1
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
2
|
Sharma P, Sweta Jha N. Curcumin Knoevenagel's Schiff Base as a Promising Stabilizer of G-Quadruplex Structure. Chem Biodivers 2024; 21:e202400797. [PMID: 38946104 DOI: 10.1002/cbdv.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/02/2024]
Abstract
G-quadruplex DNA sequences present in the promoter and telomere regions of the genomic sequence are considered therapeutic targets for the treatment of cancer. Curcumin, derived from Curcuma longa, has been known as a quadruplex binder and has a potential role in the apoptosis of cancer cells. Here, we have reported the Schiff base ligand of curcumin synthesized through the condensation of the amino acid L-tryptophan and the knoevenagel derivative of curcumin (4-nitrobenzylidene curcumin (NBC)) as a potential G-quadruplex binder. Thus, spectroscopic and biophysical studies reveal a higher binding affinity of the ligand Sb-NBC towards the promoter and telomere G-quadruplex sequence as compared to the parent NBC. The ligand Sb-NBC highly stabilizes the parallel and hybrid G-quadruplex topologies to 10.5 °C-6.4 °C. Interestingly, the ligands also exhibit selective cytotoxicity toward cancer cells over normal cells. Taken together, this work provides evidence of the possibility of applying curcumin Schiff base in cancer therapy to regulate oncogene expression in cancer cells.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Chemistry, National Institute of Technology, 800005, Patna, Bihar, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, 800005, Patna, Bihar, India
| |
Collapse
|
3
|
Silva RC, Buzzá HH, Ducas ESA, Oliveira KT, Bagnato VS, Souza GRL, Almeida LM, Gonçalves PJ. Synergic vascular photodynamic activity by methylene blue-curcumin supramolecular assembly. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123281. [PMID: 37625276 DOI: 10.1016/j.saa.2023.123281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
A supramolecular assembly was obtained by combining methylene blue (MB) with a natural plant extract, curcumin (Curc), in a stoichiometric ratio of 1:4 in aqueous solution (90% PBS + 10% ethanol) at room temperature. The MB-Curc supramolecular assembly was evidenced by absorption and fluorescence spectroscopies, and the stoichiometry and bonding constant were obtained using Cieleńs model. Its stability and photostability were evaluated by chromatographic analysis and UV-Vis absorption. The MB-Curc avoids the aggregation of both isolated compounds and efficiently produces singlet oxygen (ΦΔ= 0.52 ± 0.03). Its potential for photodynamic antiangiogenic treatments was evaluated through the vascular effect observed in chicken chorioallantoic membrane (CAM) assay. The results showed intense damage in CAM vascular network by MB-Curc after irradiation, which is higher than the effect of isolated compounds, indicating a synergistic vascular effect. This combination can be essential to prevent cancer revascularization after photodynamic application and improve the efficacy of this approach. The characteristics exhibited by MB-Curc make it a potential candidate for use in cancer treatments through photodynamic antiangiogenic therapy.
Collapse
Affiliation(s)
- Rodrigo C Silva
- Instituto de Química, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil.
| | - Hilde H Buzzá
- Instituto de Física de São Carlos, Universidade de São Paulo (IFSC, USP), São Carlos, SP, Brazil; Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eli S A Ducas
- Instituto de Química, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Kleber T Oliveira
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Vanderlei S Bagnato
- Instituto de Física de São Carlos, Universidade de São Paulo (IFSC, USP), São Carlos, SP, Brazil; Hagler Fellow, Texas A&M University, College Station, United States
| | - Guilherme R L Souza
- Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Luciane M Almeida
- Universidade Estadual de Goiás (UEG), Campus Anápolis de Ciências Exatas e Tecnológicas, Anápolis, GO, Brazil
| | - Pablo J Gonçalves
- Instituto de Química, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Instituto de Física, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Rusciano D, Bagnoli P. Pharmacotherapy and Nutritional Supplements for Neovascular Eye Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1334. [PMID: 37512145 PMCID: PMC10383223 DOI: 10.3390/medicina59071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this review, we aim to provide an overview of the recent findings about the treatment of neovascular retinal diseases. The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug-supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. For instance, melatonin is formulated as a medicinal product for the treatment of sleep and behavioral problems; at low doses (usually below 1 mg), it is considered a nutraceutical, while at higher doses, it is sold as a psychotropic drug. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. Therefore, we believe that, on a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
5
|
Majrashi TA, Alshehri SA, Alsayari A, Muhsinah AB, Alrouji M, Alshahrani AM, Shamsi A, Atiya A. Insight into the Biological Roles and Mechanisms of Phytochemicals in Different Types of Cancer: Targeting Cancer Therapeutics. Nutrients 2023; 15:nu15071704. [PMID: 37049544 PMCID: PMC10097354 DOI: 10.3390/nu15071704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer is a hard-to-treat disease with a high reoccurrence rate that affects health and lives globally. The condition has a high occurrence rate and is the second leading cause of mortality after cardiovascular disorders. Increased research and more profound knowledge of the mechanisms contributing to the disease’s onset and progression have led to drug discovery and development. Various drugs are on the market against cancer; however, the drugs face challenges of chemoresistance. The other major problem is the side effects of these drugs. Therefore, using complementary and additional medicines from natural sources is the best strategy to overcome these issues. The naturally occurring phytochemicals are a vast source of novel drugs against various ailments. The modes of action by which phytochemicals show their anti-cancer effects can be the induction of apoptosis, the onset of cell cycle arrest, kinase inhibition, and the blocking of carcinogens. This review aims to describe different phytochemicals, their classification, the role of phytochemicals as anti-cancer agents, the mode of action of phytochemicals, and their role in various types of cancer.
Collapse
Affiliation(s)
- Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Mohammad Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Asma M. Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha 62529, Saudi Arabia
| |
Collapse
|
6
|
Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. J Colloid Interface Sci 2022; 620:419-430. [DOI: 10.1016/j.jcis.2022.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022]
|
7
|
Giménez-Bastida JA, Ávila-Gálvez MÁ, Carmena-Bargueño M, Pérez-Sánchez H, Espín JC, González-Sarrías A. Physiologically relevant curcuminoids inhibit angiogenesis via VEGFR2 in human aortic endothelial cells. Food Chem Toxicol 2022; 166:113254. [PMID: 35752269 DOI: 10.1016/j.fct.2022.113254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Angiogenesis is a complex process encompassing endothelial cell proliferation, migration, and tube formation. While numerous studies describe that curcumin exerts antitumor properties (e.g., targeting angiogenesis), information regarding other dietary curcuminoids such as demethoxycurcumin (DMC) and bisdemethoxycurcumin (BisDMC) is scant. In this study, we evaluated the antiangiogenic activities of these three curcuminoids at physiological concentrations (0.1-5 μM) on endothelial cell migration and tubulogenesis and the underlying associated mechanisms on human aortic endothelial cells (HAECs). Results showed that the individual compounds and a representative mixture inhibited the tubulogenic and migration capacity of endothelial cells dose-dependently, while sparing cell viability. Notably, DMC and BisDMC at 0.1 and 1 μM showed higher capacity than curcumin inhibiting tubulogenesis. These compounds also reduced phosphorylation of the VEGFR2 and the downstream ERK and Akt pathways in VEGF165-stimulated cells. In silico analysis showed that curcuminoids could bind the VEGFR2 antagonizing the VEGF-mediated angiogenesis. These findings suggest that physiologically concentrations of curcuminoids might counteract pro-angiogenic stimuli relevant to tumorigenic processes.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain.
| | - María Ángeles Ávila-Gálvez
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Campus de los Jerónimos, s/n, 30107, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Campus de los Jerónimos, s/n, 30107, Guadalupe, Spain
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain
| |
Collapse
|
8
|
Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci 2022; 79:349. [PMID: 35672585 PMCID: PMC10171722 DOI: 10.1007/s00018-022-04348-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
All living beings continue their life by receiving energy and by excreting waste products. In animals, the arteries are the pathways of these transfers to the cells. Angiogenesis, the formation of the arteries by the development of pre-existed parental blood vessels, is a phenomenon that occurs naturally during puberty due to certain physiological processes such as menstruation, wound healing, or the adaptation of athletes' bodies during exercise. Nonetheless, the same life-giving process also occurs frequently in some patients and, conversely, occurs slowly in some physiological problems, such as cancer and diabetes, so inhibiting angiogenesis has been considered to be one of the important strategies to fight these diseases. Accordingly, in tissue engineering and regenerative medicine, the highly controlled process of angiogenesis is very important in tissue repairing. Excessive angiogenesis can promote tumor progression and lack of enough angiogensis can hinder tissue repair. Thereby, both excessive and deficient angiogenesis can be problematic, this review article introduces and describes the types of factors involved in controlling angiogenesis. Considering all of the existing strategies, we will try to lay out the latest knowledge that deals with stimulating/inhibiting the angiogenesis. At the end of the article, owing to the early-reviewed mechanical aspects that overshadow angiogenesis, the strategies of angiogenesis in tissue engineering will be discussed.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
9
|
Vallée A. Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 2022; 49:79. [PMID: 35445729 PMCID: PMC9083851 DOI: 10.3892/ijmm.2022.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a natural product widely used due to its pharmacological effects. Nevertheless, only a limited number of studies concerning the effects of curcumin on exudative age‑related macular degeneration (AMD) is currently available. Since ophthalmic diseases, including exudative AMD, have a marked impact on public health, the prevention and therapy of ophthalmic disorders remain of increasing concern. Exudative AMD is characterized by choroidal neovascularization (CNV) invading the subretinal space, ultimately enhancing exudation and hemorrhaging. The exudative AMD subtype corresponds to 10 to 15% of cases of macular degeneration; however, the occurrence of this subtype has been reported as the major cause of vision loss and blindness, with the occurrence of CNV being responsible for 80% of the cases with vision loss. In CNV increased expression of VEGF has been observed, stimulated by the overactivation of Wnt/β‑catenin signaling pathway. The stimulation of the Wnt/β‑catenin signaling pathway is responsible for the activation of several cellular mechanisms, simultaneously enhancing inflammation, oxidative stress and angiogenesis in numerous diseases, including ophthalmic disorders. Some studies have previously demonstrated the possible advantage of the use of curcumin for the inhibition of Wnt/β‑catenin signaling. In the present review article, the different mechanisms of curcumin are described concerning its effects on oxidative stress, inflammation and angiogenesis in exudative AMD, by interacting with Wnt/β‑catenin signaling.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
10
|
Chung H, Lee SW, Hyun M, Kim SY, Cho HG, Lee ES, Kang JS, Chung CH, Lee EY. Curcumin Blocks High Glucose-Induced Podocyte Injury via RIPK3-Dependent Pathway. Front Cell Dev Biol 2022; 10:800574. [PMID: 35706905 PMCID: PMC9189280 DOI: 10.3389/fcell.2022.800574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Podocyte loss is well known to play a critical role in the early progression of diabetic nephropathy. A growing number of studies are paying attention to necroptosis, a programmed form of cell necrosis as a mechanism of podocyte loss. Although necroptosis is a recently established concept, the significance of receptor interacting serine/threonine kinase 3 (RIPK3), a gene that encodes for the homonymous enzyme RIPK3 responsible for the progression of necroptosis, is well studied. Curcumin, a natural hydrophobic polyphenol compound responsible for the yellow color of Curcuma longa, has drawn attention due to its antioxidant and anti-inflammatory effects on cells prone to necroptosis. Nonetheless, effects of curcumin on high glucose-induced podocyte necroptosis have not been reported yet. Therefore, this study investigated RIPK3 expression in high glucose-treated podocytes to identify the involvement of necroptosis via the RIPK3 pathway and the effects of curcumin treatment on RIPK3-dependent podocytopathy in a hyperglycemic environment. The study discovered that increased reactive oxygen species (ROS) in renal podocytes induced by high glucose was improved after curcumin treatment. Curcumin treatment also significantly restored the upregulated levels of VEGF, TGF-β, and CCL2 mRNAs and the downregulated level of nephrin mRNA in cultured podocytes exposed to a high glucose environment. High glucose-induced changes in protein expression of TGF-β, nephrin, and CCL2 were considerably reverted to their original levels after curcumin treatment. Increased expression of RIPK3 in high glucose-stimulated podocytes was alleviated by curcumin treatment as well as N-acetyl cysteine (NAC, an antioxidant) or GSK′872 (a RIPK3 inhibitor). Consistent with this, the increased necroptosis-associated molecules, such as RIPK3, pRIPK3, and pMLKL, were also restored by curcumin in high glucose-treated mesangial cells. DCF-DA assay confirmed that such a result was attributed to the reduction of RIPK3 through the antioxidant effect of curcumin. Further observations of DCF-DA-sensitive intracellular ROS in NAC-treated and GSK′872-treated podocyte groups showed a reciprocal regulatory relationship between ROS and RIPK3. The treatment of curcumin and GSK′872 in podocytes incubated with high glucose protected from excessive intracellular superoxide anion production. Taken together, these results indicate that curcumin treatment can protect against high glucose-induced podocyte injuries by suppressing the abnormal expression of ROS and RIPK3. Thus, curcumin might be a potential therapeutic agent for diabetic nephropathy as an inhibitor of RIPK3.
Collapse
Affiliation(s)
- Hyunsoo Chung
- College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Woo Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Miri Hyun
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - So Young Kim
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Hyeon Gyu Cho
- College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Eun Young Lee
- College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- *Correspondence: Eun Young Lee,
| |
Collapse
|
11
|
Daya R, Xu C, Nguyen NYT, Liu HH. Angiogenic Hyaluronic Acid Hydrogels with Curcumin-Coated Magnetic Nanoparticles for Tissue Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11051-11067. [PMID: 35199989 DOI: 10.1021/acsami.1c19889] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Angiogenic magnetic hydrogels are attractive for tissue engineering applications because their integrated properties can improve angiogenesis while providing magnetic guidance and stimulation for tissue healing. In this study, we synthesized magnetic nanoparticles (MNPs) with curcumin as an angiogenic agent, referred to as CMNPs, via a one-pot coprecipitation method. We dispersed CMNPs in hyaluronic acid (HyA) to create angiogenic magnetic hydrogels. CMNPs showed a slightly reduced average diameter compared to that of MNPs and a curcumin content of 11.91%. CMNPs exhibited a sustained slow release of curcumin when immersed in a revised simulated body fluid (rSBF). Both CMNPs and MNPs showed a dose-dependent cytocompatibility when cultured with bone marrow-derived mesenchymal stem cells (BMSCs) using the direct exposure culture method in vitro. The average BMSC density increased when the concentrations of CMNPs or MNPs increased from 100 to 500 μg/mL, but the cell density decreased when the nanoparticle concentration reached 1000 μg/mL. CMNPs showed a weaker magnetic response than MNPs both in air and in water immediately after synthesis but retained the magnetism better than MNPs when embedded in the HyA hydrogel because of less oxidation. CMNPs were able to respond to magnetic guidance even when the porcine skin or muscle tissues were placed in between the nanoparticles and external magnet. The magnetic hydrogels of HyA_CMNP and HyA_MNP promoted the adhesion of BMSCs in a direct exposure culture. The HyA_CMNP group also showed the highest secretion of the vascular endothelial growth factor with the release of curcumin in vitro. Overall, our magnetic hydrogels integrated the desirable properties of cytocompatibility and angiogenesis with magnetic guidance, thus proving to be promising for improving tissue regeneration.
Collapse
Affiliation(s)
- Radha Daya
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Changlu Xu
- Materials Science and Engineering Program, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Nhu-Y Thi Nguyen
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Huinan Hannah Liu
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Stem Cell Center, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
12
|
Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Adv Colloid Interface Sci 2022; 300:102582. [PMID: 34953375 DOI: 10.1016/j.cis.2021.102582] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
Nanoparticles have emerged as promising drug delivery systems for the treatment of several diseases. Novel cancer therapies have exploited these particles as alternative adjuvant therapies to overcome the traditional limitations of radio and chemotherapy. Curcumin is a natural bioactive compound found in turmeric, that has been reported to show anticancer activity against several types of tumors. Despite some biological limitations regarding its absorption in the human body, curcumin encapsulation in poly(lactic-co-glycolic acid) (PLGA), a non-toxic, biodegradable and biocompatible polymer, represents an effective strategy to deliver a drug to a tumor site. Furthermore, PLGA nanoparticles can be engineered with targeting moieties to reach specific cancer cells, thus enhancing the antitumor effects of curcumin. We herein aim to bring an up-to-date summary of the recently developed strategies for curcumin delivery to different types of cancer cells through encapsulation in PLGA nanoparticles, correlating their effects with those of curcumin on the biological capabilities acquired by cancer cells (cancer hallmarks). We discuss the targeting strategies proposed for advanced curcumin delivery and the respective improvements achieved for each cancer cell analyzed, in addition to exploring the encapsulation techniques employed. The conjugation of correct encapsulation techniques with tumor-oriented targeting design can result in curcumin-loaded PLGA nanoparticles that can successfully integrate the elaborate network of development of alternative cancer treatments along with traditional ones. Finally, the current challenges and future demands to launch these nanoparticles in oncology are comprehensively examined.
Collapse
|
13
|
Solubility and Dissolution Enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) Inclusion Complexes: Preparation and In Vitro Characterization. Polymers (Basel) 2022; 14:polym14030579. [PMID: 35160569 PMCID: PMC8838044 DOI: 10.3390/polym14030579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023] Open
Abstract
The objective of this study was to improve the dissolution and solubility of dexibuprofen (DEX) using hydroxypropyl beta cyclodextrin (HPβCD) inclusion complexes and also to evaluate the effect of presence of hydrophilic polymers on solubilization efficiency of HPβCD. Three different methods (physical trituration, kneading and solvent evaporation) were used to prepare binary inclusion complexes at various drug-to-cyclodextrin weight ratios. An increase in solubility and drug release was observed with the kneading (KN) method at a DEX/HPβCD (1:4) weight ratio. The addition of hydrophilic polymers poloxamer-188 (PXM-188) and poloxamer-407 (PXM-407) at 2.5, 5.0, 10.0 and 20% w/w enhanced the complexation efficiency and solubility of DEX/HPβCD significantly. Fourier-transform infrared (FTIR) analysis revealed that DEX was successfully incorporated into the cyclodextrin cavity. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) revealed less crystallinity of the drug and its entrapment in the cyclodextrin molecular cage. The addition of PXM-188 or PXM-407 reduced the strength of the DEX endothermic peak. With the addition of hydrophilic polymers, sharp and intense peaks of DEX disappeared. Finally, it was concluded that PXM-188 at a weight ratio of 10.0% w/w was the best candidate for improving solubility, stability and release rate of DEX.
Collapse
|
14
|
Schulze J, Lehmann J, Agel S, Amin MU, Schaefer J, Bakowsky U. In Ovo Testing Method for Inhalants on a Chorio-Allantoic Membrane. ACS APPLIED BIO MATERIALS 2021; 4:7764-7768. [PMID: 35006759 DOI: 10.1021/acsabm.1c01016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solid tumors and metastasis rely on angiogenesis for sufficient supply as they grow, making antiangiogenic treatment a promising option in the combat of cancer. Testing of inhalants on the chorio-allantoic membrane offers a simple but precise method to assess the impact on angiogenesis. The in ovo testing method can be used to directly determine the effect of inhaled formulations solely or in the context of photodynamic therapy. In this study curcumin liposomes served as a model for testing of pulmonary application and revealed an excellent antiangiogenetic effect. This efficacy of a model inhalant illustrates the suitability of the method.
Collapse
Affiliation(s)
- Jan Schulze
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Jennifer Lehmann
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Sabine Agel
- University of Giessen, Biomedical Research Center (BFS), Imaging Unit, Schubertstrasse 81, 35392 Giessen, Germany
| | - Muhammad Umair Amin
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Jens Schaefer
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| |
Collapse
|
15
|
Tabanelli R, Brogi S, Calderone V. Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics 2021; 13:1715. [PMID: 34684008 PMCID: PMC8540263 DOI: 10.3390/pharmaceutics13101715] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Curcumin possesses a plethora of interesting pharmacological effects. Unfortunately, it is also characterized by problematic drug delivery and scarce bioavailability, representing the main problem related to the use of this compound. Poor absorption, fast metabolism, and rapid systemic clearance are the most important factors contributing to low curcumin levels in plasma and tissues. Accordingly, to overcome these issues, numerous strategies have been proposed and are investigated in this article. Due to advances in the drug delivery field, we describe here the most promising strategies for increasing curcumin bioavailability, including the use of adjuvant, complexed/encapsulated curcumin, specific curcumin formulations, and curcumin nanoparticles. We analyze current strategies, already available in the market, and the most advanced technologies that can offer a future perspective for effective curcumin formulations. We focus the attention on the effectiveness of curcumin-based formulations in clinical trials, providing a comprehensive summary. Clinical trial results, employing various delivery methods for curcumin, showed that improved bioavailability corresponds to increased therapeutic efficacy. Furthermore, advances in the field of nanoparticles hold great promise for developing curcumin-based complexes as effective therapeutic agents. Summarizing, suitable delivery methods for this polyphenol will ensure the possibility of using curcumin-derived formulations in clinical practice as preventive and disease-modifying therapeutics.
Collapse
Affiliation(s)
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy; (R.T.); (V.C.)
| | | |
Collapse
|
16
|
George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants (Basel) 2021; 10:antiox10091455. [PMID: 34573087 PMCID: PMC8466984 DOI: 10.3390/antiox10091455] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition where the body cells multiply in an uncontrollable manner. Chemoprevention of cancer is a broad term that describes the involvement of external agents to slow down or suppress cancer growth. Synthetic and natural compounds are found useful in cancer chemoprevention. The occurrence of global cancer type varies, depending on many factors such as environmental, lifestyle, genetic etc. Cancer is often preventable in developed countries with advanced treatment modalities, whereas it is a painful death sentence in developing and low-income countries due to the lack of modern therapies and awareness. One best practice to identify cancer control measures is to study the origin and risk factors associated with common types. Based on these factors and the health status of patients, stage, and severity of cancer, type of treatment is decided. Even though there are well-established therapies, cancer still stands as one of the major causes of death and a public health burden globally. Research shows that most cancers can be prevented, treated, or the incidence can be delayed. Phytochemicals from various medicinal plants were reported to reduce various risk factors associated with different types of cancer through their chemopreventive role. This review highlights the role of bioactive compounds or natural products from plants in the chemoprevention of cancer. There are many plant based dietary factors involved in the chemoprevention process. The review discusses the process of carcinogenesis and chemoprevention using plants and phytocompounds, with special reference to five major chemopreventive phytocompounds. The article also summarizes the important chemopreventive mechanisms and signaling molecules involved in the process. Since the role of antioxidants in chemoprevention is inevitable, an insight into plant-based antioxidant compounds that fight against this dreadful disease at various stages of carcinogenesis and disease progression is discussed. This will fill the research gap in search of chemopreventive natural compounds and encourage scientists in clinical trials of anticancer agents from plants.
Collapse
|
17
|
A Perspective on Withania somnifera Modulating Antitumor Immunity in Targeting Prostate Cancer. J Immunol Res 2021; 2021:9483433. [PMID: 34485538 PMCID: PMC8413038 DOI: 10.1155/2021/9483433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/07/2021] [Indexed: 01/07/2023] Open
Abstract
Medicinal plants serve as a lead source of bioactive compounds and have been an integral part of day-to-day life in treating various disease conditions since ancient times. Withaferin A (WFA), a bioactive ingredient of Withania somnifera, has been used for health and medicinal purposes for its adaptogenic, anti-inflammatory, and anticancer properties long before the published literature came into existence. Nearly 25% of pharmaceutical drugs are derived from medicinal plants, classified as dietary supplements. The bioactive compounds in these supplements may serve as chemotherapeutic substances competent to inhibit or reverse the process of carcinogenesis. The role of WFA is appreciated to polarize tumor-suppressive Th1-type immune response inducing natural killer cell activity and may provide an opportunity to manipulate the tumor microenvironment at an early stage to inhibit tumor progression. This article signifies the cumulative information about the role of WFA in modulating antitumor immunity and its potential in targeting prostate cancer.
Collapse
|
18
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
19
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
20
|
Curcumin-loaded Polyethyleneimine and chitosan polymer-based Mucoadhesive liquid crystalline systems as a potential platform in the treatment of cervical Cancer. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Pan D, Gong X, Wang X, Li M. Role of Active Components of Medicinal Food in the Regulation of Angiogenesis. Front Pharmacol 2021; 11:594050. [PMID: 33716724 PMCID: PMC7944143 DOI: 10.3389/fphar.2020.594050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis refers to the formation of new blood vessels from the endothelial cells of existing arteries, veins, and capillaries. Angiogenesis is involved in a variety of physiological and pathological processes, such as the formation of malignant and development of atherosclerosis and other diseases. In recent years, many studies have shown that the active components of food have a certain regulatory effect on angiogenesis and negligible clinical limitations. With the increasing attention being paid to medicine and food homology, exploring the effect of active food components on angiogenesis is of great significance. In this review, we discuss the source, composition, pharmacological activity, and mechanism of action of certain active components of medicinal foods in detail. These could help prevent angiogenesis-related complications or provide a basis for healthier dietary habits. This review can provide a theoretical basis for the research and development of highly efficient anti-angiogenic drugs with low toxicity.
Collapse
Affiliation(s)
- Dezhi Pan
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
22
|
Jayarama S, Naik Parrikar P, Srinivas B, Krishnappa D. Apoptosis-inducing and antiangiogenic activity of partially purified protein from the pericarp of Zanthoxylum rhetsa in vitro and in vivo. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_520_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
23
|
Guruswamy DKM, Balaji KDS, Dharmappa KK, Jayarama S. Novel 3-(3, 5-difluoro-4-hydroxyphenyl)-1-(naphthalen-2-yl) prop-2-en-1-one as a potent inhibitor of MAP-kinase in HeLa cell lines and anti-angiogenic activity is mediated by HIF-1α in EAC animal model. Oncotarget 2020; 11:4661-4676. [PMID: 33400732 PMCID: PMC7747862 DOI: 10.18632/oncotarget.27836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023] Open
Abstract
In the present investigation, we synthesized chalcone bearing naphthalene compound d1, and on the basis of 1H-NMR, 13C NMR, and LC-MS data we had specified the structure of the synthesized compound. The resultant compound d1 was assessed for their antiproliferative action against human cancer cell lines (HeLa, HCT116, HT29, MDA-MB-231, MCF-7, and SKBR3). The IC50 range was estimated at 5.58 to 11.13 μM shows that compound d1 had remarkable anticancer activity on HeLa cell lines. Besides, it was discovered that d1 incited the mitochondrial apoptotic pathway by controlling Bax and Bcl-2 transcripts by expanding the Caspase 3 activation. We depicted the in-vivo effects of tumor advancement and the antiangiogenic activity of d1 in the EAC animal model. Tumor growth had inhibited and without symptoms the longevity of EAC containing mice expanded by the treatment of d1. Inhibition of nuclear transcriptional factor HIF-1α in EAC cells and finally it also inhibited phosphorylation of downstream signaling proteins such as ERK1/2, p38, and JNK in HeLa cells. The present investigation uncovered that d1 indicated noteworthy tumor-repressing abilities much less concentration in in-vitro and in-vivo recommended that compound d1 as the potent anticancer medication.
Collapse
Affiliation(s)
- Dileep Kumar M Guruswamy
- Department of Biotechnology, Teresian College, Siddhartha Nagara Mysore-570011, Karnataka, India
| | | | | | - Shankar Jayarama
- Department of Food Technology, Davanagere University, Karnataka-577002, India
| |
Collapse
|
24
|
Mansouri K, Rasoulpoor S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M, Rasoulpoor S, Shabani S. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer 2020; 20:791. [PMID: 32838749 PMCID: PMC7446227 DOI: 10.1186/s12885-020-07256-8] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Curcumin is herbal compound that has been shown to have anti-cancer effects in pre-clinical and clinical studies. The anti-cancer effects of curcumin include inhibiting the carcinogenesis, inhibiting angiogenesis, and inhibiting tumour growth. This study aims to determine the Clinical effects of curcumin in different types of cancers using systematic review approach. METHODS A systematic review methodology is adopted for undertaking detailed analysis of the effects of curcumin in cancer therapy. The results presented in this paper is an outcome of extracting the findings of the studies selected from the articles published in international databases including SID, MagIran, IranMedex, IranDoc, Google Scholar, ScienceDirect, Scopus, PubMed and Web of Science (ISI). These databases were thoroughly searched, and the relevant publications were selected based on the plausible keywords, in accordance with the study aims, as follows: prevalence, curcumin, clinical features, cancer. RESULTS The results are derived based on several clinical studies on curcumin consumption with chemotherapy drugs, highlighting that curcumin increases the effectiveness of chemotherapy and radiotherapy which results in improving patient's survival time, and increasing the expression of anti-metastatic proteins along with reducing their side effects. CONCLUSION The comprehensive systematic review presented in this paper confirms that curcumin reduces the side effects of chemotherapy or radiotherapy, resulting in improving patients' quality of life. A number of studies reported that, curcumin has increased patient survival time and decreased tumor markers' level.
Collapse
Affiliation(s)
- Kamran Mansouri
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shna Rasoulpoor
- Department of Biology, Islamic Azad University Urmia, Urmia, Iran
| | - Alireza Daneshkhah
- School of Computing, Electronics and Maths, Coventry University, Coventry, UK
| | - Soroush Abolfathi
- Centre for Predictive Modelling, University of Warwick, Coventry, CV4 7AL UK
| | - Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Mohammadi
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shabnam Rasoulpoor
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shervin Shabani
- Department of Biology, Islamic Azad University Urmia, Urmia, Iran
| |
Collapse
|
25
|
Bashir M, Syed HK, Asghar S, Irfan M, Almalki WH, Menshawi SA, Khan IU, Shah PA, Khalid I, Ahmad J, Gohar UF, Peh KK, Iqbal MS. Effect of Hydrophilic Polymers on Complexation Efficiency of Cyclodextrins in Enhancing Solubility and Release of Diflunisal. Polymers (Basel) 2020; 12:E1564. [PMID: 32679660 PMCID: PMC7408593 DOI: 10.3390/polym12071564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/05/2023] Open
Abstract
The effects of three hydrophilic polymers, namely, carboxymethyl cellulose sodium (CMC-Na), polyvinyl alcohol (PVA) and poloxamer-188 (PXM-188) on the solubility and dissolution of diflunisal (DIF) in complexation with β-cyclodextrin (βCD) or hydroxypropyl β-cyclodextrin (HPβCD), were investigated. The kneading method was used at different drug to cyclodextrin weight ratios. Increases in solubility and drug release were observed with the DIF/βCD and DIF/HPβCD complexes. The addition of hydrophilic polymers at 2.5, 5.0 and 10.0% w/w markedly improved the complexation and solubilizing efficiency of βCD and HPβCD. Fourier-transform infrared (FTIR) showed that DIF was successfully included into the cyclodextrin cavity. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) confirmed stronger drug amorphization and entrapment in the molecular cage of cyclodextrins. The addition of PVA, CMC-Na or PXM-188 reduced further the intensity of the DIF endothermic peak. Most of the sharp and intense peaks of DIF disappeared with the addition of hydrophilic polymers. In conclusion, PXM-188 at a weight ratio of 10.0% w/w was the best candidate in enhancing the solubility, stability and release of DIF.
Collapse
Affiliation(s)
- Mehreen Bashir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.B.); (S.A.); (M.I.); (I.U.K.); (I.K.); (J.A.)
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.B.); (S.A.); (M.I.); (I.U.K.); (I.K.); (J.A.)
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.B.); (S.A.); (M.I.); (I.U.K.); (I.K.); (J.A.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.B.); (S.A.); (M.I.); (I.U.K.); (I.K.); (J.A.)
| | - Waleed Hassan Almalki
- Department of Toxicology and Pharmacology, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia;
| | - Salah Ali Menshawi
- Department of Toxicology in Comprehensive Specialized Clinics Security Forces, Jeddah 21442, Saudi Arabia;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.B.); (S.A.); (M.I.); (I.U.K.); (I.K.); (J.A.)
| | - Pervaiz A. Shah
- University College of Pharmacy, University of the Punjab, Lahore 54590, Pakistan;
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.B.); (S.A.); (M.I.); (I.U.K.); (I.K.); (J.A.)
| | - Junaid Ahmad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.B.); (S.A.); (M.I.); (I.U.K.); (I.K.); (J.A.)
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore 54590, Pakistan;
| | - Kok Khiang Peh
- Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
26
|
Nisari M, Yılmaz S, Tolga Ertekin T, Yay AH, Ceylan D, İnanç N, Al Ö, Ülger H. Effects of curcumin on lipid peroxidation and antioxidant enzymes in kidney, liver, brain and testis of mice bearing Ehrlich Solid Tumor. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.1684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cancer is the second most common cause of death in the world. Several natural products have been studied for anticancer activity and for prevention or repair of oxidative injury. Curcumin is one of the natural products of high medicinal interest. This study was performed to investigate effects of curcumin on lipid peroxidation and antioxidant enzymes in tissues of mice bearing Ehrlich solid tumor.
Materials and Methods: Forty mice were distributed to four groups as healthy control and treatments that received 1x106 Ehrlich ascites tumor (EAT) cells and EAT cells plus 25 mg/kg/day or 50 mg/kg/day curcumin with a single subcutaneous injection. The liver, kidney, brain and testis tissues were collected for the MDA, SOD and CAT analyses.
Results: Tumor development increased MDA levels in liver (p=0.001), kidney (p<0.001) and testis (p<0.01) and curcumin reduced liver MDA. Liver and kidney SOD activities were increased by both levels of curcumin (p=0.001) but 50 mg/kg/day curcumin increased brain SOD activity (p<0.001). The kidney CAT activity was increased by 50 mg/kg/day curcumin (p<0.001).
Discussion: This study showed that curcumin suppresses tumor progression, and alleviates the lipid peroxidation and improves antioxidant status in the tissues of solid tumor-bearing mice.
Collapse
Affiliation(s)
- Mustafa Nisari
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Nuh Naci Yazgan, Kayseri, Turkey
| | - Seher Yılmaz
- Department of Anatomy, Bozok University School of Medicine, Yozgat, Turkey
| | - Tolga Tolga Ertekin
- Department of Anatomy, Kocatepe University School of Medicine, Afyon, Turkey
| | - Arzu Hanım Yay
- Department of Histology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Dilek Ceylan
- Genome and Stem Cell Center, University of Erciyes, Kayseri, Turkey
| | - Neriman İnanç
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Nuh Naci Yazgan, Kayseri, Turkey
| | - Özge Al
- Department of Anatomy, Erciyes University School of Medicine, Kayseri, Turkey
| | - Harun Ülger
- Department of Anatomy, Erciyes University School of Medicine, Kayseri, Turkey
| |
Collapse
|
27
|
Hoseinkhani Z, Norooznezhad F, Rastegari-Pouyani M, Mansouri K. Medicinal Plants Extracts with Antiangiogenic Activity: Where Is the Link? Adv Pharm Bull 2020; 10:370-378. [PMID: 32665895 PMCID: PMC7335987 DOI: 10.34172/apb.2020.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/08/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is a strictly controlled process defined as the formation of new blood vessels essential for certain physiologic and pathologic conditions where the latter includes tumor growth, development, and metastasis. Thus, inhibiting angiogenesis along with other anticancer strategies such as chemotherapy seems to be invaluable for reaching an optimal outcome in cancer patients. It has been shown that some natural plant-derived compounds are capable of preventing the formation of these new blood vessels in the tumor and also inhibit the proliferation and growth of the cancer cells. In this review, we intend to introduce plants with anti-angiogenic properties and discuss their related features.
Collapse
Affiliation(s)
- Zohreh Hoseinkhani
- Medical Biology Research Center Medical Sciences, Health Technology Institute, Kermanshah, Iran
| | - Fathemeh Norooznezhad
- Medical Biology Research Center Medical Sciences, Health Technology Institute, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center Medical Sciences, Health Technology Institute, Kermanshah, Iran
| |
Collapse
|
28
|
Guruswamy DKM, Jayarama S. Proapoptotic and anti-angiogenic activity of (2E)-3-(2-bromo-6-hydroxy-4-methoxyphenyl)-1-(naphthalene-2-yl) prop-2-en-1-one in MCF7 cell line. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01051-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Belenahalli Shekarappa S, Kandagalla S, H Malojirao V, G.S PK, B.T P, Hanumanthappa M. A systems biology approach to identify the key targets of curcumin and capsaicin that downregulate pro-inflammatory pathways in human monocytes. Comput Biol Chem 2019; 83:107162. [DOI: 10.1016/j.compbiolchem.2019.107162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
|
30
|
Monocarbonyl curcumin analog A2 potently inhibits angiogenesis by inducing ROS-dependent endothelial cell death. Acta Pharmacol Sin 2019; 40:1412-1423. [PMID: 31000770 DOI: 10.1038/s41401-019-0224-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/26/2019] [Indexed: 01/25/2023]
Abstract
Excessive and abnormal vessel growth plays a critical role in the pathogenesis of many diseases, such as cancer. Angiogenesis is one of the hallmarks of cancer growth, invasion, and metastasis. Discovery of novel antiangiogenic agents would provide new insights into the mechanisms of angiogenesis, as well as potential drugs for cancer treatment. In the present study, we investigated the antiangiogenic activity of a series of monocarbonyl analogs of curcumin synthesized previously in our lab. We found that curcumin analog A2 displayed the full potential to be developed as a novel antiangiogenic agent. Curcumin analog A2 at and above 20 μM dramatically inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, new microvessels sprouting from the rat aortic rings ex vivo and newly formed microvessels in chicken chorioallantoic membranes (CAMs) and Matrigel plus in vivo. We further demonstrated that curcumin analog A2 exerted its antiangiogenic activity mainly through inducing endothelial cell death via elevating NADH/NADPH oxidase-derived ROS. Curcumin analog A2 at the antiangiogenic concentrations also triggered autophagy in HUVECs, but this process is neither a pre-requisite for toxicity, leading to the cell death nor a protective response against the toxicity of curcumin analog A2. In conclusion, we demonstrate for the first time the potent antiangiogenic activity of the monocarbonyl curcumin analog A2, which could serve as a promising potential therapeutic agent for the prevention and treatment angiogenesis-related diseases, such as cancer.
Collapse
|
31
|
Lin W, Tu H, Zhu Y, Guan Y, Liu H, Ling W, Yan P, Dong J. Curcumolide, a unique sesquiterpenoid from Curcuma wenyujin displays anti-angiogenic activity and attenuates ischemia-induced retinal neovascularization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152923. [PMID: 31450226 DOI: 10.1016/j.phymed.2019.152923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Targeting vascular endothelial growth factor is a common treatment strategy for neovascular eye disease, a leading cause of visual impairment and blindness. However, these approaches are limited or carry various complications. Therefore, there is an urgent need for the development of unique therapeutic approaches. PURPOSE To investigate the anti-angiogenic effects of curcumolide and its mechanism of action. METHODS /STUDY DESIGNS In this study, we examine the effects of curcumolide on the process of vasculature formation, including cell proliferation, migration, tube formation and apoptosis in vitro using human umbilical vascular endothelial cells (HUVECs). We also assess the anti-angiogenic effects of curcumolide in vivo using a mouse model of oxygen induced retinopathy (OIR). The mechanism of anti-angiogenic effects was investigated by measuring the expression level of various signaling proteins and the molecular docking simulations. RESULTS Intravitreal injection of curcumolide reduced the formation of retinal neovascular tufts and VEGFR2 phosphorylation in the murine OIR model at concentrations administered without definite cellular and retinal toxicities. Curcumolide suppressed VEGF-induced HRMECs proliferation, migration and tube formation in a dose-dependent manner. Meanwhile, it promoted caspase-dependent apoptosis. Curcumolide also inhibited VEGF-induced phosphorylation of VEGFR-2 tyrosine kinase, and suppressed downstream protein kinases of VEGFR2, including Src, FAK, ERK, AKT, and mTOR in HRMECs. In silico study revealed that curcumolide bound with ATP-binding sites of the VEGFR2 kinase unit by the formation of a hydrogen bond and hydrophobic interactions. CONCLUSION Curcumolide has anti-angiogenic activity in HUVECs and in a murine OIR model of ischemia-induced retinal neovascularization, and it might be a potential drug candidate for the treatment of proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Weiwei Lin
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Hongfeng Tu
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Yao Zhu
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Yijian Guan
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Hui Liu
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Wei Ling
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Pengcheng Yan
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Jianyong Dong
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China.
| |
Collapse
|
32
|
Ang LF, Darwis Y, Por LY, Yam MF. Microencapsulation Curcuminoids for Effective Delivery in Pharmaceutical Application. Pharmaceutics 2019; 11:E451. [PMID: 31480767 PMCID: PMC6781510 DOI: 10.3390/pharmaceutics11090451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022] Open
Abstract
Curcuminoids have been long proven to possess antioxidant, anti-inflammatory and antibacterial properties which are crucial in their role as a pharmacological active agent. However, its poor solubility, high oxidative degradation, light sensitivity and poor bioavailability have been huge hurdles that need to be overcome for it to be administered as an oral or even a topical medication. In this present study, a complex coacervation microencapsulation approach was used to encapsulate the curcuminoids using both gelatin B and chitosan (at the optimum ratio of 30:1% w/w) for a more efficient drug delivery system. Curcuminoids microcapsules (CPM) were developed to be spherical in shape, discrete and free flowing with a reduced color staining effect. The thick wall of the CPM contributes directly to its integrity and stability. Cross-linking increases the density of polymers' wall network, hence, further increasing the decomposition temperature of curcuminoids microcapsules. Microencapsulation demonstrated an increment in curcuminoids solubility, while chemical cross-linking allowed for sustained release of the drug from the microcapsules by lowering the swelling rate of the available polymer networks. Thus, the microcapsules complied with the zero order release kinetics with super case-II transport mechanism. On the basis of all that was discussed above, it can be safely concluded that CPM should be incorporated in delivery system of curcuminoid, especially in its topical delivery for controlled drug release purposes, for not only a more efficient drug delivery system design but also a more efficacious optimization of the pharmacological benefits of curcuminoids.
Collapse
Affiliation(s)
- Lee Fung Ang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang11800, Malaysia
| | - Yusrida Darwis
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang11800, Malaysia
| | - Lip Yee Por
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mun Fei Yam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang11800, Malaysia.
| |
Collapse
|
33
|
Ali I, Suhail M, Naqshbandi MF, Fazil M, Ahmad B, Sayeed A. Role of Unani Medicines in Cancer Control and Management. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885513666180907103659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:Cancer is a havoc and killer disease. Several ways including allopathic chemotherapy have been used in the cancer treatment. Allopathic chemotherapy has several limitations and side effects. Unani medicine is also one of the therapies to cure cancer.Objective:In this type of treatment, herbal drugs are used for the treatment and prevention of cancer. The main attractive thing about herbal drug is no side effect as compared to allopathic chemotherapy.Methods:Actually, herbal drugs are the extracts of medicinal plants. The plant extracts are obtained by crushing and heating the main part of the plants; showing anticancer activity. The main plants used in the treatment of cancer are oroxylum indicum, dillenia indica, terminalia arjuna etc.Results:Mainly the cancers treated are of digestive system, breast, cervical, brain, blood, bone, lungs, thyroid, uterine, bladder, throat etc.Conclusion:The present review article discusses the importance of Unani system of medicine for the treatment of cancer. Besides, the future perspectives of Unani medicine in cancer treatment are also highlighted.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi-110025, India
| | - Mohd. Farooq Naqshbandi
- Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi- 110025, India
| | - Mohd. Fazil
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| | - Bilal Ahmad
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| | - Ahmad Sayeed
- Hakim Ajmal Khan Institute for Literary & Historical Research in Unani Medicine, Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi-110025, India
| |
Collapse
|
34
|
|
35
|
Radomska-Leśniewska DM, Osiecka-Iwan A, Hyc A, Góźdź A, Dąbrowska AM, Skopiński P. Therapeutic potential of curcumin in eye diseases. Cent Eur J Immunol 2019; 44:181-189. [PMID: 31530988 PMCID: PMC6745545 DOI: 10.5114/ceji.2019.87070] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
Curcumin (diferuloylmethane) derived from the rhizome of Curcuma longa L. has been used for thousands of years in traditional Chinese medicine and Ayurvedic medicine in Asian countries to treat liver diseases, rheumatoid diseases, diabetes, atherosclerosis, infectious diseases and cancer. It exhibits a wide range of pharmacological properties, which include antioxidant, anti-inflammatory, antimutagenic, antimicrobial and anticancer activity. Herein the mechanisms of curcumin impact on oxidative stress, angiogenesis and inflammatory processes are described indicating that curcumin use may inhibit those pathological conditions and restore body homeostasis. Its effectiveness was also proved for major eye diseases. In this review, the influence of curcumin on eye diseases, such as glaucoma, cataract, age-related macular degeneration, diabetic retinopathy, corneal neovascularization, corneal wound healing, dry eye disease, conjunctivitis, pterygium, anterior uveitis are reported. The analysis of a number of clinical and preclinical investigations indicates that curcumin may be used as a therapeutic agent in the treatment of various eye disorders.
Collapse
Affiliation(s)
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Agata Góźdź
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna M. Dąbrowska
- Department of Ophthalmology, Second Faculty of Medicine, Medical University of Warsaw, Poland
| | - Piotr Skopiński
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| |
Collapse
|
36
|
Mohebbati R, Anaeigoudari A, Khazdair MR. The effects of Curcuma longa and curcumin on reproductive systems. Endocr Regul 2019; 51:220-228. [PMID: 29232190 DOI: 10.1515/enr-2017-0024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Curcuma longa (C. longa) was used in some countries such as China and India for various medicinal purposes. Curcumin, the active component of C. longa, is commonly used as a coloring agent in foods, drugs, and cosmetics. C. longa and curcumin have been known to act as antioxidant, anti-inflammatory, anti-mutagen, and anti-carcinogenic agents. Th e attempt of the present review was to give an effort on a detailed literature survey concentrated on the protective effects of C. longa and curcumin on the reproductive organs activity. METHODS The databases such as, PubMed, Web of Science, Google Scholar, Scopus, and Iran- Medex, were considered. The search terms were "testis" or "ovary" and "Curcuma longa", "curcumin", "antioxidant effect", "anti-inflammatory effect" and "anti-cancer effect". RESULTS C. longa and curcumin inhibited the production of the tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) and increased the caspases (3, 8 and 9) activities in HL-60 prostate cancer. Furthermore, C. longa and curcumin suppressed the vascular endothelial growth factor (VEGF), phosphorylated signal transducers and activators of the transcription 3 (STAT) and matrix metalloproteinase-9 (MMP-9) in ovarian cancer cell line. CONCLUSION C. longa and curcumin might decrease the risk of cancer and other malignant diseases in the reproductive system. C. longa and curcumin have a protective effect on the reproductive organs activity such as, anti-inflammatory, anti-apoptotic, and antioxidant effects in normal cells but showed pro-apoptotic effects in the malignant cells. Therefore, different effects of C. longa and curcumin are dependent on the doses and the type of cells used in various models studied.
Collapse
|
37
|
Astinfeshan M, Rasmi Y, Kheradmand F, Karimipour M, Rahbarghazi R, Aramwit P, Nasirzadeh M, Daeihassani B, Shirpoor A, Gholinejad Z, Saboory E. Curcumin inhibits angiogenesis in endothelial cells using downregulation of the PI3K/Akt signaling pathway. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Bianchi G, Ravera S, Traverso C, Amaro A, Piaggio F, Emionite L, Bachetti T, Pfeffer U, Raffaghello L. Curcumin induces a fatal energetic impairment in tumor cells in vitro and in vivo by inhibiting ATP-synthase activity. Carcinogenesis 2019; 39:1141-1150. [PMID: 29860383 DOI: 10.1093/carcin/bgy076] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
Curcumin has been reported to inhibit inflammation, tumor growth, angiogenesis and metastasis by decreasing cell growth and by inducing apoptosis mainly through the inhibition of nuclear factor kappa-B (NFκB), a master regulator of inflammation. Recent reports also indicate potential metabolic effects of the polyphenol, therefore we analyzed whether and how it affects the energy metabolism of tumor cells. We show that curcumin (10 µM) inhibits the activity of ATP synthase in isolated mitochondrial membranes leading to a dramatic drop of ATP and a reduction of oxygen consumption in in vitro and in vivo tumor models. The effects of curcumin on ATP synthase are independent of the inhibition of NFκB since the IκB Kinase inhibitor, SC-514, does not affect ATP synthase. The activities of the glycolytic enzymes hexokinase, phosphofructokinase, pyruvate kinase and lactate dehydrogenase are only slightly affected in a cell type-specific manner. The energy impairment translates into decreased tumor cell viability. Moreover, curcumin induces apoptosis by promoting the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), a marker of lipid oxidation, and autophagy, at least in part due to the activation of the AMP-activated protein kinase (AMPK). According to the in vitro anti-tumor effect, curcumin (30 mg/kg body weight) significantly delayed in vivo cancer growth likely due to an energy impairment but also through the reduction of tumor angiogenesis. These results establish the ATP synthase, a central enzyme of the cellular energy metabolism, as a target of the antitumoral polyphenol leading to inhibition of cancer cell growth and a general reprogramming of tumor metabolism.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Pharmacy, University of Genova, Genova, Italy
| | | | | | | | - Laura Emionite
- Animal Facility, Ospedale Policlinico San Martino, Genova, Italy
| | - Tiziana Bachetti
- Department of Medical Genetics, Istituto G. Gaslini, Genova, Italy.,Biochemistry Laboratory, University of Genova, Genova, Italy
| | | | | |
Collapse
|
39
|
Buzzá HH, Fialho de Freitas LC, Moriyama LT, Teixeira Rosa RG, Bagnato VS, Kurachi C. Vascular Effects of Photodynamic Therapy with Curcumin in a Chorioallantoic Membrane Model. Int J Mol Sci 2019; 20:E1084. [PMID: 30832361 PMCID: PMC6429090 DOI: 10.3390/ijms20051084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
Photodynamic Therapy (PDT) is a treatment that requires light, a photosensitizing agent, and molecular oxygen. The photosensitizer is activated by light and it interacts with the oxygen that is present in the cellular microenvironment. The molecular oxygen is transformed into singlet oxygen, which is highly reactive and responsible for the cell death. Therefore, PS is an important element for the therapy happens, including its concentration. Curcumin is a natural photosensitizer and it has demonstrated its anti-inflammatory and anti-oxidant effects that inhibit several signal transduction pathways. PDT vascular effects of curcumin at concentrations varying from 0.1 to 10 mM/cm² and topical administration were investigated in a chick Chorioallantoic Membrane (CAM) model. The irradiation was performed at 450 nm, irradiance of 50 mW/cm² during 10 min, delivering a total fluence of 30 J/cm². The vascular effect was followed after the application of curcumin, with images being obtained each 30 min in the first 3 h, 12 h, and 24 h. Those images were qualitatively and quantitatively analyzed with a MatLAB®. Curcumin was expected to exhibit a vascular effect due to its angio-inhibitory effect. Using curcumin as photosensitizer, PDT induced a higher and faster vascular effect when compared to the use of this compound alone.
Collapse
Affiliation(s)
- Hilde Harb Buzzá
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Lucas Cruz Fialho de Freitas
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Lilian Tan Moriyama
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Ramon Gabriel Teixeira Rosa
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo (USP), P.O. Box 369, 13560-970 São Carlos, São Paulo, Brazil.
| |
Collapse
|
40
|
Hosseini A, Rasmi Y, Rahbarghazi R, Aramwit P, Daeihassani B, Saboory E. Curcumin modulates the angiogenic potential of human endothelial cells via FAK/P-38 MAPK signaling pathway. Gene 2019; 688:7-12. [DOI: 10.1016/j.gene.2018.11.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023]
|
41
|
Lin PH, Lin SK, Hsu RJ, Pang ST, Chuang CK, Chang YH, Liu JM. Spirit-Quieting Traditional Chinese Medicine may Improve Survival in Prostate Cancer Patients with Depression. J Clin Med 2019; 8:jcm8020218. [PMID: 30744039 PMCID: PMC6406565 DOI: 10.3390/jcm8020218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/07/2023] Open
Abstract
Depression is associated with higher mortality in prostate cancer. However, whether traditional Chinese medicine (TCM) for depression improves outcomes in patients with prostate cancer is unclear. This retrospective cohort study evaluated the association between TCM for depression and mortality in patients with prostate cancer. During the period 1998⁻2012, a total of 248 prostate cancer patients in Taiwan with depression were enrolled and divided into three groups: TCM for depression (n = 81, 32.7%), TCM for other purposes (n = 53, 21.3%), and no TCM (n = 114, 46.0%). During a median follow-up of 6.2 years, 12 (14.8%), 13 (24.5%), and 36 (31.6%) deaths occurred in the TCM for depression, TCM for other purposes, and no TCM groups, respectively. After adjusting age at diagnosis, urbanization, insured amount, comorbidity disease, and prostate cancer type, TCM for depression was associated with a significantly lower risk of overall mortality based on a multivariate-adjusted Cox proportional-hazards model (hazard ratio 0.42, 95% confidence interval: 0.21⁻0.85, p = 0.02) and Kaplan⁻Meier survival curve (log-rank test, p = 0.0055) compared to no TCM. In conclusion, TCM for depression may have a positive association with the survival of prostate cancer patients with depression.
Collapse
Affiliation(s)
- Po-Hung Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Shun-Ku Lin
- Department of Chinese medicine, Taipei City Hospital, Ren-Ai Branch, Taipei 106, Taiwan.
- Institute of Public Health, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ren-Jun Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
- Cancer Medicine Center of Buddhist Hualien Tzu Chi Hospital, Tzu Chi University, Hualien 970, Taiwan.
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.
| | - Cheng-Keng Chuang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.
| | - Jui-Ming Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan.
- Department of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
42
|
Srinivas BK, Shivamadhu MC, Jayarama S. Angio-Suppressive Effect of Partially Purified Lectin-like Protein from Musa acuminata pseudostem by Inhibition of VEGF-Mediated Neovascularization and Induces Apoptosis Both In Vitro and In Vivo. Nutr Cancer 2018; 71:285-300. [DOI: 10.1080/01635581.2018.1540714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Madhu Chakkere Shivamadhu
- Post Graduation Department of Biotechnology, Teresian College, Siddhartha Nagar, Mysore, Karnataka, India
- Department of Biochemistry, Yuvaraja’s College University of Mysore, Mysore, Karnataka, India
| | - Shankar Jayarama
- Post Graduation Department of Biotechnology, Teresian College, Siddhartha Nagar, Mysore, Karnataka, India
| |
Collapse
|
43
|
Falcão MAP, de Souza LS, Dolabella SS, Guimarães AG, Walker CIB. Zebrafish as an alternative method for determining the embryo toxicity of plant products: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35015-35026. [PMID: 30357668 DOI: 10.1007/s11356-018-3399-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
The toxicological assessment of plant products and pharmaceutical chemicals is a necessary requirement to ensure that all compounds are safe to be exposed to humans. Many countries are trying to reduce the use of animals; thus, alternative techniques, such as ex vivo tests, in vitro assays, and ex uteri embryos, are used. Toxicological assays using zebrafish embryos are an advantageous technique because they are transparent, have rapid embryonic development, and do not require invasive techniques. This paper comprehensively reviews how toxicity testing with plant products is conducted in zebrafish embryos. The search terms zebra fish, Danio rerio, zebrafish, zebra danio, Brachydanio rerio, zebrafish, and embryos were used to search for English-language articles in PUBMED, SCOPUS, and WEB OF SCIENCE. Twelve articles on plant product toxicity studies using zebrafish were selected for reading and analysis. After analyzing the articles and comparing with results in mammals, it was possible to prove the similarity among the results and thus corroborate the further development of zebrafish as a valid tool in toxicity tests.
Collapse
Affiliation(s)
- Maria Alice Pimentel Falcão
- Laboratory of Neuropharmacological Studies, Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil
| | - Lucas Santos de Souza
- Laboratory of Neuropharmacological Studies, Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil
| | - Silvio Santana Dolabella
- Laboratory of Parasitology and Tropical Entomology, Department of Morphology, Federal University of Sergipe, Sâo Cristóvão, SE, Brazil
| | - Adriana Gibara Guimarães
- Laboratory of Neuroscience and Pharmacological Assays, Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Cristiani Isabel Banderó Walker
- Laboratory of Neuropharmacological Studies, Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil.
| |
Collapse
|
44
|
Fereydouni N, Darroudi M, Movaffagh J, Shahroodi A, Butler AE, Ganjali S, Sahebkar A. Curcumin nanofibers for the purpose of wound healing. J Cell Physiol 2018; 234:5537-5554. [DOI: 10.1002/jcp.27362] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Narges Fereydouni
- Student Research Committee, Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Jebrail Movaffagh
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
- Targeted Drug Delivery Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Azadeh Shahroodi
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
- Targeted Drug Delivery Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | | | - Shiva Ganjali
- Department of Medical Biotechnology School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
45
|
Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A. Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 2018; 136:181-193. [DOI: 10.1016/j.phrs.2018.09.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/19/2018] [Indexed: 12/22/2022]
|
46
|
Fan Z, Li J, Liu J, Jiao H, Liu B. Anti-Inflammation and Joint Lubrication Dual Effects of a Novel Hyaluronic Acid/Curcumin Nanomicelle Improve the Efficacy of Rheumatoid Arthritis Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23595-23604. [PMID: 29920067 DOI: 10.1021/acsami.8b06236] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which can cause endless suffering to the patients and severely impact their normal lives. To treat RA, the drugs in use have many serious side effects, high cost, or only focus on their anti-inflammatory mechanisms without taking joint lubrication into consideration. Therefore, in this study, we aim to construct a novel anti-RA drug composed of hyaluronic acid/curcumin (HA/Cur) nanomicelle to resolve these problems. Characterizations show that Cur is bound to HA by ester linkages and self-assembles to form a spherical nanomicelle with a diameter of around 164 nm under the main driving of the hydrophilic and hydrophobic forces. The nanomicelle enjoys excellent biocompatibility that effectively promotes the proliferation of chondrocytes. When injected to the RA rats, the nanomicelle significantly lowers the edema degree of the arthritic rats compared to other groups; more critically, a dramatic decrease in friction between the surfaces of cartilage around the joints has been found, which protects the cartilage from the RA-induced damage. Additionally, systematic mechanism investigation indicates that the nanomicelle diminishes the expression of related cytokines and vascular endothelial growth factor, finally leading to the excellent performance. The newfound nanomicelle has a potential for clinical practice of RA therapy, which will contribute significantly to alleviating the pain of patients and improving the quality of life for them.
Collapse
|
47
|
Dose-reduction antiangiogenic curcumin-low molecular weight heparin nanodrugs for enhanced combinational antitumor therapy. Eur J Pharm Sci 2018; 119:121-134. [DOI: 10.1016/j.ejps.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
|
48
|
Banuppriya G, Sribalan R, Padmini V. Synthesis and characterization of curcumin-sulfonamide hybrids: Biological evaluation and molecular docking studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Vasudevan S, Prabhune AA. Photophysical studies on curcumin-sophorolipid nanostructures: applications in quorum quenching and imaging. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170865. [PMID: 29515826 PMCID: PMC5830715 DOI: 10.1098/rsos.170865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/04/2018] [Indexed: 05/02/2023]
Abstract
Sophorolipid biosurfactants are biodegradable, less toxic and FDA approved. The purified acidic form of sophorolipid is stimuli-responsive with self-assembling properties and used for solubilizing hydrophobic drugs. This study encapsulated curcumin (CU) with acidic sophorolipid (ASL) micelles and analysed using photophysical studies like UV-visible spectroscopy, photoluminescence (PL) spectroscopy and time-correlated single photon counting (TCSPC). TEM images have revealed ellipsoid micelles of approximately 100 nm size and were confirmed by dynamic light scattering. The bacterial fluorescence uptake studies showed the uptake of formed CUASL nanostructures into both Gram-positive and Gram-negative bacteria. They also showed quorum quenching activity against Pseudomonas aeruginosa. The results have demonstrated this system has potential theranostic applications.
Collapse
Affiliation(s)
| | - Asmita A. Prabhune
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi-Bhabha Road, Pune 411008, India
| |
Collapse
|
50
|
Ahmadi F, Vahedpour T, Alizadeh AA. The evaluation of Cr-curcumin-DNA complexation by experimental and theoretical approaches. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:35-52. [PMID: 29336691 DOI: 10.1080/15257770.2017.1414241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromium(III) chloride mediates DNA-DNA cross-linking. Some chromium complexes promote programmed cell death in specific ligand environment through binding to DNA. One strategy that can be supposed for reduction of Cr3+ binding affinity to DNA is using curcumin as a chelator. In the current study, the [Cr(Curcumin)(EtOH)2](NO3)2 (CCC) was synthesized and characterized by UV/Vis, FT-IR, CHN and spectrophotometric titration techniques. The mole ratio plot revealed a 1:1 complex between Cr3+ and curcumin in solution. Binding interaction of this complex with calf thymus-DNA (CT-DNA) was investigated using UV/Vis, circular dichroism (CD), FT-IR and cyclic voltammetry. The intrinsic binding constants of CCC with DNA, measured by UV/Vis and cyclic voltammetry, were 1.60 × 105 and 1.13 × 105, respectively. The thermodynamic studies showed that the reaction is enthalpy and entropy favoured. CD analysis revealed that only Λ-CCC interacts with DNA and Δ-CCC form has no tendency towards DNA. Based on FT-IR studies, it was understood that CCC interacts with DNA via minor groove binding. The docking simulation was carried out for finding the binding mode of CCC to DNA, too. All of data demonstrated that the curcumin significantly reduced the affinity of Cr3+ to the DNA and the form of Δ-CCC has no interaction with DNA.
Collapse
Affiliation(s)
- Farhad Ahmadi
- a Medicinal Chemistry Department , Faculty of Pharmacy-International Campous, Iran University of Medical Sciences
| | - Teymour Vahedpour
- b Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Faculty of pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Akbar Alizadeh
- b Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|