojno J, Goosen W, Warren R. Phages for the treatment of Mycobacterium species. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:41-92. [PMID: 37770176 DOI: 10.1016/bs.pmbts.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Highly drug-resistant strains are not uncommon among the Mycobacterium genus, with patients requiring lengthy antibiotic treatment regimens with multiple drugs and harmful side effects. This alarming increase in antibiotic resistance globally has renewed the interest in mycobacteriophage therapy for both Mycobacterium tuberculosis complex and non-tuberculosis mycobacteria. With the increasing number of genetically well-characterized mycobacteriophages and robust engineering tools to convert temperate phages to obligate lytic phages, the phage cache against extensive drug-resistant mycobacteria is constantly expanding. Synergistic effects between phages and TB drugs are also a promising avenue to research, with mycobacteriophages having several additional advantages compared to traditional antibiotics due to their different modes of action. These advantages include less side effects, a narrow host spectrum, biofilm penetration, self-replication at the site of infection and the potential to be manufactured on a large scale. In addition, mycobacteriophage enzymes, not yet in clinical use, warrant further studies with their additional benefits for rupturing host bacteria thereby limiting resistance development as well as showing promise in vitro to act synergistically with TB drugs. Before mycobacteriophage therapy can be envisioned as part of routine care, several obstacles must be overcome to translate in vitro work into clinical practice. Strategies to target intracellular bacteria and selecting phage cocktails to limit cross-resistance remain important avenues to explore. However, insight into pathophysiological host-phage interactions on a molecular level and innovative solutions to transcend mycobacteriophage therapy impediments, offer sufficient encouragement to explore phage therapy. Recently, the first successful clinical studies were performed using a mycobacteriophage-constructed cocktail to treat non-tuberculosis mycobacteria, providing substantial insight into lessons learned and potential pitfalls to avoid in order to ensure favorable outcomes. However, due to mycobacterium strain variation, mycobacteriophage therapy remains personalized, only being utilized in compassionate care cases until there is further regulatory approval. Therefore, identifying the determinants that influence clinical outcomes that can expand the repertoire of mycobacteriophages for therapeutic benefit, remains key for their future application.
Collapse
Affiliation(s)
- Christoffel Johannes Opperman
- National Health Laboratory Service, Green Point TB-Laboratory, Cape Town, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa; Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa.
| | - Justyna Wojno
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa; Lancet Laboratories, Cape Town, South Africa
| | - Wynand Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Rob Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
16
|
Patil R, Dehari D, Chaudhuri A, Kumar DN, Kumar D, Singh S, Nath G, Agrawal AK. Recent advancements in nanotechnology-based bacteriophage delivery strategies against bacterial ocular infections. Microbiol Res 2023; 273:127413. [PMID: 37216845 DOI: 10.1016/j.micres.2023.127413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is growing as a critical challenge in a variety of disease conditions including ocular infections leading to disastrous effects on the human eyes. Staphylococcus aureus (S. aureus) mediated ocular infections are very common affecting different parts of the eye viz. vitreous chamber, conjunctiva, cornea, anterior and posterior chambers, tear duct, and eyelids. Blepharitis, dacryocystitis, conjunctivitis, keratitis, endophthalmitis, and orbital cellulitis are some of the commonly known ocular infections caused by S. aureus. Some of these infections are so fatal that they could cause bilateral blindness like panophthalmitis and orbital cellulitis, which is caused by methicillin-resistant S. aureus (MRSA) and vancomycin-resistance S. aureus (VRSA). The treatment of S. aureus infections with known antibiotics is becoming gradually difficult because of the development of resistance against multiple antibiotics. Apart from the different combinations and formulation strategies, bacteriophage therapy is growing as an effective alternative to treat such infections. Although the superiority of bacteriophage therapy is well established, yet physical factors (high temperatures, acidic pH, UV-rays, and ionic strength) and pharmaceutical barriers (poor stability, low in-vivo retention, controlled and targeted delivery, immune system neutralization, etc.) have the greatest influence on the viability of phage virions (also phage proteins). A variety of Nanotechnology based formulations such as polymeric nanoparticles, liposomes, dendrimers, nanoemulsions, and nanofibres have been recently reported to overcome the above-mentioned obstacles. In this review, we have compiled all these recent reports and discussed bacteriophage-based nanoformulations techniques for the successful treatment of ocular infections caused by multidrug-resistant S. aureus and other bacteria.
Collapse
Affiliation(s)
- Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India; Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
17
|
Aghaaminiha M, Farnoud AM, Sharma S. Interdependence of cholesterol distribution and conformational order in lipid bilayers. Biointerphases 2023; 18:2887740. [PMID: 37125848 DOI: 10.1116/6.0002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
We show, via molecular simulations, that not only does cholesterol induce a lipid order, but the lipid order also enhances cholesterol localization within the lipid leaflets. Therefore, there is a strong interdependence between these two phenomena. In the ordered phase, cholesterol molecules are predominantly present in the bilayer leaflets and orient themselves parallel to the bilayer normal. In the disordered phase, cholesterol molecules are mainly present near the center of the bilayer at the midplane region and are oriented orthogonal to the bilayer normal. At the melting temperature of the lipid bilayers, cholesterol concentration in the leaflets and the bilayer midplane is equal. This result suggests that the localization of cholesterol in the lipid bilayers is mainly dictated by the degree of ordering of the lipid bilayer. We validate our findings on 18 different lipid bilayer systems, obtained from three different phospholipid bilayers with varying concentrations of cholesterol. To cover a large temperature range in simulations, we employ the Dry Martini force field. We demonstrate that the Dry and the Wet Martini (with polarizable water) force fields produce comparable results.
Collapse
Affiliation(s)
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| |
Collapse
|
18
|
Mardešić I, Boban Z, Subczynski WK, Raguz M. Membrane Models and Experiments Suitable for Studies of the Cholesterol Bilayer Domains. MEMBRANES 2023; 13:320. [PMID: 36984707 PMCID: PMC10057498 DOI: 10.3390/membranes13030320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Cholesterol (Chol) is an essential component of animal cell membranes and is most abundant in plasma membranes (PMs) where its concentration typically ranges from 10 to 30 mol%. However, in red blood cells and Schwann cells, PMs Chol content is as high as 50 mol%, and in the PMs of the eye lens fiber cells, it can reach up to 66 mol%. Being amphiphilic, Chol molecules are easily incorporated into the lipid bilayer where they affect the membrane lateral organization and transmembrane physical properties. In the aqueous phase, Chol cannot form free bilayers by itself. However, pure Chol bilayer domains (CBDs) can form in lipid bilayer membranes with the Chol content exceeding 50 mol%. The range of Chol concentrations surpassing 50 mol% is less frequent in biological membranes and is consequently less investigated. Nevertheless, it is significant for the normal functioning of the eye lens and understanding how Chol plaques form in atherosclerosis. The most commonly used membrane models are unilamellar and multilamellar vesicles (MLVs) and supported lipid bilayers (SLBs). CBDs have been observed directly using confocal microscopy, X-ray reflectometry and saturation recovery electron paramagnetic resonance (SR EPR). Indirect evidence of CBDs has also been reported by using atomic force microscopy (AFM) and fluorescence recovery after photobleaching (FRAP) experiments. The overall goal of this review is to demonstrate the advantages and limitations of the various membrane models and experimental techniques suitable for the detection and investigation of the lateral organization, function and physical properties of CBDs.
Collapse
Affiliation(s)
- Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | - Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | | | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| |
Collapse
|
19
|
DiPasquale M, Nguyen MHL, Castillo SR, Dib IJ, Kelley EG, Marquardt D. Vitamin E Does Not Disturb Polyunsaturated Fatty Acid Lipid Domains. Biochemistry 2022; 61:2366-2376. [PMID: 36227768 DOI: 10.1021/acs.biochem.2c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The function of vitamin E in biomembranes remains a prominent topic of discussion. As its limitations as an antioxidant persist and novel functions are discovered, our understanding of the role of vitamin E becomes increasingly enigmatic. As a group of lipophilic molecules (tocopherols and tocotrienols), vitamin E has been shown to influence the properties of its host membrane, and a wealth of research has connected vitamin E to polyunsaturated fatty acid (PUFA) lipids. Here, we use contrast-matched small-angle neutron scattering and differential scanning calorimetry to integrate these fields by examining the influence of vitamin E on lipid domain stability in PUFA-based lipid mixtures. The influence of α-tocopherol, γ-tocopherol, and α-tocopherylquinone on the lateral organization of a 1:1 lipid mixture of saturated distearoylphosphatidylcholine (DSPC) and polyunsaturated palmitoyl-linoleoylphosphatidylcholine (PLiPC) with cholesterol provides a complement to our growing understanding of the influence of tocopherol on lipid phases. Characterization of domain melting suggests a slight depression in the transition temperature and a decrease in transition cooperativity. Tocopherol concentrations that are an order of magnitude higher than anticipated physiological concentrations (2 mol percent) do not significantly perturb lipid domains; however, addition of 10 mol percent is able to destabilize domains and promote lipid mixing. In contrast to this behavior, increasing concentrations of the oxidized product of α-tocopherol (α-tocopherylquinone) induces a proportional increase in domain stabilization. We speculate how the contrasting effect of the oxidized product may supplement the antioxidant response of vitamin E.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Isabelle J Dib
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20878, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada.,Department of Physics, University of Windsor, Windsor, OntarioN9B3P4, Canada
| |
Collapse
|
20
|
Enoki TA, Feigenson GW. Improving our picture of the plasma membrane: Rafts induce ordered domains in a simplified model cytoplasmic leaflet. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183995. [PMID: 35753393 DOI: 10.1016/j.bbamem.2022.183995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023]
Abstract
By study of asymmetric membranes, models of the cell plasma membrane (PM) have improved, with more realistic properties of the asymmetric lipid composition of the membrane being explored. We used hemifusion of symmetric giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB) to engineer bilayer leaflets of different composition. During hemifusion, only the outer leaflets of GUV and SLB are connected, exchanging lipids by simple diffusion. aGUVs were detached from the SLB for study. In general these aGUVs are formed with one leaflet that phase-separates into Ld (liquid disordered) + Lo (liquid ordered) phases, and another leaflet with lipid composition that would form a single fluid phase in a symmetric bilayer. We observed that ordered phases of either Lo or Lβ (gel phase) induce an ordered domain in the apposed fluid leaflet that lacks high melting lipids. Results suggest both an inter-leaflet and an intra-leaflet redistribution of cholesterol. We used C-Laurdan spectral images to investigate the lipid packing/order of aGUVs, finding that cholesterol partitions into the induced ordered domains. We suggest this behavior to be commonplace, that when Ld + Lo phase separation occurs in a cell PM exoplasmic leaflet, an induced order domain forms in the cytoplasmic leaflet.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Timsina R, Wellisch S, Haemmerle D, Mainali L. Binding of Alpha-Crystallin to Cortical and Nuclear Lens Lipid Membranes Derived from a Single Lens. Int J Mol Sci 2022; 23:ijms231911295. [PMID: 36232595 PMCID: PMC9570235 DOI: 10.3390/ijms231911295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies reported that α-crystallin concentrations in the eye lens cytoplasm decrease with a corresponding increase in membrane-bound α-crystallin with age and cataracts. The influence of the lipid and cholesterol composition difference between cortical membrane (CM) and nuclear membrane (NM) on α-crystallin binding to membranes is still unclear. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the α-crystallin binding to bovine CM and NM derived from the total lipids extracted from a single lens. Compared to CMs, NMs have a higher percentage of membrane surface occupied by α-crystallin and binding affinity, correlating with less mobility and more order below and on the surface of NMs. α-Crystallin binding to CM and NM decreases mobility with no significant change in order and hydrophobicity below and on the surface of membranes. Our results suggest that α-crystallin mainly binds on the surface of bovine CM and NM and such surface binding of α-crystallin to membranes in clear and young lenses may play a beneficial role in membrane stability. However, with decreased cholesterol content within the CM, which mimics the decreased cholesterol content in the cataractous lens membrane, α-crystallin binding increases the hydrophobicity below the membrane surface, indicating that α-crystallin binding forms a hydrophobic barrier for the passage of polar molecules, supporting the barrier hypothesis in developing cataracts.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Dieter Haemmerle
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Correspondence: ; Tel.: +1-(208)-426-4003
| |
Collapse
|
22
|
Subczynski WK, Raguz M, Widomska J. Multilamellar Liposomes as a Model for Biological Membranes: Saturation Recovery EPR Spin-Labeling Studies. MEMBRANES 2022; 12:657. [PMID: 35877860 PMCID: PMC9321980 DOI: 10.3390/membranes12070657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
EPR spin labeling has been used extensively to study lipids in model membranes to understand their structures and dynamics in biological membranes. The lipid multilamellar liposomes, which are the most commonly used biological membrane model, were prepared using film deposition methods and investigated with the continuous wave EPR technique (T2-sensitive spin-labeling methods). These investigations provided knowledge about the orientation of lipids, their rotational and lateral diffusion, and their rate of flip-flop between bilayer leaflets, as well as profiles of membrane hydrophobicity, and are reviewed in many papers and book chapters. In the early 1980s, the saturation recovery EPR technique was introduced to membrane studies. Numerous T1-sensitive spin-label methods were developed to obtain detailed information about the three-dimensional dynamic membrane structure. T1-sensitive methods are advantageous over T2-sensitive methods because the T1 of spin labels (1-10 μs) is 10 to 1000 times longer than the T2, which allows for studies of membrane dynamics in a longer time-space scale. These investigations used multilamellar liposomes also prepared using the rapid solvent exchange method. Here, we review works in which saturation recovery EPR spin-labeling methods were applied to investigate the properties of multilamellar lipid liposomes, and we discuss their relationships to the properties of lipids in biological membranes.
Collapse
Affiliation(s)
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia
| | - Justyna Widomska
- Department of Biophysics, Medical University of Lublin, 20 093 Lublin, Poland;
| |
Collapse
|
23
|
Boban Z, Mardešić I, Subczynski WK, Jozić D, Raguz M. Optimization of Giant Unilamellar Vesicle Electroformation for Phosphatidylcholine/Sphingomyelin/Cholesterol Ternary Mixtures. MEMBRANES 2022; 12:membranes12050525. [PMID: 35629851 PMCID: PMC9144572 DOI: 10.3390/membranes12050525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Artificial vesicles are important tools in membrane research because they enable studying membrane properties in controlled conditions. Giant unilamellar vesicles (GUVs) are specially interesting due to their similarity in size to eukaryotic cells. We focus on optimization of GUV production from phosphatidylcholine/sphingomyelin/cholesterol mixtures using the electroformation method. This mixture has been extensively researched lately due to its relevance for the formation of lipid rafts. We measured the effect of voltage, frequency, lipid film thickness, and cholesterol (Chol) concentration on electroformation successfulness using spin-coating for reproducible lipid film deposition. Special attention is given to the effect of Chol concentrations above the phospholipid bilayer saturation threshold. Such high concentrations are of interest to groups studying the role of Chol in the fiber cell plasma membranes of the eye lens or development of atherosclerosis. Utilizing atomic force and fluorescence microscopy, we found the optimal lipid film thickness to be around 30 nm, and the best frequency–voltage combinations in the range of 2–6 V and 10–100 Hz. Increasing the Chol content, we observed a decrease in GUV yield and size. However, the effect was much less pronounced when the optimal lipid film thickness was used. The results underline the need for simultaneous optimization of both electrical parameters and thickness in order to produce high-quality GUVs for experimental research.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | - Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | | | - Dražan Jozić
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Correspondence: ; Tel.: +385-9876-8819
| |
Collapse
|
24
|
Timsina R, Trossi-Torres G, Thieme J, O'Dell M, Khadka NK, Mainali L. Alpha-Crystallin Association with the Model of Human and Animal Eye Lens-Lipid Membranes is Modulated by Surface Hydrophobicity of Membranes. Curr Eye Res 2022; 47:843-853. [PMID: 35179407 DOI: 10.1080/02713683.2022.2040539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE This research aims to probe the interaction of α-crystallin with a model of human, porcine, and mouse lens-lipid membranes. METHODS Cholesterol/model of human lens-lipid (Chol/MHLL), cholesterol/model of porcine lens-lipid (Chol/MPLL), and cholesterol/model of mouse lens-lipid (Chol/MMLL) membranes with 0 to 60 mol% Chol were prepared using the rapid solvent exchange method and probe-tip sonication. The hydrophobicity near the surface of model lens-lipid membranes and α-crystallin association with these membranes were investigated using the electron paramagnetic resonance spin-labeling approach. RESULTS With increased Chol content, the hydrophobicity near the surface of Chol/MHLL, Chol/MPLL, and Chol/MMLL membranes, the maximum percentage of membrane surface occupied (MMSO) by α-crystallin, and the association constant (Ka) decreased, showing that surface hydrophobicity of model lens-lipid membranes modulated the α-crystallin association with these membranes. The different MMSO and Ka for different model lens-lipid membranes with different rates of decrease of MMSO and Ka with increased Chol content and decreased hydrophobicity near the surface of these membranes suggested that the lipid composition also modulates α-crystallin association with membranes. Despite different lipid compositions, complete inhibition of α-crystallin association with model lens-lipid membranes was observed at saturating Chol content forming cholesterol bilayer domains (CBDs) with the lowest hydrophobicity near the surface of these membranes. The decreased mobility parameter with increased α-crystallin concentration suggested that membranes near the surface became less mobile due to α-crystallin association. The decreased mobility parameter and increased maximum splitting with increased Chol content suggested that membranes became less mobile and more ordered near the surface with increased Chol content. CONCLUSIONS This study suggested that the interaction of α-crystallin with model lens-lipid membranes is hydrophobic. Furthermore, our data indicated that Chol and CBDs reduce α-crystallin association with lens membrane, likely increase α-crystallin concentration in lens cytoplasm, and possibly favor the chaperone-like activity of α-crystallin maintaining lens cytoplasm homeostasis.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Jackson Thieme
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA.,Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
25
|
Boban Z, Mardešić I, Subczynski WK, Raguz M. Giant Unilamellar Vesicle Electroformation: What to Use, What to Avoid, and How to Quantify the Results. MEMBRANES 2021; 11:membranes11110860. [PMID: 34832088 PMCID: PMC8622294 DOI: 10.3390/membranes11110860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Since its inception more than thirty years ago, electroformation has become the most commonly used method for growing giant unilamellar vesicles (GUVs). Although the method seems quite straightforward at first, researchers must consider the interplay of a large number of parameters, different lipid compositions, and internal solutions in order to avoid artifactual results or reproducibility problems. These issues motivated us to write a short review of the most recent methodological developments and possible pitfalls. Additionally, since traditional manual analysis can lead to biased results, we have included a discussion on methods for automatic analysis of GUVs. Finally, we discuss possible improvements in the preparation of GUVs containing high cholesterol contents in order to avoid the formation of artifactual cholesterol crystals. We intend this review to be a reference for those trying to decide what parameters to use as well as an overview providing insight into problems not yet addressed or solved.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | | | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Correspondence: ; Tel.: +385-98-768-819
| |
Collapse
|
26
|
Kaltenegger M, Kremser J, Frewein MPK, Ziherl P, Bonthuis DJ, Pabst G. Intrinsic lipid curvatures of mammalian plasma membrane outer leaflet lipids and ceramides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183709. [PMID: 34332987 DOI: 10.1016/j.bbamem.2021.183709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023]
Abstract
We developed a global X-ray data analysis method to determine the intrinsic curvatures of lipids hosted in inverted hexagonal phases. In particular, we combined compositional modelling with molecular shape-based arguments to account for non-linear mixing effects of guest-in-host lipids on intrinsic curvature. The technique was verified by all-atom molecular dynamics simulations and applied to sphingomyelin and a series of phosphatidylcholines and ceramides with differing composition of the hydrocarbon chains. We report positive lipid curvatures for sphingomyelin and all phosphatidylcholines with disaturated and monounsaturated hydrocarbons. Phosphatidylcholines with diunsaturated hydrocarbons in turn yielded intrinsic lipid curvatures with negative values. All ceramides, with chain lengths varying between C2:0 and C24:0, displayed significant negative lipid curvature values. Moreover, we report non-additive mixing for C2:0 ceramide and sphingomyelin. This suggests for sphingolipids that in addition to lipid headgroup and hydrocarbon chain volumes also lipid-specific interactions are important contributors to membrane curvature stress.
Collapse
Affiliation(s)
- Michael Kaltenegger
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Johannes Kremser
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Moritz P K Frewein
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria; Institut Laue-Langevin, 38043 Grenoble, France
| | - Primož Ziherl
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia
| | - Douwe J Bonthuis
- Graz University of Technology, Institute of Theoretical and Computational Physics, NAWI Graz, 8010 Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
27
|
Yu E, Lee S, Lee G, Park Q, Chung AJ, Seo M, Ryu Y. Nanoscale Terahertz Monitoring on Multiphase Dynamic Assembly of Nanoparticles under Aqueous Environment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004826. [PMID: 34105290 PMCID: PMC8188200 DOI: 10.1002/advs.202004826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Probing the kinetic evolution of nanoparticle (NP) growth in liquids is essential for understanding complex nano-phases and their corresponding functions. Terahertz (THz) sensing, an emerging technology for next-generation laser photonics, has been developed with unique photonic features, including label-free, non-destructive, and molecular-specific spectral characteristics. Recently, metasurface-based sensing platforms have helped trace biomolecules by overcoming low THz absorption cross-sectional limits. However, the direct probing of THz signals in aqueous environments remains difficult. Here, the authors report that vertically aligned nanogap-hybridized metasurfaces can efficiently trap traveling NPs in the sensing region, thus enabling us to monitor the real-time kinetic evolution of NP assemblies in liquids. The THz photonics approach, together with an electric tweezing technique via spatially matching optical hotspots to particle trapping sites with a nanoscale spatial resolution, is highly promising for underwater THz analysis, forging a route toward unraveling the physicochemical events of nature within an ultra-broadband wavelength regime.
Collapse
Affiliation(s)
- Eui‐Sang Yu
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Sang‐Hun Lee
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Optical EngineeringKumoh National Institute of TechnologyGumi39253Republic of Korea
| | - Geon Lee
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Q‐Han Park
- Department of PhysicsKorea UniversitySeoul02841Republic of Korea
| | - Aram J. Chung
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Minah Seo
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02481Republic of Korea
| | - Yong‐Sang Ryu
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02481Republic of Korea
| |
Collapse
|
28
|
Timsina R, Trossi-Torres G, O'Dell M, Khadka NK, Mainali L. Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes. Exp Eye Res 2021; 206:108544. [PMID: 33744256 PMCID: PMC8087645 DOI: 10.1016/j.exer.2021.108544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The concentration of α-crystallin decreases in the eye lens cytoplasm, with a corresponding increase in membrane-bound α-crystallin during cataract formation. The eye lens's fiber cell plasma membrane consists of extremely high cholesterol (Chol) content, forming cholesterol bilayer domains (CBDs) within the membrane. The role of high Chol content in the lens membrane is unclear. Here, we applied the continuous-wave electron paramagnetic resonance spin-labeling method to probe the role of Chol and CBDs on α-crystallin binding to membranes made of four major phospholipids (PLs) of the eye lens, i.e., phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylethanolamine (PE). Small unilamellar vesicles (SUVs) of PC, SM*, and PS with 0, 23, 33, 50, and 60 mol% Chol and PE* with 0, 9, and 33 mol% Chol were prepared using the rapid solvent exchange method followed by probe-tip sonication. The 1 mol% CSL spin-labels used during SUVs preparation distribute uniformly within the Chol/PL membrane, enabling the investigation of Chol and CBDs' role on α-crystallin binding to the membrane. For PC, SM*, and PS membranes, the binding affinity (Ka) and the maximum percentage of membrane surface occupied (MMSO) by α-crystallin decreased with an increase in Chol concentration. The Ka and MMSO became zero at 50 mol% Chol for PC and 60 mol% Chol for SM* membranes, representing that complete inhibition of α-crystallin binding was possible before the formation of CBDs within the PC membrane but only after the formation of CBDs within the SM* membrane. The Ka and MMSO did not reach zero even at 60 mol% Chol in the PS membrane, representing CBDs at this Chol concentration were not sufficient for complete inhibition of α-crystallin binding to the PS membrane. Both the Ka and MMSO were zero at 0, 9, and 33 mol% Chol in the PE* membrane, representing no binding of α-crystallin to the PE* membrane with and without Chol. The mobility parameter profiles decreased with an increase in α-crystallin binding to the membranes; however, the decrease was more pronounced for the membrane with lower Chol concentration. These results imply that the membranes become more immobilized near the headgroup regions with an increase in α-crystallin binding; however, the Chol antagonizes the capacity of α-crystallin to decrease the mobility near the headgroup regions of the membranes. The maximum splitting profiles remained the same with an increase in α-crystallin concentration, but there was an increase in the maximum splitting with an increase in the Chol concentration in the membranes. It implies that membrane order near the headgroup regions does not change with an increase in α-crystallin concentration but increases with an increase in Chol concentration in the membrane. Based on our data, we hypothesize that the Chol and CBDs decrease hydrophobicity (increase polarity) near the membrane surface, inhibiting the hydrophobic binding of α-crystallin to the membranes. Thus, our data suggest that Chol and CBDs play a positive physiological role by preventing α-crystallin binding to lens membranes and possibly protecting against cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | | | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, 83725, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
29
|
Enoki TA, Wu J, Heberle FA, Feigenson GW. Dataset of asymmetric giant unilamellar vesicles prepared via hemifusion: Observation of anti-alignment of domains and modulated phases in asymmetric bilayers. Data Brief 2021; 35:106927. [PMID: 33763508 PMCID: PMC7973298 DOI: 10.1016/j.dib.2021.106927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
The data provided with this paper are confocal fluorescence images of symmetric giant unilamellar vesicles (GUVs) and asymmetric giant unilamellar vesicles (aGUVs). In this work, aGUVs were prepared using the hemifusion method and are labelled with two different fluorescent dyes, named TFPC and DiD. Both dyes show strong preference for the liquid-disordered (Ld) phase instead of the liquid-ordered (Lo) phase. The partition of these dyes favoring the Ld phase leads to bright Ld phase and dark Lo phase domains in symmetric GUVs observed by fluorescence microscopy. In symmetric vesicles, the bright and the dark domains of the inner and the outer leaflets are aligned. In aGUVs, the fluorescent probe TFPC exclusively labels the aGUV outer leaflet. Here, we show a dataset of fluorescence micrographs obtained using scanning fluorescence confocal microscopy. For the system chosen, the fluorescence signal of TFPC and DiD show anti-alignment of the brighter domains on aGUVs. Important for this dataset, TFPC and DiD have fluorescence emission centered in the green and far-red region of the visible spectra, respectively, and the dyes’ fluorescence emission bands do not overlap. This dataset were collected in the same conditions of the dataset reported in the co-submitted work (Enoki, et al. 2021) where most of aGUVs show domains alignment. In addition, we show micrographs of GUVs displaying modulated phases and macrodomains. We also compare the modulated phases observed in GUVs and aGUVs. For these datasets, we collected a sequence of micrographs using confocal microscopy varying the z-position, termed a z-stack. Images were collected in a scanning microscope Nikon Eclipse C2+ (Nikon Instruments, Melville, NY). Additional samples used to measure the lipid concentrations and to prepare GUVs with accurate lipid fractions are also provided with this paper.
Collapse
Affiliation(s)
- Thais A Enoki
- Cornell University, United States.,University of Tennessee, United State
| | - Joy Wu
- Cornell University, United States
| | | | | |
Collapse
|
30
|
Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183586. [PMID: 33647248 DOI: 10.1016/j.bbamem.2021.183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
The plasma membrane (PM) is asymmetric in lipid composition. The distinct and characteristic lipid compositions of the exoplasmic and cytoplasmic leaflets lead to different lipid-lipid interactions and physical-chemical properties in each leaflet. The exoplasmic leaflet possesses an intrinsic ability to form coexisting ordered and disordered fluid domains, whereas the cytoplasmic leaflet seems to form a single fluid phase. To better understand the interleaflet interactions that influence domains, we compared asymmetric model membranes that capture salient properties of the PM with simpler symmetric membranes. Using asymmetric giant unilamellar vesicles (aGUVs) prepared by hemifusion with a supported lipid bilayer, we investigate the domain line tension that characterizes the behavior of coexisting ordered + disordered domains. The line tension can be related to the contact perimeter of the different phases. Compared to macroscopic phase separation, the appearance of modulated phases was found to be a robust indicator of a decrease in domain line tension. Symmetric GUVs of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/cholesterol (chol) were formed into aGUVs by replacing the GUV outer leaflet with DOPC/chol = 0.8/0.2 in order to create a cytoplasmic leaflet model. These aGUVs revealed lower line tension for the ordered + disordered domains of the exoplasmic model leaflet.
Collapse
|
31
|
Rationale for the Quantitative Reconstitution of Membrane Proteins into Proteoliposomes. Methods Mol Biol 2021. [PMID: 33582987 DOI: 10.1007/978-1-0716-0724-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteoliposome reconstitution is a method of choice for the investigation of membrane proteins as it allows their manipulation in the desired hydrophobic environment and allows one to tackle their study from both functional and structural points of view. Methods for their rapid and efficient reconstitution have been known for a long time but the quality and dispersity of the resulting suspensions is often overlooked. Here we describe our routine for the obtention of monodisperse populations of proteoliposomes as well as for the quantitation of protein per liposome.
Collapse
|
32
|
Mainali L, O’Brien WJ, Timsina R. Interaction of Alpha-Crystallin with Phospholipid Membranes. Curr Eye Res 2021; 46:185-194. [PMID: 32564617 PMCID: PMC7790885 DOI: 10.1080/02713683.2020.1786131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Purpose/Aim: The amount of membrane-bound α-crystallin increases significantly with age and cataract formation, accompanied by a corresponding decline in the level of α-crystallin in the lens cytoplasm. The purpose of this research is to evaluate the binding affinity of α-crystallin to the phospholipid membranes as well as the physical properties of the membranes after α-crystallin binding. Materials and Methods: The continuous wave and saturation recovery electron paramagnetic resonance (EPR) methods were used to obtain the information about the binding affinity and the physical properties of the membrane. In this approach, the cholesterol analog spin label CSL was incorporated in the membrane and the binding of α-crystallin to the membrane was monitored by this spin label. Small uni-lamellar vesicles were prepared from 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) with 1% of CSL. The measured membrane properties included the mobility parameter, fluidity, and the oxygen transport parameter. Results: The binding affinity (Ka ) of α-crystallin with the POPC membrane was estimated to be 4.9 ± 2.4 µM-1. The profiles of mobility parameter showed that mobility parameter decreased with an increase in the binding of α-crystallin. The profiles of spin-lattice relaxation rate showed that the spin-lattice relaxation rate decreased with an increase in binding. These results show that the binding of α-crystallin makes the membrane more immobilized near the head group region of the phospholipids. Furthermore, the profiles of the oxygen transport parameter indicated that the oxygen transport parameter decreased with an increase of binding, indicating the binding of α-crystallin forms a barrier for the passage of non-polar molecules which supports the barrier hypothesis. Conclusions: The binding of α-crystallin to the membrane alters the physical properties of the membranes, and this plays a significant role in modulating the integrity of the membranes. EPR techniques are useful in studying α-crystallin membrane interactions.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Physics, Boise State University, Boise, Idaho, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - William J. O’Brien
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, Idaho, USA
| |
Collapse
|
33
|
Andresen TL, Larsen JB. Compositional inhomogeneity of drug delivery liposomes quantified at the single liposome level. Acta Biomater 2020; 118:207-214. [PMID: 33065286 DOI: 10.1016/j.actbio.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Liposomes are the most used drug delivery vehicle and their therapeutic function is closely linked to their lipid composition. Since most liposome characterization is done using bulk techniques, providing only ensemble averages, the lipid composition of all liposomes within the same formulation are typically assumed to be identical. Here we image individual liposomes using confocal microscopy to quantify that liposomal drug delivery formulations, including multiple component mixtures mimicking Doxil, display more than 10-fold variation in their relative lipid composition. Since liposome function is tightly regulated by the physicochemical properties bestowed by the lipid composition, such significant variations could render only a fraction of liposomes therapeutically active. Additionally, we quantified how this degree of compositional inhomogeneity was modulated by liposome preparation method, the saturation state of the membrane lipid, and whether anti-fouling polyethylene glycol (PEG) conjugated lipids were added to the initial lipid mix or inserted after liposome formation. We believe the insights into the factors governing the degree of inhomogeneity offers the possibility for producing more uniform liposomal drug delivery systems, potentially increasing their therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas Lars Andresen
- Center for Nanomedicine and Theranostics, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Jannik Bruun Larsen
- Center for Nanomedicine and Theranostics, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
34
|
Chloroform-Injection (CI) and Spontaneous-Phase-Transition (SPT) Are Novel Methods, Simplifying the Fabrication of Liposomes with Versatile Solution to Cholesterol Content and Size Distribution. Pharmaceutics 2020; 12:pharmaceutics12111065. [PMID: 33182248 PMCID: PMC7695269 DOI: 10.3390/pharmaceutics12111065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Intricate formulation methods and/or the use of sophisticated equipment limit the prevalence of liposomal dosage-forms. Simple techniques are developed to assemble amphiphiles into globular lamellae while transiting from the immiscible organic to the aqueous phase. Various parameters are optimized by injecting chloroform solution of amphiphiles into the aqueous phase and subsequent removal of the organic phase. Further simplification is achieved by reorienting amphiphiles through a spontaneous phase transition in a swirling biphasic system during evaporation of the organic phase under vacuum. Although the chloroform injection yields smaller Z-average and poly-dispersity-index the spontaneous phase transition method overrides simplicity and productivity. The increasing solid/solvent ratios results in higher Z-average and broader poly-dispersity-index of liposomes under a given set of experimental conditions, and vice versa. Surface charge dependent large unilamellar vesicles with a narrow distribution have poly-dispersity-index < 0.4 in 10 μM saline. As small and monodisperse liposomes are prerequisites in targeted drug delivery strategies, hence the desired Z-average < 200 d.nm and poly-dispersity-index < 0.15 is obtained through the serial membrane-filtration method. Phosphatidylcholine/water 4 μmol/mL is achieved at a temperature of 10°C below the phase-transition temperature of phospholipids, ensuring suitability for thermolabile entities and high entrapment efficiency. Both methods furnish the de-novo rearrangement of amphiphiles into globular lamellae, aiding in the larger entrapped volume. The immiscible organic phase benefits from its faster and complete removal from the final product. High cholesterol content (55.6 mol%) imparts stability in primary hydration medium at 5 ± 3 °C for 6 months in light-protected type-1 glass vials. Collectively, the reported methods are novel, scalable and time-efficient, yielding high productivity in simple equipment.
Collapse
|
35
|
Timsina R, Khadka NK, Maldonado D, Mainali L. Interaction of alpha-crystallin with four major phospholipids of eye lens membranes. Exp Eye Res 2020; 202:108337. [PMID: 33127344 DOI: 10.1016/j.exer.2020.108337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 11/18/2022]
Abstract
It is well-studied that the significant factor in cataract formation is the association of α-crystallin, a major eye lens protein, with the fiber cell plasma membrane of the eye lens. The fiber cell plasma membrane of the eye lens consists of four major phospholipids (PLs), i.e., phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and sphingomyelin (SM). Despite several attempts to study the interaction of α-crystallin with PLs of the eye lens membrane, the role of individual PL for the binding with α-crystallin is still unclear. We recently developed the electron paramagnetic resonance (EPR) spin-labeling method to study the binding of α-crystallin to the PC membrane (Mainali et al., 2020a). Here, we use the recently developed EPR method to explicitly measure the binding affinity (Ka) of α-crystallin to the individual (PE*, PS, and SM) and two-component mixtures (SM/PE, SM/PS, and SM/PC in 70:30 and 50:50 mol%) of PL membranes as well as the physical properties (mobility parameter and maximum splitting) of these membranes upon binding with α-crystallin. One of the key findings of this study was that the Ka of α-crystallin binding to individual PL membranes followed the trends: Ka(PC) > Ka(SM) > Ka(PS) > Ka(PE*), indicating PE* inhibits binding the most whereas PC inhibits binding the least. Also, the Ka of α-crystallin binding to two-component mixtures of PL membranes followed the trends: Ka(SM/PE) > Ka(SM/PS) > Ka(SM/PC), indicating SM/PC inhibits binding the most whereas SM/PE inhibits binding the least. Except for the PE* membrane, for which there was no binding of α-crystallin, the mobility parameter for all other membranes decreased with an increase in α-crystallin concentration. It represents that the membranes become more immobilized near the headgroup regions of the PLs when more and more α-crystallin binds to them. The maximum splitting increased only for the SM and the SM/PE (70:30 mol%) membranes, with an increase in the binding of α-crystallin. It represents that the PL headgroup regions of these membranes become more ordered after binding of α-crystallin to these membranes. Our results showed that α-crystallin binds to PL membranes in a saturable manner. Also, our data suggest that the binding of α-crystallin to PL membranes likely occurs through hydrophobic interaction between α-crystallin and the hydrophobic fatty acid core of the membranes, and such interaction is modulated by the PL headgroup's size and charge, hydrogen bonding between headgroups, and PL curvature. Thus, this study provides an in-depth understanding of α-crystallin interaction with the PL membranes made of individual and two-component mixtures of the four major PLs of the eye lens membranes.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - David Maldonado
- Department of Mechanical Engineering, Boise State University, Boise, ID, 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, 83725, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
36
|
Scott HL, Baker JR, Frederick AJ, Kennison KB, Mendes K, Heberle FA. FRET from phase-separated vesicles: An analytical solution for a spherical geometry. Chem Phys Lipids 2020; 233:104982. [PMID: 33065119 DOI: 10.1016/j.chemphyslip.2020.104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Förster resonance energy transfer (FRET) is a powerful tool for investigating heterogeneity in lipid bilayers. In model membrane studies, samples are frequently unilamellar vesicles with diameters of 20-200 nm. It is well-known that FRET efficiency is insensitive to vesicle curvature in uniformly mixed lipid bilayers, and consequently theoretical models for FRET typically assume a planar geometry. Here, we use a spherical harmonic expansion of the acceptor surface density to derive an analytical solution for FRET between donor and acceptor molecules distributed on the surface of a sphere. We find excellent agreement between FRET predicted from the model and FRET calculated from corresponding Monte Carlo simulations, thus validating the model. An extension of the model to the case of a non-uniform acceptor surface density (i.e., a phase-separated vesicle) reveals that FRET efficiency depends on vesicle size when acceptors partition between the coexisting phases, and approaches the efficiency of a uniformly mixed bilayer as the vesicle size decreases. We show that this is an indirect effect of constrained domain size, rather than an intrinsic effect of vesicle curvature. Surprisingly, the theoretical predictions were not borne out in experiments: we did not observe a statistically significant change in FRET efficiency in phase-separated vesicles as a function of vesicle size. We discuss factors that likely mask the vesicle size effect in extruded samples.
Collapse
Affiliation(s)
- Haden L Scott
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37920, United States; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - James R Baker
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Aaron J Frederick
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Kristen B Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Kevin Mendes
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
37
|
Liu G, Hou S, Tong P, Li J. Liposomes: Preparation, Characteristics, and Application Strategies in Analytical Chemistry. Crit Rev Anal Chem 2020; 52:392-412. [DOI: 10.1080/10408347.2020.1805293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guangyan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Shili Hou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Peihong Tong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
38
|
Wen Y, Feigenson GW, Vogt VM, Dick RA. Mechanisms of PI(4,5)P2 Enrichment in HIV-1 Viral Membranes. J Mol Biol 2020; 432:5343-5364. [PMID: 32739462 PMCID: PMC8262684 DOI: 10.1016/j.jmb.2020.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/26/2020] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is critical for HIV-1 virus assembly. The viral membrane is enriched in PIP2, suggesting that the virus assembles at PIP2-rich microdomains. We showed previously that in model membranes PIP2 can form nanoscopic clusters bridged by multivalent cations. Here, using purified proteins we quantitated the binding of HIV-1 Gag-related proteins to giant unilamellar vesicles containing either clustered or free PIP2. Myristoylated MA strongly preferred binding to clustered PIP2. By contrast, unmyristoylated HIV-1 MA, RSV MA, and a PH domain all preferred to interact with free PIP2. We also found that HIV-1 Gag multimerization promotes PIP2 clustering. Truncated Gag proteins comprising the MA, CA, and SP domains (MACASP) or the MA and CA domains (MACA) induced self-quenching of acyl chain-labeled fluorescent PIP2 in liposomes, implying clustering. However, HIV-1 MA itself did not induce PIP2 clustering. A CA inter-hexamer dimer interface mutation led to a loss of induced PIP2 clustering in MACA, indicating the importance of protein multimerization. Cryo-electron tomography of liposomes with bound MACA showed an amorphous protein layer on the membrane surface. Thus, it appears that while protein–protein interactions are required for PIP2 clustering, formation of a regular lattice is not. Protein-induced PIP2 clustering and multivalent cation-induced PIP2 clustering are additive. Taken together, these results provide the first evidence that HIV-1 Gag can selectively target pre-existing PIP2-enriched domains of the plasma membrane for viral assembly, and that Gag multimerization can further enrich PIP2 at assembly sites. These effects could explain the observed PIP2 enrichment in HIV-1.
Collapse
Affiliation(s)
- Yi Wen
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Gerald W Feigenson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Volker M Vogt
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Robert A Dick
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 2020; 154-155:102-122. [PMID: 32650041 DOI: 10.1016/j.addr.2020.07.002] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/13/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Liposomes are well recognised as effective drug delivery systems, with a range of products approved, including follow on generic products. Current manufacturing processes used to produce liposomes are generally complex multi-batch processes. Furthermore, liposome preparation processes adopted in the laboratory setting do not offer easy translation to large scale production, which may delay the development and adoption of new liposomal systems. To promote advancement and innovation in liposome manufacturing processes, this review considers the range of manufacturing processes available for liposomes, from laboratory scale and scale up, through to large-scale manufacture and evaluates their advantages and limitations. The regulatory considerations associated with the manufacture of liposomes is also discussed. New innovations that support leaner scalable technologies for liposome fabrication are outlined including self-assembling liposome systems and microfluidic production. The critical process attributes that impact on the liposome product attributes are outlined to support potential wider adoption of these innovations.
Collapse
|
40
|
Boban Z, Puljas A, Kovač D, Subczynski WK, Raguz M. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation. Cell Biochem Biophys 2020; 78:157-164. [PMID: 32319021 DOI: 10.1007/s12013-020-00910-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 10/23/2022]
Abstract
Giant unilamellar vesicles (GUVs) are used extensively as models that mimic cell membranes. The cholesterol (Chol) content in the fiber cell plasma membranes of the eye lens is extremely high, exceeding the solubility threshold in the lenses of old humans. Thus, a methodological paper pertaining to preparations of model lipid bilayer membranes with high Chol content would significantly help the study of properties of these membranes. Lipid solutions containing 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and Chol were fluorescently labeled with phospholipid analog 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC18(3)) and spin-coated to produce thin lipid films. GUVs were formed from these films using the electroformation method and the results were obtained using fluorescent microscopy. Electroformation outcomes were examined for different electrical parameters and different Chol concentrations. A wide range of field frequency-field strength (ff-fs) combinations was explored: 10-10,000 Hz and 0.625-9.375 V/mm peak-to-peak. Optimal values for GUVs preparation were found to be 10-100 Hz and 1.25-6.25 V/mm, with largest vesicles occurring for 10 Hz and 3.75 V/mm. Chol:POPC mixing ratios (expressed as a molar ratio) ranged from 0 to 3.5. We show that increasing the Chol concentration decreases the GUVs size, but this effect can be reduced by choosing the appropriate ff-fs combination.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia.,University of Split, Faculty of Science, Doctoral study of Biophysics, Split, Croatia
| | - Ana Puljas
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia
| | - Dubravka Kovač
- Department of Physics, Faculty of Science, University of Split, Split, Croatia
| | | | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia.
| |
Collapse
|
41
|
Ryu YS, Yun H, Chung T, Suh JH, Kim S, Lee K, Wittenberg NJ, Oh SH, Lee B, Lee SD. Kinetics of lipid raft formation at lipid monolayer-bilayer junction probed by surface plasmon resonance. Biosens Bioelectron 2019; 142:111568. [PMID: 31442945 DOI: 10.1016/j.bios.2019.111568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
A label-free, non-dispruptive, and real-time analytical device to monitor the dynamic features of biomolecules and their interactions with neighboring molecules is an essential prerequisite for biochip- and diagonostic assays. To explore one of the central questions on the lipid-lipid interactions in the course of the liquid-ordered (lo) domain formation, called rafts, we developed a method of reconstituting continuous but spatially heterogeneous lipid membrane platforms with molayer-bilayer juntions (MBJs) that enable to form the lo domains in a spatiotemporally controlled manner. This allows us to detect the time-lapse dynamics of the lipid-lipid interactions during raft formation and resultant membrane phase changes together with the raft-associated receptor-ligand binding through the surface plasmon resonance (SPR). For cross-validation, using epifluorescence microscopy, we demonstrated the underlying mechanisms for raft formations that the infiltration of cholesterols into the sphingolipid-enriched domains plays a crucial roles in the membrane phase-separation. Our membrane platform, being capable of monitoring dynamic interactions among lipids and performing the systematic optical analysis, will unveil physiological roles of cholesterols in a variety of biological events.
Collapse
Affiliation(s)
- Yong-Sang Ryu
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Sensor System Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hansik Yun
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Taerin Chung
- Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jeng-Hun Suh
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sungho Kim
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyookeun Lee
- Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, Minneapolis, MN, 55455, USA; Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, Minneapolis, MN, 55455, USA
| | - Byoungho Lee
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sin-Doo Lee
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
42
|
Mainali L, Pasenkiewicz-Gierula M, Subczynski WK. Formation of cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Membranes Made of the Major Phospholipids of Human Eye Lens Fiber Cell Plasma Membranes. Curr Eye Res 2019; 45:162-172. [PMID: 31462080 DOI: 10.1080/02713683.2019.1662058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose/Aim: The goal of this study is to reveal how age-related changes in phospholipid (PL) composition in the fiber cell plasma membranes of the human eye lens affect the cholesterol (Chol) content at which Chol bilayer domains (CBDs) and Chol crystals start to form.Materials and Methods: Saturation-recovery electron paramagnetic resonance with spin-labeled cholesterol analogs and differential scanning calorimetry were used to determine the Chol contents at which CBDs and cholesterol crystals, respectively, start to form in in membranes made of the major PL constituents of the plasma membrane of the human eye lens fiber cells. To preserve compositional homogeneity throughout the membrane suspension, the lipid multilamellar dispersions investigated in this work were prepared using a rapid solvent exchange method. The cholesterol content changed from 0 to 75 mol%.Results: The saturation recovery electron paramagnetic resonance results show that CBDs start to form at 33, 50, 46, and 48 mol% Chol in the phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and sphingomyelin bilayers, respectively. The differential scanning calorimetry results show that Chol crystals start to form at 50, 66, 70, and 66 mol% Chol in the phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and sphingomyelin bilayers, respectively.Conclusions: These results, as well those of our previous studies, indicate that the formation of CBDs precedes the formation of Chol crystals in all of the studied systems, and the appearance of each depends on the type of PL forming the bilayer. These findings contribute to a better understanding of the molecular mechanisms involved in the regulation of Chol-dependent processes in eye lens fiber cell membranes.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
43
|
Enoki TA, Feigenson GW. Asymmetric Bilayers by Hemifusion: Method and Leaflet Behaviors. Biophys J 2019; 117:1037-1050. [PMID: 31493862 DOI: 10.1016/j.bpj.2019.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 01/03/2023] Open
Abstract
We describe a new method to prepare asymmetric giant unilamellar vesicles (aGUVs) via hemifusion. Hemifusion of giant unilamellar vesicles and a supported lipid bilayer, triggered by calcium, promotes the lipid exchange of the fused outer leaflets mediated by lipid diffusion. We used different fluorescent dyes to monitor the inner and the outer leaflets of the unsupported aGUVs. We confirmed that almost all newly exchanged lipids in the aGUVs are found in the outer leaflet of these asymmetric vesicles. In addition, we test the stability of the aGUVs formed by hemifusion in preserving their contents during the procedure. For aGUVs prepared from the hemifusion of giant unilamellar vesicles composed of 1,2-distearoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.39/0.39/0.22 and a supported lipid bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.8/0.2, we observed the exchanged lipids to alter the bilayer properties. To access the physical and chemical properties of the asymmetric bilayer, we monitored the dye partition coefficients of individual leaflets and the generalized polarization of the fluorescence probe 6-dodecanoyl-2-[ N-methyl-N-(carboxymethyl)amino] naphthalene, a sensor for the lipid packing/order of its surroundings. For a high percentage of lipid exchange (>70%), the dye partition indicates induced-disordered and induced-ordered domains. The induced domains have distinct lipid packing/order compared to the symmetric liquid-disordered and liquid-ordered domains.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
44
|
Multivalent Cation-Bridged PI(4,5)P 2 Clusters Form at Very Low Concentrations. Biophys J 2019; 114:2630-2639. [PMID: 29874613 DOI: 10.1016/j.bpj.2018.04.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2), is a key component of the inner leaflet of the plasma membrane in eukaryotic cells. In model membranes, PIP2 has been reported to form clusters, but whether these locally different conditions could give rise to distinct pools of unclustered and clustered PIP2 is unclear. By use of both fluorescence self-quenching and Förster resonance energy transfer assays, we have discovered that PIP2 self-associates at remarkably low concentrations starting below 0.05 mol% of total lipids. Formation of these clusters was dependent on physiological divalent metal ions, such as Ca2+, Mg2+, Zn2+, or trivalent ions Fe3+ and Al3+. Formation of PIP2 clusters was also headgroup-specific, being largely independent of the type of acyl chain. The similarly labeled phospholipids phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol exhibited no such clustering. However, six phosphoinositide species coclustered with PIP2. The degree of PIP2 cation clustering was significantly influenced by the composition of the surrounding lipids, with cholesterol and phosphatidylinositol enhancing this behavior. We propose that PIP2 cation-bridged cluster formation, which might be similar to micelle formation, can be used as a physical model for what could be distinct pools of PIP2 in biological membranes. To our knowledge, this study provides the first evidence of PIP2 forming clusters at such low concentrations. The property of PIP2 to form such clusters at such extremely low concentrations in model membranes reveals, to our knowledge, a new behavior of PIP2 proposed to occur in cells, in which local multivalent metal ions, lipid compositions, and various binding proteins could greatly influence PIP2 properties. In turn, these different pools of PIP2 could further regulate cellular events.
Collapse
|
45
|
Enoki TA, Heberle FA, Feigenson GW. FRET Detects the Size of Nanodomains for Coexisting Liquid-Disordered and Liquid-Ordered Phases. Biophys J 2019; 114:1921-1935. [PMID: 29694869 DOI: 10.1016/j.bpj.2018.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 11/18/2022] Open
Abstract
Biomembranes with as few as three lipid components can form coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. In the coexistence region of Ld and Lo phases, the lipid mixtures 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/chol or brain sphingomyelin (bSM)/DOPC/chol form micron-scale domains that are easily visualized with light microscopy. Although large domains are not observed in the mixtures DSPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/chol and bSM/POPC/chol, lateral heterogeneity is nevertheless detected using techniques with nanometer-scale spatial resolution. We propose a simple and accessible method to measure domain sizes below optical resolution (∼200 nm). We measured nanodomain size for the latter two mixtures by combining experimental Förster resonance energy transfer data with a Monte-Carlo-based analysis. We found a domain radius of 7.5-10 nm for DSPC/POPC/chol, similar to values obtained previously by neutron scattering, and ∼5 nm for bSM/POPC/chol, slightly smaller than measurable by neutron scattering. These analyses also detect the domain-size transition that is observed by fluorescence microscopy in the four-component lipid mixture bSM/DOPC/POPC/chol. Accurate measurements of fluorescent-probe partition coefficients are especially important for the analysis; therefore, we exploit three different methods to measure the partition coefficient of fluorescent molecules between Ld and Lo phases.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Frederick A Heberle
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Large Scale Structures Group, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| |
Collapse
|
46
|
Usery RD, Enoki TA, Wickramasinghe SP, Nguyen VP, Ackerman DG, Greathouse DV, Koeppe RE, Barrera FN, Feigenson GW. Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide. Biophys J 2019; 114:2152-2164. [PMID: 29742408 DOI: 10.1016/j.bpj.2018.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
A number of highly curved membranes in vivo, such as epithelial cell microvilli, have the relatively high sphingolipid content associated with "raft-like" composition. Given the much lower bending energy measured for bilayers with "nonraft" low sphingomyelin and low cholesterol content, observing high curvature for presumably more rigid compositions seems counterintuitive. To understand this behavior, we measured membrane rigidity by fluctuation analysis of giant unilamellar vesicles. We found that including a transmembrane helical GWALP peptide increases the membrane bending modulus of the liquid-disordered (Ld) phase. We observed this increase at both low-cholesterol fraction and higher, more physiological cholesterol fraction. We find that simplified, commonly used Ld and liquid-ordered (Lo) phases are not representative of those that coexist. When Ld and Lo phases coexist, GWALP peptide favors the Ld phase with a partition coefficient of 3-10 depending on mixture composition. In model membranes at high cholesterol fractions, Ld phases with GWALP have greater bending moduli than the Lo phase that would coexist.
Collapse
Affiliation(s)
- Rebecca D Usery
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Sanjula P Wickramasinghe
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - David G Ackerman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York; Scientific Computing, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| |
Collapse
|
47
|
Frewein MPK, Rumetshofer M, Pabst G. Global small-angle scattering data analysis of inverted hexagonal phases. J Appl Crystallogr 2019; 52:403-414. [PMID: 30996718 PMCID: PMC6448687 DOI: 10.1107/s1600576719002760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/23/2019] [Indexed: 11/29/2022] Open
Abstract
A global analysis model has been developed for randomly oriented, fully hydrated, inverted hexagonal (HII) phases formed by many amphiphiles in aqueous solution, including membrane lipids. The model is based on a structure factor for hexagonally packed rods and a compositional model for the scattering length density, enabling also the analysis of positionally weakly correlated HII phases. Bayesian probability theory was used for optimization of the adjustable parameters, which allows parameter correlations to be retrieved in much more detail than standard analysis techniques and thereby enables a realistic error analysis. The model was applied to different phosphatidylethanolamines, including previously unreported HII data for diC14:0 and diC16:1 phosphatid-yl-ethanolamine. The extracted structural features include intrinsic lipid curvature, hydrocarbon chain length and area per lipid at the position of the neutral plane.
Collapse
Affiliation(s)
- Moritz P. K. Frewein
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Michael Rumetshofer
- Graz University of Technology, Institute of Theoretical Physics and Computational Physics, NAWI Graz, 8010 Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
48
|
Maekawa T, Chin H, Nyu T, Sut TN, Ferhan AR, Hayashi T, Cho NJ. Molecular diffusion and nano-mechanical properties of multi-phase supported lipid bilayers. Phys Chem Chem Phys 2019; 21:16686-16693. [DOI: 10.1039/c9cp02085c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the properties of cell membranes is important in the fields of fundamental and applied biology.
Collapse
Affiliation(s)
- Tatsuhiro Maekawa
- Department of Materials Science and Engineering
- School of Materials Chemical Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Hokyun Chin
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Takashi Nyu
- Department of Materials Science and Engineering
- School of Materials Chemical Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Tun Naw Sut
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering
- School of Materials Chemical Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
| |
Collapse
|
49
|
Fragneto G, Delhom R, Joly L, Scoppola E. Neutrons and model membranes: Moving towards complexity. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Vezočnik V, Hodnik V, Sitar S, Okur HI, Tušek-Žnidarič M, Lütgebaucks C, Sepčić K, Kogej K, Roke S, Žagar E, Maček P. Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8983-8993. [PMID: 29983071 DOI: 10.1021/acs.langmuir.8b02180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding of the interactions between proteins and natural and artificially prepared lipid membrane surfaces and embedded nonpolar cores is important in studies of physiological processes and their pathologies and is applicable to nanotechnologies. In particular, rapidly growing interest in cellular droplets defines the need for simplified biomimetic lipid model systems to overcome in vivo complexity and variability. We present a protocol for the preparation of kinetically stable nanoemulsions with nanodroplets composed of sphingomyelin (SM) and cholesterol (Chol), as amphiphilic surfactants, and trioleoylglycerol (TOG), at various molar ratios. To prepare stable SM/Chol-coated monodisperse lipid nanodroplets, we modified a reverse phase evaporation method and combined it with ultrasonication. Lipid composition, ζ-potential, gyration and hydrodynamic radius, shape, and temporal stability of the lipid nanodroplets were characterized and compared to extruded SM/Chol large unilamellar vesicles. Lipid nanodroplets and large unilamellar vesicles with theoretical SM/Chol/TOG molar ratios of 1/1/4.7 and 4/1/11.7 were further investigated for the orientational order of their interfacial water molecules using a second harmonic scattering technique, and for interactions with the SM-binding and Chol-binding pore-forming toxins equinatoxin II and perfringolysin O, respectively. The surface characteristics (ζ-potential, orientational order of interfacial water molecules) and binding of these proteins to the nanodroplet SM/Chol monolayers were similar to those for the SM/Chol bilayers of the large unilamellar vesicles and SM/Chol Langmuir monolayers, in terms of their surface structures. We propose that such SM/Chol/TOG nanoparticles with the required lipid compositions can serve as experimental models for monolayer membrane to provide a system that imitates the natural lipid droplets.
Collapse
Affiliation(s)
- Valerija Vezočnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Simona Sitar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Halil I Okur
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | | | - Cornelis Lütgebaucks
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Ksenija Kogej
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , Ljubljana 1000 , Slovenia
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ema Žagar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| |
Collapse
|