1
|
Wang S, Fixman B, Chen XS. Fluorescent shift assay for APOBEC-mediated RNA editing. Methods Enzymol 2025; 713:1-14. [PMID: 40250949 DOI: 10.1016/bs.mie.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Cytidine (C) to Uridine (U) RNA editing is a post-transcriptional modification that is involved in diverse biological processes. The APOBEC deaminase family acts in various cellular processes mostly through inducing C-to-U mutation in single-stranded RNA (or DNA). However, comparing the activity of different RNA editing enzymes to one another is difficult due to the limited number of systems that can provide direct and efficient readout. In this report, a system in which RNA editing directly prompts a change in the subcellular localization of a modified eGFP structure is described in detail. This approach allows us to compare relative fluorescence intensity based on the RNA editing level. When observed through a fluorescence detection system, like a scanning confocal microscope, the cellular nucleus can be readily identified using a DNA-binding stain, such as DAPI or Hoechst, so that the accurate calculation of the ratio of nuclear to cytosolic eGFP intensity can be applied for an individual cell. This method provides a useful and flexible tool to examine and quantify RNA editing activity within cells, and it is not only limited to APOBEC proteins, but can also be applied more generally to other RNA editing enzymatic assays.
Collapse
Affiliation(s)
- Shanshan Wang
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Fixman
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Wang S, Kim K, Gelvez N, Chung C, Gout JF, Fixman B, Vermulst M, Chen XS. Identification of RBM46 as a novel APOBEC1 cofactor for C-to-U RNA-editing activity. J Mol Biol 2023; 435:168333. [PMID: 38708190 PMCID: PMC11068304 DOI: 10.1016/j.jmb.2023.168333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 05/07/2024]
Abstract
Cytidine (C) to Uridine (U) RNA editing is a post-transcription modification that is involved in diverse biological processes. APOBEC1 (A1) catalyzes the conversion of C-to-U in RNA, which is important in regulating cholesterol metabolism through its editing activity on ApoB mRNA. However, A1 requires a cofactor to form an "editosome" for RNA editing activity. A1CF and RBM47, both RNA-binding proteins, have been identified as cofactors that pair with A1 to form editosomes and edit ApoB mRNA and other cellular RNAs. SYNCRIP is another RNA-binding protein that has been reported as a potential regulator of A1, although it is not directly involved in A1 RNA editing activity. Here, we describe the identification and characterization of a novel cofactor, RBM46 (RNA-Binding-Motif-protein-46), that can facilitate A1 to perform C-to-U editing on ApoB mRNA. Additionally, using the low-error circular RNA sequencing technique, we identified novel cellular RNA targets for the A1/RBM46 editosome. Our findings provide further insight into the complex regulatory network of RNA editing and the potential new function of A1 with its cofactors.
Collapse
Affiliation(s)
- Shanshan Wang
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyumin Kim
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicolas Gelvez
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Claire Chung
- School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Benjamin Fixman
- Programs in Biomedical and Biological Sciences (PIBBS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Marc Vermulst
- School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
- Programs in Biomedical and Biological Sciences (PIBBS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Center of Excellence in NanoBiophysic, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center; University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Blanc V, Xie Y, Kennedy S, Riordan JD, Rubin DC, Madison BB, Mills JC, Nadeau JH, Davidson NO. Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. RNA (NEW YORK, N.Y.) 2019; 25:70-81. [PMID: 30309881 PMCID: PMC6298562 DOI: 10.1261/rna.068395.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/07/2018] [Indexed: 05/05/2023]
Abstract
Mammalian C to U RNA is mediated by APOBEC1, the catalytic deaminase, together with RNA binding cofactors (including A1CF and RBM47) whose relative physiological requirements are unresolved. Although A1CF complements APOBEC1 for in vitro RNA editing, A1cf-/- mice exhibited no change in apolipoproteinB (apoB) RNA editing, while Rbm47 mutant mice exhibited impaired intestinal RNA editing of apoB as well as other targets. Here we examined the role of A1CF and RBM47 in adult mouse liver and intestine, following deletion of either one or both gene products and also following forced (liver or intestinal) transgenic A1CF expression. There were minimal changes in hepatic and intestinal apoB RNA editing in A1cf-/- mice and no changes in either liver- or intestine-specific A1CF transgenic mice. Rbm47 liver-specific knockout (Rbm47LKO ) mice demonstrated reduced editing in a subset (11 of 20) of RNA targets, including apoB. By contrast, apoB RNA editing was virtually eliminated (<6% activity) in intestine-specific (Rbm47IKO ) mice with only five of 53 targets exhibiting C-to-U RNA editing. Double knockout of A1cf and Rbm47 in liver (ARLKO ) eliminated apoB RNA editing and reduced editing in the majority of other targets, with no changes following adenoviral APOBEC1 administration. Intestinal double knockout mice (ARIKO ) demonstrated further reduced editing (<10% activity) in four of five of the residual APOBEC1 targets identified in ARIKO mice. These data suggest that A1CF and RBM47 each function independently, yet interact in a tissue-specific manner, to regulate the activity and site selection of APOBEC1 dependent C-to-U RNA editing.
Collapse
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Susan Kennedy
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Jesse D Riordan
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Blair B Madison
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| |
Collapse
|
4
|
Davidson NO. RNA editing of the apolipoprotein B gene A mechanism to regulate the atherogenic potential of intestinal lipoproteins? Trends Cardiovasc Med 2012; 4:231-5. [PMID: 21244872 DOI: 10.1016/1050-1738(94)90039-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Apolipoprotein B (apo B) circulates in two distinct isomorphic forms, each the product of a single gene. The larger form, referred to as apo B-100, is the major protein of plasma low-density lipoproteins (LDLs) and is synthesized by the human liver. The smaller form, referred to as apo B-48, is produced in the small intestine as a result of a site-specific cytidine deamination, which alters a CAA codon, encoding glutamine in the unedited (apo B-100) mRNA to UAA, which specifies an in-frame stop codon. Apo B-48 lacks the domains involved in LDL receptor interaction and in complex formation with apolipoprotein(a). DNA sequence analysis of the gene that mediates this site-specific cytidine deamination suggests that apo B mRNA editing is an evolutionary adaptation to limit the atherogenic potential of intestinal lipoproteins.
Collapse
Affiliation(s)
- N O Davidson
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Abstract
Substitutional RNA editing represents an important posttranscriptional enzymatic pathway for increasing genetic plasticity by permitting production of different translation products from a single genomically encoded template. One of the best-characterized examples in mammals is C to U deamination of the nuclear apolipoprotein B (apoB) mRNA. ApoB mRNA undergoes a single, site-specific cytidine deamination event yielding an edited transcript that results in tissue-specific translation of two distinct isoforms, referred to as apoB100 and apoB48. Tissue- and site-specific cytidine deamination of apoB mRNA is mediated by an incompletely characterized holoenzyme containing a minimal core complex consisting of an RNA-specific cytidine deaminase, Apobec-1 and a requisite cofactor, apobec-1 complementation factor (ACF). The underlying biochemical and genetic mechanisms regulating tissue-specific apoB mRNA editing have been accelerated through development and characterization of physiological rodent models as well as knockout and transgenic animal strains.
Collapse
|
6
|
Xie Y, Luo J, Kennedy S, Davidson NO. Conditional intestinal lipotoxicity in Apobec-1-/- Mttp-IKO mice: a survival advantage for mammalian intestinal apolipoprotein B mRNA editing. J Biol Chem 2007; 282:33043-51. [PMID: 17855359 DOI: 10.1074/jbc.m705386200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mammalian small intestinal lipid absorption requires the coordinated interactions of apolipoprotein B (apoB) and the microsomal triglyceride transfer protein (Mttp). The observation that apoB100 displays greater dependence on Mttp availability than does apoB48 prompted us to examine the phenotype of Mttp deletion in an Apobec-1(-/-) background (i.e. apoB100 Mttp-IKO). 20% apoB100 Mttp-IKO mice died on a chow diet, and >90% died following high fat feeding (versus 0 and 11% apoB48 Mttp-IKO mice, respectively). Intestinal adaptation occurred in apoB48 Mttp-IKO mice in response to high fat feeding, evidenced by increased bromodeoxyuridine incorporation and villus lengthening, changes that did not occur in apoB100 Mttp-IKO mice. There was an exaggerated unfolded protein response (UPR), which became more pronounced in apoB100 Mttp-IKO mice. To examine the role of endoplasmic reticulum stress and the UPR in the lipotoxic effects of Mttp deletion, we administered tauroursodeoxycholate to apoB100 Mttp-IKO mice upon initiation of high fat feeding. Tauroursodeoxycholate administration abrogated the UPR but produced an unexpected acceleration in the onset of lethality in apoB100 Mttp-IKO mice. The findings demonstrate that there is activation of the UPR with lethal lipotoxicity in conditional intestinal apoB100 Mttp-IKO mice. Together the data provide the first plausible biological evidence for a survival advantage for mammalian intestinal apoB mRNA editing.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
7
|
Abstract
RNA editing is a process through which the nucleotide sequence specified in the genomic template is modified to produce a different nucleotide sequence in the transcript. RNA editing is an important mechanism of genetic regulation that amplifies genetic plasticity by allowing the production of alternative protein products from a single gene. There are two generic classes of RNA editing in nuclei, involving enzymatic deamination of either C-to-U or A-to-I nucleotides. The best characterized example of C-to-U RNA editing is that of apolipoprotein B (apoB), which is mediated by a holoenzyme that contains a minimal core composed of an RNA-specific cytidine deaminase apobec-1, and its cofactor apobec-1 complementation factor (ACF). C-to-U editing of apoB RNA generates two different isoforms--apoB100 and apoB48--from a single transcript. Both are important regulators of lipid transport and metabolism, and are functionally distinct. C-to-U apoB RNA editing is regulated by a range of factors including developmental, nutritional, environmental, and metabolic stimuli. Rodent models have provided a tractable system in which to study the effects of such stimuli on lipid metabolism. In addition, both transgenic and gene knockout experiments have provided important insights into gain and loss of function approaches for studying C-to-U RNA editing in a murine background.
Collapse
Affiliation(s)
- Soo-Jin Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
8
|
Abstract
Increased serum concentrations of low density lipoproteins represent a major cardiovascular risk factor. Low-density lipoproteins are derived from very low density lipoproteins secreted by the liver. Apolipoprotein (apo)B that constitutes the essential structural protein of these lipoproteins exists in two forms, the full length form apoB-100 and the carboxy-terminal truncated apoB-48. The generation of apoB-48 is due to editing of the apoB mRNA which generates a premature stop translation codon. The editing of apoB mRNA is an important regulatory event because apoB-48-containing lipoproteins cannot be converted into the atherogenic low density lipoproteins. The apoB gene is constitutively expressed in liver and intestine, and the rate of apoB secretion is regulated post-transcriptionally. The translocation of apoB into the endoplasmic reticulum is complicated by the hydrophobicity of the nascent polypeptide. The assembly and secretion of apoB-containing lipoproteins within the endoplasmic reticulum is strictly dependent on the microsomal tricylceride transfer protein which shuttles triglycerides onto the nascent lipoprotein particle. The overall synthesis of apoB lipoproteins is regulated by proteosomal and nonproteosomal degradation and is dependent on triglyceride availability. Noninsulin dependent diabetes mellitus, obesity and the metabolic syndrome are characterized by an increased hepatic synthesis of apoB-containing lipoproteins. Interventions aimed to reduce the hepatic secretion of apoB-containing lipoproteins are therefore of great clinical importance. Lead targets in these pathways are discussed.
Collapse
Affiliation(s)
- J Greeve
- Klinik für Allgemeine Innere Medizin, Inselspital-Universitätsspital Bern, Switzerland.
| |
Collapse
|
9
|
Navarro MA, Acín S, Iturralde M, Calleja L, Carnicer R, Guzmán-García MA, González-Ramón N, Mata P, Isabel B, López-Bote CJ, Lampreave F, Piñeiro A, Osada J. Cloning, characterization and comparative analysis of pig plasma apolipoprotein A-IV. Gene 2004; 325:157-64. [PMID: 14697520 DOI: 10.1016/j.gene.2003.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pig apolipoprotein (apo) A-IV cDNA was cloned, characterized and compared to the human ortholog. Mature porcine apo A-IV consists of 362 amino acids and displays a 75.6% sequence identity with human protein. Pig apo A-IV is the smallest reported mammalian apo A-IV because it lacks the repeated motifs of glutamine and glutamic acid at the carboxyl terminus. A phylogenic tree of apo A-IV mammalian proteins reveals that porcine apo A-IV is more closely related to humans and primates than to rodents. This protein is highly hydrophobic and is mainly associated with lipoproteins.
Collapse
Affiliation(s)
- María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, E-50013 Zaragozza, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Burnett JR, Barrett PHR. Apolipoprotein B metabolism: tracer kinetics, models, and metabolic studies. Crit Rev Clin Lab Sci 2002; 39:89-137. [PMID: 12014529 DOI: 10.1080/10408360208951113] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The study of apolipoprotein (apo) B metabolism is central to our understanding of lipoprotein metabolism. However, the assembly and secretion of apoB-containing lipoproteins is a complex process. Specialized techniques, developed and applied to in vitro and in vivo studies of apoB metabolism, have provided insights into the mechanisms involved in the regulation of this process. Moreover, these studies have important implications for understanding both the pathophysiology as well as the therapeutic options for the dyslipidemias. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the applications of kinetic analysis and multicompartmental modeling to the study of apoB metabolism. New developments and significant advances over the last decade are discussed.
Collapse
Affiliation(s)
- John R Burnett
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital, University of Western Australia, Australia.
| | | |
Collapse
|
11
|
Henderson JO, Blanc V, Davidson NO. Isolation, characterization and developmental regulation of the human apobec-1 complementation factor (ACF) gene. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:22-30. [PMID: 11718896 DOI: 10.1016/s0167-4781(01)00295-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian apolipoprotein B (apo B) mRNA undergoes site-specific C to U deamination which is mediated by a multicomponent enzyme complex containing a minimal core composed of apobec-1 and a complementation factor, ACF. We have isolated and characterized the human ACF gene and examined its tissue-specific and developmental expression. The ACF gene spans approximately 80 kb and contains 15 exons, three of which are non-coding. Multiple alternative splice acceptor sites were found, generating at least nine different transcripts. Of these, the majority (approximately 75-89%) encode functional protein. In order to examine the role of ACF mRNA expression in the regulation of apo B mRNA editing, we examined a panel of fetal intestinal and hepatic mRNAs as well as RNA from an intestinal cell line. A developmental increase in C to U RNA editing has been previously noted in the human intestine. In both instances, the pattern of alternative splicing and overall abundance of ACF mRNA was relatively constant during development in both liver and small intestine. Taken together, the data demonstrate a complex pattern of differential, tissue-specific splicing of ACF mRNA, but suggest that other mechanisms are responsible for the developmental increase noted in intestinal apo B mRNA editing in humans.
Collapse
Affiliation(s)
- J O Henderson
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave, Box 8124, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
12
|
Enjoji M, Wang F, Nakamuta M, Chan L, Teng BB. Hammerhead ribozyme as a therapeutic agent for hyperlipidemia: production of truncated apolipoprotein B and hypolipidemic effects in a dyslipidemia murine model. Hum Gene Ther 2000; 11:2415-30. [PMID: 11096445 DOI: 10.1089/104303400750038516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we used adenovirus-mediated vector to target hammerhead ribozyme at GUA(6679) downward arrow of apoB mRNA (designated AvRB15) in the liver of a dyslipidemic mouse model that is deficient in apoB mRNA editing enzyme and overexpresses human apoB100. In this study, we delivered approximately 4 x 10(11) virus particles of AvRB15 (active ribozyme) or AvRB15-mutant (inactive ribozyme) to the animals. Using Southern blot analysis, we readily detected RB15 DNA in the mouse liver as long as day 35 after injection. This result was correlated with the RNA expression of RB15 by RNase protection assay. Using reverse ligation-mediated polymerase chain reaction, the 3' cleavage product of apoB mRNA was detected, and the exact cleavage site was confirmed by sequencing. Importantly, the levels of human and mouse apoB mRNA decreased approximately 80% after AvRB15 transduction. There was a marked decrease in plasma cholesterol, triglyceride, and human apoB of 42, 51, and 62%, respectively, when compared with the inactive ribozyme-treated group. Moreover, ribozyme cleavage of apoB mRNA generated a truncated protein of the expected size (apoB48.1), which was associated with lipoprotein particles in the very low density, low density, and high density lipoprotein fractions. Taken together, these results indicate that apoB mRNA-specific hammerhead ribozyme can be used as a potential therapeutic agent to modulate apoB gene expression and to treat hyperlipidemia.
Collapse
Affiliation(s)
- M Enjoji
- Departments of Medicine and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Wang JP, Enjoji M, Tiebel M, Ochsner S, Chan L, Teng BB. Hammerhead ribozyme cleavage of apolipoprotein B mRNA generates a truncated protein. J Biol Chem 1999; 274:24161-70. [PMID: 10446190 DOI: 10.1074/jbc.274.34.24161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Target substrate-specific hammerhead ribozyme cleaves the specific mRNA and results in the inhibition of gene expression. In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To modulate apoB gene expression, we designed hammerhead ribozymes targeted at AUA(6665) and GUA(6679) of apoB mRNA, designated RB16 and RB15, respectively, and investigated their effects on apoB mRNA in HepG2 cells. The results demonstrated that RB15 and RB16 ribozyme RNAs cleaved apoB RNA efficiently in vitro. Both ribozymes, RB15 and RB16, were used to construct recombinant adenoviral vectors, designated AvRB15 and AvRB16, respectively, for in vivo gene transfer. HepG2 cells were infected with 2 x 10(5) plaque-forming units of AvRB15 for 5, 10, 15, and 24 h. An RNase protection assay showed that the expression of the RB15 transcript was time-dependent; it increased approximately 300-fold from 5 to 24 h. Using reverse ligation-mediated polymerase chain reaction, the 3' cleavage product of apoB mRNA was detected, and the exact cleavage site of apoB mRNA was confirmed by sequencing. Importantly, the levels of apoB mRNA in HepG2 cells decreased approximately 80% after AvRB15 infection. Pulse/chase experiments on HepG2 cells treated with AvRB15 and AvRB16 demonstrated that ribozyme cleavage produced a truncated protein that was secreted at a density of 1. 063-1.210 g/ml. The cleavage activity of RB15 on apoB mRNA was more efficient than that of RB16. Moreover, pulse/chase experiments in HepG2 cells treated with AvRB15 revealed that most of the truncated apoB protein was degraded intracellularly. We conclude that hammerhead ribozyme targeted at GUA(6679) of apoB mRNA cleaves apoB mRNA, results in decreased apoB mRNA levels, and generates a truncated apoB of the expected size in vivo. Thus, the therapeutic application of ribozyme in regulating apoB production holds promise.
Collapse
Affiliation(s)
- J P Wang
- Departments of Medicine and Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
14
|
Nakamuta M, Tsai A, Chan L, Davidson NO, Teng BB. Sequence elements required for apolipoprotein B mRNA editing enhancement activity from chicken enterocytes. Biochem Biophys Res Commun 1999; 254:744-50. [PMID: 9920812 DOI: 10.1006/bbrc.1998.9963] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian intestinal apolipoprotein B (apoB) mRNA edits codon 2153 from CAA in apoB100 mRNA to a stop codon (UAA) in apoB48 mRNA. By contrast, chicken intestinal apoB mRNA contains a CAA codon at the corresponding site, but is not edited. Chicken enterocyte S100 extracts fail to edit mammalian apoB RNA, but contain factor(s) which enhance the mammalian enterocytes editing activity. By converting the chicken apoB mooring sequences to the conserved mammalian sequences, the study confirmed that this 11-nucleotide stretch was necessary and sufficient for minimal RNA editing. Using rat and chicken apoB chimeric constructs, the study revealed that mammalian apoB sequences were required for editing enhancement. In concert with the 29-nucleotide conserved cassette, the 5' rat apoB element (nucleotides 6615-6629) increased editing at C-6666, and was necessary for editing enhancement of chicken enterocyte S100 extracts. Similarly, the 3' rat apoB element (nucleotides 6726-6752) was required for editing enhancement of chicken enterocyte S100 extracts, but to a lesser extent in efficiency, compared to the 5' region. In conclusion, this study identified the sequences required for editing enhancement activity from chicken enterocyte S100 extracts.
Collapse
Affiliation(s)
- M Nakamuta
- Institute of Molecular Medicine, University of Texas-Houston, Houston, Texas, 77030, USA
| | | | | | | | | |
Collapse
|
15
|
Wang H, Hunter F, Black DD. Effect of feeding diets of varying fatty acid composition on apolipoprotein expression in newborn swine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G645-51. [PMID: 9756492 DOI: 10.1152/ajpgi.1998.275.4.g645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to determine the effect of chronic (1 wk) feeding of dietary triacylglycerol (TG) of varying fatty acid composition on small intestinal and hepatic apolipoprotein expression, as well as serum lipid and apolipoprotein concentrations, in newborn swine. Two-day-old female swine were fed one of three diets by gavage with the following lipid composition: medium-chain TG (MCT; MCT oil), intermediate-chain saturated TG (ICST; coconut oil), and long-chain polyunsaturated TG (LCPUT; safflower oil) at 753 kJ . kg-1 . day-1 with 51% of energy from fat. After 1 wk, serum lipids and apolipoprotein concentrations were measured, and jejunal apolipoprotein B (apo B) and apo A-I mass and apo B, apo A-I, apo A-IV, and apo C-III synthesis were measured. Liver was processed for determination of apo B and apo A-I mass and apo B, apo A-I, apo C-III, and beta-actin mRNA abundance by slot blot hybridization. Compared with the MCT and LCPUT groups, the ICST group had higher total serum cholesterol, TG, high-density lipoprotein (HDL)-cholesterol, and apo A-I concentrations. There were no differences among the three groups for intestinal apolipoprotein mass or synthesis. In liver, apo A-I mass was highest in the ICST group. Liver apo A-I and apo C-III mRNA abundance was highest in the ICST group. Among all three groups, hepatic apo A-I mass correlated significantly with plasma HDL-cholesterol concentrations, and serum TG concentrations correlated with hepatic apo C-III mRNA abundance. In conclusion, we found that in the newborn piglet, chronic feeding of ICST increases serum total cholesterol, TG, HDL-cholesterol, and apo A-I concentrations and hepatic expression of apo A-I and apo C-III mRNA, compared with feeding of MCT or LCPUT. We speculate that increased hepatic apo A-I expression may contribute to the higher serum HDL and apo A-I concentrations in the ICST animals. Increased hepatic expression of apo C-III with ICST feeding may contribute to the higher serum TG concentrations by apo C-III-mediated inhibition of the catabolism of triacylglycerol-rich lipoproteins.
Collapse
Affiliation(s)
- H Wang
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | | | | |
Collapse
|
16
|
Sowden MP, Eagleton MJ, Smith HC. Apolipoprotein B RNA sequence 3' of the mooring sequence and cellular sources of auxiliary factors determine the location and extent of promiscuous editing. Nucleic Acids Res 1998; 26:1644-52. [PMID: 9512534 PMCID: PMC147457 DOI: 10.1093/nar/26.7.1644] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B (apoB) RNA editing involves a cytidine to uridine transition at nucleotide 6666 (C6666) 5' of an essential cis -acting 11 nucleotide motif known as the mooring sequence. APOBEC-1 (apoB editing catalytic sub-unit 1) serves as the site-specific cytidine deaminase in the context of a multiprotein assembly, the editosome. Experimental over-expression of APOBEC-1 resulted in an increased proportion of apoB mRNAs edited at C6666, as well as editing of sites that would otherwise not be recognized (promiscuous editing). In the rat hepatoma McArdle cell line, these sites occurred predominantly 5' of the mooring sequence on either rat or human apoB mRNA expressed from transfected cDNA. In comparison, over-expression of APOBEC-1 in HepG2 (HepG2-APOBEC) human hepatoma cells, induced promiscuous editing primarily 5' of the mooring sequence, but sites 3' of the C6666 were also used more efficiently. The capacity for promiscuous editing was common to rat, rabbit and human sources of APOBEC-1. The data suggested that differences in the distribution of promiscuous editing sites and in the efficiency of their utilization may reflect cell-type-specific differences in auxiliary proteins. Deletion of the mooring sequence abolished editing at the wild type site and markedly reduced, but did not eliminate, promiscuous editing. In contrast, deletion of a pair of tandem UGAU motifs 3' of the mooring sequence in human apoB mRNA selectively reduced promiscuous editing, leaving the efficiency of editing at the wild type site essentially unaffected. ApoB RNA constructs and naturally occurring mRNAs such as NAT-1 (novel APOBEC-1 target-1) that lack this downstream element were not promiscuously edited in McArdle or HepG2 cells. These findings underscore the importance of RNA sequences and the cellular context of auxiliary factors in regulating editing site utilization.
Collapse
Affiliation(s)
- M P Sowden
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Box 712, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
17
|
|
18
|
Levy E, Sinnett D, Thibault L, Nguyen TD, Delvin E, Ménard D. Insulin modulation of newly synthesized apolipoproteins B-100 and B-48 in human fetal intestine: gene expression and mRNA editing are not involved. FEBS Lett 1996; 393:253-8. [PMID: 8814300 DOI: 10.1016/0014-5793(96)00896-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated insulin's effect on intestinal lipid, transport and, particularly, the biogenesis of apolipoproteins crucial to lipoprotein secretion. Adding insulin (3 mU) to the serum-free medium of cultured jejunal explants from human fetuses (17-20 weeks) reduced triglyceride and chylomicron production and inhibited apo B-48 and apo B-100 secretion. When apo B mRNA was assayed by RT-PCR and its editing by primer extension, no change was detectable following the addition of insulin. HDL lipid content, apo A-1 synthesis and RNA level were unaffected by insulin. Collectively, these results suggest that the insulin-stimulated decline in intestinal chylomicron output may involve apo B co- or post-translational modifications.
Collapse
Affiliation(s)
- E Levy
- Department of Nutrition, Hôpital Sainte-Justine, Université de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Wang H, Zhan R, Hunter F, Du J, Black D. Effect of acute feeding of diets of varying fatty acid composition on intestinal apolipoprotein expression in the newborn swine. Pediatr Res 1996; 39:1078-84. [PMID: 8725273 DOI: 10.1203/00006450-199606000-00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of this study was to determine the effects of dietary fatty acids of varying chain lengths and degrees of saturation on intestinal apolipoprotein (apo) B and A-I expression in the newborn piglet. Two-day-old female piglets received one of three isocaloric formulas containing 48% of total calories (120 kcal/kg/24 h) as medium-chain triglycerides (MCT) from MCT oil, intermediate-chain saturated triglycerides (ICST) from coconut oil, or long-chain polyunsaturated triglycerides (LCPUT) from safflower oil by continuous duodenal infusion for 24 h. After in situ radiolabeling, jejunal and ileal mucosal apo B-48 and A-I were immunoprecipitated, and synthesis was expressed as percentage of total protein synthesis. Mucosal apo B and A-I mass was measured by ELISA as nanograms of apoprotein/microgram of total protein. Fifty percent less apo B jejunal synthesis was present in the ICST group versus the MCT and LCPUT groups (0.67 +/- 0.07, 1.19 +/- 0.20, and 1.25 +/- 0.15, respectively, mean +/- SEM, p < 0.05). Jejunal apo B mass was lower in the MCT group versus the ICST and LCPUT groups (0.10 +/- 0.02, 0.21 +/- 0.03, and 0.16 +/- 0.03, respectively, p < 0.05). Ileal apo B synthesis was lowest in the ICST group. No differences were found in ileal apo B mass. Two-fold higher jejunal apo A-I synthesis was found in the LCPUT group versus the MCT and ICST groups (14.18 +/- 1.69, 7.56 +/- 2.63, and 6.36 +/- 0.58, respectively, p < 0.01). No differences were found for jejunal apo A-I mass. In the ileum, the only difference was a higher apo A-I mass in the LCPUT group (p < 0.05). We conclude that in the newborn piglet intestinal apo B and A-I expression is acutely and differentially regulated by dietary lipid varying in fatty acid chain length and saturation. The patterns of regulation are complex and vary among specific apolipoproteins and regions of the small intestine and include co- and posttranslational mechanisms.
Collapse
Affiliation(s)
- H Wang
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock 72202, USA
| | | | | | | | | |
Collapse
|
20
|
Hirano K, Young SG, Farese RV, Ng J, Sande E, Warburton C, Powell-Braxton LM, Davidson NO. Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J Biol Chem 1996; 271:9887-90. [PMID: 8626621 DOI: 10.1074/jbc.271.17.9887] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A site-specific C to U editing reaction modifies nuclear apolipoprotein B100 (apoB100) mRNA, producing apolipoprotein B48 in the mammalian small intestine. This reaction is mediated by a multicomponent enzyme complex, which contains a catalytic subunit, Apobec-1. We have used gene targeting to disrupt mouse apobec-1 in order to establish its requisite importance in apoB mRNA editing and also, in view of its widespread tissue distribution in rodents, as a preliminary indication of other potential roles. Both heterozygous (apobec-1+/-) and homozygous (apobec-1-/-) gene-targeted mice appear healthy and fertile with no alterations in serum cholesterol or triglyceride concentrations. The apobec-1+/- mice demonstrated reduced levels of hepatic apoB mRNA editing. By contrast, levels of small intestinal apoB mRNA editing were indistinguishable in wild-type and apobec-1+/- animals, suggesting that Apobec-1 is expressed in limited quantities in the liver but not in the small intestine. The apobec-1-/- mice lacked detectable levels of Apobec-1 mRNA, expressed only unedited apoB mRNA in all tissues, and contained no apoB48 in their serum, demonstrating that there is no functional duplication of this gene.
Collapse
Affiliation(s)
- K Hirano
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sowden M, Hamm JK, Smith HC. Overexpression of APOBEC-1 results in mooring sequence-dependent promiscuous RNA editing. J Biol Chem 1996; 271:3011-7. [PMID: 8621694 DOI: 10.1074/jbc.271.6.3011] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Apolipoprotein B (apoB) RNA editing involves site-specific deamination of a cytidine to a uridine. A mooring sequence, a spacer region, and a regulator region are components of the apoB RNA editing motif of which only the mooring sequence is both necessary and sufficient for editosome assembly and editing. The catalytic component of the editosome is APOBEC-1. In rat hepatoma, stable cell lines, overexpression of APOBEC-1 resulted in 3 6-fold stimulation of the editing efficiency on either rat endogenous apoB RNA or transiently expressed human apoB RNA. In these cell lines, cytidines in addition to the one at the wild type site were edited. The occurrence and efficiency of this "promiscuous" editing increased with increasing expression of APOBEC-1. Promiscuous editing was restricted to cytidines 5' of the mooring sequence and only occurred on RNAs that had been edited at the wild type site. Moreover, RNAs with mutant editing motifs supported high efficiency but low fidelity editing in the presence of high levels of APOBEC-1. This study demonstrates that overexpression of APOBEC-1 can increase the efficiency of site-specific editing but can also result in promiscuous editing.
Collapse
Affiliation(s)
- M Sowden
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
22
|
[18]Mammalian RNA Editing. Hum Mol Genet 1996. [DOI: 10.1016/s1067-2389(96)80051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
23
|
Hughes SD, Rouy D, Navaratnam N, Scott J, Rubin EM. Gene transfer of cytidine deaminase apoBEC-1 lowers lipoprotein(a) in transgenic mice and induces apolipoprotein B editing in rabbits. Hum Gene Ther 1996; 7:39-49. [PMID: 8825867 DOI: 10.1089/hum.1996.7.1-39] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Apolipoprotein (apo) B100 is an essential component of low-density lipoproteins (LDL) and lipoprotein(a) [Lp(a)]. In mammals, apoB can be edited post-transcriptionally to encode a truncated form of apoB (apoB48) that is unable to form either of these atherogenic lipoproteins. To study the effect of increasing hepatic apoB editing activity on formation of Lp(a), a recombinant adenovirus encoding rat apoBEC-1, the cytidine deaminase component of the apoB mRNA editing complex, was administered to human apoB/apo(a) transgenic mice. This resulted in expression of apoBEC-1 in hepatocytes of these mice, increased hepatic editing of human apoB mRNA, and decreased plasma levels of human apoB100 and Lp(a). The apoBEC-1 recombinant adenovirus was also administered to rabbits, an animal which, like humans, naturally lacks hepatic apoB editing. Expression of the exogenous apoBEC-1 in rabbit liver resulted in editing of up to 10% of apoB mRNA. Hepatic apoB editing was associated with lower LDL levels in these rabbits relative to those treated with a control adenovirus. However, LDL levels were elevated significantly in both animals as a result of adenovirus injection. These studies demonstrate that introduction of the cytidine deaminase apoBEC-1 is sufficient to induce hepatic apoB editing in an animal lacking this activity, and that induction of editing could serve as a novel approach for lowering plasma concentrations of the atherogenic lipoproteins Lp(a) and LDL.
Collapse
Affiliation(s)
- S D Hughes
- Lawrence Berkeley Laboratory, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
24
|
Bergeron N, Kotite L, Havel RJ. Simultaneous quantification of apolipoproteins B-100, B-48, and E separated by SDS-PAGE. Methods Enzymol 1996; 263:82-94. [PMID: 8749001 DOI: 10.1016/s0076-6879(96)63006-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- N Bergeron
- Department of Medicine, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
25
|
Giannoni F, Chou S, Skarosi S, Verp M, Field F, Coleman R, Davidson N. Developmental regulation of the catalytic subunit of the apolipoprotein B mRNA editing enzyme (APOBEC-1) in human small intestine. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41486-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Kotite L, Bergeron N, Havel RJ. Quantification of apolipoproteins B-100, B-48, and E in human triglyceride-rich lipoproteins. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)40071-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Funahashi T, Giannoni F, DePaoli AM, Skarosi SF, Davidson NO. Tissue-specific, developmental and nutritional regulation of the gene encoding the catalytic subunit of the rat apolipoprotein B mRNA editing enzyme: functional role in the modulation of apoB mRNA editing. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39876-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Affiliation(s)
- F J Field
- Department of Internal Medicine, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
29
|
Sharma PM, Bowman M, Madden SL, Rauscher FJ, Sukumar S. RNA editing in the Wilms' tumor susceptibility gene, WT1. Genes Dev 1994; 8:720-31. [PMID: 7926762 DOI: 10.1101/gad.8.6.720] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rat kidney WT1 cDNAs contain either a thymidine or a cytosine residue at position 839. Genomic WT1 DNA contains only T839. To explain these results, we propose the WT1 transcript undergoes RNA editing in which U839 is converted to C, resulting in the replacement of leucine 280 in WT1 by proline. RNA editing at the same nucleotide was observed in WT1 cDNAs from human testis. In functional assays, the WT1-leucine280 polypeptide repressed the EGR-1 promoter in in vitro assays approximately 30% more efficiently than WT1-proline. Edited WT1-C839 mRNA was barely detectable in neonatal kidney, whereas adult rat kidneys contained both U839 and C839-WT1 mRNA, suggesting a role for the two protein isoforms in growth and differentiation.
Collapse
Affiliation(s)
- P M Sharma
- Salk Institute for Biological Studies, La Jolla, California 92037
| | | | | | | | | |
Collapse
|
30
|
Chiesa G, Johnson D, Yao Z, Innerarity T, Mahley R, Young S, Hammer R, Hobbs H. Expression of human apolipoprotein B100 in transgenic mice. Editing of human apolipoprotein B100 mRNA. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80442-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Greeve J, Altkemper I, Dieterich JH, Greten H, Windler E. Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)36966-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Abstract
Mammalian apolipoprotein B (apo B) exists in two forms, each the product of a single gene. The shorter form, apo B48, arises by posttranscriptional RNA editing whereby cytidine deamination produces a UAA termination codon. A full-length complementary DNA clone encoding an apo B messenger RNA editing protein (REPR) was isolated from rat small intestine. The 229-residue protein contains consensus phosphorylation sites and leucine zipper domains. HepG2 cell extracts acquire editing activity when mixed with REPR from oocyte extracts. REPR is essential for apo B messenger RNA editing, and the isolation and characterization of REPR may lead to the identification of other eukaryotic RNA editing proteins.
Collapse
Affiliation(s)
- B Teng
- Department of Medicine, University of Chicago, IL 60637
| | | | | |
Collapse
|
33
|
Teng B, Davidson N. Evolution of intestinal apolipoprotein B mRNA editing. Chicken apolipoprotein B mRNA is not edited, but chicken enterocytes contain in vitro editing enhancement factor(s). J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36827-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Patterson AP, Tennyson GE, Hoeg JM, Sviridov DD, Brewer HB. Ontogenetic regulation of apolipoprotein B mRNA editing during human and rat development in vivo. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1992; 12:468-73. [PMID: 1558838 DOI: 10.1161/01.atv.12.4.468] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The solubilization and delivery of lipids in plasma rely on both forms of apolipoprotein B (apo B): apo B-100 and apo B-48. Apo B-48 is the translational product of apo B-100 mRNA that undergoes peritranscriptional conversion of C----U, replacing codon CAA (glutamine 2,153) with the inframe stop codon (UAA). We examined mRNA editing activity in the human and the rat by reverse transcription-polymerase chain reaction primer-extension analysis of intestine and liver total RNA. In rat intestine the percentage of apo B transcripts that undergo editing increases dramatically the day before birth (from approximately 1% to 80%), whereas the rat liver acquires an adult level of editing activity during the third postnatal week (rising from approximately 8% to 30%), when weaning is completed, bile acid composition matures, and plasma thyroid hormone levels peak. In contrast to the rat, the human intestine acquires adult levels of apo B mRNA editing relatively early in fetal development, rising from 10% at 10 weeks to approximately 80% by the end of the second trimester. Our results establish that apo B mRNA editing is 1) developmentally regulated in a tissue- and species-specific manner; 2) fully developed prenatally in both human and rat intestine, suggesting a crucial role of apo B-48 in mammalian fetal adaptation to extrauterine life; and 3) acquired early in human fetal intestine, implying a potential role for apo B-48 in prenatal lipid metabolism.
Collapse
Affiliation(s)
- A P Patterson
- Molecular Disease Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
35
|
Apolipoprotein B mRNA editing is an intranuclear event that occurs posttranscriptionally coincident with splicing and polyadenylation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54960-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|